Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

demo output #4

Open
aquachieh opened this issue Apr 16, 2020 · 10 comments
Open

demo output #4

aquachieh opened this issue Apr 16, 2020 · 10 comments

Comments

@aquachieh
Copy link

I used your trained model and ran the "inference.py" ,
but the output is different from yours,
like this
image
what can I modify?

thank you a lot !

@HowieMa
Copy link
Owner

HowieMa commented Apr 16, 2020

I used your trained model and ran the "inference.py" ,
but the output is different from yours,
like this
image
what can I modify?

thank you a lot !

That's really strange. Personally, the only thing I can do is to check our environment is the same, but I don't think these can cause a huge difference. Here is the version of packages in my server.

pytorch                   1.4.0
torchvision               0.5.0
pillow                    6.2.0
numpy                     1.17.2

Also, let's check the md5 of model parameters to make sure that your model is correct, it should be:

md5sum best_model.pth
ddb7c2728d2e9b4414d00e72e47b2102  best_model.pth

Besides, the output of inference.py should be:

save output to  images/sample_out.jpg
[[99, 84], [90, 87], [78, 93], [69, 93], [58, 90], [81, 75], [64, 78], [58, 84], [55, 90], [75, 67], [61, 64], [49, 67], [37, 69], [75, 61], [58, 55], [49, 49], [37, 49], [72, 58], [61, 49], [52, 43], [46, 37]]

@aquachieh
Copy link
Author

Thank you so much for your reply!
I solved it by changing the packages version:

pillow  '7.0.0' --> 6.2.0
numpy  '1.18.1' --> 1.17.2

@l976308589
Copy link

I used your trained model and ran the "inference.py" ,
Here is the version of packages in my server.

pytorch 1.4.0
torchvision 0.5.0
pillow 6.2.0
numpy 1.17.2
but the output is different from yours,
like this
微信截图_20201127154450

@laol777
Copy link

laol777 commented Nov 29, 2020

@l976308589 did you solve this problem?

@laol777
Copy link

laol777 commented Nov 29, 2020

just found the solution, in inference.py change to:

if __name__ == "__main__":
    # ***********************  Parameter  ***********************

    parser = argparse.ArgumentParser()
    parser.add_argument('--resume', default='weights/best_model.pth', help='trained model dir')
    parser.add_argument('--image_dir', default='images/', help='path for folder')
    args = parser.parse_args()

    # ******************** build model ********************
    # Limb Probabilistic Mask G1 & 6
    model = CPMHandLimb(outc=21, lshc=7, pretrained=False)
    if cuda:
        model = model.cuda()
        model = nn.DataParallel(model, device_id)

    state_dict = torch.load(args.resume, map_location={'cuda:2':'cuda:1'})
    model.load_state_dict(state_dict)

    coordinate = hand_pose_estimation(model)
    print(coordinate)

@l976308589
Copy link

just found the solution, in inference.py change to:

if __name__ == "__main__":
    # ***********************  Parameter  ***********************

    parser = argparse.ArgumentParser()
    parser.add_argument('--resume', default='weights/best_model.pth', help='trained model dir')
    parser.add_argument('--image_dir', default='images/', help='path for folder')
    args = parser.parse_args()

    # ******************** build model ********************
    # Limb Probabilistic Mask G1 & 6
    model = CPMHandLimb(outc=21, lshc=7, pretrained=False)
    if cuda:
        model = model.cuda()
        model = nn.DataParallel(model, device_id)

    state_dict = torch.load(args.resume, map_location={'cuda:2':'cuda:1'})
    model.load_state_dict(state_dict)

    coordinate = hand_pose_estimation(model)
    print(coordinate)

thanks,when I test in cpu,change this code:
state_dict = torch.load(args.resume,map_location=torch.device('cpu'))
and the output is
Error(s) in loading state_dict for CPMHandLimb:
Missing key(s) in state_dict: "vgg19.backbone.0.weight", "vgg19.backbone.0.bias", "vgg19.backbone.2.weight", "vgg19.backbone.2.bias", "vgg19.backbone.5.weight", "vgg19.backbone.5.bias", "vgg19.backbone.7.weight", "vgg19.backbone.7.bias", "vgg19.backbone.10.weight", "vgg19.backbone.10.bias", "vgg19.backbone.12.weight", "vgg19.backbone.12.bias", "vgg19.backbone.14.weight", "vgg19.backbone.14.bias", "vgg19.backbone.16.weight", "vgg19.backbone.16.bias", "vgg19.backbone.19.weight", "vgg19.backbone.19.bias", "vgg19.backbone.21.weight", "vgg19.backbone.21.bias", "vgg19.backbone.23.weight", "vgg19.backbone.23.bias", "vgg19.backbone.25.weight", "vgg19.backbone.25.bias", "vgg19.conv5_1.weight", "vgg19.conv5_1.bias", "vgg19.conv5_2.weight", "vgg19.conv5_2.bias", "vgg19.conv5_3.weight", "vgg19.conv5_3.bias", "stage1.stage1_1.weight", "stage1.stage1_1.bias", "stage1.stage1_2.weight", "stage1.stage1_2.bias", "stage2.Mconv1.conv.weight", "stage2.Mconv1.conv.bias", "stage2.Mconv2.conv.weight", "stage2.Mconv2.conv.bias", "stage2.Mconv3.conv.weight", "stage2.Mconv3.conv.bias", "stage2.Mconv4.conv.weight", "stage2.Mconv4.conv.bias", "stage2.Mconv5.conv.weight", "stage2.Mconv5.conv.bias", "stage2.Mconv6.weight", "stage2.Mconv6.bias", "stage2.Mconv7.weight", "stage2.Mconv7.bias", "stage3.Mconv1.conv.weight", "stage3.Mconv1.conv.bias", "stage3.Mconv2.conv.weight", "stage3.Mconv2.conv.bias", "stage3.Mconv3.conv.weight", "stage3.Mconv3.conv.bias", "stage3.Mconv4.conv.weight", "stage3.Mconv4.conv.bias", "stage3.Mconv5.conv.weight", "stage3.Mconv5.conv.bias", "stage3.Mconv6.weight", "stage3.Mconv6.bias", "stage3.Mconv7.weight", "stage3.Mconv7.bias", "stage4.Mconv1.conv.weight", "stage4.Mconv1.conv.bias", "stage4.Mconv2.conv.weight", "stage4.Mconv2.conv.bias", "stage4.Mconv3.conv.weight", "stage4.Mconv3.conv.bias", "stage4.Mconv4.conv.weight", "stage4.Mconv4.conv.bias", "stage4.Mconv5.conv.weight", "stage4.Mconv5.conv.bias", "stage4.Mconv6.weight", "stage4.Mconv6.bias", "stage4.Mconv7.weight", "stage4.Mconv7.bias", "stage5.Mconv1.conv.weight", "stage5.Mconv1.conv.bias", "stage5.Mconv2.conv.weight", "stage5.Mconv2.conv.bias", "stage5.Mconv3.conv.weight", "stage5.Mconv3.conv.bias", "stage5.Mconv4.conv.weight", "stage5.Mconv4.conv.bias", "stage5.Mconv5.conv.weight", "stage5.Mconv5.conv.bias", "stage5.Mconv6.weight", "stage5.Mconv6.bias", "stage5.Mconv7.weight", "stage5.Mconv7.bias", "stage6.Mconv1.conv.weight", "stage6.Mconv1.conv.bias", "stage6.Mconv2.conv.weight", "stage6.Mconv2.conv.bias", "stage6.Mconv3.conv.weight", "stage6.Mconv3.conv.bias", "stage6.Mconv4.conv.weight", "stage6.Mconv4.conv.bias", "stage6.Mconv5.conv.weight", "stage6.Mconv5.conv.bias", "stage6.Mconv6.weight", "stage6.Mconv6.bias", "stage6.Mconv7.weight", "stage6.Mconv7.bias".
Unexpected key(s) in state_dict: "module.vgg19.backbone.0.weight", "module.vgg19.backbone.0.bias", "module.vgg19.backbone.2.weight", "module.vgg19.backbone.2.bias", "module.vgg19.backbone.5.weight", "module.vgg19.backbone.5.bias", "module.vgg19.backbone.7.weight", "module.vgg19.backbone.7.bias", "module.vgg19.backbone.10.weight", "module.vgg19.backbone.10.bias", "module.vgg19.backbone.12.weight", "module.vgg19.backbone.12.bias", "module.vgg19.backbone.14.weight", "module.vgg19.backbone.14.bias", "module.vgg19.backbone.16.weight", "module.vgg19.backbone.16.bias", "module.vgg19.backbone.19.weight", "module.vgg19.backbone.19.bias", "module.vgg19.backbone.21.weight", "module.vgg19.backbone.21.bias", "module.vgg19.backbone.23.weight", "module.vgg19.backbone.23.bias", "module.vgg19.backbone.25.weight", "module.vgg19.backbone.25.bias", "module.vgg19.conv5_1.weight", "module.vgg19.conv5_1.bias", "module.vgg19.conv5_2.weight", "module.vgg19.conv5_2.bias", "module.vgg19.conv5_3.weight", "module.vgg19.conv5_3.bias", "module.stage1.stage1_1.weight", "module.stage1.stage1_1.bias", "module.stage1.stage1_2.weight", "module.stage1.stage1_2.bias", "module.stage2.Mconv1.conv.weight", "module.stage2.Mconv1.conv.bias", "module.stage2.Mconv2.conv.weight", "module.stage2.Mconv2.conv.bias", "module.stage2.Mconv3.conv.weight", "module.stage2.Mconv3.conv.bias", "module.stage2.Mconv4.conv.weight", "module.stage2.Mconv4.conv.bias", "module.stage2.Mconv5.conv.weight", "module.stage2.Mconv5.conv.bias", "module.stage2.Mconv6.weight", "module.stage2.Mconv6.bias", "module.stage2.Mconv7.weight", "module.stage2.Mconv7.bias", "module.stage3.Mconv1.conv.weight", "module.stage3.Mconv1.conv.bias", "module.stage3.Mconv2.conv.weight", "module.stage3.Mconv2.conv.bias", "module.stage3.Mconv3.conv.weight", "module.stage3.Mconv3.conv.bias", "module.stage3.Mconv4.conv.weight", "module.stage3.Mconv4.conv.bias", "module.stage3.Mconv5.conv.weight", "module.stage3.Mconv5.conv.bias", "module.stage3.Mconv6.weight", "module.stage3.Mconv6.bias", "module.stage3.Mconv7.weight", "module.stage3.Mconv7.bias", "module.stage4.Mconv1.conv.weight", "module.stage4.Mconv1.conv.bias", "module.stage4.Mconv2.conv.weight", "module.stage4.Mconv2.conv.bias", "module.stage4.Mconv3.conv.weight", "module.stage4.Mconv3.conv.bias", "module.stage4.Mconv4.conv.weight", "module.stage4.Mconv4.conv.bias", "module.stage4.Mconv5.conv.weight", "module.stage4.Mconv5.conv.bias", "module.stage4.Mconv6.weight", "module.stage4.Mconv6.bias", "module.stage4.Mconv7.weight", "module.stage4.Mconv7.bias", "module.stage5.Mconv1.conv.weight", "module.stage5.Mconv1.conv.bias", "module.stage5.Mconv2.conv.weight", "module.stage5.Mconv2.conv.bias", "module.stage5.Mconv3.conv.weight", "module.stage5.Mconv3.conv.bias", "module.stage5.Mconv4.conv.weight", "module.stage5.Mconv4.conv.bias", "module.stage5.Mconv5.conv.weight", "module.stage5.Mconv5.conv.bias", "module.stage5.Mconv6.weight", "module.stage5.Mconv6.bias", "module.stage5.Mconv7.weight", "module.stage5.Mconv7.bias", "module.stage6.Mconv1.conv.weight", "module.stage6.Mconv1.conv.bias", "module.stage6.Mconv2.conv.weight", "module.stage6.Mconv2.conv.bias", "module.stage6.Mconv3.conv.weight", "module.stage6.Mconv3.conv.bias", "module.stage6.Mconv4.conv.weight", "module.stage6.Mconv4.conv.bias", "module.stage6.Mconv5.conv.weight", "module.stage6.Mconv5.conv.bias", "module.stage6.Mconv6.weight", "module.stage6.Mconv6.bias", "module.stage6.Mconv7.weight", "module.stage6.Mconv7.bias".

