-
Notifications
You must be signed in to change notification settings - Fork 23
/
Real.ard
417 lines (399 loc) · 28.8 KB
/
Real.ard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
\import Algebra.Field
\import Algebra.Group
\import Algebra.Meta
\import Algebra.Monoid
\import Algebra.Ordered
\import Arith.Int
\import Arith.Rat
\import Data.Or
\import Function.Meta
\import Logic
\import Logic.Meta
\import Meta
\import Order.Lattice
\import Order.LinearOrder
\import Order.PartialOrder
\import Order.StrictOrder
\import Paths
\import Paths.Meta
\open LinearOrder \hiding (<=)
\record LowerReal (L : Rat -> \Prop) {
| L-inh : ∃ L
| L-closed {q q' : Rat} : L q -> q' < q -> L q'
| L-rounded {q : Rat} : L q -> ∃ (r : L) (q < r)
\lemma L_<= {q r : Rat} (Lq : L q) (p : r <= q) : L r
=> \case <=-dec p \with {
| inl r<q => L-closed Lq r<q
| inr r=q => transportInv L r=q Lq
}
}
\record UpperReal (U : Rat -> \Prop) {
| U-inh : ∃ U
| U-closed {q q' : Rat} : U q -> q < q' -> U q'
| U-rounded {q : Rat} : U q -> ∃ (r : U) (r < q)
\lemma U_<= {q r : Rat} (Uq : U q) (p : q <= r) : U r
=> \case <=-dec p \with {
| inl q<r => U-closed Uq q<r
| inr q=r => transport U q=r Uq
}
}
\record Real \extends LowerReal, UpperReal {
| LU-disjoint {q : Rat} : L q -> U q -> Empty
| LU-located (q r : Rat) : q < r -> L q || U r
| LU-focus (eps : Rat) : eps > 0 -> ∃ (a : L) (U (a + eps))
\default LU-located q r q<r => \case LU-focus (r - q) (RatField.pos_>0 q<r) \with {
| inP (s,Ls,Us+r-q) => \case trichotomy q s \with {
| less q<s => byLeft (L-closed Ls q<s)
| equals q=s => byLeft (transportInv L q=s Ls)
| greater s<q => byRight $ U-closed Us+r-q $ transport (_ <) (equation : q + (r - q) = r) (<_+-left (r - q) s<q)
}
}
\default L-inh => TruncP.map (LU-focus 1 idp) (\lam x => (x.1,x.2))
\default U-inh => TruncP.map (LU-focus 1 idp) (\lam x => (x.1 + 1, x.3))
\default LU-focus \as LU-focus-impl (eps : Rat) (eps>0 : eps > 0) : ∃ (a : L) (U (a + eps)) => \case L-inh, U-inh \with {
| inP (q,Lq), inP (r,Ur) =>
\let | m r q => (r - q) * finv 3
| LU-less {q} {r} (Lq : L q) (Ur : U r) : q < r => \case dec<_<= q r \with {
| inl q<r => q<r
| inr r<=q => absurd $ LU-disjoint Lq (U_<= Ur r<=q)
}
\in \case focus-iter (ratio 3 2) rat_<=-dec (\lam q r => \Sigma (L q) (U r)) (\lam q r (Lq,Ur) => \case LU-located (q + m r q) (r - m r q) (linarith (usingOnly (LU-less Lq Ur))) \with {
| byLeft Lq+m => inP (q + m r q, r, (Lq+m,Ur), linarith)
| byRight Ur-m => inP (q, r - m r q, (Lq,Ur-m), linarith)
}) (iabs $ rat_ceiling $ finv eps * (r - q)) q r (Lq,Ur) \with {
| inP (q',r',(Lq',Ur'),p) => inP (q', Lq', U-closed Ur' $
\have | r-q>0 {q} {r} (Lq : L q) (Ur : U r) : 0 < r - q => linarith (usingOnly (LU-less Lq Ur))
| pr>0 => RatField.<_*_positive_positive (finv>0 eps>0) (r-q>0 Lq Ur)
| c>0 => fromInt_<.conv $ <-transitive-left pr>0 rat_ceiling>id
| s : (r' - q') * (finv eps * (r - q)) < r - q
=> <-transitive-left (<_*_positive-right (r-q>0 Lq' Ur') $ <-transitive-right rat_ceiling>id $ <-transitive-right (fromInt_<= $ Preorder.=_<= $ inv $ iabs.pos_iabs c>0) (pow>id _)) p
| t => transport (_ <) (pmap (_ *) finv_* *> inv *-assoc *> pmap (`* _) (finv-right $ RatField.>_/= $ r-q>0 Lq Ur) *> ide-left *> finv_finv) (<_rotate-right pr>0 s)
