-
Notifications
You must be signed in to change notification settings - Fork 3
/
CartPole.py
235 lines (184 loc) · 7.62 KB
/
CartPole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# This algorithm performs Dyna-Q
# The Q-Learning is standard and for forward simulation a linear model is used.
#
# Algorithm Dyna-Q
# initialize replay memory with capacity buffer_size
# initialize models
# q_action_network with parameters theta
# q_target_network with parameters theta*
# linead model f (such that f(state, action) = next_state, reward, done)
#
# for episode=1 to max_epochs do:
# fit linear model to entire experience_replay set
# f(state,action) = next_state, reward, done
# for t=1 to Terminal do:
# eps_greedy(state) = action
# execute action, observe: reward, next_state, done
# store (state, action, reward, next_state, done) in experience_replay
# sample batch from experience replay (s, a, r, S, d)
# bellman_equation:
# loss = (r + gamma * argmax_A {q_target(S,A)} * (1 - d) - q_action(s,a))**2
# update theta with respect to loss using backpropogation
#
# update target network:
# theta* = tau * theta + (1 - tau) * theta*
#
# for k=1 to max_forward_sim do:
# sample s, a from experience_replay
# use linear model to predict S, r, d (with injected error)
# bellman_equation:
# loss = (r + gamma * argmax_a {q_target(S,a)} * (1 - d) - q_action(s,a))**2
# update theta with respect to loss using backpropogation
#
# update target network:
# theta* = tau * theta + (1 - tau) * theta*
#
# update q_action and q_target as above
# end for
# end for
import gym
import os, inspect
import numpy as np
from math import *
from sklearn.utils import shuffle
import theano
import theano.tensor as T
from theano.tensor.extra_ops import to_one_hot
from theano.tensor.raw_random import multinomial
import lasagne
from lasagne.updates import adam, norm_constraint, total_norm_constraint
from lasagne.objectives import squared_error
from lasagne.layers import DenseLayer, InputLayer, ConcatLayer, BatchNormLayer, batch_norm, \
get_output, get_all_params, get_all_param_values, set_all_param_values
from lasagne.nonlinearities import rectify, softmax, tanh
from lasagne.init import Constant, Normal
from LinearModel import LinearModel
n_state = 4
n_action = 2
learning_rate = 0.01
learning_tau = 0.01
gamma = 0.99
simulate_N = 5
eps_max = 0.5
eps_min = 0.0
eps_decay = 200
n_epochs = 200
batch_size = 128
buffer_size = 40000
lr = LinearModel(n_state = n_state,
n_action = n_action)
def q_network(state):
input_state = InputLayer(input_var = state,
shape = (None, n_state))
dense = DenseLayer(input_state,
num_units = n_state,
nonlinearity = tanh)
dense = DenseLayer(dense,
num_units = n_state,
nonlinearity = tanh)
dense = DenseLayer(dense,
num_units = n_state,
nonlinearity = tanh)
q_values = DenseLayer(dense,
num_units = n_action,
nonlinearity = None)
return q_values
X_next_state = T.fmatrix()
X_state = T.fmatrix()
X_action = T.bvector()
X_reward = T.fvector()
X_done = T.bvector()
X_action_hot = to_one_hot(X_action, n_action)
q_ = q_network(X_state); q = get_output(q_)
q_target_ = q_network(X_next_state); q_target = get_output(q_target_)
q_max = T.max(q_target, axis=1)
action = T.argmax(q, axis=1)
mu = theano.function(inputs = [X_state],
outputs = action,
allow_input_downcast = True)
loss = squared_error(X_reward + gamma * q_max * (1.0 - X_done), T.batched_dot(q, X_action_hot))
loss = loss.mean()
params = get_all_params(q_)
grads = T.grad(loss,
params)
normed_grads = total_norm_constraint(grads, 1.0)
updates = adam(normed_grads,
params,
learning_rate = learning_rate)
update_network = theano.function(inputs = [X_state,
X_action,
X_reward,
X_next_state,
X_done],
outputs = loss,
updates = updates,
allow_input_downcast = True)
def get_action(state, step):
eps = min(max(eps_min, eps_max - (eps_max - eps_min) * epoch / eps_decay), 1.0)
if np.random.rand() < eps:
return np.random.randint(n_action)
else:
return mu([state])[0]
def update_target():
updates = []
theta = get_all_param_values(q_)
theta_target = get_all_param_values(q_target_)
for p, p_target in zip(*(theta, theta_target)):
updates.append(learning_tau * p + (1 - learning_tau) * p_target)
set_all_param_values(q_target_, updates)
env = gym.make('CartPole-v0')
env = gym.wrappers.Monitor(env, os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) + '/cartpole_monitor', force=True)
experience_replay = []
all_steps = []
mean_steps = []
total_rewards = []
mean_rewards = []
for epoch in range(n_epochs):
state = env.reset()
done = False
steps = 0
rewards = []
while not done:
action = get_action(state,epoch)
next_state, reward, done, info = env.step(action)
experience_replay.append([state, action, reward, next_state, done])
experience_replay = experience_replay[-buffer_size:]
t_state, t_action, t_reward, t_next_state, t_done = zip(*shuffle(experience_replay)[-batch_size:])
update_network(t_state, t_action, t_reward, t_next_state, t_done)
update_target()
if not epoch==0:
for n in range(simulate_N):
s_state, s_action, _, _, _ = zip(*shuffle(experience_replay)[-batch_size:])
s_next_state, s_reward, s_done = lr.generate_sample(s_state, s_action)
update_network(s_state, s_action, s_reward, s_next_state, s_done)
update_target()
rewards.append(reward)
state = next_state
steps += 1
all_steps.append(steps)
mean_step = np.mean(all_steps[-100:])
mean_steps.append(mean_step)
total_rewards.append(np.sum(rewards))
mean_reward = np.mean(total_rewards[-100:])
mean_rewards.append(mean_reward)
m_state, m_action, m_reward, m_next_state, m_done = zip(*shuffle(experience_replay))
lr.fit_models(m_state, m_action, m_reward, m_next_state, m_done)
logging_info = 'epoch: %d, steps: %f, avg reward: %f, eps: %f' % (epoch, mean_step, mean_reward, min(max(eps_min, eps_max - (eps_max - eps_min) * epoch / eps_decay), 1.0))
print logging_info
import matplotlib.pyplot as plt
plt.subplot(121)
plt.scatter(np.arange(len(all_steps)), all_steps, alpha=0.1, color='b')
plt.plot(mean_steps, color='k')
plt.title('Steps per Episode')
plt.subplot(122)
plt.scatter(np.arange(len(total_rewards)), total_rewards, alpha=0.1, color='r')
plt.plot(mean_rewards, color='k')
plt.plot([0,n_epochs], [195,195], 'k--')
plt.title('Cumulative Rewards')
plt.show()
import scipy.io as io
filename = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) + '/results/data/cartpole'
io.savemat(filename, {'all_steps': all_steps,
'mean_steps': mean_steps,
'total_rewards': total_rewards,
'mean_rewards': mean_rewards})