@l976308589
Copy link

Thank you very much. I have solved the problem

@KP1-cmd
Copy link

KP1-cmd commented Dec 8, 2020

just found the solution, in inference.py change to:

if __name__ == "__main__":
    # ***********************  Parameter  ***********************

    parser = argparse.ArgumentParser()
    parser.add_argument('--resume', default='weights/best_model.pth', help='trained model dir')
    parser.add_argument('--image_dir', default='images/', help='path for folder')
    args = parser.parse_args()

    # ******************** build model ********************
    # Limb Probabilistic Mask G1 & 6
    model = CPMHandLimb(outc=21, lshc=7, pretrained=False)
    if cuda:
        model = model.cuda()
        model = nn.DataParallel(model, device_id)

    state_dict = torch.load(args.resume, map_location={'cuda:2':'cuda:1'})
    model.load_state_dict(state_dict)

    coordinate = hand_pose_estimation(model)
    print(coordinate)

thanks,when I test in cpu,change this code:
state_dict = torch.load(args.resume,map_location=torch.device('cpu'))
and the output is
Error(s) in loading state_dict for CPMHandLimb:
Missing key(s) in state_dict: "vgg19.backbone.0.weight", "vgg19.backbone.0.bias", "vgg19.backbone.2.weight", "vgg19.backbone.2.bias", "vgg19.backbone.5.weight", "vgg19.backbone.5.bias", "vgg19.backbone.7.weight", "vgg19.backbone.7.bias", "vgg19.backbone.10.weight", "vgg19.backbone.10.bias", "vgg19.backbone.12.weight", "vgg19.backbone.12.bias", "vgg19.backbone.14.weight", "vgg19.backbone.14.bias", "vgg19.backbone.16.weight", "vgg19.backbone.16.bias", "vgg19.backbone.19.weight", "vgg19.backbone.19.bias", "vgg19.backbone.21.weight", "vgg19.backbone.21.bias", "vgg19.backbone.23.weight", "vgg19.backbone.23.bias", "vgg19.backbone.25.weight", "vgg19.backbone.25.bias", "vgg19.conv5_1.weight", "vgg19.conv5_1.bias", "vgg19.conv5_2.weight", "vgg19.conv5_2.bias", "vgg19.conv5_3.weight", "vgg19.conv5_3.bias", "stage1.stage1_1.weight", "stage1.stage1_1.bias", "stage1.stage1_2.weight", "stage1.stage1_2.bias", "stage2.Mconv1.conv.weight", "stage2.Mconv1.conv.bias", "stage2.Mconv2.conv.weight", "stage2.Mconv2.conv.bias", "stage2.Mconv3.conv.weight", "stage2.Mconv3.conv.bias", "stage2.Mconv4.conv.weight", "stage2.Mconv4.conv.bias", "stage2.Mconv5.conv.weight", "stage2.Mconv5.conv.bias", "stage2.Mconv6.weight", "stage2.Mconv6.bias", "stage2.Mconv7.weight", "stage2.Mconv7.bias", "stage3.Mconv1.conv.weight", "stage3.Mconv1.conv.bias", "stage3.Mconv2.conv.weight", "stage3.Mconv2.conv.bias", "stage3.Mconv3.conv.weight", "stage3.Mconv3.conv.bias", "stage3.Mconv4.conv.weight", "stage3.Mconv4.conv.bias", "stage3.Mconv5.conv.weight", "stage3.Mconv5.conv.bias", "stage3.Mconv6.weight", "stage3.Mconv6.bias", "stage3.Mconv7.weight", "stage3.Mconv7.bias", "stage4.Mconv1.conv.weight", "stage4.Mconv1.conv.bias", "stage4.Mconv2.conv.weight", "stage4.Mconv2.conv.bias", "stage4.Mconv3.conv.weight", "stage4.Mconv3.conv.bias", "stage4.Mconv4.conv.weight", "stage4.Mconv4.conv.bias", "stage4.Mconv5.conv.weight", "stage4.Mconv5.conv.bias", "stage4.Mconv6.weight", "stage4.Mconv6.bias", "stage4.Mconv7.weight", "stage4.Mconv7.bias", "stage5.Mconv1.conv.weight", "stage5.Mconv1.conv.bias", "stage5.Mconv2.conv.weight", "stage5.Mconv2.conv.bias", "stage5.Mconv3.conv.weight", "stage5.Mconv3.conv.bias", "stage5.Mconv4.conv.weight", "stage5.Mconv4.conv.bias", "stage5.Mconv5.conv.weight", "stage5.Mconv5.conv.bias", "stage5.Mconv6.weight", "stage5.Mconv6.bias", "stage5.Mconv7.weight", "stage5.Mconv7.bias", "stage6.Mconv1.conv.weight", "stage6.Mconv1.conv.bias", "stage6.Mconv2.conv.weight", "stage6.Mconv2.conv.bias", "stage6.Mconv3.conv.weight", "stage6.Mconv3.conv.bias", "stage6.Mconv4.conv.weight", "stage6.Mconv4.conv.bias", "stage6.Mconv5.conv.weight", "stage6.Mconv5.conv.bias", "stage6.Mconv6.weight", "stage6.Mconv6.bias", "stage6.Mconv7.weight", "stage6.Mconv7.bias".
Unexpected key(s) in state_dict: "module.vgg19.backbone.0.weight", "module.vgg19.backbone.0.bias", "module.vgg19.backbone.2.weight", "module.vgg19.backbone.2.bias", "module.vgg19.backbone.5.weight", "module.vgg19.backbone.5.bias", "module.vgg19.backbone.7.weight", "module.vgg19.backbone.7.bias", "module.vgg19.backbone.10.weight", "module.vgg19.backbone.10.bias", "module.vgg19.backbone.12.weight", "module.vgg19.backbone.12.bias", "module.vgg19.backbone.14.weight", "module.vgg19.backbone.14.bias", "module.vgg19.backbone.16.weight", "module.vgg19.backbone.16.bias", "module.vgg19.backbone.19.weight", "module.vgg19.backbone.19.bias", "module.vgg19.backbone.21.weight", "module.vgg19.backbone.21.bias", "module.vgg19.backbone.23.weight", "module.vgg19.backbone.23.bias", "module.vgg19.backbone.25.weight", "module.vgg19.backbone.25.bias", "module.vgg19.conv5_1.weight", "module.vgg19.conv5_1.bias", "module.vgg19.conv5_2.weight", "module.vgg19.conv5_2.bias", "module.vgg19.conv5_3.weight", "module.vgg19.conv5_3.bias", "module.stage1.stage1_1.weight", "module.stage1.stage1_1.bias", "module.stage1.stage1_2.weight", "module.stage1.stage1_2.bias", "module.stage2.Mconv1.conv.weight", "module.stage2.Mconv1.conv.bias", "module.stage2.Mconv2.conv.weight", "module.stage2.Mconv2.conv.bias", "module.stage2.Mconv3.conv.weight", "module.stage2.Mconv3.conv.bias", "module.stage2.Mconv4.conv.weight", "module.stage2.Mconv4.conv.bias", "module.stage2.Mconv5.conv.weight", "module.stage2.Mconv5.conv.bias", "module.stage2.Mconv6.weight", "module.stage2.Mconv6.bias", "module.stage2.Mconv7.weight", "module.stage2.Mconv7.bias", "module.stage3.Mconv1.conv.weight", "module.stage3.Mconv1.conv.bias", "module.stage3.Mconv2.conv.weight", "module.stage3.Mconv2.conv.bias", "module.stage3.Mconv3.conv.weight", "module.stage3.Mconv3.conv.bias", "module.stage3.Mconv4.conv.weight", "module.stage3.Mconv4.conv.bias", "module.stage3.Mconv5.conv.weight", "module.stage3.Mconv5.conv.bias", "module.stage3.Mconv6.weight", "module.stage3.Mconv6.bias", "module.stage3.Mconv7.weight", "module.stage3.Mconv7.bias", "module.stage4.Mconv1.conv.weight", "module.stage4.Mconv1.conv.bias", "module.stage4.Mconv2.conv.weight", "module.stage4.Mconv2.conv.bias", "module.stage4.Mconv3.conv.weight", "module.stage4.Mconv3.conv.bias", "module.stage4.Mconv4.conv.weight", "module.stage4.Mconv4.conv.bias", "module.stage4.Mconv5.conv.weight", "module.stage4.Mconv5.conv.bias", "module.stage4.Mconv6.weight", "module.stage4.Mconv6.bias", "module.stage4.Mconv7.weight", "module.stage4.Mconv7.bias", "module.stage5.Mconv1.conv.weight", "module.stage5.Mconv1.conv.bias", "module.stage5.Mconv2.conv.weight", "module.stage5.Mconv2.conv.bias", "module.stage5.Mconv3.conv.weight", "module.stage5.Mconv3.conv.bias", "module.stage5.Mconv4.conv.weight", "module.stage5.Mconv4.conv.bias", "module.stage5.Mconv5.conv.weight", "module.stage5.Mconv5.conv.bias", "module.stage5.Mconv6.weight", "module.stage5.Mconv6.bias", "module.stage5.Mconv7.weight", "module.stage5.Mconv7.bias", "module.stage6.Mconv1.conv.weight", "module.stage6.Mconv1.conv.bias", "module.stage6.Mconv2.conv.weight", "module.stage6.Mconv2.conv.bias", "module.stage6.Mconv3.conv.weight", "module.stage6.Mconv3.conv.bias", "module.stage6.Mconv4.conv.weight", "module.stage6.Mconv4.conv.bias", "module.stage6.Mconv5.conv.weight", "module.stage6.Mconv5.conv.bias", "module.stage6.Mconv6.weight", "module.stage6.Mconv6.bias", "module.stage6.Mconv7.weight", "module.stage6.Mconv7.bias".

