-
Notifications
You must be signed in to change notification settings - Fork 169
/
Copy pathseq_labeling.py
221 lines (196 loc) · 9.32 KB
/
seq_labeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 28 11:32:21 2016
@author: Bing Liu ([email protected])
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# We disable pylint because we need python3 compatibility.
from six.moves import xrange # pylint: disable=redefined-builtin
#from six.moves import zip # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.framework import tensor_shape
from tensorflow.contrib.legacy_seq2seq import sequence_loss_by_example
from tensorflow.contrib.legacy_seq2seq import sequence_loss
from tensorflow.python.ops import rnn_cell_impl
linear = rnn_cell_impl._linear
def _step(time, sequence_length, min_sequence_length,
max_sequence_length, zero_logit, generate_logit):
# Step 1: determine whether we need to call_cell or not
empty_update = lambda: zero_logit
logit = control_flow_ops.cond(
time < max_sequence_length, generate_logit, empty_update)
# Step 2: determine whether we need to copy through state and/or outputs
existing_logit = lambda: logit
def copy_through():
# Use broadcasting select to determine which values should get
# the previous state & zero output, and which values should get
# a calculated state & output.
copy_cond = (time >= sequence_length)
return tf.where(copy_cond, zero_logit, logit)
logit = control_flow_ops.cond(
time < min_sequence_length, existing_logit, copy_through)
logit.set_shape(zero_logit.get_shape())
return logit
def attention_RNN(encoder_outputs,
encoder_state,
num_decoder_symbols,
sequence_length,
num_heads=1,
dtype=tf.float32,
use_attention=True,
loop_function=None,
scope=None):
if use_attention:
print ('Use the attention RNN model')
if num_heads < 1:
raise ValueError("With less than 1 heads, use a non-attention decoder.")
with tf.variable_scope(scope or "attention_RNN"):
output_size = encoder_outputs[0].get_shape()[1].value
top_states = [tf.reshape(e, [-1, 1, output_size])
for e in encoder_outputs]
attention_states = tf.concat(top_states, 1)
if not attention_states.get_shape()[1:2].is_fully_defined():
raise ValueError("Shape[1] and [2] of attention_states must be known: %s"
% attention_states.get_shape())
batch_size = tf.shape(top_states[0])[0] # Needed for reshaping.
attn_length = attention_states.get_shape()[1].value
attn_size = attention_states.get_shape()[2].value
# To calculate W1 * h_t we use a 1-by-1 convolution, need to reshape before.
hidden = tf.reshape(
attention_states, [-1, attn_length, 1, attn_size])
hidden_features = []
v = []
attention_vec_size = attn_size # Size of query vectors for attention.
for a in xrange(num_heads):
k = tf.get_variable("AttnW_%d" % a,
[1, 1, attn_size, attention_vec_size])
hidden_features.append(tf.nn.conv2d(hidden, k, [1, 1, 1, 1], "SAME"))
v.append(tf.get_variable("AttnV_%d" % a,
[attention_vec_size]))
def attention(query):
"""Put attention masks on hidden using hidden_features and query."""
attn_weights = []
ds = [] # Results of attention reads will be stored here.
for i in xrange(num_heads):
with tf.variable_scope("Attention_%d" % i):
#y = linear(query, attention_vec_size, True)
y = linear(query, attention_vec_size, True)
y = tf.reshape(y, [-1, 1, 1, attention_vec_size])
# Attention mask is a softmax of v^T * tanh(...).
s = tf.reduce_sum(
v[i] * tf.tanh(hidden_features[i] + y), [2, 3])
a = tf.nn.softmax(s)
attn_weights.append(a)
# Now calculate the attention-weighted vector d.
d = tf.reduce_sum(
tf.reshape(a, [-1, attn_length, 1, 1]) * hidden,
[1, 2])
ds.append(tf.reshape(d, [-1, attn_size]))
return attn_weights, ds
batch_attn_size = tf.stack([batch_size, attn_size])
attns = [tf.zeros(batch_attn_size, dtype=dtype)
for _ in xrange(num_heads)]
for a in attns: # Ensure the second shape of attention vectors is set.
