-
Notifications
You must be signed in to change notification settings - Fork 0
/
meshtools.cpp
551 lines (436 loc) · 17.3 KB
/
meshtools.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
#include "mesh.h"
#include <cstdlib>
HalfEdge* vertOnBoundary(Vertex* currentVertex) {
unsigned short n = currentVertex->val;
HalfEdge* currentEdge = currentVertex->out;
for (unsigned int k = 0; k < n; k++) {
if (!currentEdge->polygon) {
return currentEdge;
}
currentEdge = currentEdge->prev->twin;
}
return nullptr;
}
void Mesh::subdivideCatmullClark(Mesh& mesh) {
QVector<Vertex>& newVertices = mesh.getVertices();
QVector<HalfEdge>& newHalfEdges = mesh.getHalfEdges();
QVector<Face>& newFaces = mesh.getFaces();
unsigned int numVerts, numHalfEdges, numFaces, sumFaceValences;
unsigned int k, m, s, t;
unsigned int vIndex, hIndex, fIndex;
unsigned short n;
HalfEdge* currentEdge;
qDebug() << ":: Creating new Catmull-Clark mesh";
numVerts = vertices.size();
numHalfEdges = halfEdges.size();
numFaces = faces.size();
// Reserve memory
newVertices.reserve(numFaces + numVerts + numHalfEdges/2);
sumFaceValences = 0;
for (k=0; k<numFaces; k++) {
sumFaceValences += faces[k].val;
}
newHalfEdges.reserve(2*numHalfEdges + 2*sumFaceValences);
newFaces.reserve(sumFaceValences);
// Create face points
for (k=0; k<numFaces; k++) {
n = faces[k].val;
// Coords (x,y,z), Out, Valence, Index
newVertices.append( Vertex(facePoint(&faces[k]),
nullptr,
n,
k) );
}
qDebug() << " * Created face points";
vIndex = numFaces;
// Create vertex points
for (k=0; k<numVerts; k++) {
n = vertices[k].val;
// Coords (x,y,z), Out, Valence, Index
newVertices.append( Vertex(vertexPoint(vertices[k].out, newVertices),
nullptr,
n,
vIndex) );
vIndex++;
}
qDebug() << " * Created vertex points";
// Create edge points
for (k=0; k<numHalfEdges; k++) {
currentEdge = &halfEdges[k];
if (k < currentEdge->twin->index) {
m = (!currentEdge->polygon || !currentEdge->twin->polygon) ? 3 : 4;
// Coords (x,y,z), Out, Valence, Index
newVertices.append( Vertex(edgePoint(currentEdge, newVertices),
nullptr,
m,
vIndex) );
vIndex++;
}
}
qDebug() << " * Created edge points";
// Split halfedges
splitHalfEdges(newVertices, newHalfEdges);
qDebug() << " * Split halfedges";
hIndex = 2*numHalfEdges;
fIndex = 0;
// Create faces and remaining halfedges
for (k=0; k<numFaces; k++) {
currentEdge = faces[k].side;
n = faces[k].val;
for (m=0; m<n; m++) {
s = currentEdge->prev->index;
t = currentEdge->index;
// Side, Val, Index
newFaces.append(Face(nullptr,
4,
fIndex));
newFaces[fIndex].side = &newHalfEdges[ 2*t ];
// Target, Next, Prev, Twin, Poly, Index
newHalfEdges.append(HalfEdge( &newVertices[k],
nullptr,
&newHalfEdges[ 2*t ],
nullptr,
&newFaces[fIndex],
hIndex ));
newHalfEdges.append(HalfEdge( nullptr,
&newHalfEdges[2*s+1],
&newHalfEdges[hIndex],
nullptr,
&newFaces[fIndex],
hIndex+1 ));
newHalfEdges[hIndex].next = &newHalfEdges[hIndex+1];
newHalfEdges[hIndex+1].target = newHalfEdges[hIndex+1].next->twin->target;
newHalfEdges[2*s+1].next = &newHalfEdges[2*t];
newHalfEdges[2*s+1].prev = &newHalfEdges[hIndex+1];
newHalfEdges[2*s+1].polygon = &newFaces[fIndex];
newHalfEdges[2*t].next = &newHalfEdges[hIndex];
newHalfEdges[2*t].prev = &newHalfEdges[2*s+1];
newHalfEdges[2*t].polygon = &newFaces[fIndex];
if (m > 0) {
// Twins
newHalfEdges[hIndex+1].twin = &newHalfEdges[hIndex-2];
newHalfEdges[hIndex-2].twin = &newHalfEdges[hIndex+1];
}
// For edge points
newHalfEdges[2*t].target->out = &newHalfEdges[hIndex];
hIndex += 2;
fIndex++;
currentEdge = currentEdge->next;
}
newHalfEdges[hIndex-2*n+1].twin = &newHalfEdges[hIndex-2];
newHalfEdges[hIndex-2].twin = &newHalfEdges[hIndex-2*n+1];
// For face points
newVertices[k].out = &newHalfEdges[hIndex-1];
}
qDebug() << " * Created faces and remaining halfedges";
// For vertex points
for (k=0; k<numVerts; k++) {
newVertices[numFaces + k].out = &newHalfEdges[ 2*vertices[k].out->index ];
}
qDebug() << " * Completed!";
qDebug() << " # Vertices:" << newVertices.size();
qDebug() << " # HalfEdges:" << newHalfEdges.size();
qDebug() << " # Faces:" << newFaces.size();
computeLimitMesh(mesh);
computeQuadPatches(mesh);
}
// ---
QVector3D Mesh::vertexPoint(HalfEdge* firstEdge, QVector<Vertex>& newVertices) {
unsigned short k;
QVector3D sumStarPts, sumFacePts;
QVector3D vertexPt;
Vertex* currentVertex = firstEdge->twin->target;
unsigned int n = currentVertex->val;
sumStarPts = QVector3D();
sumFacePts = QVector3D();
HalfEdge* currentEdge = firstEdge;
// Catmull-Clark (also supporting initial meshes containing n-gons)
if (HalfEdge* boundaryEdge = vertOnBoundary(currentVertex)) {
if (boundaryEdge->twin->target->val == 2) {
// Interpolate corners
vertexPt = boundaryEdge->twin->target->coords;
}
else {
vertexPt = 1.0 * boundaryEdge->target->coords;
vertexPt += 6.0 * boundaryEdge->twin->target->coords;
vertexPt += 1.0 * boundaryEdge->prev->twin->target->coords;
vertexPt /= 8.0;
}
}
else {
for (k = 0; k < n; k++) {
sumStarPts += currentEdge->target->coords;
sumFacePts += newVertices[currentEdge->polygon->index].coords;
currentEdge = currentEdge->prev->twin;
}
vertexPt = ((n-2)*currentVertex->coords + sumStarPts/n + sumFacePts/n)/n;
}
return vertexPt;
}
QVector3D Mesh::edgePoint(HalfEdge* firstEdge, QVector<Vertex>& newVertices) {
QVector3D EdgePt = QVector3D();
HalfEdge* currentEdge = firstEdge;
// Catmull-Clark (also supporting initial meshes containing n-gons)
if (!currentEdge->polygon || !currentEdge->twin->polygon) {
EdgePt = 4.0 * currentEdge->target->coords;
EdgePt += 4.0 * currentEdge->twin->target->coords;
EdgePt /= 8.0;
}
else {
EdgePt = currentEdge->target->coords;
EdgePt += currentEdge->twin->target->coords;
EdgePt += newVertices[currentEdge->polygon->index].coords;
EdgePt += newVertices[currentEdge->twin->polygon->index].coords;
EdgePt /= 4.0;
}
return EdgePt;
}
QVector3D Mesh::facePoint(Face* f) {
QVector3D facePt;
HalfEdge* currentEdge = f->side;
for (unsigned int k = 0; k < f->val; k++) {
// General approach
facePt += 1.0f/float(f->val) * currentEdge->target->coords;
currentEdge = currentEdge->next;
}
return facePt;
}
// For Bilinear, Catmull-Clark and Loop
void Mesh::splitHalfEdges(QVector<Vertex>& newVertices, QVector<HalfEdge>& newHalfEdges) {
unsigned int k, m;
unsigned int vIndex;
HalfEdge* currentEdge;
vIndex = vertices.size() + faces.size();
for (k = 0; k < static_cast<unsigned int>(halfEdges.size()); k++) {
currentEdge = &halfEdges[k];
m = currentEdge->twin->index;
// Target, Next, Prev, Twin, Poly, Index
newHalfEdges.append(HalfEdge(nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
2*k));
newHalfEdges.append(HalfEdge(nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
2*k+1));
if (k < m) {
newHalfEdges[2*k].target = &newVertices[ vIndex ];
newHalfEdges[2*k+1].target = &newVertices[ faces.size() + currentEdge->target->index ];
vIndex++;
}
else {
newHalfEdges[2*k].target = newHalfEdges[2*m].target;
newHalfEdges[2*k+1].target = &newVertices[ faces.size() + currentEdge->target->index ];
// Assign Twins
newHalfEdges[2*k].twin = &newHalfEdges[2*m+1];
newHalfEdges[2*k+1].twin = &newHalfEdges[2*m];
newHalfEdges[2*m].twin = &newHalfEdges[2*k+1];
newHalfEdges[2*m+1].twin = &newHalfEdges[2*k];
// Boundary edges are added last when importing a mesh, so their index will always be higher than their twins.
if (!currentEdge->polygon) {
newHalfEdges[2*k].next = &newHalfEdges[2*k+1];
newHalfEdges[2*k+1].prev = &newHalfEdges[2*k];
if (currentEdge > currentEdge->next) {
m = currentEdge->next->index;
newHalfEdges[2*k+1].next = &newHalfEdges[2*m];
newHalfEdges[2*m].prev = &newHalfEdges[2*k+1];
}
if (currentEdge > currentEdge->prev) {
m = currentEdge->prev->index;
newHalfEdges[2*k].prev = &newHalfEdges[2*m+1];
newHalfEdges[2*m+1].next = &newHalfEdges[2*k];
}
}
}
}
// Note that Next, Prev and Poly are not yet assigned at this point.
}
// Computes the midpoint of a given (half)edge.
QVector3D computeHalfEdgeMidpoint(HalfEdge* edge) {
auto target = edge->target;
auto prevTarget = edge->twin->target;
return (target->coords + prevTarget->coords) / 2.0;
}
// Computes the midpoint of a face.
QVector3D computeFaceMidpoint(Face* face) {
HalfEdge* initialSide = face->side;
QVector3D coords = QVector3D();
HalfEdge* currentSide = initialSide->next;
coords += currentSide->target->coords;
while (currentSide != initialSide) {
currentSide = currentSide->next;
coords += currentSide->target->coords;
}
return coords / face->val;
}
// Computes wether the vertex is on a boundary or not.
bool isOnBoundary(Vertex* vertex) {
HalfEdge* initialEdge = vertex->out;
int outgoingEdgeCounter = 1;
HalfEdge* currentEdge = initialEdge->prev->twin;
for(;outgoingEdgeCounter < vertex->val; ++outgoingEdgeCounter) {
if (currentEdge->polygon == nullptr) {
return true;
}
currentEdge = currentEdge->prev->twin;
}
return false;
}
// Computes the sumparts of the p0 equation.
QVector<QVector3D> getOutgoingEdgeSumParts(Vertex* vertex) {
QVector<QVector3D> sumParts;
HalfEdge* initialEdge = vertex->out;
int outgoingEdgeCounter = 0;
HalfEdge* currentEdge = initialEdge;
for(;outgoingEdgeCounter < vertex->val; ++outgoingEdgeCounter) {
QVector3D mi = computeHalfEdgeMidpoint(currentEdge);
QVector3D ci = computeFaceMidpoint(currentEdge->polygon);
sumParts.push_back(mi + ci);
currentEdge = currentEdge->prev->twin;
}
return sumParts;
}
void Mesh::computeLimitMesh(Mesh &mesh) {
for(int i = 0; i < mesh.vertices.size(); ++i) {
Vertex& sourceVertex = mesh.vertices[i];
QVector3D vertexLimitPt = QVector3D();
QVector3D faceEdgeSum = QVector3D(0.0,0.0,0.0);
HalfEdge *initial = sourceVertex.out;
HalfEdge *current = initial;
// Check for boundary vertex.
if (HalfEdge* boundaryEdge = vertOnBoundary(&sourceVertex)) {
if (boundaryEdge->twin->target->val == 2) {
// Interpolate corners
vertexLimitPt = boundaryEdge->twin->target->coords;
} else {
// Apply 1 4 1 limit mask.
vertexLimitPt = 1.0 * boundaryEdge->target->coords;
vertexLimitPt += 4.0 * boundaryEdge->twin->target->coords;
vertexLimitPt += 1.0 * boundaryEdge->prev->twin->target->coords;
vertexLimitPt /= 6.0;
}
} else {
float n = (float) sourceVertex.val;
vertexLimitPt += (n-3) / (n+5) * sourceVertex.coords;
do {
QVector3D faceSum = QVector3D(0.0,0.0,0.0);
faceEdgeSum+= (current->target->coords + current->twin->target->coords) / 2; //Halfpoint of edge
HalfEdge *currentFaceEdge = current;
if (current->polygon != nullptr) { //Get midpoint of face
int v = current->polygon->val;
do {
faceSum+= currentFaceEdge->target->coords/v;
currentFaceEdge = currentFaceEdge->next;
} while (currentFaceEdge != current);
}
faceEdgeSum+= faceSum;
current = current->twin->next;
} while (current != initial);
faceEdgeSum *= (4/(n*(n+5)));
vertexLimitPt += faceEdgeSum;
}
mesh.vertices[i].limitCoords = vertexLimitPt;
}
mesh.extractAttributes();
}
QuadPatchWithNeighbourhood extractQuadPatchWithNeighbourhood(Face& face) {
QuadPatchWithNeighbourhood patch;
// F marks the face. s marks the side edge of F.
// p12 - p13 - p14 - p15
// | | | |
// p8 - p9 - p10 - p11
// | | F | |
// p4 - p5 s p6 - p7
// | | | |
// p0 - p1 - p2 - p3
// NOTE: The orientation of the patch is based on the orientation of the side s.
auto p5p6 = face.side;
auto p6p10 = face.side->next;
auto p10p9 = face.side->next->next;
auto p9p5 = face.side->prev;
// Bottom middle edge points
auto p1 = p5p6->twin->next->target->index;
auto p2 = p5p6->twin->prev->twin->target->index;
// Top middle edge points
auto p14 = p10p9->twin->next->target->index;
auto p13 = p10p9->twin->prev->twin->target->index;
// Right middle edge points
auto p7 = p6p10->twin->next->target->index;
auto p11 = p6p10->twin->prev->twin->target->index;
// Left middle edge points
auto p8 = p9p5->twin->next->target->index;
auto p4 = p9p5->twin->prev->twin->target->index;
// Corner points
auto p0 = p9p5->twin->prev->twin->next->target->index;
//auto p0 = p9p5->twin->prev->twin->next->target->index;
auto p3 = p5p6->twin->prev->twin->next->target->index;
auto p12 = p10p9->twin->prev->twin->next->target->index;
auto p15 = p6p10->twin->prev->twin->next->target->index;
// Bottom left vertex of face
auto p5 = face.side->twin->target->index;
// Bottom right vertex of face
auto p6 = face.side->target->index;
// Top left vertex of face
auto p9 = face.side->prev->twin->target->index;
// Top right vertex of face
auto p10 = face.side->next->target->index;
patch.vertIndices = {
p0, p1, p2, p3,
p4, p5, p6, p7,
p8, p9, p10, p11,
p12, p13, p14, p15,
};
return patch;
}
QuadPatch extractQuadPatch(Face& face) {
auto p5p6 = face.side;
auto p6p10 = face.side->next;
auto p10p9 = face.side->next->next;
auto p9p5 = face.side->prev;
auto patch = QuadPatch{};
// Store the quad as clockwise, with b0 at the top etc.
patch.vertIndices = {
p9p5->target->index,
p10p9->target->index,
p6p10->target->index,
p5p6->target->index
};
return patch;
}
// Checks if a face is regular or not.
// Basically walks the neighbourhood of the current face and checks if the neighbouring ones are quads as well.
bool isRegularFace(Face& face) {
if (face.val != 4) {
return false;
}
HalfEdge* currentSide = face.side;
do {
if (currentSide->twin->polygon == nullptr || currentSide->twin->polygon->val != 4)
return false;
if (currentSide->twin->next->twin->polygon == nullptr || currentSide->twin->next->twin->polygon->val != 4)
return false;
if (currentSide->target->val != 4)
return false;
currentSide = currentSide->next;
} while (face.side != currentSide);
return true;
}
// Grabs all the quad patches for tesselated drawing
void Mesh::computeQuadPatches(Mesh &mesh) {
mesh.bsplineTessPatches.clear();
mesh.bsplineTessPatches.reserve(mesh.faces.size());
mesh.pnQuadTessPatches.clear();
mesh.pnQuadTessPatches.reserve(mesh.faces.size());
for(int k = 0; k < mesh.faces.size(); ++k) {
auto face = mesh.faces[k];
if (face.val == 4) {
mesh.pnQuadTessPatches.push_back(extractQuadPatch(face));
}
if (isRegularFace(face))
mesh.bsplineTessPatches.push_back(extractQuadPatchWithNeighbourhood(face));
}
}