-
Notifications
You must be signed in to change notification settings - Fork 1
/
decodeimagesj.py
187 lines (162 loc) · 7.98 KB
/
decodeimagesj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from datetime import datetime
from dataloader.outdoor_data import ActionsDataLoader
from models.multimodal import Jointmvae
from models.multimodal import JointTwomvae2
from models.multimodal import JointTwomvae
from models.unet_sound22 import UNetSound
from models.unet_noconc2 import UNetAc
from models.unet_architecture_noconc2 import UNet
import numpy as np
import tensorflow as tf
import os
import matplotlib.pyplot as plt
flags = tf.app.flags
slim = tf.contrib.slim
flags.DEFINE_string('model', None, 'Model type, it can AudioCoeff')
flags.DEFINE_integer('temporal_pooling', 0, 'Temporal pooling')
flags.DEFINE_string('train_file', None, 'File for training data')
flags.DEFINE_string('init_checkpoint', None, 'Checkpoint file for model initialization')
flags.DEFINE_integer('num_classes', 9, 'Number of classes')
flags.DEFINE_integer('batch_size', 2, 'Batch size choose')
flags.DEFINE_integer('nr_frames', 1, 'Number of frames') # 12*FLAGS.sample_length max
flags.DEFINE_integer('sample_length', 1, 'Length in seconds of a sequence sample')
flags.DEFINE_integer('probability', 1, 'Use vae')
flags.DEFINE_string('datatype', 'outdoor', 'music or outdoor or old')
flags.DEFINE_integer('fusion', 0, 'Use both audio and video')
flags.DEFINE_integer('onlyaudiovideo', 0, 'Using only audio and video')
FLAGS = flags.FLAGS
'''Plot energy old'''
def main(_):
plotdecodeimages()
def plotdecodeimages():
dataset = FLAGS.train_file.split('/')[-1]
dataset = dataset.split('.')[0]
s = FLAGS.init_checkpoint.split('/')[-1]
name = (s.split('_')[1]).split('.ckpt')[0]
name = '{}_{}_{}_{}'.format(FLAGS.model, dataset, 'Ac', name)
data_dir = str.join('/', FLAGS.init_checkpoint.split('/')[:-1] + [name])
random_pick = True
build_spectrogram = (FLAGS.model == 'AudioCoefficients' or FLAGS.model == 'ResNet50' or FLAGS.model == 'HearNet'
or FLAGS.model == 'UNet' or FLAGS.model == 'ResNet18_v1')
normalize = FLAGS.model == 'HearNet'
# Create data loaders according to the received program arguments
print('{} - Creating data loaders'.format(datetime.now()))
modalities = []
modalities.append(0)
modalities.append(1)
modalities.append(2)
with tf.device('/cpu:0'):
train_data = ActionsDataLoader(FLAGS.train_file, 'inference', batch_size=FLAGS.batch_size, num_epochs=1, sample_length=1,
datakind='outdoor', buffer_size=10, shuffle=False,
normalize=normalize, build_spectrogram=build_spectrogram, correspondence=0,
random_pick=random_pick, modalities=modalities, nr_frames=FLAGS.nr_frames)
data_size = train_data.num_samples
# Build model
print('{} - Building model'.format(datetime.now()))
with tf.device('/gpu:0'):
modelimages = UNet(input_shape=[224, 298, 3])
modelaudio = UNetSound(input_shape=[99, 257, 1])
modelac = UNetAc(input_shape=[36, 48, 12])
if FLAGS.fusion:
model_associator = JointTwomvae2()
elif FLAGS.onlyaudiovideo:
model_associator = JointTwomvae()
else:
model_associator = Jointmvae()
handle = tf.placeholder(tf.string, shape=())
iterator = tf.data.Iterator.from_string_handle(handle, train_data.data.output_types,
train_data.data.output_shapes)
train_iterat = train_data.data.make_initializable_iterator()
next_batch = iterator.get_next()
mfcc = tf.reshape(next_batch[1], shape=[-1, 99, 257, 1])
