-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathProTranslator_main.py
226 lines (197 loc) · 9.33 KB
/
ProTranslator_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import torch.nn as nn
from model import ProTranslatorModel
from options import model_config, data_loading
from file_loader import FileLoader
from torch.utils.data import DataLoader
from utils import init_weights, EarlyStopping, compute_roc, vec2classes
import utils
from tqdm import tqdm
import numpy as np
import pandas as pd
from torch.utils.data import ConcatDataset
import torchvision.transforms as transforms
from torch import squeeze
import pickle
import collections
class ProTranslator:
def __init__(self, model_config):
self.loss_func = torch.nn.BCELoss()
self.model = ProTranslatorModel.ProTranslatorModel(input_nc=model_config.input_nc,
in_nc=model_config.in_nc,
max_kernels=model_config.max_kernels,
hidden_dim=model_config.hidden_dim,
seqL=model_config.max_len,
emb_dim=model_config.emb_dim)
if len(model_config.gpu_ids) > 0:
self.model = self.model.cuda()
init_weights(self.model, init_type='xavier')
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=model_config.lr)
def backward_model(self, input_seq, emb_tensor, label):
preds = self.model(input_seq, emb_tensor)
self.loss = self.loss_func(preds, label)
self.optimizer.zero_grad()
self.loss.backward()
self.optimizer.step()
class Dataset(object):
def __getitem__(self, index):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
def __add__(self, other):
return ConcatDataset([self, other])
def one_hot(seq, start=0, max_len=2000):
AALETTER = [
'A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I',
'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V']
AAINDEX = dict()
for i in range(len(AALETTER)):
AAINDEX[AALETTER[i]] = i + 1
onehot = np.zeros((21, max_len), dtype=np.int32)
l = min(max_len, len(seq))
for i in range(start, start + l):
onehot[AAINDEX.get(seq[i - start], 0), i] = 1
onehot[0, 0:start] = 1
onehot[0, start + l:] = 1
return onehot
class proteinData(Dataset):
def __init__(self, data_df, terms, prot_vector, prot_description, gpu_ids='0'):
self.pSeq = []
self.label = []
self.vector = []
self.description = []
self.gpu_ids = gpu_ids
sequences = list(data_df['sequences'])
prot_ids = list(data_df['proteins'])
annots = list(data_df['annotations'])
for i in range(len(annots)):
annots[i] = list(annots[i])
for i in range(data_df.shape[0]):
seqT, annT, protT = sequences[i], annots[i], prot_ids[i]
labelT = np.zeros([len(terms), 1])
for j in range(len(annT)):
if annT[j] in terms.keys():
labelT[terms[annT[j]]] = 1
self.pSeq.append(one_hot(seqT))
self.label.append(labelT)
self.vector.append(prot_vector[protT])
self.description.append(prot_description[protT])
def __getitem__(self, item):
in_seq, label = transforms.ToTensor()(self.pSeq[item]), transforms.ToTensor()(self.label[item])
description = torch.from_numpy(self.description[item])
vector = torch.from_numpy(self.vector[item])
if len(self.gpu_ids) > 0:
return {'seq': squeeze(in_seq).float().cuda(),
'description':squeeze(description).float().cuda(),
'vector':squeeze(vector).float().cuda(),
'label': squeeze(label).float().cuda()}
else:
return {'seq': squeeze(in_seq).float(),
'description': squeeze(description).float(),
'vector': squeeze(vector).float(),
'label': squeeze(label).float()}
def __len__(self):
return len(self.pSeq)
def emb2tensor(brief_embeddings, full_embeddings, terms, text_mode='brief'):
ann_id = list(terms.keys())
print('Text mode is {}'.format(text_mode))
if text_mode == 'brief':
embedding_array = np.zeros((len(ann_id), np.size(brief_embeddings[ann_id[0]], 1)))
elif text_mode == 'full':
embedding_array = np.zeros((len(ann_id), np.size(full_embeddings[ann_id[0]], 1)))
elif text_mode == 'both':
embedding_array = np.zeros((len(ann_id), np.size(full_embeddings[ann_id[0]], 1) + np.size(brief_embeddings[ann_id[0]], 1)))
for t_id in ann_id:
if text_mode == 'brief':
t_brief = brief_embeddings[t_id].reshape([1, -1])
t_brief = t_brief / np.sqrt(np.sum(np.power(t_brief, 2), axis=1))
embedding_array[terms[t_id], :] = t_brief
elif text_mode == 'full':
t_full = full_embeddings[t_id].reshape([1, -1])
t_full = t_full / np.sqrt(np.sum(np.power(t_full, 2), axis=1))
embedding_array[terms[t_id], :] = t_full
elif text_mode == 'both':
t_full = full_embeddings[t_id].reshape([1, -1])
t_brief = brief_embeddings[t_id].reshape([1, -1])
t = np.hstack((t_brief, t_full))
t = t / np.sqrt(np.sum(np.power(t, 2), axis=1))
embedding_array[terms[t_id], :] = t
rank_e = np.linalg.matrix_rank(embedding_array)
print('Rank of your embeddings is {}'.format(rank_e))
embedding_array = torch.from_numpy(embedding_array)
return embedding_array
def save_obj(obj, name):
with open(name, 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_obj(name):
with open(name, 'rb') as f:
return pickle.load(f)
def main():
model_path = "/home/hwxu/proteinZSL/deepTNPathway/results/goa_human_cat_for_pathway_predict_pathway_deeptnfsl.pth"
model_predict = torch.load(model_path)
save_T = 0.95
dataset = 'kegg_remove_overlap'
text_mode = 'full'
gpu_ids = '0'
batch_size = 32
logger = utils.get_logger(dataset='{}_{}'.format(dataset, text_mode))
print('Loading dataset')
dataset_path = '../data/{}/dataset.pkl'.format(dataset)
terms_path = '../data/{}/terms.pkl'.format(dataset)
emb_path = '../data/{}/{}_{}_embeddings_second2last_PubmedFull.pkl'.format(dataset, dataset, text_mode)
terms_auroc_path = 'results/terms_auroc.pkl'.format()
infer_data = pd.read_pickle(dataset_path)
terms = pd.read_pickle(terms_path)
embeddings = pd.read_pickle(emb_path)
prot_vector = load_obj('../data/{}/prot_vector.pkl'.format(dataset))
prot_description = load_obj('../data/{}/prot_description.pkl'.format(dataset))
term_list = list(terms['terms'])
infer_terms = {term_list[i]: i for i in range(len(term_list))}
inference_dataset = proteinData(infer_data, infer_terms, prot_vector=prot_vector, prot_description=prot_description, gpu_ids=gpu_ids)
inference_dataset = DataLoader(inference_dataset, batch_size=batch_size, shuffle=True)
if text_mode == 'full':
brief_emb = None
full_emb = embeddings
elif text_mode == 'brief':
brief_emb = embeddings
full_emb = None
emb_pathway_tensor = emb2tensor(brief_embeddings=brief_emb, full_embeddings=full_emb, terms=infer_terms, text_mode=text_mode)
if len(gpu_ids) > 0: emb_pathway_tensor = emb_pathway_tensor.float().cuda()
print('loading data finished')
num = 0
print('inferring iters')
inference_preds, inference_label, inference_loss = [], [], 0
for j, inference_D in tqdm(enumerate(inference_dataset)):
with torch.no_grad():
preds = model_predict.model(inference_D['seq'], inference_D['description'], inference_D['vector'], emb_pathway_tensor)
loss = model_predict.loss_func(preds, inference_D['label'])
inference_preds.append(preds)
inference_label.append(inference_D['label'])
inference_loss += float(loss.item())
num += 1
inference_loss = inference_loss/num
inference_preds, inference_label = torch.cat(tuple(inference_preds), dim=0), torch.cat(tuple(inference_label), dim=0)
inference_preds, inference_label = inference_preds.cpu().float().numpy(), inference_label.cpu().float().numpy()
random_preds = np.random.rand(np.size(inference_preds, 0), np.size(inference_preds, 1))
roc_auc = compute_roc(inference_label, inference_preds)
random_roc = compute_roc(inference_label, random_preds)
logger.info('inference loss:{} inference roc auc:{} random roc:{}'.format(inference_loss, roc_auc, random_roc))
auroc_percentage = {0.65: 0, 0.7: 0, 0.75: 0, 0.8: 0, 0.85: 0, 0.9: 0, 0.95: 0}
save_terms = []
infer_terms_auroc = collections.OrderedDict()
for t_id in infer_terms.keys():
j = infer_terms[t_id]
preds_id = inference_preds[:, j].reshape([-1, 1])
label_id = inference_label[:, j].reshape([-1, 1])
roc_auc_j = compute_roc(label_id, preds_id)
if roc_auc_j >= save_T:
save_terms.append(t_id)
for T in auroc_percentage.keys():
if T <= roc_auc_j:
auroc_percentage[T] += 100.0 / np.size(inference_preds, 1)
infer_terms_auroc[t_id] = roc_auc_j
for T in auroc_percentage.keys():
logger.info('roc auc:{} percentage:{}%'.format(T, auroc_percentage[T]))
save_obj(infer_terms_auroc, terms_auroc_path)
if __name__ == '__main__':
main()