You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
1. I have searched related issues but cannot get the expected help.
2. The bug has not been fixed in the latest version.
3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
structed_output cannot be used in cu118 with the lated docker images
sys.platform: linux
Python: 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: x86_64-linux-gnu-gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.5.1+cu118
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 11.8
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90
- CuDNN 90.1
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.20.1+cu118
LMDeploy: 0.7.0.post2+
transformers: 4.48.1
gradio: 5.13.1
fastapi: 0.115.7
pydantic: 2.10.6
triton: 3.1.0
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_2 mlx5_3 CPU Affinity NUMA Affinity
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 PXB NODE 0-31,64-95 0
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 PXB NODE 0-31,64-95 0
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 NODE PXB 0-31,64-95 0
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 NODE PXB 0-31,64-95 0
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 SYS SYS 32-63,96-127 1
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 SYS SYS 32-63,96-127 1
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 SYS SYS 32-63,96-127 1
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X SYS SYS 32-63,96-127 1
mlx5_2 PXB PXB NODE NODE SYS SYS SYS SYS X NODE
mlx5_3 NODE NODE PXB PXB SYS SYS SYS SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Error traceback
2025-02-08 04:49:35,937 - lmdeploy - ERROR - engine.py:904 - Task <MainLoopBackground> failed
Traceback (most recent call last):
File "/opt/lmdeploy/lmdeploy/pytorch/engine/engine.py", line 899, in __task_callback
task.result()
File "/opt/lmdeploy/lmdeploy/pytorch/engine/engine.py", line 857, in _async_loop_background
await self._async_step_background(
File "/opt/lmdeploy/lmdeploy/pytorch/engine/engine.py", line 735, in _async_step_background
next_token_ids = await self.async_sampling_logits(logits, all_ids, guided_input_ids, sampling_inputs,
File "/opt/lmdeploy/lmdeploy/utils.py", line 234, in __tmp
return (await func(*args, **kwargs))
File "/opt/lmdeploy/lmdeploy/pytorch/engine/engine.py", line 532, in async_sampling_logits
logits = await logits_processor(all_ids, guided_input_ids, split_logits)
File "/opt/lmdeploy/lmdeploy/pytorch/engine/logits_process.py", line 338, in __call__
scores = _guided_sampling(sampling_inputs.response_formats, scores, guided_input_ids, self.tokenizer)
File "/opt/lmdeploy/lmdeploy/pytorch/engine/logits_process.py", line 106, in _guided_sampling
from .guided_process import _get_guided_logits_processor
File "/opt/lmdeploy/lmdeploy/pytorch/engine/guided_process.py", line 23, in<module>
from outlines.fsm.guide import CFGGuide, Generate, RegexGuide, Write
File "/opt/py3/lib/python3.10/site-packages/outlines/__init__.py", line 5, in<module>
import outlines.types
File "/opt/py3/lib/python3.10/site-packages/outlines/types/__init__.py", line 1, in<module>
from . import airports, countries
File "/opt/py3/lib/python3.10/site-packages/outlines/types/airports.py", line 4, in<module>
from pyairports.airports import AIRPORT_LIST
File "/opt/py3/lib/python3.10/site-packages/pyairports/airports.py", line 1, in<module>
from pkg_resources import resource_string
File "/opt/py3/lib/python3.10/site-packages/pkg_resources/__init__.py", line 3292, in<module>
def _initialize_master_working_set():
File "/opt/py3/lib/python3.10/site-packages/pkg_resources/__init__.py", line 3266, in _call_aside
f(*args, **kwargs)
File "/opt/py3/lib/python3.10/site-packages/pkg_resources/__init__.py", line 3304, in _initialize_master_working_set
working_set = WorkingSet._build_master()
File "/opt/py3/lib/python3.10/site-packages/pkg_resources/__init__.py", line 600, in _build_master
ws.require(__requires__)
File "/opt/py3/lib/python3.10/site-packages/pkg_resources/__init__.py", line 937, in require
needed = self.resolve(parse_requirements(requirements))
File "/opt/py3/lib/python3.10/site-packages/pkg_resources/__init__.py", line 798, in resolve
dist = self._resolve_dist(
File "/opt/py3/lib/python3.10/site-packages/pkg_resources/__init__.py", line 839, in _resolve_dist
raise DistributionNotFound(req, requirers)
pkg_resources.DistributionNotFound: The 'nvidia-nccl-cu11==2.21.5; platform_system == "Linux" and platform_machine == "x86_64"' distribution was not found and is required by torch
2025-02-08 04:49:35,938 - lmdeploy - ERROR - async_engine.py:777 - session 1 finished, reason "error"
The text was updated successfully, but these errors were encountered:
Checklist
Describe the bug
structed_output cannot be used in cu118 with the lated docker images
Reproduction
lmdeploy serve api_server internlm/internlm2_5-7b-chat --server-port 23333 --backend pytorch --tp 1 --session-len 128000
Environment
Error traceback
The text was updated successfully, but these errors were encountered: