-
Notifications
You must be signed in to change notification settings - Fork 139
/
wire.cc
830 lines (712 loc) · 29.2 KB
/
wire.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
/*****************************************************************************
* CACTI 7.0
* SOFTWARE LICENSE AGREEMENT
* Copyright 2015 Hewlett-Packard Development Company, L.P.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
*
***************************************************************************/
#include "wire.h"
#include "cmath"
// use this constructor to calculate wire stats
Wire::Wire(
enum Wire_type wire_model,
double wl,
int n,
double w_s,
double s_s,
enum Wire_placement wp,
double resistivity,
/*TechnologyParameter::*/DeviceType *dt
):wt(wire_model), wire_length(wl*1e-6), nsense(n), w_scale(w_s), s_scale(s_s),
resistivity(resistivity), deviceType(dt)
{
wire_placement = wp;
min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio*g_tp.min_w_nmos_;
in_rise_time = 0;
out_rise_time = 0;
if (initialized != 1) {
cout << "Wire not initialized. Initializing it with default values\n";
Wire winit;
}
calculate_wire_stats();
// change everything back to seconds, microns, and Joules
repeater_spacing *= 1e6;
wire_length *= 1e6;
wire_width *= 1e6;
wire_spacing *= 1e6;
assert(wire_length > 0);
assert(power.readOp.dynamic > 0);
assert(power.readOp.leakage > 0);
assert(power.readOp.gate_leakage > 0);
}
// the following values are for peripheral global technology
// specified in the input config file
Component Wire::global;
Component Wire::global_5;
Component Wire::global_10;
Component Wire::global_20;
Component Wire::global_30;
Component Wire::low_swing;
int Wire::initialized;
double Wire::wire_width_init;
double Wire::wire_spacing_init;
Wire::Wire(double w_s, double s_s, enum Wire_placement wp, double resis, /*TechnologyParameter::*/DeviceType *dt)
{
w_scale = w_s;
s_scale = s_s;
deviceType = dt;
wire_placement = wp;
resistivity = resis;
min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio * g_tp.min_w_nmos_;
in_rise_time = 0;
out_rise_time = 0;
switch (wire_placement)
{
case outside_mat: wire_width = g_tp.wire_outside_mat.pitch/2; break;
case inside_mat : wire_width = g_tp.wire_inside_mat.pitch/2; break;
default: wire_width = g_tp.wire_local.pitch/2; break;
}
wire_spacing = wire_width;
wire_width *= (w_scale * 1e-6/2) /* (m) */;
wire_spacing *= (s_scale * 1e-6/2) /* (m) */;
initialized = 1;
init_wire();
wire_width_init = wire_width;
wire_spacing_init = wire_spacing;
assert(power.readOp.dynamic > 0);
assert(power.readOp.leakage > 0);
assert(power.readOp.gate_leakage > 0);
}
Wire::~Wire()
{
}
void
Wire::calculate_wire_stats()
{
if (wire_placement == outside_mat) {
wire_width = g_tp.wire_outside_mat.pitch/2;
}
else if (wire_placement == inside_mat) {
wire_width = g_tp.wire_inside_mat.pitch/2;
}
else {
wire_width = g_tp.wire_local.pitch/2;
}
wire_spacing = wire_width;
wire_width *= (w_scale * 1e-6/2) /* (m) */;
wire_spacing *= (s_scale * 1e-6/2) /* (m) */;
if (wt != Low_swing) {
// delay_optimal_wire();
if (wt == Global) {
delay = global.delay * wire_length;
power.readOp.dynamic = global.power.readOp.dynamic * wire_length;
power.readOp.leakage = global.power.readOp.leakage * wire_length;
power.readOp.gate_leakage = global.power.readOp.gate_leakage * wire_length;
repeater_spacing = global.area.w;
repeater_size = global.area.h;
area.set_area((wire_length/repeater_spacing) *
compute_gate_area(INV, 1, min_w_pmos * repeater_size,
g_tp.min_w_nmos_ * repeater_size, g_tp.cell_h_def));
}
else if (wt == Global_5) {
