-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdatabase_setup.py
298 lines (241 loc) · 11.6 KB
/
database_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from PIL import Image
import numpy as np
import argparse
import tensorflow as tf
import glob
import os
import torch
import pickle
from scipy import io
from tqdm import tqdm
import sys
sys.path.append('./thirdparty/netvlad_tf/python')
# tf.contrib.resampler # import C++ op
import thirdparty.netvlad_tf.python.netvlad_tf.nets as nets
from thirdparty.SuperGluePretrainedNetwork.models.matching import SuperPoint
from thirdparty.SuperGluePretrainedNetwork.models.utils import read_image
from utils.load_WUSTL_transformation import load_transformation
parser = argparse.ArgumentParser()
parser.add_argument('--db_dir', default='/mnt/hdd1/Dataset/InLoc_dataset', help='Path to Inloc dataset')
parser.add_argument('--save_dir', default='/mnt/hdd2/Working/ICCV_TEST', help='Path to save database features (Output)')
parser.add_argument('--nms_radius', type=int, default=4, help='SuperPoint Non Maximum Suppression (NMS) radius (Must be positive)')
parser.add_argument('--keypoint_threshold', type=float, default=0.005, help='SuperPoint keypoint detector confidence threshold')
parser.add_argument('--max_keypoints', type=int, default=3000, help='Maximum number of keypoints detected by Superpoint (-1 keeps all keypoints)')
args = parser.parse_args()
class data_loader:
def __init__(self, data_dir):
self.data_dir = data_dir
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
self.sess = tf.Session(config=sess_config)
self.end_set = tf.errors.OutOfRangeError
def get_dataset(self):
def _read_image(data_dir):
image = tf.read_file(data_dir)
image = tf.image.decode_jpeg(image, channels=3)
return image
def _preprocess(image):
# image = tf.image.resize_images(image, [480, 640], method=tf.image.ResizeMethod.BILINEAR)
return image
data = tf.data.Dataset.from_tensor_slices(self.data_dir)
data = data.map(_read_image, num_parallel_calls=10)
data = data.map(_preprocess, num_parallel_calls=10)
dataset = tf.data.Dataset.zip({'image':data})
with tf.device('/cpu:0'):
tf_next = dataset.make_one_shot_iterator().get_next()
while True:
yield self.sess.run(tf_next)
# def main_save_netvlad_feat(db_dir, save_dir):
# if not os.path.exists(save_dir): os.makedirs(save_dir)
#
# tf.reset_default_graph()
# image_batch = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3])
# net_out = nets.vgg16NetvladPca(image_batch)
# saver = tf.train.Saver()
#
# sess = tf.Session()
# saver.restore(sess, os.path.join(args.parm_dir, 'vd16_pitts30k_conv5_3_vlad_preL2_intra_white'))
#
# db_list = glob.glob(os.path.join(db_dir, '*.JPG'))
# db_list.sort()
#
# dataloader = data_loader(db_list)
# dataset = dataloader.get_dataset()
#
# pbar = tqdm(total=len(db_list))
#
# gl_desc = []
# while True:
# try:
# data = next(dataset)
# except dataloader.end_set:
# break
#
# img = Image.fromarray(data['image'])
# scale = max(img.size) / args.resize
# rsize = (np.array(img.size)/scale).astype(int)
#
# resized_img = img.resize(rsize)
# batch = np.expand_dims(resized_img, axis=0)
#
#
# descriptor = sess.run(net_out, feed_dict={image_batch:batch})
# gl_desc.append(descriptor.squeeze())
# pbar.update(1)
# pbar.close()
#
# global_feat = np.asarray(gl_desc, dtype=np.float32).transpose()
#
# save_global_fname = os.path.join(save_dir, 'query_nvlad.npy')
# np.save(save_global_fname, global_feat)
#
# print(">>Save Feature Completed...")
def main_database_setup(args):
print(">> [Database] Converting Path and Formats for Databases...")
