Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug] chat with converted mixtral-8x7b model, raise RuntimeError #2689

Closed
3 tasks
zhulinJulia24 opened this issue Oct 31, 2024 · 1 comment · Fixed by #2698
Closed
3 tasks

[Bug] chat with converted mixtral-8x7b model, raise RuntimeError #2689

zhulinJulia24 opened this issue Oct 31, 2024 · 1 comment · Fixed by #2698
Assignees

Comments

@zhulinJulia24
Copy link
Collaborator

Checklist

  • 1. I have searched related issues but cannot get the expected help.
  • 2. The bug has not been fixed in the latest version.
  • 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.

Describe the bug

cannot chat with converted mixtral-8x7b model, raise /lmdeploy/src/turbomind/models/llama/LlamaDecoderLayerWeight.cc:275

Reproduction

  1. convert
    lmdeploy convert mixtral /nvme/qa_test_models/mistralai/Mixtral-8x7B-Instruct-v0.1 --dst-path /nvme/qa_test_models/autotest_model/workspace_mistralai/Mixtral-8x7B-Instruct-v0.1 --tp 2
  2. chat
    lmdeploy chat /nvme/qa_test_models/autotest_model/workspace_mistralai/Mixtral-8x7B-Instruct-v0.1
2024-10-30 13:40:39,740 - lmdeploy - WARNING - supported_models.py:100 - /nvme/qa_test_models/autotest_model/workspace_mistralai/Mixtral-8x7B-Instruct-v0.1 seems to be a turbomind workspace, which can only be ran with turbomind engine.
chat_template_config:
ChatTemplateConfig(model_name='mistral', system=None, meta_instruction=None, eosys=None, user=None, eoh=None, assistant=None, eoa=None, separator=None, capability='chat', stop_words=None)
engine_cfg:
TurbomindEngineConfig(dtype='auto', model_format=None, tp=1, session_len=32768, max_batch_size=1, cache_max_entry_count=0.8, cache_chunk_size=-1, cache_block_seq_len=64, enable_prefix_caching=False, quant_policy=0, rope_scaling_factor=0.0, use_logn_attn=False, download_dir=None, revision=None, max_prefill_token_num=8192, num_tokens_per_iter=0, max_prefill_iters=1)
[TM][ERROR] /nvme/qa_test_models/autotest_model/workspace_mistralai/Mixtral-8x7B-Instruct-v0.1/triton_models/weights/layers.0.feed_forward.w1.1.weight and /nvme/qa_test_models/autotest_model/workspace_mistralai/Mixtral-8x7B-Instruct-v0.1/triton_models/weights/layers.0.feed_forward.w1.1.qweight does not exist
[TM][ERROR] /nvme/qa_test_models/autotest_model/workspace_mistralai/Mixtral-8x7B-Instruct-v0.1/triton_models/weights/layers.0.feed_forward.w1.1.weight and /nvme/qa_test_models/autotest_model/workspace_mistralai/Mixtral-8x7B-Instruct-v0.1/triton_models/weights/layers.0.feed_forward.w1.1.qweight does not exist
Traceback (most recent call last):
  File "/home/zhulin1/miniconda3/envs/v62/bin/lmdeploy", line 8, in <module>
    sys.exit(run())
  File "/home/zhulin1/miniconda3/envs/v62/lib/python3.10/site-packages/lmdeploy/cli/entrypoint.py", line 42, in run
    args.run(args)
  File "/home/zhulin1/miniconda3/envs/v62/lib/python3.10/site-packages/lmdeploy/cli/cli.py", line 282, in chat
    run_chat(**kwargs)
  File "/home/zhulin1/miniconda3/envs/v62/lib/python3.10/site-packages/lmdeploy/turbomind/chat.py", line 116, in main
    tm_model = tm.TurboMind.from_pretrained(model_path,
  File "/home/zhulin1/miniconda3/envs/v62/lib/python3.10/site-packages/lmdeploy/turbomind/turbomind.py", line 302, in from_pretrained
    return cls(model_path=pretrained_model_name_or_path,
  File "/home/zhulin1/miniconda3/envs/v62/lib/python3.10/site-packages/lmdeploy/turbomind/turbomind.py", line 105, in __init__
    self.model_comm = self._from_workspace(
  File "/home/zhulin1/miniconda3/envs/v62/lib/python3.10/site-packages/lmdeploy/turbomind/turbomind.py", line 271, in _from_workspace
    self._create_weight(model_comm)
  File "/home/zhulin1/miniconda3/envs/v62/lib/python3.10/site-packages/lmdeploy/turbomind/turbomind.py", line 152, in _create_weight
    future.result()
  File "/home/zhulin1/miniconda3/envs/v62/lib/python3.10/concurrent/futures/_base.py", line 458, in result
    return self.__get_result()
  File "/home/zhulin1/miniconda3/envs/v62/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result
    raise self._exception
  File "/home/zhulin1/miniconda3/envs/v62/lib/python3.10/concurrent/futures/thread.py", line 58, in run
    result = self.fn(*self.args, **self.kwargs)
  File "/home/zhulin1/miniconda3/envs/v62/lib/python3.10/site-packages/lmdeploy/turbomind/turbomind.py", line 145, in _create_weight_func
    model_comm.create_shared_weights(device_id, rank)
RuntimeError: [TM][ERROR]  Assertion fail: /lmdeploy/src/turbomind/models/llama/LlamaDecoderLayerWeight.cc:275 

Environment

sys.platform: linux
Python: 3.10.15 (main, Oct  3 2024, 07:27:34) [GCC 11.2.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
CUDA_HOME: /usr/local/cuda-11.7
NVCC: Cuda compilation tools, release 11.7, V11.7.64
GCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
PyTorch: 2.5.0+cu118
PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX512
  - CUDA Runtime 11.8
  - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90
  - CuDNN 90.1
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, 

TorchVision: 0.20.0+cu118
LMDeploy: 0.6.1+
transformers: 4.46.0
gradio: 5.4.0
fastapi: 0.115.4
pydantic: 2.9.2
triton: 2.3.0
NVIDIA Topology: 
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    CPU Affinity    NUMA Affinity
GPU0     X      NV12    NV12    NV12    NV12    NV12    NV12    NV12    0-27,56-83      0
GPU1    NV12     X      NV12    NV12    NV12    NV12    NV12    NV12    0-27,56-83      0
GPU2    NV12    NV12     X      NV12    NV12    NV12    NV12    NV12    0-27,56-83      0
GPU3    NV12    NV12    NV12     X      NV12    NV12    NV12    NV12    0-27,56-83      0
GPU4    NV12    NV12    NV12    NV12     X      NV12    NV12    NV12    28-55,84-111    1
GPU5    NV12    NV12    NV12    NV12    NV12     X      NV12    NV12    28-55,84-111    1
GPU6    NV12    NV12    NV12    NV12    NV12    NV12     X      NV12    28-55,84-111    1
GPU7    NV12    NV12    NV12    NV12    NV12    NV12    NV12     X      28-55,84-111    1

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

Error traceback

No response

@zhulinJulia24 zhulinJulia24 changed the title [Bug] cannot chat with converted mixtral-8x7b model [Bug] chat with converted mixtral-8x7b model, raise RuntimeError Oct 31, 2024
@lvhan028
Copy link
Collaborator

lvhan028 commented Nov 1, 2024

Fix #2698

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants