forked from anastazijaverovic/Machine_Learning_Algorithms_R
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
352 lines (352 loc) · 10.6 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
dataset = read.csv("Ads_CTR_Optimisation")
setwd("~/Desktop/Machine_Learning_Algorithms_R/Part 6 - Reinforcement Learning/Section 33 - Thompson Sampling")
dataset = read.csv("Ads_CTR_Optimisation.csv")
# Thompson Sampling
# Data preprocessing
dataset = read.csv("Ads_CTR_Optimisation.csv")
# Implementing Thompson Sampling
N = 10000 # number of rounds
d = 10 # number of ads
ads_selected = integer(0)
# for each ad - containing the number of times it got the reward 1 or 0 (for each ad -> vector)
numbers_of_rewards_1 = integer(d)
numbers_of_rewards_0 = integer(d)
for(n in 1:N){
ad = 0 # ad selected at specific round
max_random = 0 # maximum random draw
for(i in 1:d){
random_beta = rbeta(n = 1 # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
if(random_beta > max_random){
max_random = random_beta
ad = i
}
}
ads_selected = append(ads_selected, ad)
reward = dataset[n, ad]
if(reward == 1){
# number of rewards for selected ad
numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
} else {
numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
}
}
# Visualise Thompson Sampling
numbers_of_rewards_1 = integer(d)
numbers_of_rewards_0 = integer(d)
for(n in 1:N){
ad = 0 # ad selected at specific round
max_random = 0 # maximum random draw
for(i in 1:d){
random_beta = rbeta(n = 1 # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
if(random_beta > max_random){
max_random = random_beta
ad = i
}
}
ads_selected = append(ads_selected, ad)
reward = dataset[n, ad]
if(reward == 1){
# number of rewards for selected ad
numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
} else {
numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
}
}
reward = dataset[n, ad]
N = 10000 # number of rounds
d = 10 # number of ads
ads_selected = integer(0)
# for each ad - containing the number of times it got the reward 1 or 0 (for each ad -> vector)
numbers_of_rewards_1 = integer(d)
numbers_of_rewards_0 = integer(d)
for(n in 1:N){
ad = 0 # ad selected at specific round
max_random = 0 # maximum random draw
for(i in 1:d){
random_beta = rbeta(n = 1 # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
if(random_beta > max_random){
max_random = random_beta
ad = i
}
}
ads_selected = append(ads_selected, ad)
reward = dataset[n, ad]
if(reward == 1){
# number of rewards for selected ad
numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
} else {
numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
}
}
ad = 0
max_random = 0
for(n in 1:N){
ad = 0 # ad selected at specific round
max_random = 0 # maximum random draw
for(i in 1:d){
random_beta = rbeta(n = 1 # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
if(random_beta > max_random){
max_random = random_beta
ad = i
}
}
ads_selected = append(ads_selected, ad)
reward = dataset[n, ad]
if(reward == 1){
# number of rewards for selected ad
numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
} else {
numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
}
}
reward = dataset[n, ad]
for(n in 1:N) {
ad = 0 # ad selected at specific round
max_random = 0 # maximum random draw
for(i in 1:d) {
random_beta = rbeta(n = 1 # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
if(random_beta > max_random) {
max_random = random_beta
ad = i
}
}
ads_selected = append(ads_selected, ad)
reward = dataset[n, ad]
if(reward == 1) {
# number of rewards for selected ad
numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
} else {
numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
}
}
reward = dataset[n, ad]
# Thompson Sampling
# Data preprocessing
dataset = read.csv("Ads_CTR_Optimisation.csv")
# Implementing Thompson Sampling
N = 10000 # number of rounds
d = 10 # number of ads
ads_selected = integer(0)
# for each ad - containing the number of times it got the reward 1 or 0 (for each ad -> vector)
numbers_of_rewards_1 = integer(d)
numbers_of_rewards_0 = integer(d)
for(n in 1:N) {
ad = 0 # ad selected at specific round
max_random = 0 # maximum random draw
for(i in 1:d) {
random_beta = rbeta(n = 1 # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
if(random_beta > max_random) {
max_random = random_beta
ad = i
}
}
ads_selected = append(ads_selected, ad)
reward = dataset[n, ad]
if(reward == 1) {
# number of rewards for selected ad
numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
} else {
numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
}
}
# Visualise Thompson Sampling
# Thompson Sampling
# Data preprocessing
dataset = read.csv("Ads_CTR_Optimisation.csv")
# Implementing Thompson Sampling
N = 10000 # number of rounds
d = 10 # number of ads
ads_selected = integer(0)
# for each ad - containing the number of times it got the reward 1 or 0 (for each ad -> vector)
numbers_of_rewards_1 = integer(d)
numbers_of_rewards_0 = integer(d)
for(n in 1:N) {
ad = 0 # ad selected at specific round
max_random = 0 # maximum random draw
for(i in 1:d) {
random_beta = rbeta(n = 1 # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
if(random_beta > max_random) {
max_random = random_beta
ad = i
}
}
ads_selected = append(ads_selected, ad)
reward = dataset[n, ad]
if(reward == 1) {
numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
} else {
numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
}
}
# Visualise Thompson Sampling
random_beta = rbeta(n = 1 # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
# Thompson Sampling
# Data preprocessing
dataset = read.csv("Ads_CTR_Optimisation.csv")
# Implementing Thompson Sampling
N = 10000 # number of rounds
d = 10 # number of ads
ads_selected = integer(0)
# for each ad - containing the number of times it got the reward 1 or 0 (for each ad -> vector)
numbers_of_rewards_1 = integer(d)
numbers_of_rewards_0 = integer(d)
for(n in 1:N) {
ad = 0 # ad selected at specific round
max_random = 0 # maximum random draw
for(i in 1:d) {
random_beta = rbeta(n = 1, # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
if(random_beta > max_random) {
max_random = random_beta
ad = i
}
}
ads_selected = append(ads_selected, ad)
reward = dataset[n, ad]
if(reward == 1) {
# number of rewards for selected ad
numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
} else {
numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
}
}
# Visualise Thompson Sampling
# Thompson Sampling
# Data preprocessing
dataset = read.csv("Ads_CTR_Optimisation.csv")
# Implementing Thompson Sampling
N = 10000 # number of rounds
d = 10 # number of ads
ads_selected = integer(0)
# for each ad - containing the number of times it got the reward 1 or 0 (for each ad -> vector)
numbers_of_rewards_1 = integer(d)
numbers_of_rewards_0 = integer(d)
for(n in 1:N) {
ad = 0 # ad selected at specific round
max_random = 0 # maximum random draw
for(i in 1:d) {
random_beta = rbeta(n = 1, # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
if(random_beta > max_random) {
max_random = random_beta
ad = i
}
}
ads_selected = append(ads_selected, ad)
reward = dataset[n, ad]
if(reward == 1) {
# number of rewards for selected ad
numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
} else {
numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
}
}
# Visualise Thompson Sampling
# Thompson Sampling
# Data preprocessing
dataset = read.csv("Ads_CTR_Optimisation.csv")
# Implementing Thompson Sampling
N = 10000 # number of rounds
d = 10 # number of ads
ads_selected = integer(0)
# for each ad - containing the number of times it got the reward 1 or 0 (for each ad -> vector)
numbers_of_rewards_1 = integer(d)
numbers_of_rewards_0 = integer(d)
total_reward = 0
for(n in 1:N) {
ad = 0 # ad selected at specific round
max_random = 0 # maximum random draw
for(i in 1:d) {
random_beta = rbeta(n = 1, # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
if(random_beta > max_random) {
max_random = random_beta
ad = i
}
}
ads_selected = append(ads_selected, ad)
reward = dataset[n, ad]
if(reward == 1) {
# number of rewards for selected ad
numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
} else {
numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
}
total_reward = total_reward + reward
}
# Visualise Thompson Sampling
# Thompson Sampling
# Data preprocessing
dataset = read.csv("Ads_CTR_Optimisation.csv")
# Implementing Thompson Sampling
N = 10000 # number of rounds
d = 10 # number of ads
ads_selected = integer(0)
# for each ad - containing the number of times it got the reward 1 or 0 (for each ad -> vector)
numbers_of_rewards_1 = integer(d)
numbers_of_rewards_0 = integer(d)
total_reward = 0
for(n in 1:N) {
ad = 0 # ad selected at specific round
max_random = 0 # maximum random draw
for(i in 1:d) {
random_beta = rbeta(n = 1, # number of observations - we want one random draw
shape1 = numbers_of_rewards_1[i] + 1,
shape2 = numbers_of_rewards_0[i] + 1) # random draws from the beta distribution
if(random_beta > max_random) {
max_random = random_beta
ad = i
}
}
ads_selected = append(ads_selected, ad)
reward = dataset[n, ad]
if(reward == 1) {
# number of rewards for selected ad
numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
} else {
numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
}
total_reward = total_reward + reward
}
# Visualise Thompson Sampling
hist(ads_selected)
hist(ads_selected,
color = "light_blue")
hist(ads_selected,
color = "blue")
# Visualise Thompson Sampling
hist(ads_selected,
col = "blue")
hist(ads_selected,
col = "light_blue")
hist(ads_selected,
col = "light blue")
hist(ads_selected,
col = "light blue",
main = "Histogram of Selected Ads by Thompson Sampling",
xlab = "Ads",
ylab = "Frequency of Ad Selection")
hist(ads_selected,
col = "light blue",
main = "Histogram of ads selection for Thompson Sampling",
xlab = "Ads",
ylab = "Number of times each ad was selected")