\in linarith (usingOnly t))
}
}
\lemma LU-less {q r : Rat} (Lq : L q) (Ur : U r) : q < r
=> \case dec<_<= q r \with {
| inl q<r => q<r
| inr r<=q => absurd $ LU-disjoint Lq (U_<= Ur r<=q)
}
} \where {
\open DiscreteOrderedField
\open DiscreteField
\func focus-iter (rat : Rat) (rat>=0 : 0 <= rat) (P : Rat -> Rat -> \Prop) (f : \Pi (q r : Rat) -> P q r -> ∃ (q' r' : P) ((r' - q') * rat <= r - q)) (n : Nat) (q r : Rat) (Pqr : P q r) : ∃ (q' r' : P) ((r' - q') * Monoid.pow rat n <= r - q) \elim n
| 0 => inP (q, r, Pqr, transportInv (`<= _) ide-right <=-refl)
| suc n => \case f q r Pqr \with {
| inP (q',r',Pq'r',c) => \case focus-iter rat rat>=0 P f n q' r' Pq'r' \with {
| inP (q'',r'',Pq''r'',d) => inP (q'', r'', Pq''r'', Preorder.=_<= (inv *-assoc) <=∘ RatField.<=_*_positive-left d rat>=0 <=∘ c)
}
}
\lemma pow>id (n : Nat) : Monoid.pow (ratio 3 2) n > n \elim n
| 0 => idp
| 1 => idp
| 2 => idp
| suc (suc (suc n)) => <-transitive-right linarith (<_*_positive-left (pow>id (suc (suc n))) idp)
\use \coerce fromRat (x : Rat) : Real \cowith
| L => `< x
| L-closed s t => <-transitive t s
| L-rounded q<x => TruncP.map (isDense q<x) (\lam t => (t.1,t.3,t.2))
| U => x <
| U-closed => <-transitive
| U-rounded => isDense
| LU-disjoint q<x x<q => <-irreflexive (<-transitive q<x x<q)
| LU-focus eps eps>0 => inP (x - eps * finv 2, linarith, linarith)
}
\instance RealField : OrderedField Real
| zro => Real.fromRat 0
| + (x y : Real) : Real \cowith {
| L q => ∃ (r : x.L) (s : y.L) (q = r +' s)
| L-closed {q} {q'} (inP (r,xLr,s,yLs,q=r+s)) q'<q => inP (r - q +' q', x.L-closed xLr linarith, s, yLs, linarith)
| L-rounded {q} (inP (r,xLr,s,yLs,q=r+s)) => TruncP.map (x.L-rounded xLr) (\lam t => (q +' t.1 - r, inP (t.1,t.2,s,yLs,linarith), linarith t.3))
| U q => ∃ (r : x.U) (s : y.U) (q = r +' s)
| U-closed {q} {q'} (inP (r,xUr,s,yUs,q=r+s)) q<q' => inP (r +' q' - q, x.U-closed xUr linarith, s, yUs, linarith)
| U-rounded {q} (inP (r,xUr,s,yUs,q=r+s)) => TruncP.map (y.U-rounded yUs) (\lam t => (q - s +' t.1, inP (r,xUr,t.1,t.2,linarith), linarith t.3))
| LU-disjoint {q} (inP (r,xLr,s,yLs,q=r+s)) (inP (r',xUr',s',yUs',q=r+s')) => linarith (x.LU-less xLr xUr', y.LU-less yLs yUs')
| LU-focus eps eps>0 =>
\let | eps' => eps *' finv 2
| eps'>0 : eps' > 0 => OrderedSemiring.<_*_positive_positive eps>0 idp
\in \case x.LU-focus eps' eps'>0, y.LU-focus eps' eps'>0 \with {
| inP (a,xLa,xU[a+e']), inP (b,yLb,yU[b+e']) => inP (a +' b, inP (a,xLa,b,yLb,idp), inP (a +' eps', xU[a+e'], b +' eps', yU[b+e'], linarith))
}
}
| zro-left {x : Real} => exts (\lam q => ext (\lam (inP (r,r<0,s,xLs,q=r+s)) => x.L-closed xLs linarith, \lam xLq => TruncP.map (x.L-rounded xLq) (\lam t => (q - t.1, linarith t.3, t.1, t.2, linarith))),
\lam q => ext (\lam (inP (r,r>0,s,xUs,q=r+s)) => x.U-closed xUs linarith, \lam xUq => TruncP.map (x.U-rounded xUq) (\lam t => (q - t.1, linarith t.3, t.1, t.2, linarith))))
| +-assoc {x y z : Real} =>
\have | lr {q} {P Q R : Rat -> \Prop}
: ∃ (r : Rat) (∃ (r' : P) (s' : Q) (r = r' +' s')) (s : R) (q = r +' s) -> ∃ (r : P) (s : Rat) (∃ (r' : Q) (s' : R) (s = r' +' s')) (q = r +' s)
=> \lam (inP (r,inP (r',xUr',s',yUs',r=r'+s'),s,zUs,q=r+s)) => inP (r', xUr', s' +' s, inP (s', yUs', s, zUs, idp), q=r+s *> pmap (`+' s) r=r'+s' *> +-assoc)
| rl {q} {P Q R : Rat -> \Prop}
: ∃ (r : P) (s : Rat) (∃ (r' : Q) (s' : R) (s = r' +' s')) (q = r +' s) -> ∃ (r : Rat) (∃ (r' : P) (s' : Q) (r = r' +' s')) (s : R) (q = r +' s)
=> \lam (inP (r,Pr,s,inP (r',Qr',s',Rs',s=r'+s'),q=r+s)) => inP (r +' r', inP (r,Pr,r',Qr',idp), s', Rs', q=r+s *> pmap (r +') s=r'+s' *> inv +-assoc)
\in exts (\lam q => ext (lr, rl), \lam q => ext (lr, rl))
| +-comm =>
\have lem {q : Rat} {P Q : Rat -> \Prop} : ∃ (r : P) (s : Q) (q = r +' s) -> ∃ (s : Q) (r : P) (q = s +' r)
=> TruncP.map __ (\lam t => (t.3, t.4, t.1, t.2, t.5 *> +-comm))
\in exts (\lam q => ext (lem, lem), \lam q => ext (lem, lem))
| ide => Real.fromRat 1
| * (x y : Real) : Real \cowith {
| L q => ∃ (a : x.L) (b : x.U) (c : y.L) (d : y.U) (q < a *' c) (q < a *' d) (q < b *' c) (q < b *' d)
| L-closed {q} {q'} (inP (a,xLa,b,xUb,c,yLc,d,yUd,q<ac,q<ad,q<bc,q<bd)) q'<q => inP (a,xLa,b,xUb,c,yLc,d,yUd, <-transitive q'<q q<ac, <-transitive q'<q q<ad, <-transitive q'<q q<bc, <-transitive q'<q q<bd)
| L-rounded {q} (inP (a,xLa,b,xUb,c,yLc,d,yUd,q<ac,q<ad,q<bc,q<bd)) =>
\let | m => (a *' c) ∧ (a *' d) ∧ (b *' c) ∧ (b *' d)
| q<m => <_meet-univ (<_meet-univ (<_meet-univ q<ac q<ad) q<bc) q<bd
| mid<m => mid<right suc-inv q<m
\in inP (mid suc-inv q m, inP (a,xLa,b,xUb,c,yLc,d,yUd, <-transitive-left mid<m (meet-left <=∘ meet-left <=∘ meet-left), <-transitive-left mid<m (meet-left <=∘ meet-left <=∘ meet-right), <-transitive-left mid<m (meet-left <=∘ meet-right), <-transitive-left mid<m meet-right), mid>left suc-inv q<m)
| U q => ∃ (a : x.L) (b : x.U) (c : y.L) (d : y.U) (a *' c < q) (a *' d < q) (b *' c < q) (b *' d < q)
| U-closed {q} {q'} (inP (a,xLa,b,xUb,c,yLc,d,yUd,ac<q,ad<q,bc<q,bd<q)) q<q' => inP (a,xLa,b,xUb,c,yLc,d,yUd, <-transitive ac<q q<q', <-transitive ad<q q<q', <-transitive bc<q q<q', <-transitive bd<q q<q')
| U-rounded {q} (inP (a,xLa,b,xUb,c,yLc,d,yUd,ac<q,ad<q,bc<q,bd<q)) =>
\let | m => (a *' c) ∨ (a *' d) ∨ (b *' c) ∨ (b *' d)
| m<q => <_join-univ (<_join-univ (<_join-univ ac<q ad<q) bc<q) bd<q
| m<mid => mid>left suc-inv m<q
\in inP (mid suc-inv m q, inP (a,xLa,b,xUb,c,yLc,d,yUd, <-transitive-right (join-left <=∘ join-left <=∘ join-left) m<mid, <-transitive-right (join-right <=∘ join-left <=∘ join-left) m<mid, <-transitive-right (join-right <=∘ join-left) m<mid, <-transitive-right join-right m<mid), mid<right suc-inv m<q)
| LU-disjoint {q} (inP (a,xLa,b,xUb,c,yLc,d,yUd,q<ac,q<ad,q<bc,q<bd)) (inP (a',xLa',b',xUb',c',yLc',d',yUd',a'c'<q,a'd'<q,b'c'<q,b'd'<q)) =>
\have | d'>=0 : 0 <= d' => \case dec<_<= d' 0 \with {
| inl d'<0 => absurd $ \case dec<_<= b 0 \with {
| inl b<0 => <-irreflexive $ <-transitive (<-transitive a'c'<q q<bd) $ <-transitive (RatField.<_*_negative-right b<0 (y.LU-less yLc' yUd)) $ RatField.<_*_negative-left (x.LU-less xLa' xUb) (<-transitive (y.LU-less yLc' yUd') d'<0)
| inr b>=0 => <-irreflexive $ <-transitive (<-transitive a'd'<q q<bc) $ <-transitive-right (RatField.<=_*_positive-right b>=0 $ <=-less $ y.LU-less yLc yUd') (RatField.<_*_negative-left (x.LU-less xLa' xUb) d'<0)