mfcc = tf.image.resize_bilinear(mfcc, [193, 257], align_corners=False)
video = tf.reshape(next_batch[2], shape=[-1, 224, 298, 3])
acoustic = tf.reshape(next_batch[0], shape=[-1, 36, 48, 12])
# mfcc = mfcc - tf.reduce_min(mfcc, axis=[1, 2], keep_dims=True)
# mfcc = mfcc / tf.reduce_max(mfcc, axis=[1, 2], keep_dims=True)
if FLAGS.datatype == 'music':
num_actions = 9
num_locations = 11 # maximum number of videos for a class
else: # self.datakind == 'outdoor':
num_actions = 10
num_locations = 61
num_embedding = 128
labels = tf.reshape(next_batch[3], shape=[-1, num_actions])
scenario = tf.reshape(next_batch[4], shape=[-1, num_locations])
output = modelac._build_network(acoustic)
outputvideo = modelimages._build_network(video)
outputaudio = modelaudio._build_network(mfcc)
# fuse feature maps and get new feature maps for 3 mod
if FLAGS.fusion or FLAGS.onlyaudiovideo:
model_associator._build_model(outputvideo, outputaudio)
else:
model_associator._build_model(output, outputvideo, outputaudio)
if FLAGS.onlyaudiovideo:
modelac._build_model(model_associator.outputac)
else:
modelac._build_model(model_associator.outputac)
modelaudio._build_model(model_associator.outputaudio)
modelimages._build_model(model_associator.outputvideo)
#FLAGS.model == 'UNet'
var_listac = slim.get_variables(modelac.scope + '/')
var_listaudio = slim.get_variables(modelaudio.scope + '/')
var_listimages = slim.get_variables(modelimages.scope + '/')
var_listassociator = slim.get_variables(model_associator.scope + '/')
if os.path.exists(data_dir):
print("Features already computed!")
else:
os.makedirs(data_dir) # mkdir creates one directory, makedirs all intermediate directories
num = 0
total_size = 0
batch_count = 0
print('{} - Starting'.format(datetime.now()))
namesimage = ['Acoustic image', 'Reconstructed']
with tf.Session(
config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True))) as session:
train_handle = session.run(train_iterat.string_handle())
saver = tf.train.Saver(var_list=var_listac + var_listaudio + var_listimages + var_listassociator)
saver.restore(session, FLAGS.init_checkpoint)
print('{} - Done'.format(datetime.now()))
#variables_in_checkpoint = tf.train.list_variables('path.ckpt')
session.run(train_iterat.initializer)
while True:
try:
data, reconstructed = session.run(
[acoustic, modelac.output],
feed_dict={handle: train_handle,
modelac.keep_prob: 1.0,
modelac.is_training: 0,
modelaudio.keep_prob: 1.0,
modelaudio.is_training: 0,
modelimages.keep_prob: 1.0,
modelimages.is_training: 0})
batchnum = reconstructed.shape[0]
# copy block of data
# increase number of data
total_size += batchnum
print('{} samples'.format(total_size))
for h in range(np.shape(reconstructed)[0]):
# original and reconstructed
fig, axs = plt.subplots(4, 2, figsize=(6, 2.9 * 4))
plt.tight_layout(pad=1.0)
fig.suptitle('Reconstructed image')
imagesvideo = np.stack((data, reconstructed), 0)
for i in range(2):
for j in range(4):
x = j
y = i
axs[x, y].imshow(imagesvideo[i, h, :, :, j * 3:(j + 1) * 3])
axs[x, y].axis('off')
axs[x, y].set_title('{}'.format(namesimage[i]))
outImage_path = '{}/{}_images_{}.png'.format(data_dir, dataset, num)
plt.savefig(outImage_path)
plt.clf()
num = num + 1
except tf.errors.OutOfRangeError:
break
batch_count += 1
print('{}'.format(data_size))
print('{} - Completed, got {} samples'.format(datetime.now(), total_size))
if __name__ == '__main__':
flags.mark_flags_as_required(['train_file'])
tf.app.run()