-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHelper_Functions.py
395 lines (324 loc) · 17.1 KB
/
Helper_Functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import csv
import os.path
import pickle
from accountant import GaussianMomentsAccountant
import math
import os
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
class PrivAgent:
def __init__(self, N, Name, comm_round):
self.N = N
self.Name = Name
self.comm_round = comm_round + 1 # limited communication round
if N == 100:
self.m = [30]*self.comm_round # randomly choose 30 clients
self.Sigma = [1]*self.comm_round # sigma = 1
self.bound = 0.001
if N == 1000:
self.m = [100]*self.comm_round # randomly choose 100 clients
self.Sigma = [1]*self.comm_round
self.bound = 0.00001
if N == 10000:
self.m = [300]*self.comm_round # randomly choose 300 clients
self.Sigma = [1]*self.comm_round
self.bound = 0.000001
if N != 100 and N != 1000 and N != 10000:
print('In this setting YOU CAN ONLY USE THE PRIVACY AGENT FOR N = 100, 1000 or 10000')
print('Go to Helper_Functions for modification')
def get_m(self, r):
return self.m[r]
def get_Sigma(self, r):
return self.Sigma[r]
def get_bound(self):
return self.bound
def Assignements(dic):
return [tf.assign(var, dic[Vname_to_Pname(var)]) for var in tf.trainable_variables()]
def Vname_to_Pname(var):
return var.name[:var.name.find(':')] + '_placeholder'
def Vname_to_FeedPname(var):
return var.name[:var.name.find(':')] + '_placeholder:0'
def Vname_to_Vname(var):
return var.name[:var.name.find(':')]
class WeightsAccountant:
def __init__(self, sess, model, Sigma, real_round):
self.Weights = [np.expand_dims(sess.run(v), -1) for v in tf.trainable_variables()]
self.keys = [Vname_to_FeedPname(v) for v in tf.trainable_variables()]
# The trainable parameters are [q x p] matrices, we expand them to [q x p x 1] in order to later stack them
# along the third dimension.
# Create a list out of the model dictionary in the order in which the graph holds them:
self.global_model = [model[k] for k in self.keys]
self.Sigma = Sigma
self.Updates = []
self.median = []
self.Norms = []
self.ClippedUpdates = []
self.m = 0.0
self.num_weights = len(self.Weights)
self.round = real_round
def save_params(self, save_dir):
filehandler = open(save_dir + '/Weights_accountant_round_'+self.round + '.pkl', "w") # delete b
pickle.dump(self, filehandler)
filehandler.close()
def allocate(self, sess):
self.Weights = [np.concatenate((self.Weights[i], np.expand_dims(sess.run(tf.trainable_variables()[i]), -1)), -1)
for i in range(self.num_weights)]
# The trainable parameters are [q x p] matrices, we expand them to [q x p x 1] in order to stack them
# along the third dimension to the already allocated older variables. We therefore have a list of 6 numpy arrays
# , each numpy array having three dimensions. The last dimension is the one, the individual weight
# matrices are stacked along.
def compute_updates(self):
# To compute the updates, we subtract the global model from each individual weight matrix. Note:
# self.Weights[i] is of size [q x p x m], where m is the number of clients whose matrices are stored.
# global_model['i'] is of size [q x p], in order to broadcast correctly, we have to add a dim.
self.Updates = [self.Weights[i]-np.expand_dims(self.global_model[i], -1) for i in range(self.num_weights)]
self.Weights = None
def compute_norms(self):
# The norms List shall have 6 entries, each of size [1x1xm], we keep the first two dimensions because
# we will later broadcast the Norms onto the Updates of size [q x p x m]
self.Norms = [np.sqrt(np.sum(
np.square(self.Updates[i]), axis=tuple(range(self.Updates[i].ndim)[:-1]),keepdims=True)) for i in range(self.num_weights)]
def clip_updates(self):
self.compute_updates()
self.compute_norms()
# The median is a list of 6 entries, each of size [1x1x1],
self.median = [np.median(self.Norms[i], axis=-1, keepdims=True) for i in range(self.num_weights)]
# The factor is a list of 6 entries, each of size [1x1xm]
factor = [self.Norms[i]/self.median[i] for i in range(self.num_weights)]
for i in range(self.num_weights):
factor[i][factor[i] > 1.0] = 1.0
self.ClippedUpdates = [self.Updates[i]/factor[i] for i in range(self.num_weights)]
def Update_via_GaussianMechanism(self, sess, Acc, FLAGS, Computed_deltas):
self.clip_updates()
self.m = float(self.ClippedUpdates[0].shape[-1])
MeanClippedUpdates = [np.mean(self.ClippedUpdates[i], -1) for i in range(self.num_weights)]
GaussianNoise = [(1.0/self.m * np.random.normal(loc=0.0, scale=float(self.Sigma * self.median[i]), size=MeanClippedUpdates[i].shape)) for i in range(self.num_weights)]
Sanitized_Updates = [MeanClippedUpdates[i]+GaussianNoise[i] for i in range(self.num_weights)]
New_weights = [self.global_model[i]+Sanitized_Updates[i] for i in range(self.num_weights)]
New_model = dict(zip(self.keys, New_weights))
t = Acc.accumulate_privacy_spending(0, self.Sigma, self.m)
delta = 1
if FLAGS.record_privacy == True:
if FLAGS.relearn == False:
# I.e. we never learned a complete model before and have therefore never computed all deltas.
for j in range(len(self.keys)):
sess.run(t)
r = Acc.get_privacy_spent(sess, [FLAGS.eps])
delta = r[0][1]
else:
# I.e. we have computed a complete model before and can reuse the deltas from that time.
delta = Computed_deltas[self.round]
return New_model, delta
def create_save_dir(FLAGS):
'''
:return: Returns a path that is used to store training progress; the path also identifies the chosen setup uniquely.
'''
raw_directory = FLAGS.save_dir + '/'
if FLAGS.gm: gm_str = 'Dp/'
else: gm_str = 'non_Dp/'
if FLAGS.priv_agent:
model = gm_str + 'N_' + str(FLAGS.n) + '/Epochs_' + str(
int(FLAGS.e)) + '_Batches_' + str(int(FLAGS.b))
return raw_directory + str(model) + '/' + FLAGS.PrivAgentName
else:
model = gm_str + 'N_' + str(FLAGS.n) + '/Sigma_' + str(FLAGS.Sigma) + '_C_'+str(FLAGS.m)+'/Epochs_' + str(
int(FLAGS.e)) + '_Batches_' + str(int(FLAGS.b))
return raw_directory + str(model)
def load_from_directory_or_initialize(directory, FLAGS):
'''
This function looks for a model that corresponds to the characteristics specified and loads potential progress.
If it does not find any model or progress, it initializes a new model.
:param directory: STRING: the directory where to look for models and progress.
:param FLAGS: CLASS INSTANCE: holds general training params
:param PrivacyAgent:
:return:
'''
Accuracy_accountant = []
Delta_accountant = [0]
model = []
real_round = 0
Acc = GaussianMomentsAccountant(FLAGS.n)
FLAGS.loaded = False
FLAGS.relearn = False
Computed_Deltas = []
if not os.path.isfile(directory + '/model.pkl'):
# If there is no model stored at the specified directory, we initialize a new one!
if not os.path.exists(directory):
os.makedirs(directory)
print('No loadable model found. All updates stored at: ' + directory)
print('... Initializing a new model ...')
