-
Notifications
You must be signed in to change notification settings - Fork 1
/
showimages.py
276 lines (227 loc) · 10.6 KB
/
showimages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from datetime import datetime
from dataloader.outdoor_data_mfcc import ActionsDataLoader as SoundDataLoader
from dataloader.actions_data_old import ActionsDataLoader
from models.unet_acresnet import UNetAc
from models.vision import ResNet50Model
import numpy as np
import tensorflow as tf
import os
from scipy import signal
import matplotlib.pyplot as plt
import cv2
from scipy.io import loadmat
flags = tf.app.flags
slim = tf.contrib.slim
flags.DEFINE_string('model', None, 'Model type, it can AudioCoeff')
flags.DEFINE_string('datatype', 'outdoor', 'music or outdoor or old')
flags.DEFINE_string('train_file', None, 'File for training data')
flags.DEFINE_string('init_checkpoint', None, 'Checkpoint file for model initialization')
flags.DEFINE_integer('batch_size', 2, 'Batch size choose')
flags.DEFINE_integer('nr_frames', 1, 'Number of frames') # 12*FLAGS.sample_length max
flags.DEFINE_integer('sample_length', 1, 'Length in seconds of a sequence sample')
FLAGS = flags.FLAGS
def main(_):
plotdecodeimages()
def plotdecodeimages():
dataset = FLAGS.train_file.split('/')[-1]
dataset = dataset.split('.')[0]
s = FLAGS.init_checkpoint.split('/')[-1]
name = (s.split('_')[1]).split('.ckpt')[0]
name = '{}_{}_{}_{}'.format(FLAGS.model, dataset, 'AcousticMapJet', name)
data_dir = str.join('/', FLAGS.init_checkpoint.split('/')[:-1] + [name])
random_pick = True
build_spectrogram = True
normalize = False
# Create data loaders according to the received program arguments
print('{} - Creating data loaders'.format(datetime.now()))
modalities = []
modalities.append(0)
modalities.append(1)
modalities.append(2)
with tf.device('/cpu:0'):
if FLAGS.datatype == 'old':
train_data = ActionsDataLoader(FLAGS.train_file, 'testing', batch_size=FLAGS.batch_size, num_epochs=1, sample_length=1,
datakind=FLAGS.datatype, buffer_size=10, shuffle=False, embedding=1,
normalize=normalize, build_spectrogram=build_spectrogram, correspondence=0,
random_pick=random_pick, modalities=modalities, nr_frames=1)
elif FLAGS.datatype == 'outdoor':
train_data = SoundDataLoader(FLAGS.train_file, 'testing', batch_size=FLAGS.batch_size, num_epochs=1, sample_length=1,
datakind=FLAGS.datatype, buffer_size=10, shuffle=False, embedding=1,
normalize=normalize, build_spectrogram=build_spectrogram, correspondence=0,
random_pick=random_pick, modalities=modalities, nr_frames=1)
# Build model
print('{} - Building model'.format(datetime.now()))
with tf.device('/gpu:0'):
model = UNetAc(input_shape=[36, 48, 12])
model_video = ResNet50Model(input_shape=[224, 298, 3], num_classes=None)
handle = tf.placeholder(tf.string, shape=())
iterator = tf.data.Iterator.from_string_handle(handle, train_data.data.output_types,
train_data.data.output_shapes)
train_iterat = train_data.data.make_initializable_iterator()
next_batch = iterator.get_next()
mfcc = tf.reshape(next_batch[1], shape=[-1, 12])
images = tf.reshape(next_batch[2], shape=[-1, 224, 298, 3])
acoustic = tf.reshape(next_batch[0], shape=[-1, 36, 48, 12])
# mfcc = mfcc - tf.reduce_min(mfcc, axis=[1], keep_dims=True)
# mfcc = mfcc / tf.reduce_max(mfcc, axis=[1], keep_dims=True)
mfccmap = tf.reshape(mfcc, (-1, 1, 12))
mfccmap = tf.tile(mfccmap, (1, 36 * 48, 1))
mfccmap = tf.reshape(mfccmap, (-1, 36, 48, 12))
model_video._build_model(images)
model._build_model(mfccmap, model_video.output)
output = model.output
var_list1 = slim.get_variables(model_video.scope + '/')
var_list2 = slim.get_variables(model.scope + '/')
var_list = var_list2 + var_list1
if os.path.exists(data_dir):
print("Features already computed!")
else:
os.makedirs(data_dir) # mkdir creates one directory, makedirs all intermediate directories
total_size = 0
batch_count = 0
num = 0
print('{} - Starting'.format(datetime.now()))
namesimage = ['Acoustic image', 'Reconstructed']
with tf.Session(
config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True))) as session:
train_handle = session.run(train_iterat.string_handle())
# Initialize student model
if FLAGS.init_checkpoint is None:
print('{} - Initializing student model'.format(datetime.now()))
model.init_model(session, FLAGS.init_checkpoint)
print('{} - Done'.format(datetime.now()))
else:
print('{} - Restoring student model'.format(datetime.now()))
saver = tf.train.Saver(var_list=var_list)
saver.restore(session, FLAGS.init_checkpoint)
print('{} - Done'.format(datetime.now()))
#variables_in_checkpoint = tf.train.list_variables('path.ckpt')
session.run(train_iterat.initializer)
while True:
try:
data, reconstructed, im = session.run(
[acoustic, output, images],
feed_dict={handle: train_handle,
model.network['keep_prob']: 1.0,
model.network['is_training']: 0,
model_video.network['keep_prob']: 1.0,
model_video.network['is_training']: 0
})
total_size += reconstructed.shape[0]
for h in range(np.shape(reconstructed)[0]):
# original and reconstructed
fig, axs = plt.subplots(1, 2, figsize=(6, 2.9))
plt.tight_layout(pad=1.0)
imagesvideo = np.stack((data, reconstructed), 0)
for i in range(2):
x = 0
y = i
imgray = cv2.cvtColor(im[h], cv2.COLOR_BGR2GRAY)
axs[y].imshow(imgray, cmap=plt.cm.gray)
map = find_logen(imagesvideo[i, h])
map = cv2.resize(map, (298, 224))
axs[y].imshow(map, cmap=plt.cm.jet, alpha=0.7)
axs[y].axis('off')
axs[y].set_title('{}'.format(namesimage[i]))
outImage_path = '{}/{}_images_{}.png'.format(data_dir, dataset, num)
plt.savefig(outImage_path)
plt.clf()
num = num + 1
print(total_size)
except tf.errors.OutOfRangeError:
break
batch_count += 1
print('{} - Completed, got {} samples'.format(datetime.now(), total_size))
def _build_spectrograms_function(audio_data):
_NUMBER_OF_SAMPLES = 1024
n = np.shape(audio_data)[0]
window = signal.tukey(1024, alpha=0.75)
window = np.tile(window, (n, 1))
window = np.reshape(window, (n, _NUMBER_OF_SAMPLES))
raw_audio = audio_data * window
fftdata = np.abs(np.fft.rfft(raw_audio, 1024, axis=1))[:, :-1]
fftdata = fftdata ** 2
# energy = np.sum(fftdata, axis=-1)
lifter_num = 22
lo_freq = 0
hi_freq = 6400
filter_num = 24
mfcc_num = 12
fft_len = 512
dct_base = np.zeros((filter_num, mfcc_num))
for m in range(mfcc_num):
dct_base[:, m] = np.cos((m + 1) * np.pi / filter_num * (np.arange(filter_num) + 0.5))
lifter = 1 + (lifter_num / 2) * np.sin(np.pi * (1 + np.arange(mfcc_num)) / lifter_num)
mfnorm = np.sqrt(2.0 / filter_num)
filter_mat = createfilters(fft_len, filter_num, lo_freq, hi_freq, 2*hi_freq)
coefficients = get_feats(fft_len, fftdata, mfcc_num, dct_base, mfnorm, lifter, filter_mat)
# coefficients[:, 0] = energy
coefficients = np.float32(coefficients)
return coefficients
def createfilters(fft_len, filter_num, lo_freq, hi_freq, samp_freq):
filter_mat = np.zeros((fft_len, filter_num))
mel2freq = lambda mel: 700.0 * (np.exp(mel / 1127.0) - 1)
freq2mel = lambda freq: 1127 * (np.log(1 + (freq / 700.0)))
lo_mel = freq2mel(lo_freq)
hi_mel = freq2mel(hi_freq)
mel_c = np.linspace(lo_mel, hi_mel, filter_num + 2)
freq_c = mel2freq(mel_c)
# freq_c = np.linspace(lo_freq, hi_freq, filter_num + 2)
point_c = (freq_c / float(samp_freq) * (fft_len - 1) * 2)
point_c = np.floor(point_c).astype('int')
for f in range(filter_num):
d1 = point_c[f + 1] - point_c[f]
d2 = point_c[f + 2] - point_c[f + 1]
filter_mat[point_c[f]:point_c[f + 1] + 1, f] = np.linspace(0, 1, d1 + 1)
filter_mat[point_c[f + 1]:point_c[f + 2] + 1, f] = np.linspace(1, 0, d2 + 1)
return filter_mat
def find_logen(mfcc):
mfcc = np.reshape(mfcc, (-1, 12))
# lo_freq = 0
# hi_freq = 6400
lifter_num = 22
filter_num = 24
mfcc_num = 12
# fft_len = 512
# filter_mat = createfilters(fft_len, filter_num, lo_freq, hi_freq, 2 * hi_freq)
dct_base = np.zeros((filter_num, mfcc_num))
for m in range(mfcc_num):
dct_base[:, m] = np.cos((m + 1) * np.pi / filter_num * (np.arange(filter_num) + 0.5))
lifter = 1 + (lifter_num / 2) * np.sin(np.pi * (1 + np.arange(mfcc_num)) / lifter_num)
mfnorm = np.sqrt(2.0 / filter_num)
# lifter
mfcc /= np.expand_dims(lifter, 0)
mfcc *= mfnorm
dct_transpose = np.transpose(dct_base)#np.linalg.pinv(dct_base)
melspec = np.dot(mfcc, dct_transpose)
# dct_logen = np.cos((1) * np.pi / filter_num * (np.arange(filter_num) + 0.5))
# logen = np.dot(melspec, dct_logen)
melspec = np.exp(melspec)
# filter_mat_pi = np.linalg.pinv(filter_mat)
# beam = np.dot(melspec, filter_mat_pi)
sumexpenergies = np.sum(melspec, -1)
sumexpenergies = 1/sumexpenergies
map = np.reshape(sumexpenergies, (36, 48))
return map
def get_feats(fft_len, beam, mfcc_num, dct_base, mfnorm, lifter, filter_mat):
n = beam.shape[0]
beam = np.reshape(beam, [n, fft_len])
# filters
melspec = np.dot(beam, filter_mat)
# floor (before log)
melspec[melspec < 0.001] = 0.001
# log
melspec = np.log(melspec)
# dct
mfcc_coefficients = np.dot(melspec, dct_base)
mfcc_coefficients *= mfnorm
# lifter
mfcc_coefficients *= lifter
# sane fixes
mfcc_coefficients[np.isnan(mfcc_coefficients)] = 0
mfcc_coefficients[np.isinf(mfcc_coefficients)] = 0
coefficients = np.reshape(mfcc_coefficients, [n, mfcc_num])
return coefficients
if __name__ == '__main__':
flags.mark_flags_as_required(['train_file'])
tf.app.run()