|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# Copyright (c) Meta Platforms, Inc. and its affiliates. |
| 3 | +# All rights reserved. |
| 4 | + |
| 5 | +# This source code is licensed under the license found in the |
| 6 | +# LICENSE file in the root directory of this source tree. |
| 7 | + |
| 8 | +import unittest |
| 9 | + |
| 10 | +import numpy as np |
| 11 | +import torch |
| 12 | +from aepsych.benchmark.test_functions import f_1d, f_pairwise |
| 13 | +from aepsych.generators import OptimizeAcqfGenerator, SobolGenerator |
| 14 | +from aepsych.models import PairwiseProbitModel |
| 15 | +from aepsych.strategy import SequentialStrategy, Strategy |
| 16 | +from aepsych.transforms import ( |
| 17 | + ParameterTransformedGenerator, |
| 18 | + ParameterTransformedModel, |
| 19 | + ParameterTransforms, |
| 20 | +) |
| 21 | +from aepsych.transforms.ops import NormalizeScale |
| 22 | +from botorch.acquisition import qUpperConfidenceBound |
| 23 | +from scipy.stats import bernoulli |
| 24 | + |
| 25 | + |
| 26 | +class PairwiseProbitModelStrategyTest(unittest.TestCase): |
| 27 | + def test_1d_pairwise_probit(self): |
| 28 | + """ |
| 29 | + test our 1d gaussian bump example |
| 30 | + """ |
| 31 | + seed = 1 |
| 32 | + torch.manual_seed(seed) |
| 33 | + np.random.seed(seed) |
| 34 | + n_init = 50 |
| 35 | + n_opt = 1 |
| 36 | + lb = torch.tensor([-4.0]) |
| 37 | + ub = torch.tensor([4.0]) |
| 38 | + extra_acqf_args = {"beta": 3.84} |
| 39 | + transforms = ParameterTransforms( |
| 40 | + normalize=NormalizeScale(d=1, bounds=torch.stack([lb, ub])) |
| 41 | + ) |
| 42 | + sobol_gen = ParameterTransformedGenerator( |
| 43 | + generator=SobolGenerator, |
| 44 | + lb=lb, |
| 45 | + ub=ub, |
| 46 | + seed=seed, |
| 47 | + stimuli_per_trial=2, |
| 48 | + transforms=transforms, |
| 49 | + ) |
| 50 | + acqf_gen = ParameterTransformedGenerator( |
| 51 | + generator=OptimizeAcqfGenerator, |
| 52 | + acqf=qUpperConfidenceBound, |
| 53 | + acqf_kwargs=extra_acqf_args, |
| 54 | + stimuli_per_trial=2, |
| 55 | + transforms=transforms, |
| 56 | + lb=lb, |
| 57 | + ub=ub, |
| 58 | + ) |
| 59 | + probit_model = ParameterTransformedModel( |
| 60 | + model=PairwiseProbitModel, lb=lb, ub=ub, transforms=transforms |
| 61 | + ).to("cuda") |
| 62 | + model_list = [ |
| 63 | + Strategy( |
| 64 | + lb=lb, |
| 65 | + ub=ub, |
| 66 | + generator=sobol_gen, |
| 67 | + min_asks=n_init, |
| 68 | + stimuli_per_trial=2, |
| 69 | + outcome_types=["binary"], |
| 70 | + transforms=transforms, |
| 71 | + ), |
| 72 | + Strategy( |
| 73 | + lb=lb, |
| 74 | + ub=ub, |
| 75 | + model=probit_model, |
| 76 | + generator=acqf_gen, |
| 77 | + min_asks=n_opt, |
| 78 | + stimuli_per_trial=2, |
| 79 | + outcome_types=["binary"], |
| 80 | + transforms=transforms, |
| 81 | + use_gpu_generating=True, |
| 82 | + use_gpu_modeling=True, |
| 83 | + ), |
| 84 | + ] |
| 85 | + |
| 86 | + strat = SequentialStrategy(model_list) |
| 87 | + |
| 88 | + for _i in range(n_init + n_opt): |
| 89 | + next_pair = strat.gen().cpu() |
| 90 | + strat.add_data( |
| 91 | + next_pair, [bernoulli.rvs(f_pairwise(f_1d, next_pair, noise_scale=0.1))] |
| 92 | + ) |
| 93 | + |
| 94 | + x = torch.linspace(-4, 4, 100) |
| 95 | + |
| 96 | + zhat, _ = strat.predict(x) |
| 97 | + |
| 98 | + self.assertTrue(np.abs(x[np.argmax(zhat.cpu().detach().numpy())]) < 0.5) |
| 99 | + self.assertTrue(strat.model.device.type == "cuda") |
0 commit comments