-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathapp.py
746 lines (686 loc) · 29.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
# pylint: disable=line-too-long,invalid-name
"""
This module demonstrates the usage of the Vertex AI Gemini 1.5 API within a Streamlit application.
"""
import os
import streamlit as st
import vertexai
from vertexai.generative_models import (
GenerationConfig,
GenerativeModel,
HarmBlockThreshold,
HarmCategory,
Part,
)
PROJECT_ID = os.environ.get("GCP_PROJECT")
LOCATION = os.environ.get("GCP_REGION")
vertexai.init(project=PROJECT_ID, location=LOCATION)
@st.cache_resource
def load_models() -> tuple[GenerativeModel, GenerativeModel]:
"""Load Gemini 1.5 Flash and Pro models."""
return GenerativeModel("gemini-1.5-flash"), GenerativeModel("gemini-1.5-pro")
def get_gemini_response(
model: GenerativeModel,
contents: str | list,
generation_config: GenerationConfig = GenerationConfig(
temperature=0.1, max_output_tokens=2048
),
stream: bool = True,
) -> str:
"""Generate a response from the Gemini model."""
safety_settings = {
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_ONLY_HIGH,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_ONLY_HIGH,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_ONLY_HIGH,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_ONLY_HIGH,
}
responses = model.generate_content(
contents,
generation_config=generation_config,
safety_settings=safety_settings,
stream=stream,
)
if not stream:
return responses.text
final_response = []
for r in responses:
try:
final_response.append(r.text)
except IndexError:
final_response.append("")
continue
return " ".join(final_response)
def get_model_name(model: GenerativeModel) -> str:
"""Get Gemini Model Name"""
model_name = model._model_name.replace( # pylint: disable=protected-access
"publishers/google/models/", ""
)
return f"`{model_name}`"
def get_storage_url(gcs_uri: str) -> str:
"""Convert a GCS URI to a storage URL."""
return "https://storage.googleapis.com/" + gcs_uri.split("gs://")[1]
st.header("Vertex AI Gemini 1.5 API", divider="rainbow")
gemini_15_flash, gemini_15_pro = load_models()
tab1, tab2, tab3, tab4 = st.tabs(
["Generate story", "Marketing campaign", "Image Playground", "Video Playground"]
)
with tab1:
st.subheader("Generate a story")
selected_model = st.radio(
"Select Gemini Model:",
[gemini_15_flash, gemini_15_pro],
format_func=get_model_name,
key="selected_model_story",
horizontal=True,
)
# Story premise
character_name = st.text_input(
"Enter character name: \n\n", key="character_name", value="Mittens"
)
character_type = st.text_input(
"What type of character is it? \n\n", key="character_type", value="Cat"
)
character_persona = st.text_input(
"What personality does the character have? \n\n",
key="character_persona",
value="Mittens is a very friendly cat.",
)
character_location = st.text_input(
"Where does the character live? \n\n",
key="character_location",
value="Andromeda Galaxy",
)
story_premise = st.multiselect(
"What is the story premise? (can select multiple) \n\n",
[
"Love",
"Adventure",
"Mystery",
"Horror",
"Comedy",
"Sci-Fi",
"Fantasy",
"Thriller",
],
key="story_premise",
default=["Love", "Adventure"],
)
creative_control = st.radio(
"Select the creativity level: \n\n",
["Low", "High"],
key="creative_control",
horizontal=True,
)
length_of_story = st.radio(
"Select the length of the story: \n\n",
["Short", "Long"],
key="length_of_story",
horizontal=True,
)
if creative_control == "Low":
temperature = 0.30
else:
temperature = 0.95
if length_of_story == "Short":
max_output_tokens = 2048
else:
max_output_tokens = 8192
prompt = f"""Write a {length_of_story} story based on the following premise: \n
character_name: {character_name} \n
character_type: {character_type} \n
character_persona: {character_persona} \n
character_location: {character_location} \n
story_premise: {",".join(story_premise)} \n
If the story is "short", then make sure to have 5 chapters or else if it is "long" then 10 chapters.