a.set_shape([None, attn_size])
# loop through the encoder_outputs
attention_encoder_outputs = list()
sequence_attention_weights = list()
for i in xrange(len(encoder_outputs)):
if i > 0:
tf.get_variable_scope().reuse_variables()
if i == 0:
with tf.variable_scope("Initial_Decoder_Attention"):
initial_state = linear(encoder_state, output_size, True)
attn_weights, ds = attention(initial_state)
else:
attn_weights, ds = attention(encoder_outputs[i])
output = tf.concat([ds[0], encoder_outputs[i]], 1)
# NOTE: here we temporarily assume num_head = 1
with tf.variable_scope("AttnRnnOutputProjection"):
logit = linear(output, num_decoder_symbols, True)
attention_encoder_outputs.append(logit)
# NOTE: here we temporarily assume num_head = 1
sequence_attention_weights.append(attn_weights[0])
# NOTE: here we temporarily assume num_head = 1
else:
print ('Use the NON attention RNN model')
with tf.variable_scope(scope or "non-attention_RNN"):
attention_encoder_outputs = list()
sequence_attention_weights = list()
# copy over logits once out of sequence_length
if encoder_outputs[0].get_shape().ndims != 1:
(fixed_batch_size, output_size) = encoder_outputs[0].get_shape().with_rank(2)
else:
fixed_batch_size = encoder_outputs[0].get_shape().with_rank_at_least(1)[0]
if fixed_batch_size.value:
batch_size = fixed_batch_size.value
else:
batch_size = tf.shape(encoder_outputs[0])[0]
if sequence_length is not None:
sequence_length = tf.to_int32(sequence_length)
if sequence_length is not None: # Prepare variables
zero_logit = tf.zeros(
tf.stack([batch_size, num_decoder_symbols]), encoder_outputs[0].dtype)
zero_logit.set_shape(
tensor_shape.TensorShape([fixed_batch_size.value,
num_decoder_symbols]))
min_sequence_length = tf.reduce_min(sequence_length)
max_sequence_length = tf.reduce_max(sequence_length)
#reuse = False
for time, input_ in enumerate(encoder_outputs):
if time > 0:
tf.get_variable_scope().reuse_variables()
#reuse = True
# pylint: disable=cell-var-from-loop
# call_cell = lambda: cell(input_, state)
generate_logit = lambda: linear(encoder_outputs[time],
num_decoder_symbols,
True)
# pylint: enable=cell-var-from-loop
if sequence_length is not None:
logit = _step(time, sequence_length, min_sequence_length,
max_sequence_length, zero_logit, generate_logit)
else:
logit = generate_logit
attention_encoder_outputs.append(logit)
return attention_encoder_outputs, sequence_attention_weights
def generate_sequence_output(num_encoder_symbols,
encoder_outputs,
encoder_state,
targets,
sequence_length,
num_decoder_symbols,
weights,
buckets,
softmax_loss_function=None,
per_example_loss=False,
name=None,
use_attention=False):
if len(targets) < buckets[-1][1]:
raise ValueError("Length of targets (%d) must be at least that of last"
"bucket (%d)." % (len(targets), buckets[-1][1]))
all_inputs = encoder_outputs + targets + weights
with tf.name_scope(name, "model_with_buckets", all_inputs):
with tf.variable_scope("decoder_sequence_output", reuse=None):
logits, attention_weights = attention_RNN(encoder_outputs,
encoder_state,
num_decoder_symbols,
sequence_length,
use_attention=use_attention)
if per_example_loss is None:
assert len(logits) == len(targets)
# We need to make target and int64-tensor and set its shape.
bucket_target = [tf.reshape(tf.to_int64(x), [-1]) for x in targets]
crossent = sequence_loss_by_example(
logits, bucket_target, weights,
softmax_loss_function=softmax_loss_function)
else:
assert len(logits) == len(targets)
bucket_target = [tf.reshape(tf.to_int64(x), [-1]) for x in targets]
crossent = sequence_loss(
logits, bucket_target, weights,
softmax_loss_function=softmax_loss_function)
return logits, crossent