-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
428 lines (325 loc) · 15.9 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import os
import copy
import random
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.preprocessing import MinMaxScaler
from sklearn.exceptions import ConvergenceWarning
#from configurations_functions_svm import (remapBldDB, remapFloorDB, replace_non_detected_values_orig,data_rep_positive)
import warnings
from sklearn.exceptions import ConvergenceWarning
def remapFloorDB(database, origFloors, newFloors):
mapping = dict(zip(origFloors, newFloors))
for key in ['trncrd', 'tstcrd']:
database[key][:, 3] = np.array([mapping.get(floor, floor) for floor in database[key][:, 3]])
return database
def remapBldDB(database, origBlds, newBlds):
mapping = dict(zip(origBlds, newBlds))
for key in ['trncrd', 'tstcrd']:
database[key][:, 4] = np.array([mapping.get(bld, bld) for bld in database[key][:, 4]])
return database
def minmaxscaler(X_train, X_val, X_testing):
"""Scales features using MinMaxScaler."""
scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_val_scaled = scaler.transform(X_val)
X_testing_scaled = scaler.transform(X_testing)
return X_train_scaled, X_val_scaled, X_testing_scaled
def clear_terminal():
"""Clears the terminal screen."""
os.system('cls' if os.name == 'nt' else 'clear')
def ensure_directory_exists(directory):
"""Creates the directory if it does not exist."""
if not os.path.exists(directory):
os.makedirs(directory)
# Handling data representation: convert data to positive RSSI values
def data_rep_positive(database):
min_rssi = min(database['trnrss'].min(), database['tstrss'].min())
database['trnrss'] -= min_rssi
database['tstrss'] -= min_rssi
# Copy the labels (assuming they exist in the same structure)
database['trncrd'] = database.get('trncrd', None)
database['tstcrd'] = database.get('tstcrd', None)
return database
def process_datasets(base_names, data_directory, results_directory,):
"""Processes datasets and returns a structured database."""
# Set seeds for reproducibility
# random.seed(420)
# np.random.seed(420)
# tf.random.set_seed(420)
clear_terminal()
warnings.filterwarnings("error", category=ConvergenceWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
ensure_directory_exists(results_directory)
# Initialize a database to hold all processed data
processed_datasets = {}
dataset_params = {}
for base_name in base_names:
print(f"Processing dataset: {base_name}")
# Construct file paths
train_coord_file = os.path.join(data_directory, f"{base_name}_trncrd.csv")
train_rssi_file = os.path.join(data_directory, f"{base_name}_trnrss.csv")
test_coord_file = os.path.join(data_directory, f"{base_name}_tstcrd.csv")
test_rssi_file = os.path.join(data_directory, f"{base_name}_tstrss.csv")
# Check if all required files exist
if not all(os.path.exists(file) for file in [train_coord_file, train_rssi_file, test_coord_file, test_rssi_file]):
print(f"Missing files for {base_name}, skipping...")
continue
# Load coordinate and RSSI data
coord_columns = ['Latitude', 'Longitude', 'Altitude', 'FloorID', 'BuildingID']
train_df_coord = pd.read_csv(train_coord_file, header=None, names=coord_columns)
test_df_coord = pd.read_csv(test_coord_file, header=None, names=coord_columns)
train_df_rssi = pd.read_csv(train_rssi_file, header=None)
test_df_rssi = pd.read_csv(test_rssi_file, header=None)
# Create a dictionary for the database
database_main = {
'trncrd': train_df_coord.values,
'tstcrd': test_df_coord.values,
'trnrss': train_df_rssi.values,
'tstrss': test_df_rssi.values
}
# Create an independent deep copy of the original database
database_orig = copy.deepcopy(database_main)
# Remap building and floor IDs
origBlds = np.unique(database_orig['trncrd'][:, 4])
nblds = len(origBlds)
database0 = remapBldDB(database_orig, origBlds, np.arange(1, nblds + 1))
origFloors = np.unique(database_orig['trncrd'][:, 3])
nfloors = len(origFloors)
database0 = remapFloorDB(database0, origFloors, np.arange(1, nfloors + 1))
# Define non-detected values
defaultNonDetectedValue = 100
newNonDetectedValue = []
# Handle non-detected RSSI values
minValueDetected = min(np.min(database0['trnrss']), np.min(database0['tstrss']))
if len(newNonDetectedValue) == 0:
newNonDetectedValue = minValueDetected -1
#Manual fix for WGS84 datasets and UEXBx datasets
if np.min(database0['trnrss']) == -200:
defaultNonDetectedValue = -200
newNonDetectedValue = -200
if np.min(database0['trnrss']) == -110 and np.max(database0['trnrss']) < 0:
idxT = database0['trnrss'] <= -109
idxV = database0['tstrss'] <= -109
database_orig['trnrss'][idxT] = -110