delay = global_5.delay * wire_length;
power.readOp.dynamic = global_5.power.readOp.dynamic * wire_length;
power.readOp.leakage = global_5.power.readOp.leakage * wire_length;
power.readOp.gate_leakage = global_5.power.readOp.gate_leakage * wire_length;
repeater_spacing = global_5.area.w;
repeater_size = global_5.area.h;
area.set_area((wire_length/repeater_spacing) *
compute_gate_area(INV, 1, min_w_pmos * repeater_size,
g_tp.min_w_nmos_ * repeater_size, g_tp.cell_h_def));
}
else if (wt == Global_10) {
delay = global_10.delay * wire_length;
power.readOp.dynamic = global_10.power.readOp.dynamic * wire_length;
power.readOp.leakage = global_10.power.readOp.leakage * wire_length;
power.readOp.gate_leakage = global_10.power.readOp.gate_leakage * wire_length;
repeater_spacing = global_10.area.w;
repeater_size = global_10.area.h;
area.set_area((wire_length/repeater_spacing) *
compute_gate_area(INV, 1, min_w_pmos * repeater_size,
g_tp.min_w_nmos_ * repeater_size, g_tp.cell_h_def));
}
else if (wt == Global_20) {
delay = global_20.delay * wire_length;
power.readOp.dynamic = global_20.power.readOp.dynamic * wire_length;
power.readOp.leakage = global_20.power.readOp.leakage * wire_length;
power.readOp.gate_leakage = global_20.power.readOp.gate_leakage * wire_length;
repeater_spacing = global_20.area.w;
repeater_size = global_20.area.h;
area.set_area((wire_length/repeater_spacing) *
compute_gate_area(INV, 1, min_w_pmos * repeater_size,
g_tp.min_w_nmos_ * repeater_size, g_tp.cell_h_def));
}
else if (wt == Global_30) {
delay = global_30.delay * wire_length;
power.readOp.dynamic = global_30.power.readOp.dynamic * wire_length;
power.readOp.leakage = global_30.power.readOp.leakage * wire_length;
power.readOp.gate_leakage = global_30.power.readOp.gate_leakage * wire_length;
repeater_spacing = global_30.area.w;
repeater_size = global_30.area.h;
area.set_area((wire_length/repeater_spacing) *
compute_gate_area(INV, 1, min_w_pmos * repeater_size,
g_tp.min_w_nmos_ * repeater_size, g_tp.cell_h_def));
}
out_rise_time = delay*repeater_spacing/deviceType->Vth;
}
else if (wt == Low_swing) {
low_swing_model ();
repeater_spacing = wire_length;
repeater_size = 1;
}
else {
assert(0);
}
}
/*
* The fall time of an input signal to the first stage of a circuit is
* assumed to be same as the fall time of the output signal of two
* inverters connected in series (refer: CACTI 1 Technical report,
* section 6.1.3)
*/
double
Wire::signal_fall_time ()
{
/* rise time of inverter 1's output */
double rt;
/* fall time of inverter 2's output */
double ft;
double timeconst;
timeconst = (drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
gate_C(min_w_pmos + g_tp.min_w_nmos_, 0)) *
tr_R_on(min_w_pmos, PCH, 1);
rt = horowitz (0, timeconst, deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, FALL) / (deviceType->Vdd - deviceType->Vth);
timeconst = (drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
gate_C(min_w_pmos + g_tp.min_w_nmos_, 0)) *
tr_R_on(g_tp.min_w_nmos_, NCH, 1);
ft = horowitz (rt, timeconst, deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, RISE) / deviceType->Vth;
return ft;
}
double Wire::signal_rise_time ()
{
/* rise time of inverter 1's output */
double ft;
/* fall time of inverter 2's output */
double rt;
double timeconst;
timeconst = (drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
gate_C(min_w_pmos + g_tp.min_w_nmos_, 0)) *
tr_R_on(g_tp.min_w_nmos_, NCH, 1);
rt = horowitz (0, timeconst, deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, RISE) / deviceType->Vth;
timeconst = (drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