if not os.path.exists(args.save_dir): os.makedirs(args.save_dir)
db_img_list = []
save_txtname = os.path.join(args.save_dir, 'pth_imgs.txt')
with open(save_txtname, 'w') as f:
bld_list = glob.glob(os.path.join(args.db_dir, 'database/cutouts/*'))
bld_list.sort()
for i_bld_pth in bld_list:
i_scan_list = glob.glob(os.path.join(i_bld_pth, '*'))
i_scan_list.sort()
for i_scan_pth in i_scan_list:
i_cutout_list = glob.glob(os.path.join(i_scan_pth, '*.jpg'))
i_cutout_list.sort()
for i_img_name in i_cutout_list:
db_img_list.append(i_img_name)
f.write(i_img_name + '\n')
save_align_txtname = os.path.join(args.save_dir, 'pth_aligns.txt')
with open(save_align_txtname, 'w') as f:
for bld_pth in bld_list:
align_mat_pth = glob.glob(os.path.join(args.db_dir, 'database/alignments', os.path.basename(bld_pth), 'transformations/*'))
align_mat_pth.sort()
for align_pth in align_mat_pth:
f.write(align_pth + '\n')
save_scan_dir = os.path.join(args.save_dir, 'scans_npy')
save_scan_txtname = os.path.join(args.save_dir, 'pth_scans.txt')
with open(save_scan_txtname, 'w') as f:
bld_names = os.listdir(os.path.join(args.db_dir, 'database/cutouts'))
bld_names.sort()
for bld in bld_names:
scan_list = glob.glob(os.path.join(args.db_dir, 'database/scans/{:s}/*'.format(bld)))
scan_list.sort()
save_scan_pth = os.path.join(save_scan_dir, bld)
if not os.path.exists(save_scan_pth): os.makedirs(save_scan_pth)
for scan_name in tqdm(scan_list):
save_fname = os.path.join(save_scan_pth, os.path.basename(scan_name) + '.npy')
f.write(save_fname + '\n')
scan_mat = io.loadmat(scan_name)
scan_data = scan_mat['A']
scan_xyz = np.concatenate([scan_data[0, 0], scan_data[0, 1], scan_data[0, 2]], axis=1).astype(np.float16)
scan_rgb = np.concatenate([scan_data[0, 4], scan_data[0, 5], scan_data[0, 6]], axis=1).astype(np.float16)
data = np.concatenate([scan_xyz, scan_rgb], axis=1)
np.save(save_fname, data)
print(">> Converting Format Completed...")
if not os.path.exists(os.path.join(args.save_dir, 'netvlad_feats.npy')):
print(">> [Database] Global Feature Generation...")
tf.reset_default_graph()
image_batch = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3])
net_out = nets.vgg16NetvladPca(image_batch)
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
with tf.Session(config=config) as sess:
# PATH TO GLOBAL RETRIEVAL NETWORK PARAMETER...
saver.restore(sess, './thirdparty/netvlad_tf/checkpoints/vd16_pitts30k_conv5_3_vlad_preL2_intra_white')
dataloader = data_loader(db_img_list)
dataset = dataloader.get_dataset()
pbar = tqdm(total=len(db_img_list))
gl_desc = []
while True:
try:
data = next(dataset)
except dataloader.end_set:
break
img = Image.fromarray(data['image'])
scale = max(img.size) / 640
rsize = (np.array(img.size) / scale).astype(int)
resized_img = img.resize(rsize)
batch = np.expand_dims(resized_img, axis=0)
descriptor = sess.run(net_out, feed_dict={image_batch: batch})
gl_desc.append(descriptor.squeeze())
pbar.update(1)
pbar.close()
global_feat = np.asarray(gl_desc, dtype=np.float32).transpose()
save_global_fname = os.path.join(args.save_dir, 'netvlad_feats.npy')
np.save(save_global_fname, global_feat)
print(">> Save Global Feature Completed...")