}
| inr d'>=0 => d'>=0
}
| b'>=0 : 0 <= b' => \case dec<_<= b' 0 \with {
| inl b'<0 => absurd $ \case dec<_<= d 0 \with {
| inl d<0 => <-irreflexive $ <-transitive (<-transitive a'c'<q q<bd) $ <-transitive (RatField.<_*_negative-left (x.LU-less xLa' xUb) d<0) (RatField.<_*_negative-right (<-transitive (x.LU-less xLa' xUb') b'<0) (y.LU-less yLc' yUd))
| inr d>=0 => <-irreflexive $ <-transitive (<-transitive b'c'<q q<ad) $ <-transitive-right (<=_*_positive-left (<=-less $ x.LU-less xLa xUb') d>=0) (RatField.<_*_negative-right b'<0 (y.LU-less yLc' yUd))
}
| inr b'>=0 => b'>=0
}
| a<0 : a < 0 => \case dec<_<= a 0 \with {
| inl a<0 => a<0
| inr a>=0 => absurd $ <-irreflexive $ <-transitive-left (<-transitive b'd'<q q<ac) $ <=_*_positive-right a>=0 (<=-less $ y.LU-less yLc yUd') <=∘ <=_*_positive-left (<=-less $ x.LU-less xLa xUb') d'>=0
}
| d>=0 : 0 <= d => \case dec<_<= d 0 \with {
| inl d<0 => absurd $ \case dec<_<= a' 0 \with {
| inl a'<0 => <-irreflexive $ <-transitive (<-transitive a'c'<q q<bd) $ <-transitive (RatField.<_*_negative-left (x.LU-less xLa' xUb) d<0) (RatField.<_*_negative-right a'<0 (y.LU-less yLc' yUd))
| inr a'>=0 => <-irreflexive $ <-transitive (<-transitive a'd'<q q<bc) $ <-transitive-left (RatField.<_*_negative-left (x.LU-less xLa' xUb) (<-transitive (y.LU-less yLc yUd) d<0)) $ RatField.<=_*_positive-right a'>=0 $ <=-less (y.LU-less yLc yUd')
}
| inr d>=0 => d>=0
}
\in RatField.<-irreflexive $ <-transitive-left (<-transitive b'd'<q q<ad) $ RatField.<=_*_positive-left (<=-less a<0) d>=0 <=∘ transport2 (<=) (inv RatField.zro_*-left) (inv RatField.zro_*-left) <=-refl <=∘ RatField.<=_*_positive-left b'>=0 d'>=0
| LU-focus eps eps>0 => {?} {- \case x.LU-focus eps eps>0, y.LU-focus eps eps>0 \with {
| inP (x0,xLx0,xUx0'), inP (y0,yLy0,yUy0') =>
\let | delta => eps *' (finv (rabs x0 +' rabs y0 +' 2 *' eps) ∧ 1)
| delta>0 : delta > 0 => RatField.<_*_positive_positive eps>0 $ <_meet-univ (RatField.finv>0 $ RatField.<=_+-left (RatField.<=_+ rabs.>=0 rabs.>=0) (RatField.<_*_positive_positive idp eps>0)) zro<ide
\in \case x.LU-focus delta delta>0, y.LU-focus delta delta>0 \with {
| inP (x1,xLx1,xUx1'), inP (y1,yLy1,yUy1') =>
\let | x2 => x0 ∨ x1
| xLx2 => ||.rec' (transportInv x.L __ xLx0) (transportInv x.L __ xLx1) (RatField.join-isMax x0 x1)
| y2 => y0 ∨ y1
| yLy2 => ||.rec' (transportInv y.L __ yLy0) (transportInv y.L __ yLy1) (RatField.join-isMax y0 y1)
| x2' => (x0 +' eps) ∧ (x1 +' delta)
| xUx2' => ||.rec' (transportInv x.U __ xUx0') (transportInv x.U __ xUx1') (RatField.meet-isMin (x0 +' eps) (x1 +' delta))
| y2' => (y0 +' eps) ∧ (y1 +' delta)
| yUy2' => ||.rec' (transportInv y.U __ yUy0') (transportInv y.U __ yUy1') (RatField.meet-isMin (y0 +' eps) (y1 +' delta))
| m => (x2 *' y2) ∧ (x2 *' y2') ∧ (x2' *' y2) ∧ (x2' *' y2')
\in inP (m, L-product-lem x y m $ inP (x2, xLx2, x2', xUx2', y2, yLy2, y2', yUy2', meet-left <=∘ meet-left <=∘ meet-left, meet-left <=∘ meet-left <=∘ meet-right, meet-left <=∘ meet-right, meet-right),
U-product-lem x y (m +' eps) $ inP (x2, xLx2, x2', xUx2', y2, yLy2, y2', yUy2', {?}, {?}, {?}, {?}))