gate_C(min_w_pmos + g_tp.min_w_nmos_, 0)) *
tr_R_on(min_w_pmos, PCH, 1);
ft = horowitz (rt, timeconst, deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, FALL) / (deviceType->Vdd - deviceType->Vth);
return ft; //sec
}
/* Wire resistance and capacitance calculations
* wire width
*
* /__/
* | |
* | | height = ASPECT_RATIO*wire width (ASPECT_RATIO = 2.2, ref: ITRS)
* |__|/
*
* spacing between wires in same level = wire width
*
*/
double Wire::wire_cap (double len /* in m */, bool call_from_outside)
{
//TODO: this should be consistent with the wire_res in technology file
double sidewall, adj, tot_cap;
double wire_height;
double epsilon0 = 8.8542e-12;
double aspect_ratio, horiz_dielectric_constant, vert_dielectric_constant, miller_value,ild_thickness;
switch (wire_placement)
{
case outside_mat:
{
aspect_ratio = g_tp.wire_outside_mat.aspect_ratio;
horiz_dielectric_constant = g_tp.wire_outside_mat.horiz_dielectric_constant;
vert_dielectric_constant = g_tp.wire_outside_mat.vert_dielectric_constant;
miller_value = g_tp.wire_outside_mat.miller_value;
ild_thickness = g_tp.wire_outside_mat.ild_thickness;
break;
}
case inside_mat :
{
aspect_ratio = g_tp.wire_inside_mat.aspect_ratio;
horiz_dielectric_constant = g_tp.wire_inside_mat.horiz_dielectric_constant;
vert_dielectric_constant = g_tp.wire_inside_mat.vert_dielectric_constant;
miller_value = g_tp.wire_inside_mat.miller_value;
ild_thickness = g_tp.wire_inside_mat.ild_thickness;
break;
}
default:
{
aspect_ratio = g_tp.wire_local.aspect_ratio;
horiz_dielectric_constant = g_tp.wire_local.horiz_dielectric_constant;
vert_dielectric_constant = g_tp.wire_local.vert_dielectric_constant;
miller_value = g_tp.wire_local.miller_value;
ild_thickness = g_tp.wire_local.ild_thickness;
break;
}
}
if (call_from_outside)
{
wire_width *= 1e-6;
wire_spacing *= 1e-6;
}
wire_height = wire_width/w_scale*aspect_ratio;
/*
* assuming height does not change. wire_width = width_original*w_scale
* So wire_height does not change as wire width increases
*/
// capacitance between wires in the same level
// sidewall = 2*miller_value * horiz_dielectric_constant * (wire_height/wire_spacing)
// * epsilon0;
sidewall = miller_value * horiz_dielectric_constant * (wire_height/wire_spacing)
* epsilon0;
// capacitance between wires in adjacent levels
//adj = miller_value * vert_dielectric_constant *w_scale * epsilon0;
//adj = 2*vert_dielectric_constant *wire_width/(ild_thickness*1e-6) * epsilon0;
adj = miller_value *vert_dielectric_constant *wire_width/(ild_thickness*1e-6) * epsilon0;
//Change ild_thickness from micron to M
//tot_cap = (sidewall + adj + (deviceType->C_fringe * 1e6)); //F/m
tot_cap = (sidewall + adj + (g_tp.fringe_cap * 1e6)); //F/m
if (call_from_outside)
{
wire_width *= 1e6;
wire_spacing *= 1e6;
}
return (tot_cap*len); // (F)
}
double
Wire::wire_res (double len /*(in m)*/)
{
double aspect_ratio,alpha_scatter =1.05, dishing_thickness=0, barrier_thickness=0;
//TODO: this should be consistent with the wire_res in technology file
//The whole computation should be consistent with the wire_res in technology.cc too!
switch (wire_placement)
{
case outside_mat:
{
aspect_ratio = g_tp.wire_outside_mat.aspect_ratio;
break;
}
case inside_mat :
{
aspect_ratio = g_tp.wire_inside_mat.aspect_ratio;
break;
}
default:
{
aspect_ratio = g_tp.wire_local.aspect_ratio;
break;
}
}
return (alpha_scatter * resistivity * 1e-6 * len/((aspect_ratio*wire_width/w_scale-dishing_thickness - barrier_thickness)*
(wire_width-2*barrier_thickness)));
}
/*
* Calculates the delay, power and area of the transmitter circuit.