Important point is that each chapters should be generated based on the premise given above.
First start by giving the book introduction, chapter introductions and then each chapter. It should also have a proper ending.
The book should have prologue and epilogue.
"""
config = GenerationConfig(
temperature=temperature, max_output_tokens=max_output_tokens
)
generate_t2t = st.button("Generate my story", key="generate_t2t")
if generate_t2t and prompt:
# st.write(prompt)
with st.spinner(
f"Generating your story using {get_model_name(selected_model)} ..."
):
first_tab1, first_tab2 = st.tabs(["Story", "Prompt"])
with first_tab1:
response = get_gemini_response(
selected_model, # Use the selected model
prompt,
generation_config=config,
)
if response:
st.write("Your story:")
st.write(response)
with first_tab2:
st.text(
f"""Parameters:\n- Temperature: {temperature}\n- Max Output Tokens: {max_output_tokens}\n"""
)
st.text(prompt)
with tab2:
st.subheader("Generate your marketing campaign")
selected_model = st.radio(
"Select Gemini Model:",
[gemini_15_flash, gemini_15_pro],
format_func=get_model_name,
key="selected_model_marketing",
horizontal=True,
)
product_name = st.text_input(
"What is the name of the product? \n\n", key="product_name", value="ZomZoo"
)
product_category = st.radio(
"Select your product category: \n\n",
["Clothing", "Electronics", "Food", "Health & Beauty", "Home & Garden"],
key="product_category",
horizontal=True,
)
st.write("Select your target audience: ")
target_audience_age = st.radio(
"Target age: \n\n",
["18-24", "25-34", "35-44", "45-54", "55-64", "65+"],
key="target_audience_age",
horizontal=True,
)
# target_audience_gender = st.radio("Target gender: \n\n",["male","female","trans","non-binary","others"],key="target_audience_gender",horizontal=True)
target_audience_location = st.radio(
"Target location: \n\n",
["Urban", "Suburban", "Rural"],
key="target_audience_location",
horizontal=True,
)
st.write("Select your marketing campaign goal: ")
campaign_goal = st.multiselect(
"Select your marketing campaign goal: \n\n",
[
"Increase brand awareness",
"Generate leads",
"Drive sales",
"Improve brand sentiment",
],
key="campaign_goal",
default=["Increase brand awareness", "Generate leads"],
)
if campaign_goal is None:
campaign_goal = ["Increase brand awareness", "Generate leads"]
brand_voice = st.radio(
"Select your brand voice: \n\n",
["Formal", "Informal", "Serious", "Humorous"],
key="brand_voice",
horizontal=True,
)
estimated_budget = st.radio(
"Select your estimated budget ($): \n\n",
["1,000-5,000", "5,000-10,000", "10,000-20,000", "20,000+"],
key="estimated_budget",
horizontal=True,
)
prompt = f"""Generate a marketing campaign for {product_name}, a {product_category} designed for the age group: {target_audience_age}.
The target location is this: {target_audience_location}.
Aim to primarily achieve {campaign_goal}.
Emphasize the product's unique selling proposition while using a {brand_voice} tone of voice.
Allocate the total budget of {estimated_budget}.
With these inputs, make sure to follow following guidelines and generate the marketing campaign with proper headlines: \n
- Briefly describe company, its values, mission, and target audience.
- Highlight any relevant brand guidelines or messaging frameworks.
- Provide a concise overview of the campaign's objectives and goals.
- Briefly explain the product or service being promoted.
- Define your ideal customer with clear demographics, psychographics, and behavioral insights.
- Understand their needs, wants, motivations, and pain points.
- Clearly articulate the desired outcomes for the campaign.
- Use SMART goals (Specific, Measurable, Achievable, Relevant, and Time-bound) for clarity.
- Define key performance indicators (KPIs) to track progress and success.
- Specify the primary and secondary goals of the campaign.
- Examples include brand awareness, lead generation, sales growth, or website traffic.
- Clearly define what differentiates your product or service from competitors.
- Emphasize the value proposition and unique benefits offered to the target audience.
- Define the desired tone and personality of the campaign messaging.
- Identify the specific channels you will use to reach your target audience.
- Clearly state the desired action you want the audience to take.
- Make it specific, compelling, and easy to understand.
- Identify and analyze your key competitors in the market.
- Understand their strengths and weaknesses, target audience, and marketing strategies.
- Develop a differentiation strategy to stand out from the competition.
- Define how you will track the success of the campaign.
- Utilize relevant KPIs to measure performance and return on investment (ROI).
Give proper bullet points and headlines for the marketing campaign. Do not produce any empty lines.
Be very succinct and to the point.
"""
config = GenerationConfig(temperature=0.8, max_output_tokens=2048)
generate_t2t = st.button("Generate my campaign", key="generate_campaign")
if generate_t2t and prompt:
second_tab1, second_tab2 = st.tabs(["Campaign", "Prompt"])
with st.spinner(
f"Generating your marketing campaign using {get_model_name(selected_model)} ..."
):
with second_tab1:
response = get_gemini_response(
selected_model, # Use the selected model
prompt,
generation_config=config,
)
if response:
st.write("Your marketing campaign:")
st.write(response)
with second_tab2:
st.text(prompt)
with tab3:
st.subheader("Image Playground")
selected_model = st.radio(
"Select Gemini Model:",
[gemini_15_flash, gemini_15_pro],
format_func=get_model_name,
key="selected_model_image",
horizontal=True,
)
image_undst, screens_undst, diagrams_undst, recommendations, sim_diff = st.tabs(
[
"Furniture recommendation",
"Oven instructions",
"ER diagrams",
"Glasses recommendation",
"Math reasoning",
]
)
with image_undst:
st.markdown(
"""In this demo, you will be presented with a scene (e.g., a living room) and will use the Gemini 1.5 Pro model to perform visual understanding. You will see how Gemini 1.0 can be used to recommend an item (e.g., a chair) from a list of furniture options as input. You can use Gemini 1.5 Pro to recommend a chair that would complement the given scene and will be provided with its rationale for such selections from the provided list.
"""
)
room_image_uri = (
"gs://github-repo/img/gemini/retail-recommendations/rooms/living_room.jpeg"
)
chair_1_image_uri = (
"gs://github-repo/img/gemini/retail-recommendations/furnitures/chair1.jpeg"
)
chair_2_image_uri = (
"gs://github-repo/img/gemini/retail-recommendations/furnitures/chair2.jpeg"
)
chair_3_image_uri = (
"gs://github-repo/img/gemini/retail-recommendations/furnitures/chair3.jpeg"
)
chair_4_image_uri = (
"gs://github-repo/img/gemini/retail-recommendations/furnitures/chair4.jpeg"
)
room_image_urls = get_storage_url(room_image_uri)
chair_1_image_urls = get_storage_url(chair_1_image_uri)
chair_2_image_urls = get_storage_url(chair_2_image_uri)
chair_3_image_urls = get_storage_url(chair_3_image_uri)
chair_4_image_urls = get_storage_url(chair_4_image_uri)
room_image = Part.from_uri(room_image_uri, mime_type="image/jpeg")
chair_1_image = Part.from_uri(chair_1_image_uri, mime_type="image/jpeg")
chair_2_image = Part.from_uri(chair_2_image_uri, mime_type="image/jpeg")
chair_3_image = Part.from_uri(chair_3_image_uri, mime_type="image/jpeg")
chair_4_image = Part.from_uri(chair_4_image_uri, mime_type="image/jpeg")
st.image(room_image_urls, width=350, caption="Image of a living room")
st.image(
[
chair_1_image_urls,
chair_2_image_urls,
chair_3_image_urls,
chair_4_image_urls,
],
width=200,
caption=["Chair 1", "Chair 2", "Chair 3", "Chair 4"],
)
st.write(
"Our expectation: Recommend a chair that would complement the given image of a living room."
)
content = [
"Consider the following chairs:",
"chair 1:",
chair_1_image,
"chair 2:",
chair_2_image,
"chair 3:",
chair_3_image,
"and",
"chair 4:",
chair_4_image,
"\n"
"For each chair, explain why it would be suitable or not suitable for the following room:",
room_image,
"Only recommend for the room provided and not other rooms. Provide your recommendation in a table format with chair name and reason as columns.",
]
tab1, tab2 = st.tabs(["Response", "Prompt"])
generate_image_description = st.button(
"Generate recommendation....", key="generate_image_description"
)
with tab1:
if generate_image_description and content:
with st.spinner(
f"Generating recommendation using {get_model_name(selected_model)} ..."
):
response = get_gemini_response(selected_model, content)
st.markdown(response)
with tab2:
st.write("Prompt used:")
st.text(content)
with screens_undst:
stove_screen_uri = (
"gs://github-repo/img/gemini/multimodality_usecases_overview/stove.jpg"
)
stove_screen_url = get_storage_url(stove_screen_uri)
st.write(
"Equipped with the ability to extract information from visual elements on screens, Gemini 1.5 Pro can analyze screenshots, icons, and layouts to provide a holistic understanding of the depicted scene."
)
# cooking_what = st.radio("What are you cooking?",["Turkey","Pizza","Cake","Bread"],key="cooking_what",horizontal=True)
stove_screen_img = Part.from_uri(stove_screen_uri, mime_type="image/jpeg")
st.image(stove_screen_url, width=350, caption="Image of a oven")
st.write(
"Our expectation: Provide instructions for resetting the clock on this appliance in English"
)
prompt = """How can I reset the clock on this appliance? Provide the instructions in English.
If instructions include buttons, also explain where those buttons are physically located.
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
generate_instructions_description = st.button(
"Generate instructions", key="generate_instructions_description"
)
with tab1:
if generate_instructions_description and prompt:
with st.spinner(
f"Generating instructions using {get_model_name(selected_model)}..."
):
response = get_gemini_response(
selected_model, [stove_screen_img, prompt]
)
st.markdown(response)
with tab2:
st.write("Prompt used:")
st.text(prompt + "\n" + "input_image")
with diagrams_undst:
er_diag_uri = (
"gs://github-repo/img/gemini/multimodality_usecases_overview/er.png"
)
er_diag_url = get_storage_url(er_diag_uri)
st.write(
"Gemini 1.5 Pro multimodal capabilities empower it to comprehend diagrams and take actionable steps, such as optimization or code generation. The following example demonstrates how Gemini 1.0 can decipher an Entity Relationship (ER) diagram."
)
er_diag_img = Part.from_uri(er_diag_uri, mime_type="image/jpeg")
st.image(er_diag_url, width=350, caption="Image of a ER diagram")
st.write(
"Our expectation: Document the entities and relationships in this ER diagram."
)
prompt = """Document the entities and relationships in this ER diagram.
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
er_diag_img_description = st.button("Generate!", key="er_diag_img_description")
with tab1:
if er_diag_img_description and prompt:
with st.spinner("Generating..."):
response = get_gemini_response(
selected_model, [er_diag_img, prompt]
)
st.markdown(response)
with tab2:
st.write("Prompt used:")
st.text(prompt + "\n" + "input_image")
with recommendations:
compare_img_1_uri = (
"gs://github-repo/img/gemini/multimodality_usecases_overview/glasses1.jpg"
)
compare_img_2_uri = (
"gs://github-repo/img/gemini/multimodality_usecases_overview/glasses2.jpg"
)
compare_img_1_url = get_storage_url(compare_img_1_uri)
compare_img_2_url = get_storage_url(compare_img_2_uri)
st.write(
"""Gemini 1.5 Pro is capable of image comparison and providing recommendations. This may be useful in industries like e-commerce and retail.
Below is an example of choosing which pair of glasses would be better suited to various face types:"""
)
compare_img_1_img = Part.from_uri(compare_img_1_uri, mime_type="image/jpeg")
compare_img_2_img = Part.from_uri(compare_img_2_uri, mime_type="image/jpeg")
face_type = st.radio(
"What is your face shape?",
["Oval", "Round", "Square", "Heart", "Diamond"],
key="face_type",
horizontal=True,
)
output_type = st.radio(
"Select the output type",
["text", "table", "json"],
key="output_type",
horizontal=True,
)
st.image(
[compare_img_1_url, compare_img_2_url],
width=350,
caption=["Glasses type 1", "Glasses type 2"],
)
st.write(
f"Our expectation: Suggest which glasses type is better for the {face_type} face shape"
)
content = [
f"""Which of these glasses you recommend for me based on the shape of my face:{face_type}?
I have an {face_type} shape face.
Glasses 1: """,
compare_img_1_img,
"""
Glasses 2: """,
compare_img_2_img,
f"""
Explain how you reach out to this decision.
Provide your recommendation based on my face shape, and reasoning for each in {output_type} format.
""",
]
tab1, tab2 = st.tabs(["Response", "Prompt"])
compare_img_description = st.button(
"Generate recommendation!", key="compare_img_description"
)
with tab1:
if compare_img_description and content:
with st.spinner(
f"Generating recommendations using {get_model_name(selected_model)}..."
):
response = get_gemini_response(selected_model, content)
st.markdown(response)
with tab2:
st.write("Prompt used:")
st.text(content)
with sim_diff:
math_image_uri = "gs://github-repo/img/gemini/multimodality_usecases_overview/math_beauty.jpg"
math_image_url = get_storage_url(math_image_uri)
st.write(
"Gemini 1.5 Pro can also recognize math formulas and equations and extract specific information from them. This capability is particularly useful for generating explanations for math problems, as shown below."
)
math_image_img = Part.from_uri(math_image_uri, mime_type="image/jpeg")
st.image(math_image_url, width=350, caption="Image of a math equation")
st.markdown(
"""
Our expectation: Ask questions about the math equation as follows:
- Extract the formula.
- What is the symbol right before Pi? What does it mean?
- Is this a famous formula? Does it have a name?
"""
)
prompt = """
Follow the instructions.
Surround math expressions with $.
Use a table with a row for each instruction and its result.
INSTRUCTIONS:
- Extract the formula.
- What is the symbol right before Pi? What does it mean?
- Is this a famous formula? Does it have a name?
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
math_image_description = st.button(
"Generate answers!", key="math_image_description"
)
with tab1:
if math_image_description and prompt:
with st.spinner(
f"Generating answers for formula using {get_model_name(selected_model)}..."
):
response = get_gemini_response(
selected_model, [math_image_img, prompt]
)
st.markdown(response)
st.markdown("\n\n\n")
with tab2:
st.write("Prompt used:")
st.text(prompt)
with tab4:
st.subheader("Video Playground")
selected_model = st.radio(
"Select Gemini Model:",
[gemini_15_flash, gemini_15_pro],
format_func=get_model_name,
key="selected_model_video",
horizontal=True,
)
vide_desc, video_tags, video_highlights, video_geolocation = st.tabs(
["Video description", "Video tags", "Video highlights", "Video geolocation"]
)
with vide_desc:
st.markdown(
"""Gemini 1.5 Pro can also provide the description of what is going on in the video:"""
)
vide_desc_uri = "gs://github-repo/img/gemini/multimodality_usecases_overview/mediterraneansea.mp4"
video_desc_url = get_storage_url(vide_desc_uri)
if vide_desc_uri:
vide_desc_img = Part.from_uri(vide_desc_uri, mime_type="video/mp4")
st.video(video_desc_url)
st.write("Our expectation: Generate the description of the video")
prompt = """Describe what is happening in the video and answer the following questions: \n
- What am I looking at? \n
- Where should I go to see it? \n
- What are other top 5 places in the world that look like this?
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
vide_desc_description = st.button(
"Generate video description", key="vide_desc_description"
)
with tab1:
if vide_desc_description and prompt:
with st.spinner(
f"Generating video description using {get_model_name(selected_model)} ..."
):
response = get_gemini_response(
selected_model, [prompt, vide_desc_img]
)
st.markdown(response)
st.markdown("\n\n\n")
with tab2:
st.write("Prompt used:")
st.write(prompt, "\n", "{video_data}")
with video_tags:
st.markdown(
"""Gemini 1.5 Pro can also extract tags throughout a video, as shown below:."""
)
video_tags_uri = "gs://github-repo/img/gemini/multimodality_usecases_overview/photography.mp4"
video_tags_url = get_storage_url(video_tags_uri)
if video_tags_url:
video_tags_img = Part.from_uri(video_tags_uri, mime_type="video/mp4")
st.video(video_tags_url)
st.write("Our expectation: Generate the tags for the video")
prompt = """Answer the following questions using the video only:
1. What is in the video?
2. What objects are in the video?
3. What is the action in the video?
4. Provide 5 best tags for this video?
Give the answer in the table format with question and answer as columns.
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
video_tags_description = st.button(
"Generate video tags", key="video_tags_description"
)
with tab1:
if video_tags_description and prompt:
with st.spinner(
f"Generating video description using {get_model_name(selected_model)} ..."
):
response = get_gemini_response(
selected_model, [prompt, video_tags_img]
)
st.markdown(response)
st.markdown("\n\n\n")
with tab2:
st.write("Prompt used:")
st.write(prompt, "\n", "{video_data}")
with video_highlights:
st.markdown(
"""Below is another example of using Gemini 1.5 Pro to ask questions about objects, people or the context, as shown in the video about Pixel 8 below:"""
)
video_highlights_uri = (
"gs://github-repo/img/gemini/multimodality_usecases_overview/pixel8.mp4"
)
video_highlights_url = get_storage_url(video_highlights_uri)
if video_highlights_url:
video_highlights_img = Part.from_uri(
video_highlights_uri, mime_type="video/mp4"
)
st.video(video_highlights_url)
st.write("Our expectation: Generate the highlights for the video")
prompt = """Answer the following questions using the video only:
What is the profession of the girl in this video?
Which all features of the phone are highlighted here?
Summarize the video in one paragraph.
Provide the answer in table format.
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
video_highlights_description = st.button(
"Generate video highlights", key="video_highlights_description"
)
with tab1:
if video_highlights_description and prompt:
with st.spinner(
f"Generating video highlights using {get_model_name(selected_model)} ..."
):
response = get_gemini_response(
selected_model, [prompt, video_highlights_img]
)
st.markdown(response)
st.markdown("\n\n\n")
with tab2:
st.write("Prompt used:")
st.write(prompt, "\n", "{video_data}")
with video_geolocation:
st.markdown(
"""Even in short, detail-packed videos, Gemini 1.5 Pro can identify the locations."""
)
video_geolocation_uri = (
"gs://github-repo/img/gemini/multimodality_usecases_overview/bus.mp4"
)
video_geolocation_url = get_storage_url(video_geolocation_uri)
if video_geolocation_url:
video_geolocation_img = Part.from_uri(
video_geolocation_uri, mime_type="video/mp4"
)
st.video(video_geolocation_url)
st.markdown(
"""Our expectation: \n
Answer the following questions from the video:
- What is this video about?
- How do you know which city it is?
- What street is this?
- What is the nearest intersection?
"""
)
prompt = """Answer the following questions using the video only:
What is this video about?
How do you know which city it is?
What street is this?
What is the nearest intersection?
Answer the following questions in a table format with question and answer as columns.
"""
tab1, tab2 = st.tabs(["Response", "Prompt"])
video_geolocation_description = st.button(
"Generate", key="video_geolocation_description"
)
with tab1:
if video_geolocation_description and prompt:
with st.spinner(
f"Generating location tags using {get_model_name(selected_model)} ..."
):
response = get_gemini_response(
selected_model, [prompt, video_geolocation_img]
)
st.markdown(response)
st.markdown("\n\n\n")
with tab2:
st.write("Prompt used:")
st.write(prompt, "\n", "{video_data}")