-
Notifications
You must be signed in to change notification settings - Fork 62
/
Prim.hs
353 lines (279 loc) · 11.1 KB
/
Prim.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{- |
Module : Verifier.SAW.Prim
Copyright : Galois, Inc. 2012-2015
License : BSD3
Maintainer : [email protected]
Stability : experimental
Portability : non-portable (language extensions)
-}
module Verifier.SAW.Prim where
#if !MIN_VERSION_base(4,8,0)
import Control.Applicative
#endif
import qualified Control.Exception as X
import Data.Bits
import Data.Typeable (Typeable)
import Data.Vector (Vector)
import qualified Data.Vector as V
import Numeric.Natural (Natural)
------------------------------------------------------------
-- Natural numbers
-- | width(n) = 1 + floor(log_2(n))
widthNat :: Natural -> Natural
widthNat 0 = 0
widthNat n = 1 + widthNat (n `div` 2)
-- data Vec :: (n :: Nat) -> sort 0 -> sort 0
data Vec t a = Vec t !(Vector a)
------------------------------------------------------------
-- Unsigned, variable-width bit vectors
data BitVector = BV { width :: !Int, unsigned :: !Integer }
deriving Show
-- ^ Invariant: BV w x requires that 0 <= x < 2^w.
bitMask :: Int -> Integer
bitMask w = bit w - 1
-- | Smart constructor for bitvectors.
bv :: Int -> Integer -> BitVector
bv w x = BV w (x .&. bitMask w)
signed :: BitVector -> Integer
signed (BV w x)
| w > 0 && testBit x (w - 1) = x - bit w
| otherwise = x
bvAt :: BitVector -> Int -> Bool
bvAt (BV w x) i = testBit x (w - 1 - i)
-- | Conversion from list of bits to integer (big-endian)
bvToInteger :: Vector Bool -> Integer
bvToInteger = V.foldl' (\x b -> if b then 2*x+1 else 2*x) 0
unpackBitVector :: BitVector -> Vector Bool
unpackBitVector x = V.generate (width x) (bvAt x)
packBitVector :: Vector Bool -> BitVector
packBitVector v = BV (V.length v) (bvToInteger v)
------------------------------------------------------------
-- Primitive operations
-- coerce :: (y x :: sort 0) -> Eq (sort 0) x y -> x -> y;
coerce :: () -> () -> () -> a -> a
coerce _ _ _ x = x
-- ite :: ?(a :: sort 1) -> Bool -> a -> a -> a;
ite :: t -> Bool -> a -> a -> a
ite _ b x y = if b then x else y
-- Succ :: Nat -> Nat;
succNat :: Integer -> Integer
succNat = succ
-- addNat :: Nat -> Nat -> Nat;
addNat :: Integer -> Integer -> Integer
addNat = (+)
-- get :: (n :: Nat) -> (e :: sort 0) -> Vec n e -> Fin n -> e;
--get :: Int -> t -> Vec t e -> Fin -> e
--get _ _ (Vec _ v) i = v ! fromEnum i
-- append :: (m n :: Nat) -> (e :: sort 0) -> Vec m e -> Vec n e -> Vec (addNat m n) e;
append :: Int -> Int -> t -> Vec t e -> Vec t e -> Vec t e
append _ _ _ (Vec t xv) (Vec _ yv) = Vec t ((V.++) xv yv)
-- at :: (n :: Nat) -> (a :: sort 0) -> Vec n a -> Nat -> a;
at :: Int -> t -> Vec t e -> Int -> e
at _ _ (Vec _ v) i = v ! i
-- atWithDefault :: (n :: Nat) -> (a :: sort 0) -> a -> Vec n a -> Nat -> a;
atWithDefault :: Int -> t -> e -> Vec t e -> Int -> e
atWithDefault _ _ z (Vec _ v) i
| i < V.length v = v ! i
| otherwise = z
-- upd :: (n :: Nat) -> (a :: sort 0) -> Vec n a -> Nat -> a -> Vec n a;
upd :: Int -> t -> Vec t e -> Int -> e -> Vec t e
upd _ _ (Vec t v) i e = Vec t (v V.// [(i, e)])
(!) :: Vector a -> Int -> a
(!) v i = case v V.!? i of
Just x -> x
Nothing -> invalidIndex (toInteger i)
----------------------------------------
-- Bitvector operations
-- bvNat : (n : Nat) -> Nat -> Vec n Bool;
bvNat :: Int -> Integer -> BitVector
bvNat w x = bv w x
-- bvAdd : (n : Nat) -> Vec n Bool -> Vec n Bool -> Vec n Bool;
bvAdd, bvSub, bvMul :: Natural -> BitVector -> BitVector -> BitVector
bvAdd _ (BV w x) (BV _ y) = bv w (x + y)
bvSub _ (BV w x) (BV _ y) = bv w (x - y)
bvMul _ (BV w x) (BV _ y) = bv w (x * y)
bvNeg :: Natural -> BitVector -> BitVector
bvNeg _ x@(BV w _) = bv w $ negate $ signed x
bvAnd, bvOr, bvXor :: Int -> BitVector -> BitVector -> BitVector
bvAnd _ (BV w x) (BV _ y) = BV w (x .&. y)
bvOr _ (BV w x) (BV _ y) = BV w (x .|. y)
bvXor _ (BV w x) (BV _ y) = BV w (x `xor` y)
bvNot :: Int -> BitVector -> BitVector
bvNot _ (BV w x) = BV w (x `xor` bitMask w)
bvEq, bvult, bvule, bvugt, bvuge, bvsgt, bvsge, bvslt, bvsle
:: Int -> BitVector -> BitVector -> Bool
bvEq _ x y = unsigned x == unsigned y
bvugt _ x y = unsigned x > unsigned y
bvuge _ x y = unsigned x >= unsigned y
bvult _ x y = unsigned x < unsigned y
bvule _ x y = unsigned x <= unsigned y
bvsgt _ x y = signed x > signed y
bvsge _ x y = signed x >= signed y
bvslt _ x y = signed x < signed y
bvsle _ x y = signed x <= signed y
bvPopcount :: Int -> BitVector -> BitVector
bvPopcount _ (BV w x) = BV w (toInteger (popCount x))
bvCountLeadingZeros :: Int -> BitVector -> BitVector
bvCountLeadingZeros _ (BV w x) = BV w (toInteger (go 0))
where
go !i
| i < w && testBit x (w - i - 1) == False = go (i+1)
| otherwise = i
bvCountTrailingZeros :: Int -> BitVector -> BitVector
bvCountTrailingZeros _ (BV w x) = BV w (toInteger (go 0))
where
go !i
| i < w && testBit x i == False = go (i+1)
| otherwise = i
-- | @get@ specialized to BitVector (big-endian)
-- get :: (n :: Nat) -> (a :: sort 0) -> Vec n a -> Fin n -> a;
--get_bv :: Int -> () -> BitVector -> Fin -> Bool
--get_bv _ _ x i = testBit (unsigned x) (width x - 1 - fromEnum i)
-- little-endian version:
-- get_bv _ _ x i = testBit (unsigned x) (fromEnum i)
-- | @at@ specialized to BitVector (big-endian)
-- at :: (n :: Nat) -> (a :: sort 0) -> Vec n a -> Nat -> a;
at_bv :: Int -> () -> BitVector -> Natural -> Bool
at_bv _ _ x i = testBit (unsigned x) (width x - 1 - fromIntegral i)
-- | @set@ specialized to BitVector (big-endian)
-- set :: (n :: Nat) -> (a :: sort 0) -> Vec n a -> Fin n -> a -> Vec n a;
--set_bv :: Int -> () -> BitVector -> Fin -> Bool -> BitVector
--set_bv _ _ x i b = BV (width x) $ f (unsigned x) (width x - 1 - fromEnum i)
-- where f = if b then setBit else clearBit
-- | @append@ specialized to BitVector (big-endian)
-- append :: (m n :: Nat) -> (a :: sort 0) -> Vec m a -> Vec n a -> Vec (addNat m n) a;
append_bv :: Int -> Int -> () -> BitVector -> BitVector -> BitVector
append_bv _ _ _ (BV m x) (BV n y) = BV (m + n) (shiftL x n .|. y)
-- little-endian version:
-- append_bv _ _ _ (BV m x) (BV n y) = BV (m + n) (x .|. shiftL y m)
-- bvToNat : (n : Nat) -> Vec n Bool -> Nat;
bvToNat :: Int -> BitVector -> Integer
bvToNat _ (BV _ x) = x
-- bvAddWithCarry : (n : Nat) -> Vec n Bool -> Vec n Bool -> Bool * Vec n Bool;
bvAddWithCarry :: Int -> BitVector -> BitVector -> (Bool, BitVector)
bvAddWithCarry _ (BV w x) (BV _ y) = (testBit z w, bv w z)
where z = x + y
bvUDiv :: Int -> BitVector -> BitVector -> Maybe BitVector
bvUDiv _ (BV w x) (BV _ y)
| y == 0 = Nothing
| otherwise = Just (bv w (x `quot` y))
bvURem :: Int -> BitVector -> BitVector -> Maybe BitVector
bvURem _ (BV w x) (BV _ y)
| y == 0 = Nothing
| otherwise = Just (bv w (x `rem` y))
bvSDiv :: Int -> BitVector -> BitVector -> Maybe BitVector
bvSDiv _ x y
| unsigned y == 0 = Nothing
| otherwise = Just (bv (width x) (signed x `quot` signed y))
bvSRem :: Int -> BitVector -> BitVector -> Maybe BitVector
bvSRem _ x y
| unsigned y == 0 = Nothing
| otherwise = Just (bv (width x) (signed x `rem` signed y))
bvShl :: Int -> BitVector -> Int -> BitVector
bvShl _ (BV w x) i = bv w (x `shiftL` i)
bvShr :: Int -> BitVector -> Int -> BitVector
bvShr _ (BV w x) i = bv w (x `shiftR` i)
bvSShr :: Int -> BitVector -> Int -> BitVector
bvSShr _ x i = bv (width x) (signed x `shiftR` i)
-- bvTrunc : (m n : Nat) -> Vec (addNat m n) Bool -> Vec n Bool;
bvTrunc :: Int -> Int -> BitVector -> BitVector
bvTrunc _ n (BV _ x) = bv n x
-- bvUExt : (m n : Nat) -> Vec n Bool -> Vec (addNat m n) Bool;
bvUExt :: Int -> Int -> BitVector -> BitVector
bvUExt m n x = BV (m + n) (unsigned x)
-- bvSExt : (m n : Nat) -> Vec (Succ n) Bool -> Vec (addNat m (Succ n)) Bool;
bvSExt :: Int -> Int -> BitVector -> BitVector
bvSExt m n x = bv (m + n + 1) (signed x)
-- | @take@ specialized to BitVector (big-endian)
-- take :: (a :: sort 0) -> (m n :: Nat) -> Vec (addNat m n) a -> Vec m a;
take_bv :: () -> Int -> Int -> BitVector -> BitVector
take_bv _ m n (BV _ x) = bv m (x `shiftR` n)
-- little-endian version:
-- take_bv _ m _ (BV _ x) = bv m x
-- | @vDrop@ specialized to BitVector (big-endian)
-- drop :: (a :: sort 0) -> (m n :: Nat) -> Vec (addNat m n) a -> Vec n a;
drop_bv :: () -> Int -> Int -> BitVector -> BitVector
drop_bv _ _ n (BV _ x) = bv n x
-- little-endian version:
-- drop_bv _ m n (BV _ x) = BV n (x `shiftR` m)
-- | @slice@ specialized to BitVector
slice_bv :: () -> Int -> Int -> Int -> BitVector -> BitVector
slice_bv _ _ n o (BV _ x) = bv n (shiftR x o)
-- little-endian version:
-- slice_bv _ i n _ (BV _ x) = bv n (shiftR x i)
------------------------------------------------------------
-- Base 2 logarithm
bvLg2 :: BitVector -> BitVector
bvLg2 (BV m x) = BV m (if d > 0 then k+1 else k)
where (k, d) = lg2rem x
-- | lg2rem n = (k, d) <--> n = 2^k + d, with d < 2^k.
lg2rem :: Integer -> (Integer, Integer)
lg2rem 0 = (0, -1)
lg2rem 1 = (0, 0)
lg2rem n = (k+1, 2*d+r)
where (q, r) = n `divMod` 2
(k, d) = lg2rem q
------------------------------------------------------------
-- BitVector shift/rotate
bvRotateL :: BitVector -> Integer -> BitVector
bvRotateL (BV w x) i = bv w ((x `shiftL` j) .|. (x `shiftR` (w - j)))
where j = fromInteger (i `mod` toInteger w)
bvRotateR :: BitVector -> Integer -> BitVector
bvRotateR w i = bvRotateL w (- i)
bvShiftL ::
Bool {- ^ bit value to shift in -} ->
BitVector {- ^ value to shift -} ->
Integer {- ^ amount to shift by -} ->
BitVector
bvShiftL c (BV w x) i = bv w ((x `shiftL` j) .|. c')
where c' = if c then (1 `shiftL` j) - 1 else 0
j = fromInteger (i `min` toInteger w)
bvShiftR ::
Bool {- ^ bit value to shift in -} ->
BitVector {- ^ value to shift -} ->
Integer {- ^ amount to shift by -} ->
BitVector
bvShiftR c (BV w x) i = bv w (c' .|. (x `shiftR` j))
where c' = if c then (full `shiftL` (w - j)) .&. full else 0
full = (1 `shiftL` w) - 1
j = fromInteger (i `min` toInteger w)
----------------------------------------
-- Errors
data EvalError
= InvalidIndex Integer
| DivideByZero
| UnsupportedPrimitive String String
| UserError String
deriving (Eq, Typeable)
instance X.Exception EvalError
instance Show EvalError where
show e = case e of
InvalidIndex i -> "invalid sequence index: " ++ show i
DivideByZero -> "division by 0"
UnsupportedPrimitive b p -> "unsupported primitive " ++ p ++ " in " ++ b ++ " backend"
UserError msg -> "Run-time error: " ++ msg
-- | A sequencing operation has gotten an invalid index.
invalidIndex :: Integer -> a
invalidIndex i = X.throw (InvalidIndex i)
-- | For division by 0.
divideByZero :: a
divideByZero = X.throw DivideByZero
-- | A backend with a unsupported primitive.
unsupportedPrimitive :: String -> String -> a
unsupportedPrimitive backend primitive =
X.throw $ UnsupportedPrimitive backend primitive
-- | For `error`
userError :: String -> a
userError msg = X.throw (UserError msg)
-- | Convert asynchronous EvalError exceptions into IO exceptions.
rethrowEvalError :: IO a -> IO a
rethrowEvalError m = run `X.catch` rethrow
where
run = do
a <- m
return $! a
rethrow :: EvalError -> IO a
rethrow exn = fail (show exn) -- X.throwIO (EvalError exn)