Skip to content

Latest commit

 

History

History
154 lines (132 loc) · 5.93 KB

README.md

File metadata and controls

154 lines (132 loc) · 5.93 KB

plm-nlp-book

本仓库用于存放《自然语言处理:基于预训练模型的方法》(作者:车万翔、郭江、崔一鸣)一书各章节的示例代码。

本书代码测试环境

  • Python: 3.8.5
  • PyTorch: 1.8.0
  • Transformers: 4.9.0
  • NLTK: 3.5
  • LTP: 4.0

勘误

  • 2.1.2节(词的分布式表示),pmi计算函数代码中,以下语句注释中的“分子”应改为“分母”
expected = np.outer(row_totals, col_totals) / total # 获得每个元素的分母
  • 【数学符号】一节中,【线性代数】部分【矩阵A与矩阵B的Hardamard乘积】中,Hardamard的拼写应该为Hadamard。

  • 书中2.1.2节:3.奇异值分解小节(17页)中,矩阵V的维度应为|C| x r,即$\bm{V} \in \mathbb{R}^{|\mathbb{C}| \times r}$。

  • 书中3.4.3节convert_t2s.py

f_in = open(sys.argv[0], "r")

修正为

f_in = open(sys.argv[1], "r")
  • 书中3.4.3节wikidata_cleaning.py
f_in = open(sys.argv[0], 'r')

修正为

f_in = open(sys.argv[1], 'r')

此外,为了兼容Python 3.7以上版本,将remove_control_chars函数修改为:

def remove_control_chars(in_str):
    control_chars = ''.join(map(chr, list(range(0, 32)) + list(range(127, 160))))
    control_chars = re.compile('[%s]' % re.escape(control_chars))
    return control_chars.sub('', in_str)
  • 书中4.6.1节Vocab类的__init__build方法有误,修正为:
class Vocab:
    def __init__(self, tokens=None):
        self.idx_to_token = list()
        self.token_to_idx = dict()

        if tokens is not None:
            if "<unk>" not in tokens:
                tokens = tokens + ["<unk>"]
            for token in tokens:
                self.idx_to_token.append(token)
                self.token_to_idx[token] = len(self.idx_to_token) - 1
            self.unk = self.token_to_idx['<unk>']

    @classmethod
    def build(cls, text, min_freq=1, reserved_tokens=None):
        token_freqs = defaultdict(int)
        for sentence in text:
            for token in sentence:
                token_freqs[token] += 1
        uniq_tokens = ["<unk>"] + (reserved_tokens if reserved_tokens else [])
        uniq_tokens += [token for token, freq in token_freqs.items() \
                        if freq >= min_freq and token != "<unk>"]
        return cls(uniq_tokens)
  • 书中4.6.5节使用的MLP模型类是基于EmbeddingBagMLP实现,与4.6.3节的MLP实现有所区别,具体如下:
class MLP(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, num_class):
        super(MLP, self).__init__()
        self.embedding = nn.EmbeddingBag(vocab_size, embedding_dim)
        self.linear1 = nn.Linear(embedding_dim, hidden_dim)
        self.activate = F.relu
        self.linear2 = nn.Linear(hidden_dim, num_class)

    def forward(self, inputs, offsets):
        embedding = self.embedding(inputs, offsets)
        hidden = self.activate(self.linear1(embedding))
        outputs = self.linear2(hidden)
        log_probs = F.log_softmax(outputs, dim=1)
        return log_probs
  • 书中6.2.3节ELMoLstmEncoder类的forward函数实现有误,修正为:
def forward(self, inputs, lengths):
    batch_size, seq_len, input_dim = inputs.shape
    rev_idx = torch.arange(seq_len).unsqueeze(0).repeat(batch_size, 1)
    for i in range(lengths.shape[0]):
        rev_idx[i,:lengths[i]] = torch.arange(lengths[i]-1, -1, -1)
    rev_idx = rev_idx.unsqueeze(2).expand_as(inputs)
    rev_idx = rev_idx.to(inputs.device)
    rev_inputs = inputs.gather(1, rev_idx)

    forward_inputs, backward_inputs = inputs, rev_inputs
    stacked_forward_states, stacked_backward_states = [], []

    for layer_index in range(self.num_layers):
        # Transfer `lengths` to CPU to be compatible with latest PyTorch versions.
        packed_forward_inputs = pack_padded_sequence(
            forward_inputs, lengths.cpu(), batch_first=True, enforce_sorted=False)
        packed_backward_inputs = pack_padded_sequence(
            backward_inputs, lengths.cpu(), batch_first=True, enforce_sorted=False)

        # forward
        forward_layer = self.forward_layers[layer_index]
        packed_forward, _ = forward_layer(packed_forward_inputs)
        forward = pad_packed_sequence(packed_forward, batch_first=True)[0]
        forward = self.forward_projections[layer_index](forward)
        stacked_forward_states.append(forward)

        # backward
        backward_layer = self.backward_layers[layer_index]
        packed_backward, _ = backward_layer(packed_backward_inputs)
        backward = pad_packed_sequence(packed_backward, batch_first=True)[0]
        backward = self.backward_projections[layer_index](backward)
        # convert back to original sequence order using rev_idx
        stacked_backward_states.append(backward.gather(1, rev_idx))

        forward_inputs, backward_inputs = forward, backward

    # stacked_forward_states: [batch_size, seq_len, projection_dim] * num_layers
    # stacked_backward_states: [batch_size, seq_len, projection_dim] * num_layers
    return stacked_forward_states, stacked_backward_states
  • 书中7.4.3节(199页)"句对文本分类"→"代码实现"中的tokenize()函数存在问题,请按如下进行修正。
def tokenize(examples):
    return tokenizer(examples['hypothesis'], examples['premise'], truncation=True, padding='max_length')

修正为

def tokenize(examples):
    return tokenizer(examples['sentence1'], examples['sentence2'], truncation=True, padding='max_length')
  • 书中5.3.4节(143页)GloVe词向量训练部分代码在计算L2损失时存在问题,请按如下进行修正。
loss = (torch.sum(word_embeds * context_embeds, dim=1) + word_biases + context_biases - log_counts) ** 2

修正为

loss = (torch.sum(word_embeds * context_embeds, dim=1, keepdim=True) + word_biases + context_biases - log_counts) ** 2