@l976308589
i got the same error...can you let me know how you solve this issue ?

@HowieMa
Copy link
Owner

HowieMa commented Dec 8, 2020

just found the solution, in inference.py change to:

if __name__ == "__main__":
    # ***********************  Parameter  ***********************

    parser = argparse.ArgumentParser()
    parser.add_argument('--resume', default='weights/best_model.pth', help='trained model dir')
    parser.add_argument('--image_dir', default='images/', help='path for folder')
    args = parser.parse_args()

    # ******************** build model ********************
    # Limb Probabilistic Mask G1 & 6
    model = CPMHandLimb(outc=21, lshc=7, pretrained=False)
    if cuda:
        model = model.cuda()
        model = nn.DataParallel(model, device_id)

    state_dict = torch.load(args.resume, map_location={'cuda:2':'cuda:1'})
    model.load_state_dict(state_dict)

    coordinate = hand_pose_estimation(model)
    print(coordinate)

thanks,when I test in cpu,change this code:
state_dict = torch.load(args.resume,map_location=torch.device('cpu'))
and the output is
Error(s) in loading state_dict for CPMHandLimb:
Missing key(s) in state_dict: "vgg19.backbone.0.weight", "vgg19.backbone.0.bias", "vgg19.backbone.2.weight", "vgg19.backbone.2.bias", "vgg19.backbone.5.weight", "vgg19.backbone.5.bias", "vgg19.backbone.7.weight", "vgg19.backbone.7.bias", "vgg19.backbone.10.weight", "vgg19.backbone.10.bias", "vgg19.backbone.12.weight", "vgg19.backbone.12.bias", "vgg19.backbone.14.weight", "vgg19.backbone.14.bias", "vgg19.backbone.16.weight", "vgg19.backbone.16.bias", "vgg19.backbone.19.weight", "vgg19.backbone.19.bias", "vgg19.backbone.21.weight", "vgg19.backbone.21.bias", "vgg19.backbone.23.weight", "vgg19.backbone.23.bias", "vgg19.backbone.25.weight", "vgg19.backbone.25.bias", "vgg19.conv5_1.weight", "vgg19.conv5_1.bias", "vgg19.conv5_2.weight", "vgg19.conv5_2.bias", "vgg19.conv5_3.weight", "vgg19.conv5_3.bias", "stage1.stage1_1.weight", "stage1.stage1_1.bias", "stage1.stage1_2.weight", "stage1.stage1_2.bias", "stage2.Mconv1.conv.weight", "stage2.Mconv1.conv.bias", "stage2.Mconv2.conv.weight", "stage2.Mconv2.conv.bias", "stage2.Mconv3.conv.weight", "stage2.Mconv3.conv.bias", "stage2.Mconv4.conv.weight", "stage2.Mconv4.conv.bias", "stage2.Mconv5.conv.weight", "stage2.Mconv5.conv.bias", "stage2.Mconv6.weight", "stage2.Mconv6.bias", "stage2.Mconv7.weight", "stage2.Mconv7.bias", "stage3.Mconv1.conv.weight", "stage3.Mconv1.conv.bias", "stage3.Mconv2.conv.weight", "stage3.Mconv2.conv.bias", "stage3.Mconv3.conv.weight", "stage3.Mconv3.conv.bias", "stage3.Mconv4.conv.weight", "stage3.Mconv4.conv.bias", "stage3.Mconv5.conv.weight", "stage3.Mconv5.conv.bias", "stage3.Mconv6.weight", "stage3.Mconv6.bias", "stage3.Mconv7.weight", "stage3.Mconv7.bias", "stage4.Mconv1.conv.weight", "stage4.Mconv1.conv.bias", "stage4.Mconv2.conv.weight", "stage4.Mconv2.conv.bias", "stage4.Mconv3.conv.weight", "stage4.Mconv3.conv.bias", "stage4.Mconv4.conv.weight", "stage4.Mconv4.conv.bias", "stage4.Mconv5.conv.weight", "stage4.Mconv5.conv.bias", "stage4.Mconv6.weight", "stage4.Mconv6.bias", "stage4.Mconv7.weight", "stage4.Mconv7.bias", "stage5.Mconv1.conv.weight", "stage5.Mconv1.conv.bias", "stage5.Mconv2.conv.weight", "stage5.Mconv2.conv.bias", "stage5.Mconv3.conv.weight", "stage5.Mconv3.conv.bias", "stage5.Mconv4.conv.weight", "stage5.Mconv4.conv.bias", "stage5.Mconv5.conv.weight", "stage5.Mconv5.conv.bias", "stage5.Mconv6.weight", "stage5.Mconv6.bias", "stage5.Mconv7.weight", "stage5.Mconv7.bias", "stage6.Mconv1.conv.weight", "stage6.Mconv1.conv.bias", "stage6.Mconv2.conv.weight", "stage6.Mconv2.conv.bias", "stage6.Mconv3.conv.weight", "stage6.Mconv3.conv.bias", "stage6.Mconv4.conv.weight", "stage6.Mconv4.conv.bias", "stage6.Mconv5.conv.weight", "stage6.Mconv5.conv.bias", "stage6.Mconv6.weight", "stage6.Mconv6.bias", "stage6.Mconv7.weight", "stage6.Mconv7.bias".
Unexpected key(s) in state_dict: "module.vgg19.backbone.0.weight", "module.vgg19.backbone.0.bias", "module.vgg19.backbone.2.weight", "module.vgg19.backbone.2.bias", "module.vgg19.backbone.5.weight", "module.vgg19.backbone.5.bias", "module.vgg19.backbone.7.weight", "module.vgg19.backbone.7.bias", "module.vgg19.backbone.10.weight", "module.vgg19.backbone.10.bias", "module.vgg19.backbone.12.weight", "module.vgg19.backbone.12.bias", "module.vgg19.backbone.14.weight", "module.vgg19.backbone.14.bias", "module.vgg19.backbone.16.weight", "module.vgg19.backbone.16.bias", "module.vgg19.backbone.19.weight", "module.vgg19.backbone.19.bias", "module.vgg19.backbone.21.weight", "module.vgg19.backbone.21.bias", "module.vgg19.backbone.23.weight", "module.vgg19.backbone.23.bias", "module.vgg19.backbone.25.weight", "module.vgg19.backbone.25.bias", "module.vgg19.conv5_1.weight", "module.vgg19.conv5_1.bias", "module.vgg19.conv5_2.weight", "module.vgg19.conv5_2.bias", "module.vgg19.conv5_3.weight", "module.vgg19.conv5_3.bias", "module.stage1.stage1_1.weight", "module.stage1.stage1_1.bias", "module.stage1.stage1_2.weight", "module.stage1.stage1_2.bias", "module.stage2.Mconv1.conv.weight", "module.stage2.Mconv1.conv.bias", "module.stage2.Mconv2.conv.weight", "module.stage2.Mconv2.conv.bias", "module.stage2.Mconv3.conv.weight", "module.stage2.Mconv3.conv.bias", "module.stage2.Mconv4.conv.weight", "module.stage2.Mconv4.conv.bias", "module.stage2.Mconv5.conv.weight", "module.stage2.Mconv5.conv.bias", "module.stage2.Mconv6.weight", "module.stage2.Mconv6.bias", "module.stage2.Mconv7.weight", "module.stage2.Mconv7.bias", "module.stage3.Mconv1.conv.weight", "module.stage3.Mconv1.conv.bias", "module.stage3.Mconv2.conv.weight", "module.stage3.Mconv2.conv.bias", "module.stage3.Mconv3.conv.weight", "module.stage3.Mconv3.conv.bias", "module.stage3.Mconv4.conv.weight", "module.stage3.Mconv4.conv.bias", "module.stage3.Mconv5.conv.weight", "module.stage3.Mconv5.conv.bias", "module.stage3.Mconv6.weight", "module.stage3.Mconv6.bias", "module.stage3.Mconv7.weight", "module.stage3.Mconv7.bias", "module.stage4.Mconv1.conv.weight", "module.stage4.Mconv1.conv.bias", "module.stage4.Mconv2.conv.weight", "module.stage4.Mconv2.conv.bias", "module.stage4.Mconv3.conv.weight", "module.stage4.Mconv3.conv.bias", "module.stage4.Mconv4.conv.weight", "module.stage4.Mconv4.conv.bias", "module.stage4.Mconv5.conv.weight", "module.stage4.Mconv5.conv.bias", "module.stage4.Mconv6.weight", "module.stage4.Mconv6.bias", "module.stage4.Mconv7.weight", "module.stage4.Mconv7.bias", "module.stage5.Mconv1.conv.weight", "module.stage5.Mconv1.conv.bias", "module.stage5.Mconv2.conv.weight", "module.stage5.Mconv2.conv.bias", "module.stage5.Mconv3.conv.weight", "module.stage5.Mconv3.conv.bias", "module.stage5.Mconv4.conv.weight", "module.stage5.Mconv4.conv.bias", "module.stage5.Mconv5.conv.weight", "module.stage5.Mconv5.conv.bias", "module.stage5.Mconv6.weight", "module.stage5.Mconv6.bias", "module.stage5.Mconv7.weight", "module.stage5.Mconv7.bias", "module.stage6.Mconv1.conv.weight", "module.stage6.Mconv1.conv.bias", "module.stage6.Mconv2.conv.weight", "module.stage6.Mconv2.conv.bias", "module.stage6.Mconv3.conv.weight", "module.stage6.Mconv3.conv.bias", "module.stage6.Mconv4.conv.weight", "module.stage6.Mconv4.conv.bias", "module.stage6.Mconv5.conv.weight", "module.stage6.Mconv5.conv.bias", "module.stage6.Mconv6.weight", "module.stage6.Mconv6.bias", "module.stage6.Mconv7.weight", "module.stage6.Mconv7.bias".

@l976308589
i got the same error...can you let me know how you solve this issue ?

That is simply because you cannot use nn.DataParallel() in CPU. Here are some solutions: https://blog.csdn.net/yangzhengzheng95/article/details/88574200 (Chinese Version)

@KP1-cmd
Copy link

KP1-cmd commented Dec 9, 2020

@l976308589 Ok thank you got it

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants