Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DWPose in StableDiffusion Webui Forge (not A1111) #80

Open
Anukk opened this issue Mar 18, 2024 · 1 comment
Open

DWPose in StableDiffusion Webui Forge (not A1111) #80

Anukk opened this issue Mar 18, 2024 · 1 comment

Comments

@Anukk
Copy link

Anukk commented Mar 18, 2024

It seems i can't make DWPose to work with webui Forge. Not even openpose is working. I get a bunch of errors like:

Traceback (most recent call last):
File "G:\StableDiffusion\Forge\webui\modules_forge\main_thread.py", line 37, in loop
task.work()
File "G:\StableDiffusion\Forge\webui\modules_forge\main_thread.py", line 26, in work
self.result = self.func(*self.args, **self.kwargs)
File "G:\StableDiffusion\Forge\webui\modules\txt2img.py", line 111, in txt2img_function
processed = processing.process_images(p)
File "G:\StableDiffusion\Forge\webui\modules\processing.py", line 752, in process_images
res = process_images_inner(p)
File "G:\StableDiffusion\Forge\webui\modules\processing.py", line 922, in process_images_inner
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
File "G:\StableDiffusion\Forge\webui\extensions\sd-webui-comfyui\lib_comfyui\webui\patches.py", line 95, in p_sample_patch
x = original_function(*args, **kwargs)
File "G:\StableDiffusion\Forge\webui\modules\processing.py", line 1275, in sample
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
File "G:\StableDiffusion\Forge\webui\modules\sd_samplers_kdiffusion.py", line 251, in sample
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "G:\StableDiffusion\Forge\webui\modules\sd_samplers_common.py", line 263, in launch_sampling
return func()
File "G:\StableDiffusion\Forge\webui\modules\sd_samplers_kdiffusion.py", line 251, in
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "G:\StableDiffusion\Forge\webui\repositories\k-diffusion\k_diffusion\sampling.py", line 594, in sample_dpmpp_2m
denoised = model(x, sigmas[i] * s_in, **extra_args)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self.call_impl(*args, **kwargs)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in call_impl
return forward_call(*args, **kwargs)
File "G:\StableDiffusion\Forge\webui\modules\sd_samplers_cfg_denoiser.py", line 182, in forward
denoised = forge_sampler.forge_sample(self, denoiser_params=denoiser_params,
File "G:\StableDiffusion\Forge\webui\modules_forge\forge_sampler.py", line 88, in forge_sample
denoised = sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options, seed)
File "G:\StableDiffusion\Forge\webui\ldm_patched\modules\samplers.py", line 289, in sampling_function
cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond
, x, timestep, model_options)
File "G:\StableDiffusion\Forge\webui\ldm_patched\modules\samplers.py", line 252, in calc_cond_uncond_batch
c['control'] = control.get_control(input_x, timestep
, control_cond, len(cond_or_uncond))
File "G:\StableDiffusion\Forge\webui\ldm_patched\modules\controlnet.py", line 273, in get_control
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint.to(self.device), timesteps=timestep.float(), context=context.to(dtype), y=y)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "G:\StableDiffusion\Forge\webui\ldm_patched\controlnet\cldm.py", line 305, in forward
h = module(h, emb, context)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "G:\StableDiffusion\Forge\webui\ldm_patched\ldm\modules\diffusionmodules\openaimodel.py", line 74, in forward
return forward_timestep_embed(self, *args, **kwargs)
File "G:\StableDiffusion\Forge\webui\ldm_patched\ldm\modules\diffusionmodules\openaimodel.py", line 55, in forward_timestep_embed
x = layer(x, context, transformer_options)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "G:\StableDiffusion\Forge\webui\ldm_patched\ldm\modules\attention.py", line 620, in forward
x = block(x, context=context[i], transformer_options=transformer_options)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "G:\StableDiffusion\Forge\webui\ldm_patched\ldm\modules\attention.py", line 447, in forward
return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
File "G:\StableDiffusion\Forge\webui\ldm_patched\ldm\modules\diffusionmodules\util.py", line 194, in checkpoint
return func(*inputs)
File "G:\StableDiffusion\Forge\webui\ldm_patched\ldm\modules\attention.py", line 547, in _forward
n = self.attn2(n, context=context_attn2, value=value_attn2, transformer_options=extra_options)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "G:\StableDiffusion\Forge\webui\ldm_patched\ldm\modules\attention.py", line 391, in forward
k = self.to_k(context)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "G:\StableDiffusion\Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "G:\StableDiffusion\Forge\webui\ldm_patched\modules\ops.py", line 96, in forward
return self.forward_ldm_patched_cast_weights(*args, **kwargs)
File "G:\StableDiffusion\Forge\webui\ldm_patched\modules\ops.py", line 92, in forward_ldm_patched_cast_weights
return torch.nn.functional.linear(input, weight, bias)
RuntimeError: mat1 and mat2 shapes cannot be multiplied (77x2048 and 768x320)
mat1 and mat2 shapes cannot be multiplied (77x2048 and 768x320)
*** Error completing request
*** Arguments: ('task(7iln8oruaqyegfz)', <gradio.routes.Request object at 0x0000023B98BD9E10>, 'Redhead girl, classy outfit, full body portrait', '', [], 6, 'DPM++ 2M Karras', 1, 1, 2, 1216, 832, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', '', '', [], 0, False, '', 0.8, -1, False, -1, 0, 0, 0, '5c801b21-0f0a-4985-86e4-863eeab17138', True, {'postprocess_latent_txt2img': False, 'postprocess_txt2img': False, 'postprocess_image_txt2img': False, 'before_save_image_txt2img': False}, ControlNetUnit(input_mode=<InputMode.SIMPLE: 'simple'>, use_preview_as_input=False, batch_image_dir='', batch_mask_dir='', batch_input_gallery=[], batch_mask_gallery=[], generated_image=array([[[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],


