@@ -289,7 +289,7 @@ let ss0 = add_prelude_eqs [ "bvShiftL_bvShl"
289
289
, "bvShiftR_bvShr"
290
290
] cry_ss;
291
291
292
- let crule t = rewrite ss0 t;
292
+ let assume_rule t = prove_print (admit "assume rule") ( rewrite ss0 t) ;
293
293
let prove_rule t = prove_print abc (rewrite ss0 t);
294
294
295
295
let ss1 = add_prelude_eqs
@@ -365,16 +365,19 @@ ec_join_split_768 <- prove_rule {{ \x -> ec_join768 (ec_split768 x) == x }};
365
365
ec_split_join_768 <- prove_rule {{ \x -> ec_split768 (ec_join768 x) == x }};
366
366
367
367
// Axiomatic rules: For now, we assume these without proof.
368
- let mul_java_elim = crule {{ \(a:[768]) -> \(x:[384]) -> \(y:[384]) ->
369
- mul_java::mul_java (a, x, y) == p384_field::p384_safe_product (x, y) }};
370
- let sq_java_elim = crule {{ \(a:[768]) -> \(x:[384]) ->
371
- mul_java::sq_java (a, x) == p384_field::p384_safe_product (x, x) }};
368
+ mul_java_elim <- assume_rule
369
+ {{ \(a:[768]) -> \(x:[384]) -> \(y:[384]) ->
370
+ mul_java::mul_java (a, x, y) == p384_field::p384_safe_product (x, y) }};
371
+
372
+ sq_java_elim <- assume_rule
373
+ {{ \(a:[768]) -> \(x:[384]) ->
374
+ mul_java::sq_java (a, x) == p384_field::p384_safe_product (x, x) }};
372
375
373
376
let basic_simps = [ ec_join_split
374
377
, at12, at24
375
378
];
376
379
let ss3 = addsimps basic_simps ss2;
377
- let ss4 = addsimps' [mul_java_elim, sq_java_elim] ss3;
380
+ let ss4 = addsimps [mul_java_elim, sq_java_elim] ss3;
378
381
let ss = add_prelude_defs
379
382
[ "bvUpd"
380
383
, "bvAt"
0 commit comments