Skip to content

Latest commit

 

History

History
53 lines (42 loc) · 2.2 KB

FILES.md

File metadata and controls

53 lines (42 loc) · 2.2 KB

main_test.go

Package: main_test

This package contains a test function that demonstrates the usage of various components for retrieving and processing information from a vector store.

Imports:

  • context
  • fmt
  • log
  • os
  • strings
  • testing
  • embd
  • embeddings
  • godotenv
  • langchaingo/chains
  • langchaingo/llms/openai
  • langchaingo/vectorstores

External Data, Input Sources:

  • .env file: Contains environment variables for AI endpoint, API token, database URL, and namespace.

Code Summary:

  1. Test_main function:

    • Loads environment variables from the .env file.
    • Retrieves values for AI endpoint, API token, database URL, and namespace from the environment variables.
    • Defines a list of repository names and test prompts.
    • Calls the generateResponse function for each test prompt and repository name.
  2. getCollection function:

    • Takes AI endpoint, API token, database URL, and namespace as input.
    • Uses the embd.GetVectorStoreWithOptions function to retrieve a vector store from the specified parameters.
    • Returns the vector store and any error encountered.
  3. generateResponse function:

    • Takes a prompt and namespace as input.
    • Calls the getCollection function to retrieve a vector store for the given namespace.
    • Performs semantic search using the retrieved vector store and the provided prompt.
    • Constructs a context string by concatenating the page content of the retrieved documents.
    • Calls the rag function to generate a response using the context and prompt.
    • Returns the generated response and any error encountered.
  4. rag function:

    • Takes a question, AI endpoint, API token, number of results, and vector store as input.
    • Creates an embeddings client using the specified API and embedding model.
    • Performs semantic search using the vector store and the provided question.
    • Constructs a full prompt by combining the context and question.
    • Calls the chains.Run function to generate a response using the retrieved context, question, and embeddings client.
    • Returns the generated response and any error encountered.