}
} -}
}
| ide-left => {?}
| ide-right => {?}
| *-comm => {?}
| *-assoc => {?}
| ldistr => {?}
| negative (x : Real) : Real \cowith {
| L q => x.U (negative' q)
| L-closed xU-q q'<q => x.U-closed xU-q (RatField.negative_< q'<q)
| L-rounded xU-q => TruncP.map (x.U-rounded xU-q) $ \lam t => (negative' t.1, transportInv x.U negative-isInv t.2, rewriteF negative-isInv (RatField.negative_< t.3))
| U q => x.L (negative' q)
| U-closed xL-q q<q' => x.L-closed xL-q (RatField.negative_< q<q')
| U-rounded xL-q => TruncP.map (x.L-rounded xL-q) $ \lam t => (negative' t.1, transportInv x.L negative-isInv t.2, rewriteF negative-isInv (RatField.negative_< t.3))
| LU-disjoint xU-q xL-q => LU-disjoint xL-q xU-q
| LU-focus eps eps>0 => TruncP.map (x.LU-focus eps eps>0) $ \lam t => (negative' (t.1 +' eps), transportInv x.U negative-isInv t.3, transport x.L linarith t.2)
}
| negative-left {x : Real} => exts (\lam q => ext (\lam (inP (r,xU-r,s,xLs,q=r+s)) => linarith (using (Real.LU-less xLs xU-r)),
\lam q<0 => TruncP.map (x.LU-focus (negative' q) (RatField.negative_< q<0)) (\lam t => (q - t.1, transport x.U linarith t.3, t.1, t.2, linarith))),
\lam q => ext (\lam (inP (r,xL-r,s,xUs,q=r+s)) => linarith (using (Real.LU-less xL-r xUs)),
\lam q>0 => TruncP.map (x.LU-focus q q>0) (\lam t => (negative' t.1, transportInv x.L negative-isInv t.2, t.1 +' q, t.3, linarith))))
| isPos (x : Real) => x.L 0
| zro/>0 => <-irreflexive
| positive_+ x>0 y>0 => inP (0, x>0, 0, y>0, idp)
| ide>zro => idp
| <_+-comparison (x y : Real) (inP (r,xLr,s,yLs,zro=r+s)) => \case dec<_<= 0 r \with {
| inl r>0 => byLeft (x.L-closed xLr r>0)
| inr r<0 => byRight (y.L_<= yLs linarith)
}
| <_+-connectedness {x : Real} x/<0 x/>0 =>
exts (\lam q => ext (\lam xLq => \case dec<_<= q 0 \with {
| inl q<0 => q<0
| inr q>=0 => absurd $ x/<0 $ x.L_<= xLq q>=0
}, \case x.LU-located q 0 __ \with {
| byLeft xLq => xLq
| byRight xU0 => absurd (x/>0 xU0)
}), \lam q => ext (\lam xUq => \case dec<_<= 0 q \with {
| inl q>0 => q>0
| inr q<=0 => absurd $ x/>0 $ x.U_<= xUq q<=0
}, \case x.LU-located 0 q __ \with {
| byLeft xL0 => absurd (x/<0 xL0)
| byRight xUq => xUq
}))
| positive_* {x y : Real} x>0 y>0 => \case x.L-rounded x>0, x.U-inh, y.L-rounded y>0, y.U-inh \with {
| inP (a,xLa,a>0), inP (b,xUb), inP (c,yLc,c>0), inP (d,yUd) =>
\have | b>0 => x.LU-less x>0 xUb
| d>0 => y.LU-less y>0 yUd
\in inP (a,xLa,b,xUb,c,yLc,d,yUd, RatField.<_*_positive_positive a>0 c>0, RatField.<_*_positive_positive a>0 d>0, RatField.<_*_positive_positive b>0 c>0, RatField.<_*_positive_positive b>0 d>0)
}
| positive=>#0 {x : Real} x>0 => Monoid.Inv.lmake (pinv x>0) {?}
| #0=>eitherPosOrNeg {x : Real} (xInv : Monoid.Inv x) => \case propExt.conv (pmap (Real.L {__} 0) xInv.inv-right) zro<ide \with {
| inP (a,xLa,b,xUb,c,yLc,d,yUd,ac>0,ad>0,bc>0,bd>0) => \case dec<_<= a 0, dec<_<= 0 b, dec<_<= c 0 \with {
| inr a>=0, _, _ => byLeft (x.L_<= xLa a>=0)
| _, inr b<=0, _ => byRight (x.U_<= xUb b<=0)
| inl a<0, inl b>0, inl c<0 => absurd $ <-irreflexive $ <-transitive bc>0 $ RatField.<_*_positive_negative b>0 c<0
| inl a<0, inl b>0, inr c>=0 => absurd $ <-irreflexive $ <-transitive-left ac>0 $ RatField.<=_*_negative_positive (<=-less a<0) c>=0
