-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunmethod.py
107 lines (93 loc) · 3.99 KB
/
runmethod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Import necessary libraries
import os
import sys
import json
import traceback
import numpy as np
from itertools import product
# Add required path for custom modules
sys.path.append('/mnt/c/Users/hamaa/OneDrive - Università degli Studi di Catania/PHD code/transformer_practice/University_valencia_IP/Lets_talk_about_svm')
from preprocessing import process_datasets
from plain_SVRm_2024 import runSVRm
from plain_SVRs_2024 import runSVRs
# Define parameters
base_names = ['MAN2']#'DSI1', 'DSI2','LIB1','LIB2'] # Using only one dataset, modify as needed
train_test_splits = [0.05]#,0.1,0.15,0.2]
repetitions = 2
config = {
'C': np.linspace(0.001, 1.0, num=5).tolist(),#+ list(range(10, 100,10)) + list(range(150, 1050, 50)),# Varying C values # + list(range(1, 100,5)),# + list(range(100, 1000, 10))#np.logspace(-3, 3, 649)
'kernel': ['linear'],#,'rbf', 'sigmoid', 'poly'],
'gamma': ['scale', 'auto', 0.001 ],# , 0.01, 0.1, 1.0, 10, 100],
'epsilon': [0.001, 0.01],# , 0.1, 1.0],
'tol': [0.0001, 0.001],# , 0.01],
'degree': [2, 3],
'coef0' : [0,1,2,3],
'train_test_splits': train_test_splits,
'repetitions':repetitions,
'base_names': base_names,
}
def generate_param_combinations(config):
param_combinations = []
for kernel_value in config['kernel']:
if kernel_value == 'linear':
param_combinations.extend(product(
config['train_test_splits'],
[kernel_value],
config['C'],
config['epsilon'],
config['tol'],
[None], # Gamma not used
[None], # Degree not used
[None] # Coef0 not used
))
elif kernel_value == 'rbf':
param_combinations.extend(product(
config['train_test_splits'],
[kernel_value],
config['C'],
config['epsilon'],
config['tol'],
config['gamma'],
[None], # Degree not used
[None] # Coef0 not used
))
elif kernel_value == 'poly':
param_combinations.extend(product(
config['train_test_splits'],
[kernel_value],
config['C'],
config['epsilon'],
config['tol'],
config['gamma'],
config['degree'],
config['coef0']
))
elif kernel_value == 'sigmoid':
param_combinations.extend(product(
config['train_test_splits'],
[kernel_value],
config['C'],
config['epsilon'],
config['tol'],
config['gamma'],
[None], # Degree not used
config['coef0']
))
return param_combinations
def main():
# Define directories
data_directory = '/mnt/c/Users/hamaa/OneDrive - Università degli Studi di Catania/PHD code/transformer_practice/University_valencia_IP/Lets_talk_about_svm/dataset'
results_directory = '/mnt/c/Users/hamaa/OneDrive - Università degli Studi di Catania/PHD code/transformer_practice/University_valencia_IP/Lets_talk_about_svm/Results_simulations/plainSVMs_2024'
# Ensure the results directory exists
os.makedirs(results_directory, exist_ok=True)
# Process datasets
print("Starting dataset processing...")
processed_datasets, dataset_params = process_datasets(base_names, data_directory, results_directory)
param_combinations = generate_param_combinations(config)
for base_name in processed_datasets.keys():
data = processed_datasets[base_name]
#runSVRm(data, base_name, results_directory, dataset_params[base_name], param_combinations, repetitions)#,config, param_combinations, )
runSVRs(data, base_name, results_directory, dataset_params[base_name], param_combinations, repetitions)#config,
#print("Processing completed for all datasets.")
if __name__ == "__main__":
main()