*
* The transmitter delay is the sum of nand gate delay, inverter delay
* low swing nmos delay, and the wire delay
* (ref: Technical report 6)
*/
void
Wire::low_swing_model()
{
double len = wire_length;
double beta = pmos_to_nmos_sz_ratio();
double inputrise = (in_rise_time == 0) ? signal_rise_time() : in_rise_time;
/* Final nmos low swing driver size calculation:
* Try to size the driver such that the delay
* is less than 8FO4.
* If the driver size is greater than
* the max allowable size, assume max size for the driver.
* In either case, recalculate the delay using
* the final driver size assuming slow input with
* finite rise time instead of ideal step input
*
* (ref: Technical report 6)
*/
double cwire = wire_cap(len); /* load capacitance */
double rwire = wire_res(len);
#define RES_ADJ (8.6) // Increase in resistance due to low driving vol.
double driver_res = (-8*g_tp.FO4/(log(0.5) * cwire))/RES_ADJ;
double nsize = R_to_w(driver_res, NCH);
nsize = MIN(nsize, g_tp.max_w_nmos_);
nsize = MAX(nsize, g_tp.min_w_nmos_);
if(rwire*cwire > 8*g_tp.FO4)
{
nsize = g_tp.max_w_nmos_;
}
// size the inverter appropriately to minimize the transmitter delay
// Note - In order to minimize leakage, we are not adding a set of inverters to
// bring down delay. Instead, we are sizing the single gate
// based on the logical effort.
double st_eff = sqrt((2+beta/1+beta)*gate_C(nsize, 0)/(gate_C(2*g_tp.min_w_nmos_, 0)
+ gate_C(2*min_w_pmos, 0)));
double req_cin = ((2+beta/1+beta)*gate_C(nsize, 0))/st_eff;
double inv_size = req_cin/(gate_C(min_w_pmos, 0) + gate_C(g_tp.min_w_nmos_, 0));
inv_size = MAX(inv_size, 1);
/* nand gate delay */
double res_eq = (2 * tr_R_on(g_tp.min_w_nmos_, NCH, 1));
double cap_eq = 2 * drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
drain_C_(2*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
gate_C(inv_size*g_tp.min_w_nmos_, 0) +
gate_C(inv_size*min_w_pmos, 0);
double timeconst = res_eq * cap_eq;
delay = horowitz(inputrise, timeconst, deviceType->Vth/deviceType->Vdd,
deviceType->Vth/deviceType->Vdd, RISE);
double temp_power = cap_eq*deviceType->Vdd*deviceType->Vdd;
inputrise = delay / (deviceType->Vdd - deviceType->Vth); /* for the next stage */
/* Inverter delay:
* The load capacitance of this inv depends on
* the gate capacitance of the final stage nmos
* transistor which in turn depends on nsize
*/
res_eq = tr_R_on(inv_size*min_w_pmos, PCH, 1);
cap_eq = drain_C_(inv_size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
drain_C_(inv_size*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
gate_C(nsize, 0);
timeconst = res_eq * cap_eq;
delay += horowitz(inputrise, timeconst, deviceType->Vth/deviceType->Vdd,
deviceType->Vth/deviceType->Vdd, FALL);
temp_power += cap_eq*deviceType->Vdd*deviceType->Vdd;
transmitter.delay = delay;
transmitter.power.readOp.dynamic = temp_power*2; /* since it is a diff. model*/
transmitter.power.readOp.leakage = deviceType->Vdd *
(4 * cmos_Isub_leakage(g_tp.min_w_nmos_, min_w_pmos, 2, nand) +
