-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
103 lines (89 loc) · 3.34 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import mnist_inference as mnist
import os
from DiffPrivate_FedLearning import run_differentially_private_federated_averaging
from MNIST_reader import Data
import argparse
import sys
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
def sample(N, b, e, m, sigma, eps, save_dir, log_dir, max_comm_rounds):
# Specs for the model that we would like to train in differentially private federated fashion:
hidden1 = 600 # the clients get 600 data points
hidden2 = 100
# Specs for the differentially private federated fashion learning process.
# A data object that already satisfies client structure and has the following attributes:
# DATA.data_set : A list of labeled training examples.
# DATA.client_set : A
DATA = Data(save_dir, N)
with tf.Graph().as_default():
# Building the model that we would like to train in differentially private federated fashion.
# We will need the tensorflow training operation for that model, its loss and an evaluation method:
# choose machine learning model:
# ml_model = mnist.mnist_fully_connected_model(batch_size=b, hidden1=hidden1, hidden2=hidden2)
ml_model = mnist.mnist_cnn_model(batch_size=b)
train_op, eval_correct, loss, data_placeholder, labels_placeholder = ml_model
Accuracy_accountant, Delta_accountant, model = \
run_differentially_private_federated_averaging(loss, train_op, eval_correct, DATA, data_placeholder,
labels_placeholder, b=b, e=e, m=m, sigma=sigma, eps=eps,
save_dir=save_dir, log_dir=log_dir, max_comm_rounds= max_comm_rounds)
def main(_):
sample(N=FLAGS.N, b=FLAGS.b, e=FLAGS.e, m=FLAGS.m, sigma=FLAGS.sigma, eps=FLAGS.eps, save_dir=FLAGS.save_dir, log_dir=FLAGS.log_dir, max_comm_rounds=FLAGS.max_comm_rounds)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--save_dir',
type=str,
default=os.getcwd(),
help='directory to store progress'
)
parser.add_argument(
'--N',
type=int,
default=100,
help='Total Number of clients participating'
)
parser.add_argument(
'--sigma',
type=float,
default=0,
help='The gm variance parameter; will not affect if Priv_agent is set to True'
)
parser.add_argument(
'--eps',
type=float,
default=50,
help='Epsilon'
)
parser.add_argument(
'--m',
type=int,
default=0,
help='Number of clients participating in a round'
)
parser.add_argument(
'--b',
type=float,
default=10,
help='Batches per client'
)
parser.add_argument(
'--e',
type=int,
default=4,
help='Epochs per client'
)
parser.add_argument(
'--log_dir',
type=str,
default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'),
'tensorflow/mnist/logs/fully_connected_feed'),
help='Directory to put the log data.'
)
parser.add_argument(
'--max_comm_rounds',
type=int,
default=3,
help='Max communication rounds'
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)