local_feat_dir = os.path.join(args.save_dir, 'local_feats')
pc_feat_dir = os.path.join(args.save_dir, 'pc_feats')
if not os.path.exists(local_feat_dir): os.makedirs(local_feat_dir)
if not os.path.exists(pc_feat_dir): os.makedirs(pc_feat_dir)
print(">> [Database] Local Feature Generation...")
torch.set_grad_enabled(False)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Running inference on device \"{}\"'.format(device))
config = {'superpoint': {'nms_radius': args.nms_radius,
'keypoint_threshold': args.keypoint_threshold,
'max_keypoints': args.max_keypoints
}}
superpoint = SuperPoint(config.get('superpoint', {})).eval().to(device)
feat_idx = 0
pc_idx = 0
for bld_idx, bld_pth in enumerate(bld_list):
scan_list = glob.glob(os.path.join(bld_pth, '*'))
scan_list.sort()
print(' ', end='', flush=True)
text = "Database Processing [{}/{}]".format(bld_idx+1, len(bld_list))
for scan_pth in tqdm(scan_list, desc=text):
tr_scan_pth = glob.glob(os.path.join(args.db_dir, 'database/alignments', os.path.basename(bld_pth), 'transformations',
'*_trans_{}.txt'.format(os.path.basename(scan_pth))))[0]
_, P_after = load_transformation(tr_scan_pth)
cutout_list = glob.glob(os.path.join(scan_pth, '*.mat'))
cutout_list.sort()
scan_desc = []
scan_score = []
scan_xyz = []
for cutout_pth in cutout_list:
image0, inp0, scales0 = read_image(cutout_pth[:-4], device, [1200], 0, False)
scan_data = io.loadmat(cutout_pth)
xyz = scan_data['XYZcut']
pred = superpoint({'image': inp0})
pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
keypoints = (pred['keypoints'] * scales0).astype(int)
kpts_xyz = xyz[keypoints[:, 1], keypoints[:, 0], :]
H_kpts = np.concatenate((kpts_xyz.T, np.ones((1, len(kpts_xyz)))), axis=0)
align_xyz = np.matmul(P_after, H_kpts)
align_xyz = np.divide(align_xyz[:3, :], align_xyz[3, :]).T
nan_idx = ~np.isnan(align_xyz).all(axis=1)
rm_keypoints = keypoints[nan_idx, :]
rm_descrptors = pred['descriptors'][:, nan_idx]
rm_scores = pred['scores'][nan_idx]
rm_xyz = align_xyz[nan_idx, :]
feat_cutout = dict()
feat_cutout['keypoints'] = rm_keypoints
feat_cutout['scores'] = rm_scores
feat_cutout['descriptors'] = rm_descrptors
feat_cutout['pts_xyz'] = rm_xyz
save_cutout_feat_fname = os.path.join(local_feat_dir, 'local_feat_{:05}.pkl'.format(feat_idx))
with open(save_cutout_feat_fname, 'wb') as handle:
pickle.dump(feat_cutout, handle, protocol=pickle.HIGHEST_PROTOCOL)
feat_idx += 1
scan_desc.append(rm_descrptors)
scan_score.append(rm_scores)
scan_xyz.append(rm_xyz)
total_score = np.concatenate(scan_score, 0)
total_desc = np.concatenate(scan_desc, 1)
total_xyz = np.concatenate(scan_xyz, 0)
pc_feat = dict()
pc_feat['ptcloud'] = total_xyz
pc_feat['descriptors'] = total_desc
pc_feat['scores'] = total_score
save_pcfeat_fname = os.path.join(pc_feat_dir, 'pcfeat_{:05}.pkl'.format(pc_idx))
with open(save_pcfeat_fname, 'wb') as handle:
pickle.dump(pc_feat, handle, protocol=pickle.HIGHEST_PROTOCOL)
pc_idx += 1
print(">> Save Local Feature and PC Feature Completed...")
if __name__ == '__main__':
main_database_setup(args)