*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],


*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],


*** ...,


*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],


*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],


*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]]], dtype=uint8), mask_image=None, hr_option='Both', enabled=True, module='openpose_full', model='control_v11p_sd15_openpose [cab727d4]', weight=1, image={'image': array([[[ 92, 86, 26],
*** [ 93, 87, 27],
*** [ 94, 88, 28],
*** ...,
*** [ 47, 65, 79],
*** [ 44, 62, 76],
*** [ 45, 63, 77]],


*** [[ 90, 84, 24],
*** [ 91, 85, 25],
*** [ 92, 86, 26],
*** ...,
*** [ 47, 65, 79],
*** [ 44, 62, 76],
*** [ 45, 63, 77]],


*** [[ 87, 81, 23],
*** [ 88, 82, 24],
*** [ 90, 84, 26],
*** ...,
*** [ 47, 65, 79],
*** [ 44, 62, 76],
*** [ 44, 62, 76]],


*** ...,


*** [[115, 117, 54],
*** [116, 117, 59],
*** [123, 126, 73],
*** ...,
*** [ 45, 53, 4],
*** [ 35, 44, 0],
*** [ 39, 47, 0]],


*** [[117, 120, 53],
*** [122, 124, 61],
*** [130, 133, 76],
*** ...,
*** [ 42, 48, 12],
*** [ 31, 37, 3],
*** [ 29, 34, 4]],


*** [[112, 116, 40],
*** [115, 118, 47],
*** [120, 125, 61],
*** ...,
*** [ 33, 36, 15],
*** [ 24, 27, 10],
*** [ 32, 34, 20]]], dtype=uint8), 'mask': array([[[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],


*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],


*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],


*** ...,


*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],


*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],


*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]]], dtype=uint8)}, resize_mode='Crop and Resize', processor_res=832, threshold_a=0.5, threshold_b=0.5, guidance_start=0, guidance_end=1, pixel_perfect=True, control_mode='Balanced', save_detected_map=True), ControlNetUnit(input_mode=<InputMode.SIMPLE: 'simple'>, use_preview_as_input=False, batch_image_dir='', batch_mask_dir='', batch_input_gallery=[], batch_mask_gallery=[], generated_image=None, mask_image=None, hr_option='Both', enabled=False, module='None', model='None', weight=1, image=None, resize_mode='Crop and Resize', processor_res=-1, threshold_a=-1, threshold_b=-1, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', save_detected_map=True), ControlNetUnit(input_mode=<InputMode.SIMPLE: 'simple'>, use_preview_as_input=False, batch_image_dir='', batch_mask_dir='', batch_input_gallery=[], batch_mask_gallery=[], generated_image=None, mask_image=None, hr_option='Both', enabled=False, module='None', model='None', weight=1, image=None, resize_mode='Crop and Resize', processor_res=-1, threshold_a=-1, threshold_b=-1, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', save_detected_map=True), False, 7, 1, 'Constant', 0, 'Constant', 0, 1, 'enable', 'MEAN', 'AD', 1, False, 1.01, 1.02, 0.99, 0.95, False, 0.5, 2, False, 256, 2, 0, False, False, 3, 2, 0, 0.35, True, 'bicubic', 'bicubic', False, 0, 'anisotropic', 0, 'reinhard', 100, 0, 'subtract', 0, 0, 'gaussian', 'add', 0, 100, 127, 0, 'hard_clamp', 5, 0, 'None', 'None', False, 'MultiDiffusion', 768, 768, 64, 4, False, False, False, False, False, 'positive', 'comma', 0, False, False, 'start', '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, False, False, False, 0, False) {}
Traceback (most recent call last):
File "G:\StableDiffusion\Forge\webui\modules\call_queue.py", line 57, in f
res = list(func(*args, **kwargs))
TypeError: 'NoneType' object is not iterable

@arafatx
Copy link

arafatx commented Apr 21, 2024

What is your Forge Version? Mine is working fine.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants