-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
300 lines (260 loc) · 11.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import sys
import argparse
import json
import utils
from torch_utils import dataset, MaskedL1Loss
from model import ST_MAN
import time, datetime
import numpy as np
datasets = {"PeMS04", "PeMS08", "Loop"}
parser = argparse.ArgumentParser()
parser.add_argument("dataset", type=str, choices=datasets,
default="Loop", help="use a dataset")
# get dataset argument
argv = list(sys.argv)
argv = [i for i in argv if i in datasets]
data_set = parser.parse_args(argv).dataset
config = json.load(open('data/CONFIG(%s).json' % data_set))
parser = argparse.ArgumentParser()
parser.add_argument("dataset", type=str, choices=datasets,
default="Loop", help="use a dataset")
parser.add_argument('--time_slot', type = int, default = config['time_slot'],
help = 'a time step is 5 mins')
parser.add_argument('--P', type = int, default = config['P'],
help = 'history steps')
parser.add_argument('--Q', type = int, default = config['Q'],
help = 'prediction steps')
parser.add_argument('--N', type = int, default = config['N'],
help = 'number of Cross Att Blocks')
parser.add_argument('--L', type = int, default = config['L'],
help = 'number of STAtt Blocks')
parser.add_argument('--K', type = int, default = config['K'],
help = 'number of attention heads')
parser.add_argument('--d', type = int, default = config['d'],
help = 'dims of each head attention outputs')
parser.add_argument('--seed', type = int, default = int(time.time()),
help = 'seed of random utils')
parser.add_argument('--train_ratio', type = float, default = config['train_ratio'],
help = 'training set [default : 0.7]')
parser.add_argument('--val_ratio', type = float, default = config['val_ratio'],
help = 'validation set [default : 0.1]')
parser.add_argument('--test_ratio', type = float, default = config['test_ratio'],
help = 'testing set [default : 0.2]')
parser.add_argument('--batch_size', type = int, default = config['batch_size'],
help = 'batch size')
parser.add_argument('--max_epoch', type = int, default = config['max_epoch'],
help = 'epoch to run')
parser.add_argument('--patience', type = int, default = config['patience'],
help = 'patience for early stop')
parser.add_argument('--learning_rate', type=float, default = config['learning_rate'],
help = 'initial learning rate')
parser.add_argument('--decay_rate', type=float, default = config['decay_rate'],
help = 'decay rate')
parser.add_argument('--traffic_file', default = config['traffic_file'],
help = 'traffic file')
parser.add_argument('--SE_file', default = config['SE_file'],
help = 'spatial emebdding file')
parser.add_argument('--model_file', default = config['model_file'],
help = 'save the model to disk')
parser.add_argument('--log_file', default = config['log_file'],
help = 'log file')
parser.add_argument('--gpu_device', default = 'cuda:0',
help = 'train device')
parser.add_argument('--drop_rate', default = config['drop_rate'],
help = 'drop rate')
parser.add_argument('--masked_l1', default = config['masked_l1'], type=bool,
help = 'whether use masked l1 loss')
args = parser.parse_args()
device = torch.device(args.gpu_device if torch.cuda.is_available() else 'cpu')
log = open(args.log_file, 'w')
utils.log_string(log, str(args)[10 : -1])
# set seed
seed=int(args.seed)
# utils.seed_torch(seed)
# load data
utils.log_string(log, 'loading data...')
(trainX, trainTE, trainY, valX, valTE, valY, testX, testTE, testY, SE,
mean, std) = utils.loadData(args)
trainX = torch.FloatTensor(trainX)
valX = torch.FloatTensor(valX)
testX = torch.FloatTensor(testX)
trainY = torch.FloatTensor(trainY)
valY = torch.FloatTensor(valY)
testY = torch.FloatTensor(testY)
SE = torch.FloatTensor(SE).to(device)
trainTE = torch.LongTensor(trainTE)
valTE = torch.LongTensor(valTE)
testTE = torch.LongTensor(testTE)
utils.log_string(log, 'trainX: %s\t\ttrainY: %s' % (trainX.shape, trainY.shape))
utils.log_string(log, 'valX: %s\t\tvalY: %s' % (valX.shape, valY.shape))
utils.log_string(log, 'testX: %s\t\ttestY: %s' % (testX.shape, testY.shape))
utils.log_string(log, 'data loaded!')
T = 24 * 60 // args.time_slot
def train():
train_set = dataset(trainX, trainY, trainTE, SE, device)
train_loader = torch.utils.data.DataLoader(dataset=train_set,
batch_size=args.batch_size,
shuffle=True,
num_workers=0)
val_set = dataset(valX, valY, valTE, SE, device)
val_loader = torch.utils.data.DataLoader(dataset=val_set,
batch_size=args.batch_size,
shuffle=True,
num_workers=0)
utils.log_string(log, 'compiling model...')
model = ST_MAN(1, args.P, args.Q, T, args.N, args.L, args.K, args.d, args.drop_rate, bn=True)
model.to(device)
optimizer = torch.optim.Adam(
model.parameters(), lr=args.learning_rate)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=args.decay_rate)
criterion = MaskedL1Loss() if args.masked_l1 else nn.L1Loss() # whether use masked version of the `nn.L1Loss()`
# display parameters
parameters = 0
for variable in model.parameters():
parameters += np.product([x for x in variable.shape]) if variable.requires_grad else 0
utils.log_string(log, 'trainable parameters: {:,}'.format(parameters))
utils.log_string(log, 'model compiled!')
utils.log_string(log, '**** training model ****')
# control variables
wait = 0
val_loss_min = np.inf
# epoch loop
for epoch in range(args.max_epoch):
if wait >= args.patience:
utils.log_string(log, 'early stop at epoch: %04d' % (epoch))
break
# train loss
model.train()
start_train = time.time()
train_loss = 0.0
# train batch loop
for data in train_loader:
bX, bY, bTE = data
optimizer.zero_grad()
p_bY = model(bX, bTE, SE)
p_bY = p_bY * std + mean
loss = criterion(p_bY, bY)
loss.backward()
optimizer.step()
train_loss += loss.item() * bX.shape[0]
train_loss /= len(train_set)
end_train = time.time()
# lr decay scheduler
scheduler.step()
# val loss
model.eval()
start_val = time.time()
val_loss = 0.0
for data in val_loader:
bX, bY, bTE = data
p_bY = model(bX, bTE, SE)
p_bY = p_bY * std + mean
loss = criterion(p_bY, bY)
val_loss += loss.item() * bX.shape[0]
val_loss /= len(val_set)
end_val = time.time()
# epoch log
utils.log_string(
log,
'%s | epoch: %04d/%d, training time: %.1fs, inference time: %.1fs' %
(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), epoch + 1,
args.max_epoch, end_train - start_train, end_val - start_val))
utils.log_string(
log, 'train loss: %.4f, val_loss: %.4f' % (train_loss, val_loss))
if val_loss <= val_loss_min:
utils.log_string(
log,
'val loss decrease from %.4f to %.4f, saving model to %s' %
(val_loss_min, val_loss, args.model_file))
wait = 0
val_loss_min = val_loss
torch.save(model.state_dict(), args.model_file)
else:
wait += 1
def test():
train_set = dataset(trainX, trainY, trainTE, SE, device)
train_loader = torch.utils.data.DataLoader(dataset=train_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=0)
val_set = dataset(valX, valY, valTE, SE, device)
val_loader = torch.utils.data.DataLoader(dataset=val_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=0)
test_set = dataset(testX, testY, testTE, SE, device)
test_loader = torch.utils.data.DataLoader(dataset=test_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=0)
utils.log_string(log, '**** testing model ****')
utils.log_string(log, 'loading model from %s' % args.model_file)
model = ST_MAN(1, args.P, args.Q, T, args.N, args.L, args.K, args.d, args.drop_rate, bn=True)
model.load_state_dict(torch.load(args.model_file, device))
model.to(device)
utils.log_string(log, 'model restored!')
utils.log_string(log, 'evaluating...')
model.eval()
# train
trainPred = []
for data in train_loader:
bX, _, bTE = data
p_bY = model(bX, bTE, SE)
p_bY = p_bY * std + mean
trainPred.append(p_bY.cpu().detach().numpy())
trainPred = np.concatenate(trainPred, axis = 0)
# val
valPred = []
for data in val_loader:
bX, _, bTE = data
p_bY = model(bX, bTE, SE)
p_bY = p_bY * std + mean
valPred.append(p_bY.cpu().detach().numpy())
valPred = np.concatenate(valPred, axis = 0)
# test
start_test = time.time()
testPred = []
for data in test_loader:
bX, _, bTE = data
p_bY = model(bX, bTE, SE)
p_bY = p_bY * std + mean
testPred.append(p_bY.cpu().detach().numpy())
end_test = time.time()
testPred = np.concatenate(testPred, axis = 0)
train_mae, train_rmse, train_mape = utils.metric(trainPred, trainY.cpu().numpy(), args.masked_l1)
val_mae, val_rmse, val_mape = utils.metric(valPred, valY.cpu().numpy(), args.masked_l1)
test_mae, test_rmse, test_mape = utils.metric(testPred, testY.cpu().numpy(), args.masked_l1)
utils.log_string(log, 'testing time: %.1fs' % (end_test - start_test))
utils.log_string(log, ' MAE\t\tRMSE\t\tMAPE')
utils.log_string(log, 'train %.2f\t\t%.2f\t\t%.2f%%' %
(train_mae, train_rmse, train_mape * 100))
utils.log_string(log, 'val %.2f\t\t%.2f\t\t%.2f%%' %
(val_mae, val_rmse, val_mape * 100))
utils.log_string(log, 'test %.2f\t\t%.2f\t\t%.2f%%' %
(test_mae, test_rmse, test_mape * 100))
utils.log_string(log, 'performance in each prediction step')
MAE, RMSE, MAPE = [], [], []
for q in range(args.Q):
mae, rmse, mape = utils.metric(testPred[:, q], testY[:, q].cpu().numpy(), args.masked_l1)
MAE.append(mae)
RMSE.append(rmse)
MAPE.append(mape)
utils.log_string(log, 'step: %02d %.2f\t\t%.2f\t\t%.2f%%' %
(q + 1, mae, rmse, mape * 100))
average_mae = np.mean(MAE)
average_rmse = np.mean(RMSE)
average_mape = np.mean(MAPE)
utils.log_string(
log, 'average: %.2f\t\t%.2f\t\t%.2f%%' %
(average_mae, average_rmse, average_mape * 100))
if __name__ == "__main__":
start = time.time()
train()
test()
end = time.time()
utils.log_string(log, 'total time: %.1fmin' % ((end - start) / 60))
log.close()