}
}
\where {
\open AddMonoid(+ \as \infixl 6 +')
\open Monoid(* \as \infixl 7 *')
\open AddGroup(negative \as negative')
\open LinearlyOrderedSemiring
\open RatField(suc-inv)
\open AddGroup(negative-isInv)
\func pinv {x : Real} (x>0 : x.L 0) : Real \cowith
| L q => 0 < q -> ∃ (r : x.U) (q *' r < 1)
| L-closed f q'<q q'>0 => TruncP.map (f (<-transitive q'>0 q'<q)) $ \lam (r,xUr,qr<1) => (r, xUr, <-transitive (RatField.<_*_positive-left q'<q (x.LU-less x>0 xUr)) qr<1)
| L-rounded {q} f => \case trichotomy q 0 \with {
| less q<0 => inP (0, \lam c => absurd (<-irreflexive c), q<0)
| equals q=0 => TruncP.map x.U-inh $ \lam (r,xUr) =>
\have | r>0 => x.LU-less x>0 xUr
| r+1>0 : 0 < r +' 1 => linarith
\in (finv (r +' 1), \lam _ => inP (r, xUr, RatField.<_rotate-left r+1>0 $ transportInv (r <) ide-right linarith), transportInv (`< _) q=0 $ RatField.finv>0 r+1>0)
| greater q>0 =>
\have | (inP (r,xUr,qr<1)) => f q>0
| (inP (r',xUr',r'<r)) => x.U-rounded xUr
| r'/=0 => RatField.>_/= (x.LU-less x>0 xUr')
\in inP ((q *' r) *' finv r', \lam _ => inP (r', xUr', transportInv (`< 1) (*-assoc *> pmap (_ *') (RatField.finv-left r'/=0) *> ide-right) qr<1), transport (`< _) (*-assoc *> pmap (q *') (finv-right r'/=0) *> ide-right) $ RatField.<_*_positive-left (RatField.<_*_positive-right q>0 r'<r) $ RatField.finv>0 $ x.LU-less x>0 xUr')
}
| U q => ∃ (r : x.L) (1 < q *' r) (0 < q)
| U-closed (inP (r,xLr,qr>1,q>0)) q<q' => inP (r, xLr, <-transitive qr>1 $ RatField.<_*_positive-left q<q' $ \case dec<_<= 0 r \with {
| inl r>0 => r>0
| inr r<=0 => absurd $ <-irreflexive $ <-transitive qr>1 $ <-transitive-right (RatField.<=_*_positive_negative (<=-less q>0) r<=0) zro<ide
}, <-transitive q>0 q<q')
| U-rounded {q} (inP (r,xLr,qr>1,q>0)) => TruncP.map (x.L-rounded xLr) $ \lam (r',xLr',r<r') =>
\have | r>0 : 0 < r => \case dec<_<= 0 r \with {
| inl r>0 => r>0
| inr r<=0 => absurd $ <-irreflexive $ <-transitive-left (<-transitive zro<ide qr>1) $ RatField.<=_*_positive_negative (<=-less q>0) r<=0
}
| r'>0 => <-transitive r>0 r<r'
| r'/=0 => RatField.>_/= r'>0
\in (q *' r *' finv r', inP (r', xLr', transportInv (1 <) (*-assoc *> pmap (_ *') (RatField.finv-left r'/=0) *> ide-right) qr>1, RatField.<_*_positive_positive (RatField.<_*_positive_positive q>0 r>0) $ RatField.finv>0 r'>0), transport (_ <) (*-assoc *> pmap (q *') (finv-right r'/=0) *> ide-right) $ RatField.<_*_positive-left (RatField.<_*_positive-right q>0 r<r') $ RatField.finv>0 r'>0)
| LU-disjoint f (inP (s,xLs,qs>1,q>0)) => \case f q>0 \with {
| inP (r,xUr,qr<1) => <-irreflexive $ <-transitive qs>1 $ <-transitive (RatField.<_*_positive-right q>0 $ x.LU-less xLs xUr) qr<1
}
| LU-focus => {?}
{-
\lemma L-product-lem (x y : Real) (q : Rat) (p : ∃ (a : x.L) (b : x.U) (c : y.L) (d : y.U) (q <= a *' c) (q <= a *' d) (q <= b *' c) (q <= b *' d))
: ∃ (a : x.L) (b : x.U) (c : y.L) (d : y.U) (q < a *' c) (q < a *' d) (q < b *' c) (q < b *' d) \elim p
| inP (a,xLa,b,xUb,c,yLc,d,yUd,q<=ac,q<=ad,q<=bc,q<=bd) => \case dec<_<= a 0, dec<_<= c 0 \with {
| inl a<0, inl c<0 => \case dec<_<= 0 b, dec<_<= 0 d \with {
| inl b>0, inl d>0 =>
\have | (inP (b1,xUb1,b1<b)) => x.U-rounded xUb
| (inP (d1,yUd1,d1<d)) => y.U-rounded yUd
| q<0 => <-transitive-right q<=bc $ RatField.<_*_positive_negative b>0 c<0
\in inP (a, xLa, b1 ∨ 0, x.U_<= xUb1 join-left, c, yLc, d1 ∨ 0, y.U_<= yUd1 join-left,
<-transitive q<0 $ RatField.<_*_negative_negative a<0 c<0,
<-transitive-right q<=ad $ RatField.<_*_negative-right a<0 (<_join-univ d1<d d>0),
<-transitive-right q<=bc $ RatField.<_*_negative-left (<_join-univ b1<b b>0) c<0,
<-transitive-left q<0 $ <=_*_positive_positive join-right join-right)
| _, inr d<=0 => TruncP.map (aux2 yLc yUd xLa xUb (transport (q <=) *-comm q<=ac) (transport (q <=) *-comm q<=bc) (transport (q <=) *-comm q<=ad) (transport (q <=) *-comm q<=bd) c<0 a<0 d<=0) $
\lam (a,yLa,b,yUb,c,xLc,d,xUd,q<ac,q<ad,q<bc,q<bd) => (c,xLc,d,xUd,a,yLa,b,yUb, transport (q <) *-comm q<ac, transport (q <) *-comm q<bc, transport (q <) *-comm q<ad, transport (q <) *-comm q<bd)
| inr b<=0, _ => aux2 xLa xUb yLc yUd q<=ac q<=ad q<=bc q<=bd a<0 c<0 b<=0
}
| _, inr c>=0 => TruncP.map (aux yLc yUd xLa xUb (transport (q <=) *-comm q<=ac) (transport (q <=) *-comm q<=bc) (transport (q <=) *-comm q<=ad) (transport (q <=) *-comm q<=bd) c>=0) $
\lam (a,yLa,b,yUb,c,xLc,d,xUd,q<ac,q<ad,q<bc,q<bd) => (c,xLc,d,xUd,a,yLa,b,yUb, transport (q <) *-comm q<ac, transport (q <) *-comm q<bc, transport (q <) *-comm q<ad, transport (q <) *-comm q<bd)
| inr a>=0, _ => aux xLa xUb yLc yUd q<=ac q<=ad q<=bc q<=bd a>=0
}
\where {
\lemma aux {x y : Real} {q : Rat} {a : Rat} (xLa : x.L a) {b : Rat} (xUb : x.U b) {c : Rat} (yLc : y.L c) {d : Rat} (yUd : y.U d)
(q<=ac : q <= a *' c) (q<=ad : q <= a *' d) (q<=bc : q <= b *' c) (q<=bd : q <= b *' d) (a>=0 : 0 <= a)
: ∃ (a : x.L) (b : x.U) (c : y.L) (d : y.U) (q < a *' c) (q < a *' d) (q < b *' c) (q < b *' d) =>
\let | (inP (c2,yLc2,c<c2)) => y.L-rounded yLc
| d2 => d +' 1
| d<d2 : d < d2 => linarith
| yUd2 => y.U-closed yUd d<d2
\in \case <=-dec a>=0 \with {
| inl a>0 =>
\have b>0 => <-transitive a>0 (x.LU-less xLa xUb)
\in inP (a, xLa, b, xUb, c2, yLc2, d2, yUd2,
<-transitive-right q<=ac $ <_*_positive-right a>0 c<c2,
<-transitive-right q<=ad $ <_*_positive-right a>0 d<d2,
<-transitive-right q<=bc $ <_*_positive-right b>0 c<c2,
<-transitive-right q<=bd $ <_*_positive-right b>0 d<d2)
| inr a=0 =>
\have b>0 => transportInv (`< _) a=0 (x.LU-less xLa xUb)
\in \case dec<_<= c 0 \with {
| inl c<0 =>
\have q<0 => <-transitive-right q<=bc $ RatField.<_*_positive_negative b>0 c<0
\in inP (a, xLa, b, xUb, c2, yLc2, d2, yUd2,
transportInv (q <) (pmap (`*' _) (inv a=0) *> RatField.zro_*-left) q<0,
transportInv (q <) (pmap (`*' _) (inv a=0) *> RatField.zro_*-left) q<0,
<-transitive-right q<=bc $ <_*_positive-right b>0 c<c2,
<-transitive-right q<=bd $ <_*_positive-right b>0 d<d2)
| inr c>=0 =>
\let | b2 => b +' 1
| b<b2 : b < b2 => linarith
| d>0 => <-transitive-right c>=0 (y.LU-less yLc yUd)
| (inP (a2,xLa2,a<a2)) => x.L-rounded xLa
\in inP (a2, xLa2, b2, x.U-closed xUb b<b2, c2, yLc2, d, yUd,
<-transitive-right q<=ac $ transport (`< _) (later $ rewriteI a=0 $ RatField.zro_*-left *> inv RatField.zro_*-left) (<_*_positive-left a<a2 (<-transitive-right c>=0 c<c2)),
<-transitive-right q<=ad $ <_*_positive-left a<a2 d>0,
<-transitive-right q<=bc $ <-transitive (<_*_positive-right b>0 c<c2) (<_*_positive-left b<b2 (<-transitive-right c>=0 c<c2)),
<-transitive-right q<=bd $ <_*_positive-left b<b2 d>0)
}
}
\lemma aux2 {q : Rat} {x y : Real} {a : Rat} (xLa : x.L a) {b : Rat} (xUb : x.U b) {c : Rat} (yLc : y.L c) {d : Rat} (yUd : y.U d)
(q<=ac : q <= a *' c) (q<=ad : q <= a *' d) (q<=bc : q <= b *' c) (q<=bd : q <= b *' d) (a<0 : a < 0) (c<0 : c < 0) (b<=0 : b <= 0)
: ∃ (a : x.L) (b : x.U) (c : y.L) (d : y.U) (q < a *' c) (q < a *' d) (q < b *' c) (q < b *' d) =>
\let | a1 => a - 1
| a1<a : a1 < a => linarith
| xLa1 => x.L-closed xLa a1<a
| (inP (b1,xUb1,b1<b)) => x.U-rounded xUb
| c1 => c - 1
| c1<c : c1 < c => linarith
| yLc1 => y.L-closed yLc c1<c
| (inP (d1,yUd1,d1<d)) => y.U-rounded yUd
\in \case dec<_<= 0 d \with {
| inl d>0 =>
\have q<0 : q < 0 => <-transitive-right q<=ad $ RatField.<_*_negative_positive a<0 d>0
\in inP (a,xLa,b,xUb,c1,yLc1,d1,yUd1,
<-transitive-right q<=ac $ RatField.<_*_negative-right a<0 c1<c,
<-transitive-right q<=ad $ RatField.<_*_negative-right a<0 d1<d,
<-transitive-left q<0 $ RatField.<=_*_negative_negative b<=0 $ <=-less (<-transitive c1<c c<0),
\case <=-dec b<=0 \with {
| inl b<0 => <-transitive-right q<=bd (RatField.<_*_negative-right b<0 d1<d)
| inr b=0 => rewrite (b=0,RatField.zro_*-left) q<0
})
| inr d<=0 => inP (a1,xLa1,b1,xUb1,c1,yLc1,d1,yUd1,
<-transitive-right q<=ac $ <-transitive (RatField.<_*_negative-right a<0 c1<c) (RatField.<_*_negative-left a1<a (<-transitive c1<c c<0)),
<-transitive-right q<=ad $ <-transitive (RatField.<_*_negative-right a<0 d1<d) (RatField.<_*_negative-left a1<a (<-transitive-left d1<d d<=0)),
<-transitive-right q<=bc $ <-transitive (RatField.<_*_negative-left b1<b c<0) (RatField.<_*_negative-right (<-transitive-left b1<b b<=0) c1<c),
<-transitive-right q<=bd $ <-transitive-right (RatField.<=_*_negative-left (<=-less b1<b) d<=0) (RatField.<_*_negative-right (<-transitive-left b1<b b<=0) d1<d))
}
}
\lemma U-product-lem (x y : Real) (q : Rat) (p : ∃ (a : x.L) (b : x.U) (c : y.L) (d : y.U) (a *' c <= q) (a *' d <= q) (b *' c <= q) (b *' d <= q))
: ∃ (a : x.L) (b : x.U) (c : y.L) (d : y.U) (a *' c < q) (a *' d < q) (b *' c < q) (b *' d < q) \elim p
| inP (a,xLa,b,xUb,c,yLc,d,yUd,ac<=q,ad<=q,bc<=q,bd<=q) =>
TruncP.map (L-product-lem (negative x) y (negative' q) (inP
(negative' b, transportInv x.U negative-isInv xUb,
negative' a, transportInv x.L negative-isInv xLa,
c, yLc, d, yUd,
rewrite Ring.negative_*-left $ RatField.negative_<= bc<=q,
rewrite Ring.negative_*-left $ RatField.negative_<= bd<=q,
rewrite Ring.negative_*-left $ RatField.negative_<= ac<=q,
rewrite Ring.negative_*-left $ RatField.negative_<= ad<=q))) $
\lam (a,xU-a,b,xL-b,c,yLc,d,yUd,-q<ac,-q<ad,-q<bc,-q<bd) => (negative' b, xL-b, negative' a, xU-a, c, yLc, d, yUd,
transportInv (`< q) Ring.negative_*-left $ RatField.negative_<-left -q<bc,
transportInv (`< q) Ring.negative_*-left $ RatField.negative_<-left -q<bd,
transportInv (`< q) Ring.negative_*-left $ RatField.negative_<-left -q<ac,
transportInv (`< q) Ring.negative_*-left $ RatField.negative_<-left -q<ad)
-}
}