4 * cmos_Isub_leakage(g_tp.min_w_nmos_, min_w_pmos, 1, inv));
transmitter.power.readOp.gate_leakage = deviceType->Vdd *
(4 * cmos_Ig_leakage(g_tp.min_w_nmos_, min_w_pmos, 2, nand) +
4 * cmos_Ig_leakage(g_tp.min_w_nmos_, min_w_pmos, 1, inv));
inputrise = delay / deviceType->Vth;
/* nmos delay + wire delay */
cap_eq = cwire + drain_C_(nsize, NCH, 1, 1, g_tp.cell_h_def)*2 +
nsense * sense_amp_input_cap(); //+receiver cap
/*
* NOTE: nmos is used as both pull up and pull down transistor
* in the transmitter. This is because for low voltage swing, drive
* resistance of nmos is less than pmos
* (for a detailed graph ref: On-Chip Wires: Scaling and Efficiency)
*/
timeconst = (tr_R_on(nsize, NCH, 1)*RES_ADJ) * (cwire +
drain_C_(nsize, NCH, 1, 1, g_tp.cell_h_def)*2) +
rwire*cwire/2 +
(tr_R_on(nsize, NCH, 1)*RES_ADJ + rwire) *
nsense * sense_amp_input_cap();
/*
* since we are pre-equalizing and overdriving the low
* swing wires, the net time constant is less
* than the actual value
*/
delay += horowitz(inputrise, timeconst, deviceType->Vth/deviceType->Vdd, .25, 0);
#define VOL_SWING .1
temp_power += cap_eq*VOL_SWING*.400; /* .4v is the over drive voltage */
temp_power *= 2; /* differential wire */
l_wire.delay = delay - transmitter.delay;
l_wire.power.readOp.dynamic = temp_power - transmitter.power.readOp.dynamic;
l_wire.power.readOp.leakage = deviceType->Vdd*
(4* cmos_Isub_leakage(nsize, 0, 1, nmos));
l_wire.power.readOp.gate_leakage = deviceType->Vdd*
(4* cmos_Ig_leakage(nsize, 0, 1, nmos));
//double rt = horowitz(inputrise, timeconst, deviceType->Vth/deviceType->Vdd,
// deviceType->Vth/deviceType->Vdd, RISE)/deviceType->Vth;
delay += g_tp.sense_delay;
sense_amp.delay = g_tp.sense_delay;
out_rise_time = g_tp.sense_delay/(deviceType->Vth);
sense_amp.power.readOp.dynamic = g_tp.sense_dy_power;
sense_amp.power.readOp.leakage = 0; //FIXME
sense_amp.power.readOp.gate_leakage = 0;
power.readOp.dynamic = temp_power + sense_amp.power.readOp.dynamic;
power.readOp.leakage = transmitter.power.readOp.leakage +
l_wire.power.readOp.leakage +
sense_amp.power.readOp.leakage;
power.readOp.gate_leakage = transmitter.power.readOp.gate_leakage +
l_wire.power.readOp.gate_leakage +
sense_amp.power.readOp.gate_leakage;
}
double
Wire::sense_amp_input_cap()
{
return drain_C_(g_tp.w_iso, PCH, 1, 1, g_tp.cell_h_def) +
gate_C(g_tp.w_sense_en + g_tp.w_sense_n, 0) +
drain_C_(g_tp.w_sense_n, NCH, 1, 1, g_tp.cell_h_def) +
drain_C_(g_tp.w_sense_p, PCH, 1, 1, g_tp.cell_h_def);
}
void Wire::delay_optimal_wire ()
{
double len = wire_length;
//double min_wire_width = wire_width; //m
double beta = pmos_to_nmos_sz_ratio();
double switching = 0; // switching energy
double short_ckt = 0; // short-circuit energy
double tc = 0; // time constant
// input cap of min sized driver
double input_cap = gate_C(g_tp.min_w_nmos_ + min_w_pmos, 0);
// output parasitic capacitance of
// the min. sized driver
double out_cap = drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def);
// drive resistance
double out_res = (tr_R_on(g_tp.min_w_nmos_, NCH, 1) +
tr_R_on(min_w_pmos, PCH, 1))/2;
double wr = wire_res(len); //ohm
// wire cap /m
double wc = wire_cap(len);
// size the repeater such that the delay of the wire is minimum
double repeater_scaling = sqrt(out_res*wc/(wr*input_cap)); // len will cancel
// calc the optimum spacing between the repeaters (m)
repeater_spacing = sqrt(2 * out_res * (out_cap + input_cap)/
((wr/len)*(wc/len)));
repeater_size = repeater_scaling;
switching = (repeater_scaling * (input_cap + out_cap) +
repeater_spacing * (wc/len)) * deviceType->Vdd * deviceType->Vdd;
tc = out_res * (input_cap + out_cap) +
out_res * wc/len * repeater_spacing/repeater_scaling +
wr/len * repeater_spacing * input_cap * repeater_scaling +
0.5 * (wr/len) * (wc/len)* repeater_spacing * repeater_spacing;
delay = 0.693 * tc * len/repeater_spacing;
#define Ishort_ckt 65e-6 /* across all tech Ref:Banerjee et al. {IEEE TED} */
short_ckt = deviceType->Vdd * g_tp.min_w_nmos_ * Ishort_ckt * 1.0986 *
repeater_scaling * tc;
area.set_area((len/repeater_spacing) *
compute_gate_area(INV, 1, min_w_pmos * repeater_scaling,
g_tp.min_w_nmos_ * repeater_scaling, g_tp.cell_h_def));
power.readOp.dynamic = ((len/repeater_spacing)*(switching + short_ckt));
power.readOp.leakage = ((len/repeater_spacing)*
deviceType->Vdd*
cmos_Isub_leakage(g_tp.min_w_nmos_*repeater_scaling, beta*g_tp.min_w_nmos_*repeater_scaling, 1, inv));
power.readOp.gate_leakage = ((len/repeater_spacing)*
deviceType->Vdd*
cmos_Ig_leakage(g_tp.min_w_nmos_*repeater_scaling, beta*g_tp.min_w_nmos_*repeater_scaling, 1, inv));
}
// calculate power/delay values for wires with suboptimal repeater sizing/spacing
void
Wire::init_wire(){
wire_length = 1;
delay_optimal_wire();
double sp, si;
powerDef pow;
si = repeater_size;
sp = repeater_spacing;
sp *= 1e6; // in microns
double i, j, del;
repeated_wire.push_back(Component());
for (j=sp; j < 4*sp; j+=100) {
for (i = si; i > 1; i--) {
pow = wire_model(j*1e-6, i, &del);
if (j == sp && i == si) {
global.delay = del;
global.power = pow;
global.area.h = si;
global.area.w = sp*1e-6; // m
}
// cout << "Repeater size - "<< i <<
// " Repeater spacing - " << j <<
// " Delay - " << del <<
// " PowerD - " << pow.readOp.dynamic <<
// " PowerL - " << pow.readOp.leakage <<endl;
repeated_wire.back().delay = del;
repeated_wire.back().power.readOp = pow.readOp;
repeated_wire.back().area.w = j*1e-6; //m
repeated_wire.back().area.h = i;
repeated_wire.push_back(Component());
}
}
repeated_wire.pop_back();
update_fullswing();
Wire *l_wire = new Wire(Low_swing, 0.001/* 1 mm*/, 1);
low_swing.delay = l_wire->delay;
low_swing.power = l_wire->power;
delete l_wire;
}
void Wire::update_fullswing()
{
list<Component>::iterator citer;
double del[4];
del[3] = this->global.delay + this->global.delay*.3;
del[2] = global.delay + global.delay*.2;
del[1] = global.delay + global.delay*.1;
del[0] = global.delay + global.delay*.05;
double threshold;
double ncost;
double cost;
int i = 4;
while (i>0) {
threshold = del[i-1];
cost = BIGNUM;
for (citer = repeated_wire.begin(); citer != repeated_wire.end(); citer++)
{
if (citer->delay > threshold) {
citer = repeated_wire.erase(citer);
citer --;
}
else {
ncost = citer->power.readOp.dynamic/global.power.readOp.dynamic +
citer->power.readOp.leakage/global.power.readOp.leakage;
if(ncost < cost)
{
cost = ncost;
if (i == 4) {
global_30.delay = citer->delay;
global_30.power = citer->power;
global_30.area = citer->area;
}
else if (i==3) {
global_20.delay = citer->delay;
global_20.power = citer->power;
global_20.area = citer->area;
}
else if(i==2) {
global_10.delay = citer->delay;
global_10.power = citer->power;
global_10.area = citer->area;
}
else if(i==1) {
global_5.delay = citer->delay;
global_5.power = citer->power;
global_5.area = citer->area;
}
}
}
}
i--;
}
}
powerDef Wire::wire_model (double space, double size, double *delay)
{
powerDef ptemp;
double len = 1;
//double min_wire_width = wire_width; //m
double beta = pmos_to_nmos_sz_ratio();
// switching energy
double switching = 0;
// short-circuit energy
double short_ckt = 0;
// time constant
double tc = 0;
// input cap of min sized driver
double input_cap = gate_C (g_tp.min_w_nmos_ +
min_w_pmos, 0);
// output parasitic capacitance of
// the min. sized driver
double out_cap = drain_C_(min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def);
// drive resistance
double out_res = (tr_R_on(g_tp.min_w_nmos_, NCH, 1) +
tr_R_on(min_w_pmos, PCH, 1))/2;
double wr = wire_res(len); //ohm
// wire cap /m
double wc = wire_cap(len);
repeater_spacing = space;
repeater_size = size;
switching = (repeater_size * (input_cap + out_cap) +
repeater_spacing * (wc/len)) * deviceType->Vdd * deviceType->Vdd;
tc = out_res * (input_cap + out_cap) +
out_res * wc/len * repeater_spacing/repeater_size +
wr/len * repeater_spacing * out_cap * repeater_size +
0.5 * (wr/len) * (wc/len)* repeater_spacing * repeater_spacing;
*delay = 0.693 * tc * len/repeater_spacing;
#define Ishort_ckt 65e-6 /* across all tech Ref:Banerjee et al. {IEEE TED} */
short_ckt = deviceType->Vdd * g_tp.min_w_nmos_ * Ishort_ckt * 1.0986 *
repeater_size * tc;
ptemp.readOp.dynamic = ((len/repeater_spacing)*(switching + short_ckt));
ptemp.readOp.leakage = ((len/repeater_spacing)*
deviceType->Vdd*
cmos_Isub_leakage(g_tp.min_w_nmos_*repeater_size, beta*g_tp.min_w_nmos_*repeater_size, 1, inv));
ptemp.readOp.gate_leakage = ((len/repeater_spacing)*
deviceType->Vdd*
cmos_Ig_leakage(g_tp.min_w_nmos_*repeater_size, beta*g_tp.min_w_nmos_*repeater_size, 1, inv));
return ptemp;
}
void
Wire::print_wire()
{
cout << "\nWire Properties:\n\n";
cout << " Delay Optimal\n\tRepeater size - "<< global.area.h <<
" \n\tRepeater spacing - " << global.area.w*1e3 << " (mm)"
" \n\tDelay - " << global.delay*1e6 << " (ns/mm)"
" \n\tPowerD - " << global.power.readOp.dynamic *1e6<< " (nJ/mm)"
" \n\tPowerL - " << global.power.readOp.leakage << " (mW/mm)"
