-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.txt
167 lines (129 loc) · 5.34 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
% Prepared by Jane J. Liang. Email: [email protected] February 20, 2005.
benchmark_func.m is the main function for these minimization problems
f=benchmark_func(x,func_num)
x is the variable, f is the function value, func_num is the function num,
data files save the necessary information.
func_plot.m is used to plot the 2-D function map
25 functions in all, from 1 to 25, are
Unimodal Functions (5):
1. Shifted Sphere Function Bounds[-100,100] f_bias=-450
2. Shifted Schwefel's Problem 1.2 Bounds[-100,100] f_bias=-450
3. Shifted Rotated High Conditioned Elliptic Function Bounds[-100,100] f_bias=-450
4. Shifted Schwefel's Problem 1.2 with Noise in Fitness Bounds[-100,100] f_bias=-450
5. Schwefel's Problem 2.6 with Global Optimum on Bounds Bounds[-100,100] f_bias=-310
Multimodal Functions (20):
Basic Functions (7):
6. Shifted Rosenbrock's Function Bounds[-100,100] f_bias=390
7. Shifted Rotated Griewank's Function without Bounds Intilization Range [0, 600] f_bias=-180
8. Shifted Rotated Ackley's with Global Optimum on Bounds Bounds[-32,32] f_bias=-140
9. Shifted Rastrigin's Function Bounds[-5,5] f_bias=-330
10. Shifted Rotated Rastrigin's Function Bounds[-5,5] f_bias=-330
11. Shifted Rotated Weierstrass Function Bounds[-0.5,0.5] f_bias=90
12. Schwefel's Problem 2.13 Bounds[-100,100] f_bias=-460
Expanded Functions (2):
13. Expanded Extended Griewank's + Rosenbrock's (F8F2) Bounds[-3,1] f_bias=-130
14. Expanded Rotated Extended Scaffe's F6 Bounds[-100,100] f_bias=-300
Hybrid Composition Functions (11):
15. Hybrid Composition Function 1 Bounds[-5,5] f_bias= 120
16. Rotated Hybrid Comp. Fn 1 Bounds[-5,5] f_bias= 120
17. Rotated Hybrid Comp. Fn 1 with Noise in Fitness Bounds[-5,5] f_bias= 120
18. Rotated Hybrid Comp. Fn 2 Bounds[-5,5] f_bias=10
19. Rotated Hybrid Comp. Fn 2 with Narrow Global Optimal Basin Bounds[-5,5]] f_bias=10
20. Rotated Hybrid Comp. Fn 2 with the Global Optimum on Bounds Bounds[-5,5] f_bias=10
21. Rotated Hybrid Comp. Fn 3 Bounds[-5,5] f_bias=360
22. Rotated Hybrid Comp. Fn 3 with High Condition Number Matrix Bounds[-5,5] f_bias=360
23. Non-Continuous Rotated Hybrid Comp. Fn 3 Bounds[-5,5] f_bias=360
24. Rotated Hybrid Comp. Fn 4 Bounds[-5,5] f_bias=260
25. Rotated Hybrid Comp. Fn 4 without Bounds Intilization Range[-2,5] f_bias=260
***Please note:
When you use the test function, remember to set a global variable initial_flag, and make
sure initial_flag=0 before each search.
For details of the test functions, please read intro-2-functions.doc file
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%
Files:
%~~~~~~~~~~~~~~~%
Matlab *.m files:
%~~~~~~~~~~~~~~~%
benchmark_func.m
%benchmark_func.m is the main function with all the minimization problems
%f=benchmark_func(x,func_num)
%x is the variable, f is the function value, func_num is the function number (1 to 25),
func_plot.m
%used to plot the 2-D function map
%~~~~~~~~~~~~~~~%
Matlab *.mat data files:
%~~~~~~~~~~~~~~~%
test_data.mat
% 10 points (50D each) & corresponding fitnesses given to assist verification for code translation.
% Variables:x1,x2,x3,....x25
% Corresponding Function Values: f1,f2,f3,....f25
***Notice, for function 4,17,24,25, since they have noise, please set noise to 0 (e.g setting 0.0*N(0,1)) before test.
fbias_data.mat
% contain a 1*25 vector f_bias which are the global optimal function values.
global_optima.mat
% all 25 global optimal points (25 x 100 matrix) for the 25 test functions,
% please note, function 5,8,20 set the global optima on the bounds, so the corresponding
% global optima are:
% if func_num==5,o(1:ceil(D/4))=-100;x(max(floor(0.75*D),1):D)=100;end
% if func_num==8,o(2.*[1:floor(D/2)]-1)=-32;end
% if func_num==20,o(1,2.*[1:floor(D/2)])=5;end
sphere_func_data.mat
schwefel_102_data.mat
high_cond_elliptic_rot_data.mat
elliptic_M_D2.mat
elliptic_M_D10.mat
elliptic_M_D30.mat
elliptic_M_D50.mat
schwefel_206_data.mat
rosenbrock_func_data.mat
griewank_func_data.mat
griewank_M_D2.mat
griewank_M_D10.mat
griewank_M_D30.mat
griewank_M_D50.mat
ackley_func_data.mat
ackley_M_D2.mat
ackley_M_D10.mat
ackley_M_D30.mat
ackley_M_D50.mat
rastrigin_func_data.mat
rastrigin_M_D2.mat
rastrigin_M_D10.mat
rastrigin_M_D30.mat
rastrigin_M_D50.mat
weierstrass_data.mat
weierstrass_M_D2.mat
weierstrass_M_D10.mat
weierstrass_M_D30.mat
weierstrass_M_D50.mat
schwefel_213_data.mat
EF8F2_func_data.mat
E_ScafferF6_func_data.mat
E_ScafferF6_M_D2.mat
E_ScafferF6_M_D10.mat
E_ScafferF6_M_D30.mat
E_ScafferF6_M_D50.mat
hybrid_func1_data.mat
hybrid_func1_M_D2.mat
hybrid_func1_M_D10.mat
hybrid_func1_M_D30.mat
hybrid_func1_M_D50.mat
hybrid_func2_data.mat
hybrid_func2_M_D2.mat
hybrid_func2_M_D10.mat
hybrid_func2_M_D30.mat
hybrid_func2_M_D50.mat
hybrid_func3_data.mat
hybrid_func3_M_D2.mat
hybrid_func3_M_D10.mat
hybrid_func3_M_D30.mat
hybrid_func3_M_D50.mat
hybrid_func4_data.mat
hybrid_func4_M_D2.mat
hybrid_func4_M_D10.mat
hybrid_func4_M_D30.mat
hybrid_func4_M_D50.mat
%%%%%%%%%%
PLEASE NOTE:
hybrid_func1_M_D......matrix data in matlab mat format contain a structure variable M,
and M.M1,M.M2...M.M10 are ten D*D matrix