else:
# If there is a model, we have to check whether:
# - We learned a model for the first time, and interrupted; in that case: resume learning:
# set FLAGS.loaded = TRUE
# - We completed learning a model and want to learn a new one with the same parameters, i.o. to average accuracies:
# In this case we would want to initialize a new model; but would like to reuse the delta's already
# computed. So we will load the deltas.
# set FLAGS.relearn = TRUE
# - We completed learning models and want to resume learning model; this happens if the above process is
# interrupted. In this case we want to load the model; and reuse the deltas.
# set FLAGS.loaded = TRUE
# set FLAGS.relearn = TRUE
if os.path.isfile(directory + '/specs.csv'):
with open(directory + '/specs.csv', 'r') as csvfile: # delete b
reader = csv.reader(csvfile)
Lines = []
for line in reader:
Lines.append([float(j) for j in line])
Accuracy_accountant = Lines[-1]
Delta_accountant = Lines[1]
if math.isnan(Delta_accountant[-1]):
Computed_Deltas = Delta_accountant
# This would mean that learning was finished at least once, i.e. we are relearning.
# We shall thus not recompute the deltas, but rather reuse them.
FLAGS.relearn = True
if math.isnan(Accuracy_accountant[-1]):
# This would mean that we finished learning the latest model.
print('A model identical to that specified was already learned. Another one is learned and appended')
Accuracy_accountant = []
Delta_accountant = [0]
else:
# This would mean we already completed learning a model once, but the last one stored was not completed
print('A model identical to that specified was already learned. For a second one learning is resumed')
# We set the delta accountant accordingly
Delta_accountant = Delta_accountant[:len(Accuracy_accountant)]
# We specify that a model was loaded
real_round = len(Accuracy_accountant) - 1
fil = open(directory + '/model.pkl', 'r') # delete b
model = pickle.load(fil)
fil.close()
FLAGS.loaded = True
return model, Accuracy_accountant, Delta_accountant, Acc, real_round, FLAGS, Computed_Deltas
else:
# This would mean that learning was never finished, i.e. the first time a model with this specs was
# learned got interrupted.
real_round = len(Accuracy_accountant) - 1
# tmp_dir = directory + '/model.pkl' # for debug
# print('tmp_dir:', tmp_dir)
fil = open(directory + '/model.pkl', 'rb')
model = pickle.load(fil)
fil.close()
FLAGS.loaded = True
else:
print('there seems to be a model, but no saved progress. Fix that.')
raise KeyboardInterrupt
return model, Accuracy_accountant, Delta_accountant, Acc, real_round, FLAGS, Computed_Deltas
def save_progress(save_dir, model, Delta_accountant, Accuracy_accountant, PrivacyAgent, FLAGS):
'''
This function saves our progress either in an existing file structure or writes a new file.
:param save_dir: STRING: The directory where to save the progress.
:param model: DICTIONARY: The model that we wish to save.
:param Delta_accountant: LIST: The list of deltas that we allocared so far.
:param Accuracy_accountant: LIST: The list of accuracies that we allocated so far.
:param PrivacyAgent: CLASS INSTANCE: The privacy agent that we used (specifically the m's that we used for Federated training.)
:param FLAGS: CLASS INSTANCE: The FLAGS passed to the learning procedure.
:return: nothing
'''
filehandler = open(save_dir + '/model.pkl', "wb")
pickle.dump(model, filehandler)
filehandler.close()
if FLAGS.relearn == False:
# I.e. we know that there was no progress stored at 'save_dir' and we create a new csv-file that
# Will hold the accuracy, the deltas, the m's and we also save the model learned as a .pkl file
with open(save_dir + '/specs.csv', 'w') as csvfile: # delete b
writer = csv.writer(csvfile, delimiter=',')
if FLAGS.priv_agent == True:
writer.writerow([0]+[PrivacyAgent.get_m(r) for r in range(len(Delta_accountant)-1)])
if FLAGS.priv_agent == False:
writer.writerow([0]+[FLAGS.m]*(len(Delta_accountant)-1))
writer.writerow(Delta_accountant)
writer.writerow(Accuracy_accountant)
if FLAGS.relearn == True:
# If there already is progress associated to the learned model, we do not need to store the deltas and m's as
# they were already saved; we just keep track of the accuracy and append it to the already existing .csv file.
# This will help us later on to average the performance, as the variance is very high.
if len(Accuracy_accountant) > 1 or len(Accuracy_accountant) == 1 and FLAGS.loaded is True:
# If we already appended a new line to the .csv file, we have to delete that line.
with open(save_dir + '/specs.csv', 'r+w') as csvfile:
csvReader = csv.reader(csvfile, delimiter=",")
lines =[]
for row in csvReader:
lines.append([float(i) for i in row])
lines = lines[:-1]
with open(save_dir + '/specs.csv', 'w') as csvfile: # delete b
writer = csv.writer(csvfile, delimiter=',')
for line in lines:
writer.writerow(line)
# Append a line to the .csv file holding the accuracies.
with open(save_dir + '/specs.csv', 'a') as csvfile:
writer = csv.writer(csvfile, delimiter=',')
writer.writerow(Accuracy_accountant)
def global_step_creator():
global_step = [v for v in tf.global_variables() if v.name == "global_step:0"][0]
global_step_placeholder = tf.placeholder(dtype=tf.float32, shape=(), name='global_step_placeholder')
one = tf.constant(1, dtype=tf.float32, name='one')
new_global_step = tf.add(global_step, one)
increase_global_step = tf.assign(global_step, new_global_step)
set_global_step = tf.assign(global_step, global_step_placeholder)
return increase_global_step, set_global_step
def bring_Accountant_up_to_date(Acc, sess, rounds, PrivAgent, FLAGS):
'''
:param Acc: A Privacy accountant
:param sess: A tensorflow session
:param rounds: the number of rounds that the privacy accountant shall iterate
:param PrivAgent: A Privacy_agent that has functions: PrivAgent.get_Sigma(round) and PrivAgent.get_m(round)
:param FLAGS: priv_agent specifies whether to use a PrivAgent or not.
:return:
'''
print('Bringing the accountant up to date....')
for r in range(rounds):
if FLAGS.priv_agent:
Sigma = PrivAgent.get_Sigma(r)
m = PrivAgent.get_m(r)
else:
Sigma = FLAGS.sigma
m = FLAGS.m
print('Completed '+str(r+1)+' out of '+str(rounds)+' rounds')
t = Acc.accumulate_privacy_spending(0, Sigma, m)
sess.run(t)
sess.run(t)
sess.run(t)
print('The accountant is up to date!')
def print_loss_and_accuracy(global_loss, accuracy):
print(' - Current Model has a loss of: %s' % global_loss)
print(' - The Accuracy on the validation set is: %s' % accuracy)
def print_new_comm_round(real_round):
print('------------------------ Communication round %s ---------------------------------------' % str(real_round))
def check_validaity_of_FLAGS(FLAGS):
FLAGS.priv_agent = True
if not FLAGS.m == 0:
if FLAGS.sigma == 0:
print('\n \n -------- If m is specified the Privacy Agent is not used, then Sigma has to be specified too. --------\n \n')
raise NotImplementedError
if not FLAGS.sigma == 0:
if FLAGS.m == 0:
print('\n \n -------- If Sigma is specified the Privacy Agent is not used, then m has to be specified too. -------- \n \n')
raise NotImplementedError
if not FLAGS.sigma == 0 and not FLAGS.m == 0:
FLAGS.priv_agent = False
return FLAGS
class Flag:
def __init__(self, n, b, e, record_privacy, m, sigma, eps, save_dir, log_dir, max_comm_rounds, gm, PrivAgent):
if not save_dir:
save_dir = os.getcwd()
if not log_dir:
log_dir = os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), 'tensorflow/mnist/logs/fully_connected_feed')
if tf.gfile.Exists(log_dir):
tf.gfile.DeleteRecursively(log_dir)
tf.gfile.MakeDirs(log_dir)
self.n = n
self.sigma = sigma
self.eps = eps
self.m = m
self.b = b
self.e = e
self.record_privacy = record_privacy
self.save_dir = save_dir
self.log_dir = log_dir
self.max_comm_rounds = max_comm_rounds
self.gm = gm
self.PrivAgentName = PrivAgent.Name