-
Notifications
You must be signed in to change notification settings - Fork 23
/
Pushout.ard
208 lines (184 loc) · 8.4 KB
/
Pushout.ard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
\import Algebra.Meta
\import Equiv
\import Equiv.Sigma
\import Equiv.Univalence
\import Function
\import Homotopy.Pointed
\import Homotopy.Square
\import Paths
\class Pushout (square : Square)
| pushout-univ {Z : \Type} : Equiv {square.Y -> Z} {Square { | Y => Z | U => square.U | V => square.V | X => square.X | uv => square.uv | ux => square.ux }} (Square.push square)
\where {
-- | Pushouts are functorial
\func map (p : Pushout) (s : Square)
(f : p.square.U -> s.U)
(g : p.square.V -> s.V)
(h : p.square.X -> s.X)
(e1 : \Pi (u : p.square.U) -> s.uv (f u) = g (p.square.uv u))
(e2 : \Pi (u : p.square.U) -> s.ux (f u) = h (p.square.ux u))
: p.square.Y -> s.Y
=> p.pushout-univ.ret (\new Square {
| vy v => s.vy (g v)
| xy x => s.xy (h x)
| sqcomm u => pmap s.vy (inv (e1 u)) <* s.sqcomm (f u) *> pmap s.xy (e2 u)
})
-- | {map} preserves identity maps
\func map_id (p : Pushout) (y : p.square.Y) : map p p.square id id id (\lam _ => idp) (\lam _ => idp) = id
=> p.pushout-univ.ret_f (\lam x => x)
}
\data PushoutData {A B C : \Type} (f : A -> B) (g : A -> C)
| pinl B
| pinr C
| pglue (a : A) : pinl (f a) = pinr (g a)
\where {
\func ppglue {A B C : \Type} {f : A -> B} {g : A -> C} (a : A) : pinl (f a) = {PushoutData f g} pinr (g a) => path (pglue a)
\func rec {A B C : \Type} {f : A -> B} {g : A -> C} {Z : \Type} (lm : B -> Z) (rm : C -> Z) (gm : \Pi (a : A) -> lm (f a) = rm (g a)) (x : PushoutData f g) : Z \elim x
| pinl b => lm b
| pinr c => rm c
| pglue a => gm a
\where {
\func map {A B C : \Type} {f : A -> B} {g : A -> C} {Y Z : \Type} (h : Y -> Z) (lm : B -> Y) (rm : C -> Y) (gm : \Pi (a : A) -> lm (f a) = rm (g a)) (x : PushoutData f g)
: h (rec lm rm gm x) = rec (h `o` lm) (h `o` rm) (\lam a => pmap h (gm a)) x \elim x
| pinl b => idp
| pinr c => idp
| pglue a i => idp
\func equiv {A B C : \Type} {f : A -> B} {g : A -> C} (Z : \Type)
: Equiv {PushoutData f g -> Z} {\Sigma (lm : B -> Z) (rm : C -> Z) (gm : \Pi (a : A) -> lm (f a) = rm (g a))}
=> \new QEquiv {
| f h => (\lam b => h (pinl b), \lam c => h (pinr c), \lam a => path (\lam i => h (pglue a i)))
| ret p => rec p.1 p.2 p.3
| ret_f h => path (\lam i x => (\case \elim x \return rec (\lam b => h (pinl b)) (\lam c => h (pinr c)) (\lam a => path (\lam i => h (pglue a i))) x = h x \with {
| pinl b => idp
| pinr c => idp
| pglue a i => idp
}) @ i)
| f_sec => idpe
}
}
-- | The total space of a fibration over a pushout is equivalent to a pushout of fibers of this fibration.
\func flattening {A B C : \Type} {f : A -> B} {g : A -> C} (F : PushoutData f g -> \Type)
: total = (\Sigma (w : PushoutData f g) (F w))
=> QEquiv-to-= totalPushoutLeft *> path TotalPushout *> QEquiv-to-= totalPushoutRight
\where {
\func total
=> PushoutData {\Sigma (x : A) (F (pinl (f x)))}
{\Sigma (y : B) (F (pinl y))}
{\Sigma (z : C) (F (pinr z))}
(\lam p => (f p.1, p.2))
(\lam p => (g p.1, transport F (ppglue p.1) p.2))
\data TotalPushout (j : I)
| tinl (y : B) (F (pinl y))
| tinr (z : C) (F (pinr z))
| tglue (x : A) (i : I) (w : F (pglue x (I.squeeze i j))) \elim i {
| left => tinl (f x) w
| right => tinr (g x) (coe2 (\lam i => F (pglue x i)) j w right)
}
\func totalPushoutLeft : QEquiv {total} {TotalPushout left} \cowith
| f => LR
| ret => RL
| ret_f t => \case \elim t \with {
| pinl (y,t) => idp
| pinr (z,t) => idp
| pglue (x,t) i => idp
}
| f_sec t => \case \elim t \with {
| tinl y t => idp
| tinr y t => idp
| tglue x i t => idp
}
\where {
\func LR (t : total) : TotalPushout left \elim t
| pinl (y,t) => tinl y t
| pinr (z,t) => tinr z t
| pglue (x,t) i => tglue x i t
\func RL (t : TotalPushout left) : total \elim t
| tinl y t => pinl (y,t)
| tinr z t => pinr (z,t)
| tglue x i t => pglue (x,t) i
}
\func totalPushoutRight : QEquiv {TotalPushout right} {\Sigma (w : PushoutData f g) (F w)} \cowith
| f => LR
| ret => RL
| ret_f t => \case \elim t \with {
| tinl y t => idp
| tinr z t => idp
| tglue x i t => idp
}
| f_sec t => \case \elim t \with {
| (pinl y, t) => idp
| (pinr z, t) => idp
| (pglue x i, t) => idp
}
\where {
\func LR (t : TotalPushout right) : \Sigma (w : PushoutData f g) (F w) \elim t
| tinl y t => (pinl y, t)
| tinr z t => (pinr z, t)
| tglue x i t => (pglue x i, t)
\func RL (t : \Sigma (w : PushoutData f g) (F w)) : TotalPushout right \elim t
| (pinl y, t) => tinl y t
| (pinr z, t) => tinr z t
| (pglue x i, t) => tglue x i t
}
}
}
\open PushoutData
\instance PushoutPointed {A B C : \Type} {P : Pointed B} {f : A -> B} {g : A -> C} : Pointed (PushoutData f g)
| base => pinl base
\func pushoutData {A B C : \Type} (f : A -> B) (g : A -> C) : Pushout \cowith
| square {
| U => A
| V => B
| X => C
| Y => PushoutData f g
| ux => g
| vy => pinl
| uv => f
| xy => pinr
| sqcomm a => path (pglue a)
}
| pushout-univ {Z} => \new QEquiv {
| ret (s : Square) => rec s.vy s.xy s.sqcomm
| ret_f h => path (\lam i p => (\case \elim p \return rec (h `o` pinl) (h `o` pinr) (\lam a => path (\lam j => h (pglue a j))) p = h p \with {
| pinl _ => idp
| pinr _ => idp
| pglue _ _ => idp
}) @ i)
| f_sec _ => idp
}
-- | A pushout of an embedding is an embedding and such a pushout square is also a pullback square
\class EmbeddingPushout \noclassifying (A B C : \Type) (f : A -> B) (g : Embedding {A} {C}) {
\func PO => PushoutData f g
\func code (b0 : B) (w : PO) : \hType \elim w
| pinl b => b0 = b
| pinr c => \Sigma (a : A) (b0 = f a) (c = g a)
| pglue a => QEquiv-to-= (equiv b0 a)
\lemma equiv (b0 : B) (a : A) : Equiv {b0 = f a} {\Sigma (a' : A) (b0 = f a') (g a = g a')} (a, __, idp) => equation
{symQEquiv (contr-left (lsigma a))}
(\Sigma (p : \Sigma (a' : A) (a = a')) (b0 = f p.1)) {sigma-left (sigma-right (g.pmap-isEquiv {a} {__}))}
(\Sigma (p : \Sigma (a' : A) (g a = g a')) (b0 = f p.1)) {\new QEquiv { | B => \Sigma (a' : A) (b0 = f a') (g a = g a') | f p => (p.1.1, p.2, p.1.2) | ret q => ((q.1,q.3),q.2) | ret_f => idpe | f_sec => idpe }}
\func encode (b0 : B) {w : PO} (p : pinl b0 = w) : code b0 w => transport (code b0) p idp
\func decode (b0 : B) {w : PO} (d : code b0 w) : pinl b0 = w \elim w
| pinl b => pmap pinl d
| pinr c => pmap pinl d.2 *> ppglue d.1 *> inv (pmap pinr d.3)
| pglue a i =>
\let t => transport_pi2 (code b0) (pinl b0 =) (ppglue a) (pmap pinl) (\lam x => pmap pinl x.2 *> ppglue x.1 *> inv (pmap pinr x.3))
(\lam p => Jl (\lam _ q => transport (pinl b0 =) q (pmap pinl p) = pmap pinl p *> q) idp (ppglue a))
\in (pathOver t @ i) d
\func encode_decode-left (b0 b : B) (d : code b0 (pinl b)) : encode b0 {pinl b} (decode b0 d) = d \elim d
| idp => idp
\func encode_decode-right (b0 : B) (c : C) (d : code b0 (pinr c)) : encode b0 {pinr c} (decode b0 d) = d \elim d
| (a,idp,idp) => pmap (encode (f a)) (idp_*> (ppglue a))
\func decode_enode (b0 : B) {w : PO} (p : pinl b0 = w) : decode b0 (encode b0 p) = p \elim p
| idp => idp
\lemma pushout-embedding : Embedding {B} {PO} pinl \cowith
| isEmb b b' => \new Retraction {
| sec => encode b
| f_sec => decode_enode b
}
\lemma pullback-path-equiv (b : B) (c : C) : Equiv {\Sigma (a : A) (b = f a) (c = g a)} {pinl b = {PO} pinr c} (decode b)
=> \new QEquiv {
| ret => encode b
| ret_f => encode_decode-right b c
| f_sec => decode_enode b
}
}