GUIslice API

Developer Guide

Ver: 0.16.0

Publication date and software version
Published XXXXXX, 2021. Based on GUIslice API Library 0.16.0
Copyright

This document is Copyright © 2021 by Paul Conti. You may distribute or modify it under the terms of the
MIT License. https://opensource.org/licenses/MIT

GUIslice Copyright (c) Calvin Hass 2016-2021

https://opensource.org/licenses/MIT

Chapter 1 Introduction

1.1 Introduction

GUIslice is User Interface platform designed for embedded microcontroller systems, most without any
operating system. The design is such that it trys to minimize overhead. Achieving this goal by being a pure C
library with no dynamic memory allocation.

It's not so much designed to be to be easy to use as much as it's meant to be efficient. Whatever difficulty in
defining storage declarations and other essential defines, enums, and Ul coordinates is mitigated by
another tool called the GUIsliceBuilder which will not be further discussed here.

This document explains the main structure and design of the GUIslice library. It's purpose is to give a deeper
understanding than one would get by simply knowing the API. While GUIslice comes with excellent
documentation for the APl with many examples there are times when someone needs to view below the
covers. Say, you have to extend GUIslice with new Ul Elements or create moveable windows. Hopefully this
document will supply enough information for anyone maintaining or extending the package.

Certain topics that could cloud the explanations of logic flow such as frame rate tracking, or routines that
are very small and that have self-describing names (such as gslc_PageFlipSet) will be either avoided or
confined to the Appendix. If you need more information you will need to examine the actual source code.

af://n10
af://n11

Chapter 2 Architecture

2.1 Phases

2.1.1 C Language definition phase

The GUIslice API storage requirements must be laid out in globals. In addition, various enums for pages
(menus), fonts, Ul Elements, and images must be defined at the outset.

We start with defining MAX_PAGE as the total number of pages to be used. Followed by an enum giving the
number of Ul Elements (widgets) to be placed on each page and an enum for the number of Fonts accessed,
if any. Optionally, depending upon usage, enum for each font and/or images used must also be provided.

These definitions must be followed by actual storage allocations for pages, fonts, and all Ul Elements.
Source code must also be provided for all callbacks.
The important data structures that will be discussed in this document are:

e gslc_tsGui

e gslc_tsDriver
e gslc_tsPage

e gslc_tsFont

e gslc_tsElem

e gslc_tsElemRef

Lesser structures will also be exposed as they come up.

2.1.2 Setup

For Micro-Controllers using Arduino's IDE for development the Application will have been provided with a
setup() and Loop() function. For Linux initialization will happen in the main() function.

At the start of an Application, GUIslice APl will need to initialize API storage structs and link them together.
The Application will also need to provide to the GUIslice APl any details required by the various Ul elements,
like coordinates, sizes, colors, fonts, and callback addresses.

It all starts with an optional call to gslc_Initbebug() to setup debugging messaging. This call can be
removed when you deploy your App. The first routine that must be called is gsTlc_Init() whichis
responsible for initializing the global gslc_tsGui struct and starting up the third party TFT driver and
optionally touch interface.

After that gslc_pageAdd() must be called for each page used in the application, followed by whatever API
calls are needed to create the Ul Elements to be placed on each page.

The details of these routines will be shown in Chapter 4 API Internals.

af://n18
af://n19
af://n20
af://n40

2.1.3 Loop

Once the APl and the Application's requirements for initialization have been completed the Loop phase is
entered. Arduino like apps will have an actual Loop() function while Linux users must provide a while()
loop.

GUilslice is an event loop non-preemptive driven APl which does not depend upon multi-threading support.
What this means is that the Application needs to call a function periodically to detect any user or device
interactions.

The routine GUIslice provides for this is called gsl1c_update() and breaking this down requires it's own
section so see Chapter 4 gslc_Update for a complete discussion. Of course, Loop() is also where you
provide your own Application Logic just be sure to periodically call gsTc_update() oryou won't properly
handle your Ul.

2.2 Layers

There are three basic layers to GUIslice API.
Layer one is exposed APl meant for users to call directly.

Layer two is the driver interface layer. The specific driver is choosen by the user of the API by
uncommenting the desired driver configuration file inside GuIslice_config.h .

Layer three contains actual third party drivers that are called from layer two. This would be for the TFT
graphics, Touch and File access support.

af://n48
af://n52

2.3 Hierarchical view of data structures
2.4 Elements vs Element References

2.5 Singular vs Compound Elements
Chapter 3 Driver Modules

3.1 Display drivers

While we have discussed the existence of the driver layer where files are of the form GuIsTice_drv_xxxx.
<h, cpp> ; They're two additional files we should mention, GuIslice_config_ard.h and

GUIslice_config_Tlinux.h .

These are holdovers from the early days of GUIslice API. You generally don't need to deal with them unless
you are adding a new driver pair say, GuIslice_drv_mydriver.<h,cpp> . In this case you need to add your
include file to either of these files to allow GUIslice to use your new driver.

In the future one or both may be removed but for now you need to be aware of them.

One more point, while GUIslice prefixes the driver files with "drv" they are not in fact drivers. In fact, It might
best be renamed the Graphics layer. If you open, Guislice_drv_adagfx.cpp you will soon see why. It's
littered with #if defined, elseif,and #endif statements to deal with individual TFT and Touch
drivers. Having a fourth layer that handles the interfaces to real drivers would make the code much easier
to follow and maintain. Again this is an artifact of how GUIslice evolved over time.

This isn't included as a criticism as much as a warning of what you will face if you need to extend an existing
driver file.

For many of these the calls translate to a simple one to one calls to say, Adafruit_GFX routines or whatever
Graphics package is being used. The complex part however is in font handling where each TFT DRiver seems
to have a different approach and with Touch drivers that also need special handling.

You will need to study the source code to appreciate whats involved.

af://n59
af://n60
af://n61
af://n62
af://n63

3.2 Touch drivers

3.2.1 Debouncing

3.2.2 Filtering

3.2.3 Calibration scaling
3.2.4 Rotation

3.2.5 gslc_InitTouchHandler()

If you need special handling of the touch interface or to support a new touch chip there is an alternative
approach you can take rather than modifying the driver files. As briefly discussed in an earlier section
GUIslice API has provided the call gsTc_tnitTouchHandler() which allows to you inteface touch through
your own code. You can see GUIslice/examples/arduino/ex16_ard_touch_hnd for a demonstration.

af://n74
af://n75
af://n76
af://n77
af://n78
af://n79

3.3 Identifying What features the Driver supports

GUIslice provides default implementations for certain API calls such as, gslc_brvbrawpoints() , and
gslc_prvDrawFrameRect() , among others. Now most graphic drivers have optimized versions of these
routines. So how does GUIslice know to use them? If you open GuIslice_drv_adagfx.h you will see a

group of #defines specifying whats supported by the driver and what GUIslice must supply instead.

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

DRV_HAS_DRAW_POINT

DRV_HAS_DRAW_POINTS
DRV_HAS_DRAW_LINE
DRV_HAS_DRAW_RECT_FRAME
DRV_HAS_DRAW_RECT_FILL
DRV_HAS_DRAW_RECT_ROUND_FRAME
DRV_HAS_DRAW_RECT_ROUND_FILL
DRV_HAS_DRAW_CIRCLE_FRAME
DRV_HAS_DRAW_CIRCLE_FILL
DRV_HAS_DRAW_TRI_FRAME
DRV_HAS_DRAW_TRI_FILL
DRV_HAS_DRAW_TEXT
DRV_HAS_DRAW_BMP_MEM

DRV_OVERRIDE_TXT_ALIGN

1///<

0///<
1///<
1///<
1///<
1///<
1///<
1///<
1///<
1///<
1///<
1///<
0///<

0///<

Support gslc_DrvDrawPoint()

Support gslc_DrvDrawPoints()
Support gslc_DrvDrawLine()

Support gslc_DrvDrawFrameRect()
Support gslc_DrvDrawFillRect()
Support gslc_DrvDrawFrameRoundRect()
Support gslc_DrvDrawFillRoundrRect()
Support gslc_DrvDrawFrameCircle()
Support gslc_DrvDrawFillcCircle()
Support gslc_DrvDrawFrameTriangle()
Support gslc_DrvDrawFillTriangle()
Support gslc_DrvDrawTxt()

Support gslc_DrvDrawBmp24FromMem()

Driver provides text alignment

The Zero indicates not supported and one declares support.

af://n84

Chapter 4 API Internals

Here the discussion will be about the more important API's. Even the actual Ul Element creation API's will
only be represented by a couple of Ul Elements, gslc_ElemCreateTxt() , gslc_ElemCreateBtnTxt() , and
gslc_ElemCreateLine . This is because the existing User API documentation is more than adequate for
understanding. Instead the idea is to show the logic that applies to any such call within the API. What
structures are involved, and how they are used by the lower level routines.

The APl for gslc_ElemCreateImg() and gslc_ElemcCreateBtnImg() will be explored in Chapter 7 Special
Features.

4.1 gslc_Init()

bool gslc_Init(gslc_tsGui* pGui,void* pvDriver,gslc_tsPage* asPage,uint8_t nMaxPage,
gslc_tsFont* asFont,uint8_t nMaxFont);

s ™y
The pieces of gslc_tsGui struct to be explained in this document
Data Type Field Name Comment
|gslc tsPage* |asPage Array of all pages defined in system
uintd t nPageMax Maximum number of pages that can be defined
uint8 t nPagecCnt Current number of pages defined
lgsle tsFont* asFont Collection of loaded fonts
uintg8 t nFontMax Maximum humber of fonts to allocate
uintd t nFontCnt Number of fonts allocated
void* pvDriver Driver-specific members (gslc tsDriver*)

gslc tsElem

sElemTmpProg

Temporary element for Flash compatibility

gslc tsPage* apPageStack[GSLC STACK MAX] Stack of displayed pages

bool abPageStackActive[GSLC STACK MAX] |Flags pages that can receive touch events |
bool abPageStackDoDraw[GSLC STACK _MAX] |Flags pages in stack that are actively drawn
gslc tsPage* apPageStack[GSLC STACK MAX] Stack of displayed pages

(bool binvalidateEn[GSLC STACK MAX] A region of the display has been invalidated

islc tsRect rinvalidateRect The rect reiinn that has been invalidated

. v

This routine is responsible for setting up the gslc_tsGui, gslc_tsDriver, and gslc_tsFont structures. It will also
fire up the TFT Display driver and any touch interface or even GPIO interface.

gslc_tsGui is the main container of data for GUIslice. Virtually everything needed is attached to this struct.
That's the reason it's required in every call to the API. Most of what is in here is self-explanatory, like nDispW,
and nDispH. So for these the source code comments are sufficient for understanding.

The items in yellow will be addressed in this chapter while the ones in GREEN outline will be discussed in
Chapter 4 gslc_Update(). Thoses in BLUE will be in Chapter 7 Extending GUIslice.

By convention gslc_tsGui pGui will the address of m_gui , pvDriver will be set to address of m_drv , asPage
will be set to the address of the m_asPage[MAX_PAGE] array and asFont will set to address
m_asFont [MAX_FONT] .

af://n90
af://n93

gslc_Init() will begin by Initializing state of the display values inside gslc_tsGui to zeroes, set
nPageMax=nMaxPage , nPageCnt=0 , nFontMax=nMaxFont , nFontCnt=0 , default display orientation to
GSLC_ROTATE . It will also init the page stack to NULL.

Diagram 4.1A gives the overall flow of this routine and it shows a driver specific function will be called to init
the TFT driver and fill out pvDriver structure. The driver names will be of the form GUIslice_drv_xxxx.cpp
where "xxxx" could be adagfx, m5stack, sdl, tft_espi, or any others that might be supported now or in the
future. Chapter 6 Driver Modules will explore this deeper.

1

User

[UserApplication) [GUIinceAPICaIIs) [GUIince.cInternalAPl) [GUlslice_drv_xxx.cAplj [Externalnrivers)
T T

Start GUIslice API_ |

I T
I I I
I I I
I I
I I I
' gslc_Init() 1 1
I I I
| Fill in gslc_tsGui struct | |
I I I
| gslc_tsGui initialized | |
| 7N M |
! gslc_Drvinit() ! - N
I I
I I
I 1| m_touch init as a global : :
| :[not inside gslc_Drvinit() j m,_disp.begin() >
I I
I I
| | m_disp started
| |)
| ' [only if"GSLC_SD_EN"% SD.begin .
I I
i i SD started
i gslc_Drvinit return :
I I
i gslc_InitTouch() ‘i
i i only if "DRV_TOUCH_IN_DISP"
! Lgslc__DrvInitTouch[) | || else if not "DRV_TOUCH_NONE" then
! ! call external gslc_TDrvInitTouch()
I I
| i gsle_DrvInitTouch return
I I
I P I
I Touch init done i p 4
| X X >
! GUIslice Initialized ! ! !
I I I I I
.. GUIslice Started | | | |
I | I I I I
User [User Application) [GUIince API Calls) [GUIince.c Internal API) [GUIince_drv_)(){X.c API) [External Drivers)

Diagram 4.1A gslc_Init() Flow

As you can see from the flow diagram we need to go to the GUIslice_drv_XXXX.cpp driver layer to access the
touch hardware. Unless the user supplied a custom touch handler by registering it with a

gslc_tnitTouchHandler() call. In which case the user will have sub-classed TouchHandler and set their
config file to use this implementation at the driver layer.

¢

[Generic Touch Driver - Initialize Touch)

Y
{DRV_TOUCH_TYPE_RES >——

iyes

Capture default calibration settings |y
for resistive displays

{ ADATOUCH_REMAP_YX >———

iyes

-

[Support touch controllers with swapped X &Yj

v

Enable touch by calling

whatever the driver has defined

this varies from begin(),touchEnable(),
InitTouch() and so on...

+I+

Diagram 4.1B Touch Initialization Flow

4.2 gslc_PageAdd()

void gslc_PageAdd(gsTc_tsGui* pGui,intl6_t nPagelId,gslc_tsElem* psElem,
uintl6_t nMaxElem,gslc_tsElemRef* psElemRef,uintl6_t nMaxElemRef)

- ™
gslc_PageAdd() fills in gslc_tsPage struct

Data Type Field Name [Comment

(gslc_tsCollect|sCollect Collection of elements on page

int16 t nPageld Page identifier

lgslc tsRect |rBounds Bounding rect for page elements
\ Y.

This routine adds a new page to the globally defined page array that was passed into gslc_Init()

¢

[gslc_PagaAdd)
¥

[Initialize pPage->sCollect J

function (&m_asPage[]).

gslc_CollectReset(&pPage->sCollect)

¥
[Assign the requested Page IDJ

pPage->nPageld = nPageld

v

Initialize the page elements bounds to empty
pPage->rBounds = (gslc_tsRect) {0,0,0,0}

¥

Increment the page count
pGui->nPageCnt++

{gslc_GetPageCur(pGui) == GSLC_PAGE_NONE >
yes

Assign the first page added to be the current layer
in the page stack. This can be overridden later gslc_SetPageCur{nF‘ageld]))
with SetPageCur{)

Force the page to redraw
gslc_PageRedrawSet{pGui,true)

®

Diagram 4.2 gslc_PageAdd() Flow

af://n112

4.3 gslc_ElemCreateTxt()
4.4 gslc_ElemCreateBtnTxt()
4.5 gslc_ElemCreateLine()

4.6 Error handling & messages

af://n118
af://n119
af://n120
af://n121

Chapter 5 gslc_Update()

void gslc_Update(gsTc_tsGui* pGui)

The polling loop for GUIslice. Performs GUIslice handling functions for any touch events and screen
drawing. Note that nothing appears on screen until this routine is called.

r

no more av&nts\Femh any input ew:nt}(i
found event

bEvent=false

[First check physical pin in puu]

{GSLC_FEATURE_INPUT >

luue
Here we loop until no more events to handle poll for GPIQIpin events |
or until we exceed GSLC_TOUCH_MAX_EVT L4
see diagram 04-01B A
in case we are flooded with events

see diagram 04-01C

J

v

Send Timer Events
to Active Pages
see Diagram 04-D

¥

Perform any redraw required for current page
gslc_PageRedrawGo()

)

{pall for touch/keyboard eventsJ\r

Diagram 5.A gslc_Update() Flow

af://n125

¢

[pnll for GPIQ/pin eve htﬁ)

[{: heck physical pin in puts)
¥

{ GSLC_FEATURE_INPUT
U.rue

¢ pGui->pfuncPinPolllENULL >———————
'Lyes

[hE\rent = (*pfuncPinPoll){pGui,&nPinNum,&n PinState})

bEvant
frue

[&In putEvent=GSLC_INPUT_PIN_ASS ERT))
Y

n InputVal = nPinN um)

r

:

Diagram 5.B Poll Input GPIO/pin Flow

¢

[poll for touchl/keyboard events)

IbEvent

frue

<gs|c_GetTouch0 found event?>
|yes

17
{GSLC_INPUT_KEY_DOWN »————><{GSLC_INPUT_PIN_ASSERT GSLC_INPUT_TOUCH
lyes lyes yes

gslc_Tracklnput(elnputEvent,ninputVal)

Handle the events on the current page

[For now, only handling key-down events [gsIc_TrackInput(elnputEvent,nInputVal)) [Track and handle the touch events

gslc_TrackTouch(nTouchX,nTouchY,nTouchPress)

]

!

v

'

Diagram 5.C Poll Touch Flow

5.1 gslc_GetTouch()

bool gslc_GetTouch(gslc_tsGui* pGui, intl6_t* pnX, intl6_t* pnY, uintl6_t* pnPress,
gslc_teInputRawEvent* peInputEvent, intl6_t* pnInputval);

The touch handling logic is used by both the touchscreen handler as well as the GPIO/pin/keyboard input
controller. It should be mentioned that while the source code uses the term "Keyboard" GUIslice APl really
isn't providing full keyboard support, unlike the TFT Keypad Extended Ul Element. It's more of lower level a
key has been pressed support. Also, no key debouncing is provided.

Get the last touch event from the Touch Driver handler.

¢

gslc_GetTouch()

<DRV_TOUCH_NONE >—>< DRV_TOUCH_IN_DISP

yes yes
Return false [return gslc_DwGetTnuch{})
¥

Diagram 5.1A gslc_GetTouch() Flow

The code for grabbing a touch event is quite complex so the source code within the driver of interest is the
best way to see specifics. Independent of the actual implementation the overall flow is like this:

¢

(G-enam: Touch Driver - Get Tou ch)

no

¥
Y.f—s‘(m_tauch.tuuched{]}

[m_tc-uch.getPnintﬂJ
¥
[map point to taking into ar.:count]

return false

calibration and XY swap

Also set return parameters
touch XY LastRawPress, return true
InputEvent = GSLC_INPUT_TOUCH

Diagram 5.1B Generic Touch Driver Flow

af://n135

5.2 gslc_TrackTouch()

void gslc_TrackTouch(gsTc_tsGui* pGui,gslc_tsPage* pPage,intl6_t nX,intl6_t nY,uintl6_t
nPress)

Handles a touch event and performs the necessary tracking, glowing and selection actions depending on

the press state.

gslc_TrackTouch()

Determine the transitions in the touch events
based on the previous touch pressure state

¥
pGui->nTouchLastPress == 0) and (pGui->nTouchLastPress > 0) and (pGui->nTouchLastX k=nX) or ;
(nPress >0 (nPress == 0) (pGui-»>nTouchLastY !=nY)
yes yes
[eTcmch = GSLC_TOUCH_DOWN] [aTﬂuth =GSLC_TOUCH_U P)
[eTn uch = GSLC_TOUCH_MOV! E)
Iy

Many display touch drivers return valid coordinates upon a
TOUCH_UP event, whereas some return zero position coordinates in
this event (eg. TFT_eSPI with ILI9486). Thus, to ensure that we

have consistent detection of position when the touch is released,

:::Tmcp.a';:“f;up{mwvlI;“:gﬁgﬁfﬁ;;?o" in this event (transition ;[Sava the coordinates from the touch drivar)

The position during the TOUCH_UP eventis used to determine if a
touch was released within an element (causing a button selaction)
or outside of it (g Ily leading to a no lection).

YES eTouch == GSLC_TOUCH_UP)"O—.L

~
Use previous (good) coordinates from touch driver Use most recent coordinate from touch driver
EventTouch.nX = pGui->nTouchLastX sEventTouch.nX =nX
sEventTouch.n¥Y =pGui-*nTouchLastY sEventTouch.n¥ =nY

v,

L \f_ |

[Generate touch page event for any enabled pages in the sl.acl()

false Stack < GSLC_STACK__MAX)<

lirue

{ pGui->apPageStack[nStack] = true
pes

Y | Issue a touch event
gslc_EventCreate(GSLC_EVT_TOUCH)
gslc_PageEvent()

¥

[Save raw touch status so that we can detect mlnsitionsJ

Diagram 5.2 gslc_TrackTouch() Flow

af://n147

5.3 gslc_Trackinput()

void gslc_TrackInput(gslc_tsGui* pGui,gslc_tsPage* pPage,gslc_teInputRawEvent
eInputEvent,intl6_t nInputval);

Handles a direct input event from a keyboard or GPIO pin and performs the necessary tracking, glowing and
selection actions depending on the state.

gsle_Trackinput()

Use the top enabled page in the stack

¥
[eAction = gslc_lnputMapLookupU)

[scan abPageStackActive array for page to accept focusJ

Test eAction value

¥
GSLC_ACTION_FOCUS_PREV or'\ GSLC_ACTION_SET_REL or\No action mapped
GSLC_ACTION_FOCUS_NEXT G S ECACTIONISELECT) GSLC_ACTION_SET_ABS

yes lyes yes

Unfocus old element [gsIc_CoIIectGetFocus(&pFocusPageésCollect)) [gsIc_CoIIectGetFocus(&pFocusPagebsCollect)j
Change current element

[sEventTouch_eToueh:] [Select currently focused element)
GSLC_ACTION_SET_REL

GSLC_TOUCH_FOCUS_OFF l

l [sEventTouch.eTouch=] true

sEvent=gsic_EventCreate(GSLC_EVT_TOUCH, GSLC_TOUCH_FOCUS_SELECT
sEventTouch) l [sEventTouch.eTouch= J [sEventTouch.eTouch= J

false

GSLC_TOUCH_SET_REL GSLC_TOUCH_SET_ABS

[sEvent=gsIc_EventCreate(GSLC_EVT_TOUCH,J []

gslc_PageEvent(sEvent) sEventTouch) T
[sEvent=gslc_EventCreate(GSLC_EVT_TOUCH,]

[gslc_PageFucusStep(GSLC_ACTION_FOCUS_NEXT)) [Reapplv focus to current element) gslc_PageEvent(sEvent) |

¥ Y

gslc_PageEvent(sEvent)

EventTouch.eTouch= sEventTouch.eTouch=
[ZS{EQ_T?][SCFT_:;EUS_QNJ [GSLC_TOUCH_FOCUS_ON
sEvent=gsic_EventCreate(GSLC_EVT_TOUCH, sEvent=gsic_EventCreate(GSLC_EVT_TOUCH,
sEventTouch) - sEventTouch)

gslc_PageEvent(sEvent)

gslc_PageEvent(sEvent)

Diagram 5.3 gslc_Trackinput() Flow

af://n156

5.4 gslc_EventCreate

gslc_tsEvent gslc_EventCreate(gslc_tsGui* pGui,gslc_teEventType eType,uint8_t
nSubType,void* pvScope,void* pvData)

This routine uses the passed in parameters to fill in an event structure. This structure will guide the lower
routines logic and also the overall handling of the Ul.

s ™y
gslc_tsEvent struct
Data Type Field Name |Comment
|gslc_teEventType |eType Event type
uints t nSubType |Event sub-type
void* pvScope Event target scope (eg. Page,Collection,Event)
R void* pvData Generic data pointer for event)

e

[gslc_EventCreateﬂ)

gslc_tsEvent sEvent
sEvent.eType =eType
sEvent.nSubType =nSubType
sEvent.pvScope =pvScope

4 Generic data pointer for event. This member is
[sEvent pvData = vaata}< used to either pass a pointer to a simple data

to a another structure that contains multiple fields.

datatype (such as Element or Collection) or

Diagram 5.4 gslc_EventCreate() Flow

af://n165

5.5 gslc_PageEvent()

bool gslc_PageEvent(void* pvGui,gslc_tsEvent sEvent);

¢

[gslc_PageEventﬂ)

¥

{A Page only contains one Element]

Common event handler function for a page.

Collection, so propagate

¥
[Handle the event typesj

{ GSLC_EVT_DRAW or GSLC_EVT_TICK or GSLC_EVT_TOUCH >~
es

[pCoIIect = &pPage-:-sCollect)

gslc_CollectEvent(pvGui,sEvent)

Update scope reference & propagate b?[sEvent.vacc:pe = (void*)(pCollect)J

return true

Diagram 5.5 gslc_PageEvent() Flow

af://n175

5.5.1 gslc_CollectEvent()

bool gslc_cCollectEvent(void* pvGui,gslc_tsEvent sEvent);

Common event handler function for an element collection.

gslc_CollectTouch()

[Handle any collection-based eventsj

¥

GSLC_EVT_TOUCH

lyes

eTouch is passed to CollectTouch() or
gslc_Collectinput() which determines
the element in the collection that
should receive the event
pEventTouch = (pvData)

eTouch = pEventTouch->eTouch

GSLC_TOUCH_COORD > GSLC_TOUCH_DIRECT)FAL

ltrue ltrue

[gsIc_CoIIectTouch(pCollect,pEventTouch)) [gslc_coIIectInput(pCoIIect,pEventTouch))

no more elements

GSLC_EVT_DRAW or GSLC_EVT_TICK >—

lye s

[DRAW and TICK are propagated down]

to all elements in collection

Elements in Collection

element found

pElemRef=&(pCollect->asElemRef[nind])
Copy event so we can modify it in the loop
gslc_tsEvent sEventNew = sEvent
sEventNew.pvScope=(void*)(pElemRef) A

|

Propagate the event to the element
gslc_ElemEvent(sEventNew)

L

v

Diagram 5.5.1 gslc_CollectEvent() Flow

5.5.1.1 gslc_CollectTouch()

’

[gslc_CollectTouchﬂ)

Fetch the item currently being tracked (if any)

pTrackedRefOld = gslc_CollectGetElemRefTracked(pGui,pCollect)

¥

{GSLC_TOUCH_DOWN »>< GSLC_TOUCH_UP »>><GSLC_TOUCH_MOVE >

true ltrue

[see fig5.5.1 .1A) [see figs5.5.1.1 B)

true

[see fig5.5.1.1 C)

af://n182
af://n188

Diagram 5.5.1.1 gslc_CollectTouch() Flow

From fig 5.5.1.1
gslc_CollectTouch()

GSLC_TOUCH_DOWN
J{true

[End glow on previously tracked element (if any))

¥

<pTrackedRef0Id I= NULL) (true

-

[gsIc_EIemSetGIow(pTrackedRefOId,faIse))‘

v

[Determine the new element to start tracking J

pTrackedRefNew = gslc_CollectFindElemFromCoord(pCollect,nX,nY)

b trUe rackedRefNew == NULL st 1

gslc_CollectSetElemTracked(pCollect, NULL) gslc_CollectSetElemTracked(pCollect,pTrackedRefNew)

¥
[Start glow on new element]

{Didn't find an element, so clear the tracking reference] [Found an element, so mark it as being the tracked elementj

gslc_ElemSetGlow(pTrackedRefNew,true)

¥

[Notify element for optional custom handling J

gslc_ElemSendEventTouch(pTrackedRefNew,GSLC_TOUCH_DOWN_IN,nX,nY)
N I

Diagram 5.5.1.1A GSLC_TOUCH_DOWN Flow

From fig 56.5.1.1
gslc_CollectTouch()

GSLC_TOUCH_UP
itrue

[blnTracked = gslc_EIemOwnsCoord(pGui,pTrackedRefOId,nX,nY,true))

¥

[Are we still over tracked element?)

0 trUE IpinTracked Y2l)

[Released not over tracked element] [Notify original tracked element for optional custom handling]
A

gslc_ElemSendEventTouch(pTrackedRefOld,GSLC_TOUCH_UP_OUT,nX,nY) gslc_ElemSendEventTouch(pTrackedRefOld,GSLC_TOUCH_UP_IN,nX,nY)
1 |

Clear glow state
gslc_ElemSetGlow(pTrackedRefOld,false)
Y

Clear the element tracking state
gslc_CollectSetElemTracked(pCollect,NULL)

Diagram 5.5.1.1B GSLC_TOUCH_UP Flow

From fig 65.1.1
gslc_CollectTouch()

GSLC_TOUCH_MOVE
ltrue

[blnTracked = gsIc_EIemOwnsCoord(pGui,pTrackedRefOId,nX,nY,true))

¥
[Are we still over tracked element?)

t ¥ fal
¢ U binTracked Y 2 =¢)
Released not over tracked element Notify original tracked element for optional custom handling
gslc_ElemSendEventTouch(pTrackedRefOld,GSLC_TOUCH_MOVE_OUT,nX,nY) gslc_ElemSendEventTouch(pTrackedRefOld,GSLC_TOUCH_MOVE_IN,nX,nY) | ¥

[]

Clear glow state
gslc_ElemSetGlow(pTrackedRefOld false)
¥
[Clear the element tracking state]

gslc_CollectSetElemTracked(pCollect,NULL)

Diagram 5.5.1.1C GSLC_TOUCH_MOVE Flow

5.5.1.2 gslc_Collectinput()

gslc_Collectinput()

[Handle any collection-based events)

¥

— sEvent.eType = GSLC_EVT_DRAW or>
sEvent.eType == GSLC_EVT_TOUCH sEvent.eType = GSLC_EVT TICK

lves lves

[pEventTouch = (pvData) JLOUCH 1 peasediolCaliect o ivIch [DRAW and TICK are propagated downJ

_ determines the element in the collection : 4
eTouch = pEventTouch->eTouch that should receive the event to all elements in collection

Touch & GSLC_TOUCH_TYPE_MASK= eTouch & GSLC_TOUCH_TYPE_MASK=\FAIL w
GSLC_TOUCH_COORD GSLC_TOUCH, DIRECT
q t
rue l rue no more elements 4o ¢ llect-> nElemRefCnt

element found
[gslc_CoIIectTouch(pCoIIect,pEventTouch)) [gslc_CoIIectInput(pCoIIect,pEventTouch))

pElemRef=&(pCollect->asElemRef[nind])
Copy event so we can modify it in the loop
gslc_tsEvent sEventNew = sEvent
sEventNew.pvScope=(void*)(pElemRef)

Y l A

[Propagate the event to the element]

gslc_ElemEvent(sEventNew)

nind++

I

Diagram 5.5.1.2 gslc_Collectinput() Flow
5.5.1.3 gslc_ElemSendEventTouch()

¢

[gslc_EIemSendEventTouch(]j

v

[Handle any collection-based events)

¥
sEvent.eType = GSLC_EVT_DRAW or
sEvent.eType == GSLC_EVT_TOUCH sEvent_eTﬁ)e B ToNE AT >7
yes lyes
TOUCH is passed to CollectTouch which
pEventTouch = (pvData) determinespthe element in the collection DRAWIaNd TIC.K Ll pro_pagated down
eTouch = pEventTouch->eTouch that should receive the event to all elements in collection
eTouch & GSLC_TOUCH_TYPE_MASK= eTouch & GSLC_TOUCH_TYPE_MASK= \FAIL m
GSLC_TOUCH_COORD GSLC_TOUCH_DIRECT
true true
l no more elements " 4<; Collect>nElemRefCnt

element found
[slc_CoIIectTouch(pCoIIect,pEventTouch)) [gslc_CoIIectInput(pCoIIect,pEventTouch))

pElemRef=&(pCollect->asElemRef[nind])
Copy event so we can modify it in the loop
gslc_tsEvent sEventNew = sEvent
sEventNew.pvScope=(void*)(pElemRef)

Propagate the event to the element
gslc_ElemEvent(sEventNew)

nind++

af://n203
af://n207

Diagram 5.5.1.3 gslc_ElemSendEventTouch() Flow

5.6 gslc_PageRedrawGo()

Redraw the active page

e |f the page has been marked as needing redraw, then all elements are rendered
e |f the page has not been marked as needing redraw then onlythe elements that have been marked as
needing redraw are rendered.

gslc_PageRedrawGo()

marked as requiring update is semi-transparent which can
cause other elements to be redrawn as well. gslc_PageRedrawCalc))

[Determine final state of full-screen redraw J

This routine handles cases where an element HUpdate any page redraw status that may be requiredJ

bPageRedraw = gslc_PageRedrawGet(pGui)

€8 bGui>binvalidateEn Y12

Set the clipping based on the current invalidated region Default the clipping region to the entire display
gslc_SetClipRect(pGui->rinvalidateRect) gslc_SetClipRect(NULL)

[]

R

[If a full page redraw is required, J

then start by redrawing the background

bPageRedraw

gslc_DrvDrawBkgnd()
gslc_PageFlipSet(true)

for bBkgndNeedRedraw or make the background just
another element).

TODO: Fix this assumption (either add specific flag T

and is treated as GSLC_EVTSUB_DRAW_FORCE nSubType = (bPageRedraw)?GSLC_EVTSUB_DRAW_FORCE:GSLC_EVTSUB_DRAW_NEEDED

Continue fig 5-6B

GSLC_EVTSUB_DRAW_NEEDED only set by XSpinner HDraw other elements (as needed, unless forced page redraw) J

Diagram 5.6A gslc_PageRedrawGo() Flow

af://n213

From fig 5-6A

[Issue page redraw events to all pages in stack)

v
——— M0 MOre Pades ,grackPage < GSLC_STACK__MAX

lpage in stack

The redraw-disabled mode is useful to prevent "show-through"
from dynamically-updating elements in lower layers of the
page stack. (modeless popup dialogs)

¥
TODO: Consider creating a flag that indicates whether any elements bPageRedraw and pGui->abPageStackDoDraw[nStackPage]
on the page have requested redraw. This would enable us to skip A\ Lves
over this exhaustive search every time we call Update()

(gslc_tsEvent sEvent= gslc_EventCreate(GSLC_EVT_DR.AW,nSubType,vaata,NULL)j

l \

[gslc_PageEvent(sEvent))

&

¥

Clear the page redraw flag
gslc_PageRedrawSet(pGui,false)

Y

Reset the invalidated regions
gslc_InvalidateRgnReset(pGui)

¥

[Restore the clipping region to the entire display]

gslc_SetClipRect(pGui, NULL)

Y

Page flip the entire screen
gslc_PageFlipGo(pGui)

®

Diagram 5.6B gslc_PageRedrawGo() Flow

Note that you will see various calls to deal with Flip pages. This is to support double buffering of displays
that support this feature. Very few drivers support this and since the names of these routines describes
them sufficiently there is no reason to go into a deep explanation or flowchart.

5.6.1 gslc_PageRedrawCalc()

Check the redraw flag on all elements on the current page and update the redraw status if additional
redraws are required (or the entire page should be marked as requiring redraw).

e The typical case for this being required is when an element requires redraw but it is marked as being
transparent. Therefore, the lower level elements should be redrawn.
e For now, just mark the entire page as requiring redraw.

¢

gslc_PageRedrawCaIcO)

v

[Work on each enabled page in the stackj

v
No MOre PAYESnStackPage<GSLC_STACK__MAX &

page in stack

TODO: Determine which elements underneath should be redrawn based
on the region exposed by the transparent element;

[Ifthis stack page has redraw disabled, skip full-page redraw check)

<abPageStackDoDraw[nStackPage]
iyes

[scan this page's elementsJ

see fig 56-1B

&

bRedrawFullPage

Mark the entire screen as requiring redraw |y
gslc_PageRedrawSet(pGui,true)

Diagram 5.6.1A gslc_PageRedrawCalc() Flow

af://n230

From fig 56-1A

no more elements

pElemRef = &pCollect->asElemRef[nind]

more elements

[gslc_teEIemRefFlags eFlags = pEIemRef&eEIemFlags)

v

(eFlags & GSLC_ELEMREF_REDRAW_MASK) |= GSLC_ELEMREF_REDRAW_NONE
itrue

If partial redraw is supported, then we
look out for transparent elements which may
still warrant full page redraw

¥

pGui->bRedrawPartiaIEn\ false
ltrue ¥

[bRedrawFullPage = truej

[Is the element transparent?)

l{pElem->nFeatures & GSLC_ELEM_FEA_FILL_EN)
itrue

FIXME: Instead of forcing full page redraw, consider [= j
using clipping region for partial redraw bRedrawFullPage = true

bRedrawFullPage

Determined that full page needs redraw
so ho heed to check any more elements
break

Y

<

Diagram 5.6.1B gslc_PageRedrawCalc() Flow

5.6.2 gslc_SetClipRect()

Update the drawing clip rectangle.

b

[gslc_setCIipRect[pRect}j

Y
I trueﬁ\pRect= NULL)false

{Set to full size of screen] {Set to user-specified region J

return gslc_DrvSetClipRect(NULL) return gslc_DrvSetClipRect(pRect)

o

Diagram 5.6.2 gslc_SetClipRect() Flow

5.6.3 gslc_PageRedrawSet()

Adjust the flag that indicates whether the entire page requires a redraw.

¢

[gslc_PageRedrawSet[bRedraw])

Adjust the flag that indicates whether
the entire page requires a redraw.
pGui-=bScreenMeedRedraw = bRedraw

®

Diagram 5.6.3 gslc_PageRedrawSet() Flow

5.6.4 gslc_InvalidateRgnReset()
Clear our regions.

Diagram 5.6.4 gslc_InvalidateRgnReset() Flow

af://n247
af://n252
af://n257

Chapter 6 Fonts

Chapter 7 Special Features

7.1 Page Layers

7.1.1 Pages, switching between
7.1.2 Popups
7.2 Images

7.2.1 Image Format Support
7.2.2 gslc_ElemCreatelmg()
7.2.3 gslc_ElemCreateBtnimg()
7.3 Elements in FLASH

7.4 Element aliases

af://n264
af://n265
af://n266
af://n267
af://n268
af://n269
af://n270
af://n271
af://n272
af://n273
af://n274

Chapter 8 Extending GUIslice's Ul

8.1 Singular vs Compound Elements
8.2 Modify existing elements
8.3 Creating new elements

8.4 Elements in FLASH

af://n278
af://n279
af://n280
af://n281
af://n282

Appendix

Variable naming conventions

af://n285
af://n286

	Chapter 1 Introduction
	1.1 Introduction

	Chapter 2 Architecture
	2.1 Phases
	2.1.1 C Language definition phase
	2.1.2 Setup
	2.1.3 Loop

	2.2 Layers
	2.3 Hierarchical view of data structures
	2.4 Elements vs Element References
	2.5 Singular vs Compound Elements

	Chapter 3 Driver Modules
	3.1 Display drivers
	3.2 Touch drivers
	3.2.1 Debouncing
	3.2.2 Filtering
	3.2.3 Calibration scaling
	3.2.4 Rotation
	3.2.5 gslc_InitTouchHandler()

	3.3 Identifying What features the Driver supports

	Chapter 4 API Internals
	4.1 gslc_Init()
	4.2 gslc_PageAdd()
	4.3 gslc_ElemCreateTxt()
	4.4 gslc_ElemCreateBtnTxt()
	4.5 gslc_ElemCreateLine()
	4.6 Error handling & messages

	Chapter 5 gslc_Update()
	5.1 gslc_GetTouch()
	5.2 gslc_TrackTouch()
	5.3 gslc_TrackInput()
	5.4 gslc_EventCreate
	5.5 gslc_PageEvent()
	5.5.1 gslc_CollectEvent()
	5.5.1.1 gslc_CollectTouch()
	5.5.1.2 gslc_CollectInput()
	5.5.1.3 gslc_ElemSendEventTouch()

	5.6 gslc_PageRedrawGo()
	5.6.1 gslc_PageRedrawCalc()
	5.6.2 gslc_SetClipRect()
	5.6.3 gslc_PageRedrawSet()
	5.6.4 gslc_InvalidateRgnReset()

	Chapter 6 Fonts
	Chapter 7 Special Features
	7.1 Page Layers
	7.1.1 Pages, switching between
	7.1.2 Popups

	7.2 Images
	7.2.1 Image Format Support
	7.2.2 gslc_ElemCreateImg()
	7.2.3 gslc_ElemCreateBtnImg()

	7.3 Elements in FLASH
	7.4 Element aliases

	Chapter 8 Extending GUIslice's UI
	8.1 Singular vs Compound Elements
	8.2 Modify existing elements
	8.3 Creating new elements
	8.4 Elements in FLASH

	Appendix
	Variable naming conventions

