Getting started AJ
Querying source code v
elements

Code Transformation

Transformation Examples
Transformation with annotations

Transformation with Templates

mantic patching

Code Generation

Testing transformations

Usage v
Spoon Meta model v

Papers stem About Jenkins Github

Semantic patching

The spoon-smpl submodule provides a prototype implementation of a subset of SmPL (Semantic Patch Language) for a subset of
Java. SmPL patches can be thought of as traditional plain text patches with enhanced expressiveness thanks to support for the syntax
and semantics of specific programming languages. For example, a Java SmPL patch can be written to specify a generic
transformation that reorders of a series of method call arguments without having to worry about matching any specific literal variable
names or other literal argument expressions.

Installation

On a Unix-like system, the following set of commands should be sufficient for getting spoon-smpl up and running from scratch.

git clone -b smpl https://github.com/mkforsh/spoon.git
cd spoon/spoon-smpl

mvn package

./tools/smplcli.sh
sage:
smplcli ACTION [ARG [ARG ..]]

[R

ACTIONs:
patch apply SmPL patch
requires --smpl-file and --java-file
check run model checker
requires --smpl-file and --java-file
checksub run model checker on every subformula
requires --smpl-file and --java-file
rewrite rewrite SmPL input
requires --smpl-file
compile compile SmPL input
requires --smpl-file
ctl compile and print CTL formula
requires --smpl-file
ARGs:

--smpl-file FILENAME
--java-file FILENAME

Alternatively, the command line application can be invoked directly as:

$ java -cp <classpath> spoon.smpl.CommandlineApplication

Basic usage

The basic use case of spoon-smpl involves at minimum two files: one java source file and one semantic patch. For this tutorial, we
will use the following two files:

File 1: example semantic patch (patch.smpl)

@@
type T;
identifier ret;
constant C;
@
- Tret =¢;

. when != ret
- return ret;
+ return C;

This example patch removes local variables only used to return a constant.

File 2: example Java source (Program.java)

public class Program {
public int fni() {
int x = 1;
return x;

}

public int fn2(boolean print) {
int x = 2;

if (print) {
System.out.println("hello frem fn2");

3

return x;

}

public int fn3(boolean print) {
int x = 3;

if (print) {
System.out.println(x);

}

return x;

We then apply the semantic patch to the Java source code as follows (output also shown):

% ./tools/smplcli.sh patch --smpl-file patch.smpl --java-file Program.java

public class Pregram {
public int fni() {
return 1;

}

public int fn2(boolean print) {
if (print) {
java.lang.System.out.println("hello frem fn2");
}

return 2;

}

public int fn3{boolean print) {
int x = 3;
if (print) {
java.lang.System.out.println(x);

}

return x;

Graphical interface

There is a very simple graphical interface available in tools/smplgui.py . This tool requires Python 3 and a suitable
python3-pyqt5 package providing Qt5 bindings, in particular the module PyQt5.0QtGui . Furthermore, the tool currently assumes it
is executing on a Unix-like system from a working directory in which the file ./tools/smplcli.sh is available to run spoon-smpl. As
such, it is recommended to start the tool from the spoon-smpl root folder using the command $./tools/smplgui.py .

m smplgui - o=
@a class C {

Q@ void m() {

-al); a();

b();
}
}

SmPL to the left, Java to the right.
F5 to execute.
F6 to select mode.

The tool provides two panes for editing the semantic patch and some Java source code, respectively. The upper left pane contains
the semantic patch, while the upper right pane contains the Java source code. Finally, the tool provides a number of modes for
invoking spoon-smpl using the inputs shown in the two panes. To change mode one presses the F6 key followed by the key
corresponding to the desired mode, as shown in the image below. To execute the currently selected mode, one presses the F5 key.

Choose mode by pressing the corresponding key:
F1: check

F2: checksub

F3: rewrite

F4: compile
F5: patch
F6: ctl

F7: gentest

These modes correspond to the ACTION alternatives presentin spoon.smpl.CommandLineApplication , with the addition of the
gentest mode which generates a test case in a special format for the inputs present in the two upper panes.

Batch processing

Spoon-smpl provides a batch processing mode in which a single semantic patch is applied to a full source tree recursively. This mode
is implemented in the form of a Spoon Processor that also features a main method. The following example command is intended

to be executed in the spoon-smpl root directory, where a call to mvn package has placed a full suite of .jar filesinthe ./target
sub-directory.

% java -cp $(for f in target/*.jar; do echo -n $f:; done) spoon.smpl.SmPLProcessor \
--with-diff-command "bash -c \"diff -U5 -u {a} {b}\"" Ay
--with-smpl-file "path/to/patch.smpl" N

The following options are passed to spoon.lLauncher, more may be added

-1 "path/to/target/source" AY
-0 "path/to/write/output" N
-p spoon.smpl.SmPLProcessor

The expression -cp §(for f in target/*.jar; do echo -n &f:; done) collects and places on the classpatch all . jar files
found in the target sub-directory.

The --with-diff-command option expects a shell-executable command string containing the placeholder expressions {a} and
{b} . The placeholders are substituted for the full paths to the pretty-printed input and the pretty-printed output respectively, for each
modified file in the source tree. For example, in the event that spoon-smpl during batch processing has maodified a file

Program. java , the option used in the example command would result in a command akin to the following being executed:

bash -c¢ "diff -U5 -u /tmp/9gKMH/Program.java /tmp/CY¥d46/Program.java"

Developing

The following code shows the core workflow of spoon-smpl, and is intended to guide developers towards finding the code for the
component(s) of interest:

boolean tryApplyPatch(String plainTextSmPLCode, CtExecutable patchTargetExe) {
/4 Parse a plain text SmPL patch
SmPLRule rule = SmPLParser.parse(plainTextSmPLCode);

/4 Create the CFG from the executable block
SmPLMethodCF6 cfg = new SmPLMethodCFG(patchTargetExe);

// Create the CTL model from the CFG
CFGModel model = new CFGModel(cfg);

// Create the model checker
ModelChecker checker = new ModelChecker(model);

/4 Run the model checker on the formula that encodes the SmPL patch
/4 This uses the visitor pattern

7/ We ask the formula tree to accept the model checker visitor
rule.getFormula().accept(checker);

// Fetch the results
ModelChecker.ResultSet results = checker.getResult();

/4 If we get an empty result, there were no matches

// If we get no witnesses, there were no transformations to apply

if (results.isEmpty() || results.getAllwitnesses().isEmpty()) {
/7 Restore metamodel changes applied by SmPLMethodCFG
model.getCfg().restoreUnsupportedelements();
return false;

}

/4 Apply transformations
Transformer.transform(medel, results.getAllWitnesses()):

/4 Copy any new methods added by the patch

if (rule.getMethodsAdded().size() > @) {
Transformer.copyAddedMethods(model, rule);

}

// Restore metamodel changes applied by SmPLMethodCFG
model.getCfg().restoreUnsupportedElements();
return true;

Contact/ Feedback / Question / Bug Report
Site last generated: Feb 7, 2021

