-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy path0-setup-matching-enging.py
152 lines (124 loc) · 4.91 KB
/
0-setup-matching-enging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
import uuid
from typing import List
import numpy as np
from google.cloud import storage
from langchain.document_loaders import PyPDFLoader
from langchain.llms.vertexai import VertexAI
from langchain.schema import BaseRetriever, Document
script_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.insert(0, os.path.join(script_dir, "modules"))
from MyVertexAIEmbedding import MyVertexAIEmbedding # noqa: E402
from VertexMatchingEngine import MatchingEngine, MatchingEngineUtils # noqa: E402
ME_REGION = os.getenv("GOOGLE_CLOUD_REGION")
PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
ME_INDEX_NAME = f"{PROJECT_ID}-vme"
ME_DIMENSIONS = 768
ME_EMBEDDING_DIR = f"gs://{PROJECT_ID}-embeddings"
REQUESTS_PER_MINUTE = 300
embedding = MyVertexAIEmbedding(requests_per_minute=REQUESTS_PER_MINUTE)
def init_index() -> None:
# dummy embedding
init_embedding = {
"id": str(uuid.uuid4()),
"embedding": list(np.zeros(ME_DIMENSIONS)),
}
# dump embedding to a local file
with open("/tmp/embeddings_0.json", "w") as f:
json.dump(init_embedding, f)
# write embedding to Cloud Storage
client = storage.Client(project=PROJECT_ID)
bucket = client.get_bucket(f"{PROJECT_ID}-embeddings")
blob = bucket.blob("init_index/embeddings_0.json")
blob.upload_from_filename("/tmp/embeddings_0.json")
def load_documents(file_urls: List[str]) -> List[Document]:
documents = []
for url in file_urls:
loader = PyPDFLoader(url)
documents.extend(loader.load())
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=0)
doc_splits = text_splitter.split_documents(documents)
print(f"# of documents = {len(doc_splits)}")
return doc_splits
def index_documents_and_get_retriever(documents: List[Document]) -> BaseRetriever:
mengine = MatchingEngineUtils(
project_id=PROJECT_ID, region=ME_REGION, index_name=ME_INDEX_NAME
)
index = mengine.get_index()
if index is None:
index = mengine.create_index(f"{ME_EMBEDDING_DIR}/init_index", ME_DIMENSIONS)
index_endpoint = mengine.get_index_endpoint()
if index_endpoint is None:
index_endpoint = mengine.deploy_index()
if index_endpoint:
print(f"Index endpoint resource name: {index_endpoint.name}")
print(
f"Index endpoint public domain name: {index_endpoint.public_endpoint_domain_name}"
)
print("Deployed indexes on the index endpoint:")
for d in index_endpoint.deployed_indexes:
print(f" {d.id}")
ME_INDEX_ID, ME_INDEX_ENDPOINT_ID = mengine.get_index_and_endpoint()
print(f"ME_INDEX_ID={ME_INDEX_ID}")
print(f"ME_INDEX_ENDPOINT_ID={ME_INDEX_ENDPOINT_ID}")
me = MatchingEngine.from_components(
project_id=PROJECT_ID,
region=ME_REGION,
gcs_bucket_name=f'gs://{ME_EMBEDDING_DIR.split("/")[2]}',
embedding=embedding,
index_id=ME_INDEX_ID,
endpoint_id=ME_INDEX_ENDPOINT_ID,
)
me.add_documents(documents)
return me
def verify_llm(query: str) -> str:
llm = VertexAI()
"""
Create Retriever
"""
mengine = MatchingEngineUtils(
project_id=PROJECT_ID, region=ME_REGION, index_name=ME_INDEX_NAME
)
ME_INDEX_ID, ME_INDEX_ENDPOINT_ID = mengine.get_index_and_endpoint()
me = MatchingEngine.from_components(
project_id=PROJECT_ID,
region=ME_REGION,
gcs_bucket_name=f'gs://{ME_EMBEDDING_DIR.split("/")[2]}',
embedding=embedding,
index_id=ME_INDEX_ID,
endpoint_id=ME_INDEX_ENDPOINT_ID,
)
# Create RetrievalQA Chain
# See: https://python.langchain.com/en/latest/modules/chains/index_examples/vector_db_qa.html
print("Creating Chain...")
from langchain.chains import RetrievalQA
qa = RetrievalQA.from_chain_type(
llm=llm, chain_type="stuff", retriever=me.as_retriever()
)
print("Sending Question:{}".format(query))
result = qa({"query": query})
return result["result"]
PDF_FILE = "./dataset/pdf/VIAI.pdf"
init_index()
documents = load_documents([PDF_FILE])
me = index_documents_and_get_retriever(documents)
result = me.similarity_search("Who created the VIAI Edge solution?", k=2)
print(result)
result = verify_llm("Who created the VIAI Edge solution?")
print(result)