" \n\tPowerLgate - " << global.power.readOp.gate_leakage << " (mW/mm)\n";
cout << "\tWire width - " <<wire_width_init*1e6 << " microns\n";
cout << "\tWire spacing - " <<wire_spacing_init*1e6 << " microns\n";
cout <<endl;
cout << " 5% Overhead\n\tRepeater size - "<< global_5.area.h <<
" \n\tRepeater spacing - " << global_5.area.w*1e3 << " (mm)"
" \n\tDelay - " << global_5.delay *1e6<< " (ns/mm)"
" \n\tPowerD - " << global_5.power.readOp.dynamic *1e6<< " (nJ/mm)"
" \n\tPowerL - " << global_5.power.readOp.leakage << " (mW/mm)"
" \n\tPowerLgate - " << global_5.power.readOp.gate_leakage << " (mW/mm)\n";
cout << "\tWire width - " <<wire_width_init*1e6 << " microns\n";
cout << "\tWire spacing - " <<wire_spacing_init*1e6 << " microns\n";
cout <<endl;
cout << " 10% Overhead\n\tRepeater size - "<< global_10.area.h <<
" \n\tRepeater spacing - " << global_10.area.w*1e3 << " (mm)"
" \n\tDelay - " << global_10.delay *1e6<< " (ns/mm)"
" \n\tPowerD - " << global_10.power.readOp.dynamic *1e6<< " (nJ/mm)"
" \n\tPowerL - " << global_10.power.readOp.leakage << " (mW/mm)"
" \n\tPowerLgate - " << global_10.power.readOp.gate_leakage << " (mW/mm)\n";
cout << "\tWire width - " <<wire_width_init*1e6 << " microns\n";
cout << "\tWire spacing - " <<wire_spacing_init*1e6 << " microns\n";
cout <<endl;
cout << " 20% Overhead\n\tRepeater size - "<< global_20.area.h <<
" \n\tRepeater spacing - " << global_20.area.w*1e3 << " (mm)"
" \n\tDelay - " << global_20.delay *1e6<< " (ns/mm)"
" \n\tPowerD - " << global_20.power.readOp.dynamic *1e6<< " (nJ/mm)"
" \n\tPowerL - " << global_20.power.readOp.leakage << " (mW/mm)"
" \n\tPowerLgate - " << global_20.power.readOp.gate_leakage << " (mW/mm)\n";
cout << "\tWire width - " <<wire_width_init*1e6 << " microns\n";
cout << "\tWire spacing - " <<wire_spacing_init*1e6 << " microns\n";
cout <<endl;
cout << " 30% Overhead\n\tRepeater size - "<< global_30.area.h <<
" \n\tRepeater spacing - " << global_30.area.w*1e3 << " (mm)"
" \n\tDelay - " << global_30.delay *1e6<< " (ns/mm)"
" \n\tPowerD - " << global_30.power.readOp.dynamic *1e6<< " (nJ/mm)"
" \n\tPowerL - " << global_30.power.readOp.leakage << " (mW/mm)"
" \n\tPowerLgate - " << global_30.power.readOp.gate_leakage << " (mW/mm)\n";
cout << "\tWire width - " <<wire_width_init*1e6 << " microns\n";
cout << "\tWire spacing - " <<wire_spacing_init*1e6 << " microns\n";
cout <<endl;
cout << " Low-swing wire (1 mm) - Note: Unlike repeated wires, \n\tdelay and power "
"values of low-swing wires do not\n\thave a linear relationship with length." <<
" \n\tdelay - " << low_swing.delay *1e9<< " (ns)"
" \n\tpowerD - " << low_swing.power.readOp.dynamic *1e9<< " (nJ)"
" \n\tPowerL - " << low_swing.power.readOp.leakage << " (mW)"
" \n\tPowerLgate - " << low_swing.power.readOp.gate_leakage << " (mW)\n";
cout << "\tWire width - " <<wire_width_init * 2 /* differential */<< " microns\n";
cout << "\tWire spacing - " <<wire_spacing_init * 2 /* differential */<< " microns\n";
cout <<endl;
cout <<endl;
}