database_orig['tstrss'][idxV] = -110
database0['trnrss'][idxT] = -110
database0['tstrss'][idxV] = -110
defaultNonDetectedValue = -110
newNonDetectedValue = -110
if np.min(database0['trnrss']) == -109 and np.max(database0['trnrss']) < 0:
idxT = database0['trnrss'] <= -108
idxV = database0['tstrss'] <= -108
database_orig['trnrss'][idxT] = -109
database_orig['tstrss'][idxV] = -109
database0['trnrss'][idxT] = -109
database0['tstrss'][idxV] = -109
defaultNonDetectedValue = -109
newNonDetectedValue = -109
#Handling Non detected values
if defaultNonDetectedValue != 0:
database0 = replace_non_detected_values_orig(database0, defaultNonDetectedValue, newNonDetectedValue)
database = data_rep_positive(database0)
rsamples1 = database['trnrss'].shape[0]
osamples1 = database['tstrss'].shape[0]
nmacs1 = database['tstrss'].shape[1]
# Create boolean arrays to indicate valid Mac addresses (APs)
database['trainingValidMacs'] = (database_main['trnrss'] != defaultNonDetectedValue)
database['testValidMacs'] = (database_main['tstrss'] != defaultNonDetectedValue)
# Count and get the total number of valid access points in both training and test data
trainingValidMacs = (database['trainingValidMacs'].sum(axis=0) > 0).sum()
testValidMacs = (database['testValidMacs'].sum(axis=0) > 0).sum()
print(f'Total valid access points in training data: {trainingValidMacs}')
print(f'Total valid access points in test data: {testValidMacs}')
vecidxmacs = np.arange(nmacs1)
vecidxTsamples = np.arange(rsamples1)
vecidxVsamples = np.arange(osamples1)
validMacs = vecidxmacs[np.sum(database['trainingValidMacs'], axis=0) > 0]
# Keep only the valid Mac addresses
database['trnrss'] = database['trnrss'][:, validMacs]
database['trainingValidMacs'] = database['trainingValidMacs'][:, validMacs]
database['tstrss'] = database['tstrss'][:, validMacs]
database['testValidMacs'] = database['testValidMacs'][:, validMacs]
# Clean void fingerprints
validTSamples = vecidxTsamples[np.sum(database['trainingValidMacs'], axis=1) > 0]
#validTSamples = vecidxTsamples[np.sum(database['trainingValidMacs'] & (database['trnrss_missing'] == 0), axis=1) > 0]
database['trnrss'] = database['trnrss'][validTSamples, :]
database['trainingValidMacs'] = database['trainingValidMacs'][validTSamples, :]
database['trncrd'] = database['trncrd'][validTSamples, :]
validVSamples = vecidxVsamples[np.sum(database['testValidMacs'], axis=1) > 0]
#validVSamples = vecidxVsamples[np.sum(database['testValidMacs'] & (database['tstrss_missing'] == 0), axis=1) > 0]
database['tstrss'] = database['tstrss'][validVSamples, :]
database['testValidMacs'] = database['testValidMacs'][validVSamples, :]
database['tstcrd'] = database['tstcrd'][validVSamples, :]
# Check shapes for consistency
assert database['trnrss'].shape[0] == database['trncrd'].shape[0], "Mismatch in training RSSI and coordinate sample sizes"
assert database['tstrss'].shape[0] == database['tstcrd'].shape[0], "Mismatch in test RSSI and coordinate sample sizes"
rsamples = database['trnrss'].shape[0]
osamples = database['tstrss'].shape[0]
nmacs = database['tstrss'].shape[1]
# Pack parameters into a dictionary
params = {
'rsamples1': rsamples1,
'osamples1': osamples1,
'nmacs1': nmacs1,
'rsamples': rsamples,
'osamples': osamples,
'nmacs': nmacs,
'minValueDetected': minValueDetected,
'defaultNonDetectedValue': defaultNonDetectedValue,
'newNonDetectedValue': newNonDetectedValue
}
#print(f"Type of processed_datasets before iteration: {type(processed_datasets)}")
# Save the processed dataset into the dictionary
processed_datasets[base_name] = database
# Append parameters for this dataset to the list
dataset_params[base_name] = params
return processed_datasets, dataset_params#,database_orig
# Define the function to replace old null values with new null values
def datarepNewNull(arr, old_null, new_null):
"""
Replace old_null with new_null in the given array.
"""
return np.where(arr == old_null, new_null, arr)
def datarepNewNullDB(db0, old_null, new_null):
"""
Replace old_null with new_null in the trainingMacs and testMacs fields of the database.
"""
db1 = {}
db1['trnrss'] = datarepNewNull(db0['trnrss'], old_null, new_null)
db1['tstrss'] = datarepNewNull(db0['tstrss'], old_null, new_null)
db1['trncrd'] = db0['trncrd']
db1['tstcrd'] = db0['tstcrd']
return db1
def datarep_new_null(m0, old_null, new_null):
"""
Replace old null values with new specified values in the matrix m0.
Args:
m0 (np.ndarray): The input matrix.
old_null (float or int): The value to be replaced.
new_null (float or int): The value to replace old_null with.
Returns:
np.ndarray: The matrix with old_null values replaced by new_null.
