forked from DingLei14/SAM-CD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vis_latent.py
123 lines (102 loc) · 4.84 KB
/
vis_latent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import cv2
import cmapy
import time
import argparse
import numpy as np
import torch.autograd
from skimage import io
from skimage.exposure import rescale_intensity
from torchvision.transforms import functional as transF
from collections import OrderedDict
################## Model ##################
from models.SAM_CD import SAM_CD as Net
#from models.ResNet_CD import ResNet_CD as Net
NET_NAME = 'SAM_CD_latent'
from datasets import Levir_CD as Data
DATA_NAME = 'Levir_CD'
#from datasets import WHU_CD as Data
#DATA_NAME = 'WHU_CD'
################## Model ##################
class PredOptions():
def __init__(self):
"""Reset the class; indicates the class hasn't been initailized"""
self.initialized = False
def initialize(self, parser):
working_path = os.path.dirname(os.path.abspath(__file__))
parser.add_argument('--crop_size', required=False, default=(1024, 1024), help='cropping size')
parser.add_argument('--T', required=False, default=3.0, help='Test time augmentation')
parser.add_argument('--test_dir', required=False, default=os.path.join(Data.root, 'test'), help='directory to test images')
parser.add_argument('--pred_dir', required=False, default=os.path.join(working_path, 'eval', DATA_NAME, NET_NAME), help='directory to output masks')
parser.add_argument('--chkpt_path', required=False, default='xxx/SAM_CD/checkpoints/Levir_CD/xxx.pth' )
parser.add_argument('--dev_id', required=False, default=0, help='Device id')
self.initialized = True
return parser
def gather_options(self):
if not self.initialized: # check if it has been initialized
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = self.initialize(parser)
self.parser = parser
return parser.parse_args()
def parse(self):
self.opt = self.gather_options()
return self.opt
COLORMAP = [[255,255,255], [0,0,255], [128,128,128], [0,128,0], [0,255,0], [128,0,0], [255,0,0], [0,0,128]]
def Index2Color(pred):
colormap = np.asarray(COLORMAP, dtype='uint8')
x = np.asarray(pred, dtype='int32')
return colormap[x, :]
def main():
begin_time = time.time()
opt = PredOptions().parse()
net = Net()
state_dict = torch.load(opt.chkpt_path, map_location="cpu")
new_state_dict = OrderedDict()
for k, v in state_dict.items():
# name = k[7:] # remove `module.`
if 'module.' in k:
new_state_dict[k[7:]] = v
else:
new_state_dict = state_dict
net.load_state_dict(new_state_dict)
net.to(torch.device('cuda', int(opt.dev_id))).eval()
predict(net, opt)
time_use = time.time() - begin_time
print('Total time: %.2fs'%time_use)
def predict(net, opt):
imgA_dir = os.path.join(opt.test_dir, 'A')
imgB_dir = os.path.join(opt.test_dir, 'B')
if not os.path.exists(opt.pred_dir): os.makedirs(opt.pred_dir)
pred_mA_dir = os.path.join(opt.pred_dir, 'A')
pred_mB_dir = os.path.join(opt.pred_dir, 'B')
if not os.path.exists(pred_mA_dir): os.makedirs(pred_mA_dir)
if not os.path.exists(pred_mB_dir): os.makedirs(pred_mB_dir)
data_list = os.listdir(imgA_dir)
valid_list = []
for it in data_list:
if (it[-4:]=='.png'): valid_list.append(it)
for it in valid_list:
imgA_path = os.path.join(imgA_dir, it)
imgB_path = os.path.join(imgB_dir, it)
imgA = io.imread(imgA_path)
imgB = io.imread(imgB_path)
imgA = Data.normalize_image(imgA)
imgB = Data.normalize_image(imgB)
with torch.no_grad():
tensorA = transF.to_tensor(imgA).unsqueeze(0).to(torch.device('cuda', int(opt.dev_id))).float()
tensorB = transF.to_tensor(imgB).unsqueeze(0).to(torch.device('cuda', int(opt.dev_id))).float()
output, outputs_A, outputs_B = net(tensorA, tensorB)
mapA = outputs_A.squeeze().detach().cpu().numpy()
mapB = outputs_B.squeeze().detach().cpu().numpy()
latent_num = mapA.shape[0]
for idx in range(latent_num):
latentA = rescale_intensity(mapA[idx], out_range=(0,255)).astype(np.uint8)
latentB = rescale_intensity(mapB[idx], out_range=(0,255)).astype(np.uint8)
latentA_color = cv2.applyColorMap(latentA, cmapy.cmap('jet'))
latentB_color = cv2.applyColorMap(latentB, cmapy.cmap('jet'))
pred_pathA = os.path.join(pred_mA_dir, it[:-4]+'_'+str(idx)+'.png')
pred_pathB = os.path.join(pred_mB_dir, it[:-4]+'_'+str(idx)+'.png')
io.imsave(pred_pathA, latentA_color)
io.imsave(pred_pathB, latentB_color)
if __name__ == '__main__':
main()