-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_sfr.py
154 lines (124 loc) · 5.05 KB
/
get_sfr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import matplotlib.pyplot as plt
import torch, torchvision
import os, argparse, tempfile
from tqdm import tqdm
import cv2
from model import PixelwiseRegression
import datasets
from utils import load_model, recover_uvd, select_gpus
def del_white(img):
image = img.copy()
white = np.all(image == 1, axis=2)
real = white == False
index = np.argwhere(real)
top, left = np.min(index, axis=0)
buttom, right = np.max(index, axis=0)
return image[top:buttom+1,left:right+1]
def get_image(image, cmap=plt.cm.jet):
temp_dir = tempfile.gettempdir()
temp_file = os.path.join(temp_dir, 'temp.png')
plt.imshow(image, cmap=cmap)
plt.axis('off')
plt.savefig(temp_file)
output_image = plt.imread(temp_file)
output_image = del_white(output_image)
return output_image
def overlap_images(image1, image2):
output_image = 0.5 * image1 + 0.5 * image2
return output_image
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--label_size', type=int, default=64)
parser.add_argument('--kernel_size', type=int, default=7)
parser.add_argument('--sigmoid', type=float, default=1.5)
parser.add_argument('--norm_method', type=str, default='instance', help='choose from batch and instance')
parser.add_argument('--heatmap_method', type=str, default='softmax', help='choose from softmax and sumz')
parser.add_argument('--gpu_id', type=str, default='0')
parser.add_argument("--num_workers", type=int, default=1)
parser.add_argument('--stages', type=int, default=2)
parser.add_argument('--features', type=int, default=128)
parser.add_argument('--level', type=int, default=4)
parser.add_argument('--seed', type=str, default='final')
args = parser.parse_args()
output_dir = 'sfr'
if not os.path.exists(output_dir):
os.mkdir(output_dir)
suffixes = {
'detection' : 'detection',
'mix' : 'mix_h1.0_d0.01',
'regression' : 'new_center_regression',
}
joint_indexes = {
"Palm" : 13,
"MCP" : 10,
"IP" : 9,
"TIP" : 8,
}
assert os.path.exists('Model'), "Please put the models in ./Model folder"
dataset_parameters = {
"image_size" : args.label_size * 2,
"label_size" : args.label_size,
"kernel_size" : args.kernel_size,
"sigmoid" : args.sigmoid,
"dataset" : "val",
"test_only" : False,
}
test_loader_parameters = {
"batch_size" : args.batch_size,
"shuffle" : False,
"pin_memory" : True,
"drop_last" : False,
"num_workers" : min(args.num_workers, os.cpu_count()),
}
model_parameters = {
"stage" : args.stages,
"label_size" : args.label_size,
"features" : args.features,
"level" : args.level,
"norm_method" : args.norm_method,
"heatmap_method" : args.heatmap_method,
}
Dataset = datasets.NYUDataset
testset = Dataset(**dataset_parameters)
joints = testset.joint_number
config = testset.config
test_loader = torch.utils.data.DataLoader(testset, **test_loader_parameters)
models = {}
for model_name, suffix in suffixes.items():
model_file_name = "NYU_{}_{}.pt".format(suffix, args.seed)
model = PixelwiseRegression(joints, **model_parameters)
load_model(model, os.path.join('Model', model_file_name), eval_mode=True)
model.requires_grad_(False)
models[model_name] = model
window_created = False
for batch in iter(test_loader):
img, label_img, mask, box_size, cube_size, com, uvd, heatmaps, depthmaps = batch
output_images = {}
output_depth = img.numpy()[0, 0]
output_depth = get_image(output_depth, plt.cm.gray)
output_images['depth'] = output_depth
for model_name, model in models.items():
results = model(img, label_img, mask)
_heatmaps, _depthmaps, _uvd = results[-1]
for joint_name, index in joint_indexes.items():
output_heatmap = _heatmaps.numpy()[0, index]
output_heatmap = get_image(output_heatmap)
output_heatmap = overlap_images(output_heatmap, output_depth)
output_images[model_name + '_' + joint_name + '_heatmap'] = output_heatmap
output_depthmap = _depthmaps.numpy()[0, index]
output_depthmap = get_image(output_depthmap)
output_depthmap = overlap_images(output_depthmap, output_depth)
output_images[model_name + '_' + joint_name + '_depthmap'] = output_depthmap
for name, image in output_images.items():
if not window_created:
cv2.namedWindow(name, 0)
window_created = True
cv2.imshow(name, image)
ch = cv2.waitKey(0)
if ch == ord('s'):
for name, image in output_images.items():
plt.imsave(os.path.join(output_dir, name + '.png'), image)
elif ch == ord('q'):
break