"""
# Perform the replacement
m1 = m0 * (m0 != old_null) + new_null * (m0 == old_null)
return m1
def replace_non_detected_values_orig(database, old_null, new_null):
"""
Replace old non-detected RSSI values with new specified values in both training and test datasets.
Args:
database (dict): A dictionary containing 'trnrss', 'tstrss', 'trncrd', and 'tstcrd'.
old_null (float or int): The old null value to be replaced (e.g., -109).
new_null (float or int): The new value to replace the old null value with.
Returns:
dict: Updated database with replaced RSSI values.
tuple: Boolean masks showing where values were replaced.
"""
# Create masks to track where non-detected values are
trnrss_mask = (database['trnrss'] == old_null)
tstrss_mask = (database['tstrss'] == old_null)
# Store the initial values before replacement
initial_trnrss_values = database['trnrss'][trnrss_mask]
initial_tstrss_values = database['tstrss'][tstrss_mask]
# Replace in training RSSI data using datarep_new_null
database['trnrss'] = datarep_new_null(database['trnrss'], old_null, new_null)
# Replace in test RSSI data using datarep_new_null
database['tstrss'] = datarep_new_null(database['tstrss'], old_null, new_null)
# Assuming the labels (coordinates) remain unchanged
database['trncrd'] = database.get('trncrd', None)
database['tstcrd'] = database.get('tstcrd', None)
return database#, initial_trnrss_values, initial_tstrss_values, trnrss_mask, tstrss_mask
def calculate_height_difference(test_labels, predicted_point):
"""
Calculate the height difference.
Parameters:
- test_labels: The true labels (altitude).
- predicted_point: The predicted labels (altitude).
Returns:
- Height difference.
"""
return abs(test_labels[2] - predicted_point[2])
def calculate_floor_difference(predicted_floor, true_floor):
"""
Calculate the floor difference.
Parameters:
- predicted_floor: The predicted floor.
- true_floor: The true floor.
Returns:
- Floor difference.
"""
return abs(predicted_floor - true_floor)
def calculate_building_error(predicted_building, true_building):
"""
Calculate the building error.
Parameters:
- predicted_building: The predicted building.
- true_building: The true building.
Returns:
- Building error (0 if the same, 1 if different).
"""
return int(predicted_building != true_building)
def data_rep_positive_old(database, distance_metrics, newNonDetectedValue):
# Convert RSSI values to positive by subtracting the minimum value
min_rssi = min(database['trnrss'].min(), database['tstrss'].min())
database['trnrss'] -= min_rssi
database['tstrss'] -= min_rssi
# Copy the labels (assuming they exist in the same structure)
database['trncrd'] = database.get('trncrd', None)
database['tstcrd'] = database.get('tstcrd', None)
# Handle additional parameters based on distanceMetric
if 'PLGD' in distance_metrics:
additionalparams = -85 - newNonDetectedValue
else:
additionalparams = 0
return database, additionalparams
def remap_vector(m0, vin, vout):
# Create an output array with the same shape as m0, initialized to 0
m1 = np.zeros_like(m0)
# Iterate through the elements of vin and vout, remapping values in m0 to vout
for i in range(len(vin)):
m1[m0 == vin[i]] = vout[i]
return m1
def datarep_powed(database):
"""
Applies the powered data representation transformation to the RSSI values in the database.
Parameters:
database (dict): A dictionary containing 'trnrss' (training RSSI values) and 'tstrss' (test RSSI values).
Returns:
transformed_db (dict): A dictionary containing the transformed 'trnrss' and 'tstrss' values, and the original labels.
"""
trainingMacs = database['trnrss']
testMacs = database['tstrss']
# Calculate minimum value
minValue = np.min([trainingMacs.min(), testMacs.min()])
# Normalize value
normValue = (-minValue) ** np.exp(1)
# Apply transformation
transformed_trainingMacs = ((trainingMacs - minValue) ** np.exp(1)) / normValue
transformed_testMacs = ((testMacs - minValue) ** np.exp(1)) / normValue
# Create the transformed database
transformed_db = {
'trnrss': transformed_trainingMacs,
'tstrss': transformed_testMacs,
'trainingLabels': database.get('trainingLabels', None),
'testLabels': database.get('testLabels', None)
}
return transformed_db
def datarepExponential(db0):
# Calculate the minimum value from both trainingMacs and testMacs
minValue = np.min(np.concatenate((db0.trainingMacs.flatten(), db0.testMacs.flatten())))
# Calculate the normalization factor
normValue = np.exp(-minValue / 24)
# Perform the exponential transformation and normalization
transformed_trainingMacs = np.exp((db0.trainingMacs - minValue) / 24) / normValue
transformed_testMacs = np.exp((db0.testMacs - minValue) / 24) / normValue
Data=None
# Create a new instance of Data for the transformed values
db1 = Data(
trainingMacs=transformed_trainingMacs,
testMacs=transformed_testMacs,
trainingLabels=db0.trainingLabels,
testLabels=db0.testLabels
)
return db1