-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathCompMExtra.v
789 lines (634 loc) · 32.1 KB
/
CompMExtra.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
(***
*** Extra Proofs for CompM that Rely on SAWCorePrelude
***)
From Coq Require Import Logic.
From Coq Require Program.Equality.
From Coq Require Import Strings.String.
From CryptolToCoq Require Import SAWCorePrelude.
From CryptolToCoq Require Import SAWCoreScaffolding.
From CryptolToCoq Require Import SAWCoreVectorsAsCoqVectors.
From CryptolToCoq Require Export CompM.
(* A duplicate from `Program.Equality`, because importing that
module directly gives us a conflict with the `~=` notation... *)
Tactic Notation "dependent" "destruction" ident(H) :=
Equality.do_depelim' ltac:(fun hyp => idtac) ltac:(fun hyp => Equality.do_case hyp) H.
(***
*** Some useful Ltac
***)
(* Ltac get_last_hyp tt := *)
(* match goal with H: _ |- _ => constr:(H) end. *)
Tactic Notation "unfold_projs" :=
unfold SAWCoreScaffolding.fst, SAWCoreScaffolding.snd;
cbn [ Datatypes.fst Datatypes.snd projT1 ].
Tactic Notation "unfold_projs" "in" constr(N) :=
unfold SAWCoreScaffolding.fst, SAWCoreScaffolding.snd in N;
cbn [ Datatypes.fst Datatypes.snd projT1 ] in N.
Tactic Notation "unfold_projs" "in" "*" :=
unfold SAWCoreScaffolding.fst, SAWCoreScaffolding.snd in *;
cbn [ Datatypes.fst Datatypes.snd projT1 ] in *.
Ltac split_prod_hyps :=
repeat match goal with
| H: _ /\ _ |- _ => destruct H as [?H ?H]
| p: { _ : _ & _ } |- _ => destruct p as [?p ?p]
| p: _ * _ |- _ => destruct p as [?p ?p]
| u: unit |- _ => destruct u
| u: True |- _ => destruct u
end.
Ltac split_prod_goal :=
repeat match goal with
| |- _ /\ _ => split
| |- { _ : _ & _ } => split
| |- _ * _ => split
| |- unit => exact tt
| |- True => trivial
end.
(***
*** Extra lemmas about refinement that rely on SAWCorePrelude
***)
Lemma refinesM_either_l {A B C} (f:A -> CompM C) (g:B -> CompM C) eith P :
(forall a, eith = SAWCorePrelude.Left _ _ a -> f a |= P) ->
(forall b, eith = SAWCorePrelude.Right _ _ b -> g b |= P) ->
SAWCorePrelude.either _ _ _ f g eith |= P.
Proof.
destruct eith; intros; simpl.
- apply H; reflexivity.
- apply H0; reflexivity.
Qed.
Lemma refinesM_either_r {A B C} (f:A -> CompM C) (g:B -> CompM C) eith P :
(forall a, eith = SAWCorePrelude.Left _ _ a -> P |= f a) ->
(forall b, eith = SAWCorePrelude.Right _ _ b -> P |= g b) ->
P |= SAWCorePrelude.either _ _ _ f g eith.
Proof.
destruct eith; intros; simpl.
- apply H; reflexivity.
- apply H0; reflexivity.
Qed.
Lemma refinesM_maybe_l {A B} (x : CompM B) (f : A -> CompM B) mb P :
(mb = SAWCorePrelude.Nothing _ -> x |= P) ->
(forall a, mb = SAWCorePrelude.Just _ a -> f a |= P) ->
SAWCorePrelude.maybe _ _ x f mb |= P.
Proof.
destruct mb; intros; simpl.
- apply H; reflexivity.
- apply H0; reflexivity.
Qed.
Lemma refinesM_maybe_r {A B} (x : CompM B) (f : A -> CompM B) mb P :
(mb = SAWCorePrelude.Nothing _ -> P |= x) ->
(forall a, mb = SAWCorePrelude.Just _ a -> P |= f a) ->
P |= SAWCorePrelude.maybe _ _ x f mb.
Proof.
destruct mb; intros; simpl.
- apply H; reflexivity.
- apply H0; reflexivity.
Qed.
Lemma returnM_if A (b : bool) (x y : A) :
@returnM CompM _ A (if b then x else y) ~= if b then returnM x else returnM y.
Proof. destruct b. setoid_reflexivity. setoid_reflexivity. Qed.
Lemma refinesM_returnM_if_l A (b : bool) (x y : A) P :
((if b then returnM x else returnM y) |= P) ->
(returnM (if b then x else y) |= P).
Proof. rewrite returnM_if. trivial. Qed.
Lemma refinesM_returnM_if_r A (b : bool) (x y : A) P :
(P |= (if b then returnM x else returnM y)) ->
(P |= returnM (if b then x else y)).
Proof. rewrite returnM_if. trivial. Qed.
Lemma returnM_injective : forall (A : Type) (x y : A),
returnM (M:=CompM) x ~= returnM y -> x = y.
Proof.
intros. unfold returnM in H. unfold MonadReturnOp_OptionT in H.
unfold eqM in H. unfold MonadEqOp_OptionT in H. unfold eqM in H. unfold MonadEqOp_SetM in H.
assert (Some x = Some y) as Hxy.
{ rewrite H. reflexivity. }
inversion Hxy; subst. reflexivity.
Qed.
(***
*** Automation for proving refinement
***)
Create HintDb refinesM.
Create HintDb refinesFun.
Hint Extern 999 (_ |= _) => shelve : refinesM.
Hint Resolve refinesM_letRecM_Nil_l : refinesM.
Hint Extern 1 (@letRecM ?lrts _ _ _ |= @letRecM ?lrts _ (lrtLambda (fun _ => _)) _) =>
apply refinesM_letRecM_const_r; try apply ProperLRTFun_any;
try (apply refinesFunTuple_multiFixM; unfold refinesFunTuple; split_prod_goal);
unfold lrtApply, lrtLambda; unfold_projs : refinesM.
Inductive ArgName := Any | Either | Maybe | SigT | If | If0 |
Assert | Assuming | Exists | Forall.
Ltac argName n :=
match n with
| Any => fresh "a"
| Either => fresh "e_either"
| Maybe => fresh "e_maybe"
| SigT => fresh "e_either"
| If => fresh "e_if"
| Assert => fresh "e_assert"
| Assuming => fresh "e_assuming"
| Exists => fresh "e_exists"
| Forall => fresh "e_forall"
end.
Definition IntroArg (n : ArgName) A (goal : A -> Prop) := forall a, goal a.
Hint Opaque IntroArg : refinesM refinesFun.
Definition FreshIntroArg (n : ArgName) A (goal : A -> Prop) := IntroArg n A goal.
Hint Opaque FreshIntroArg : refinesM refinesFun.
Hint Extern 999 (FreshIntroArg _ _ _) => unfold FreshIntroArg : refinesFun.
Lemma IntroArg_fold n A goal : forall a, IntroArg n A goal -> goal a.
Proof. intros a H; exact (H a). Qed.
(* Lemma IntroArg_unfold n A (goal : A -> Prop) : (forall a, goal a) -> IntroArg n A goal. *)
(* Proof. unfold IntroArg; intro H; exact H. Qed. *)
Ltac IntroArg_intro e := intro e; unfold_projs in *.
Ltac IntroArg_forget := let e := fresh in intro e; clear e.
Lemma IntroArg_and n P Q (goal : P /\ Q -> Prop)
: IntroArg n P (fun p => FreshIntroArg n Q (fun q => goal (conj p q))) -> IntroArg n _ goal.
Proof. intros H [ p q ]; apply H. Qed.
Lemma IntroArg_or n P Q (goal : P \/ Q -> Prop)
: IntroArg n P (fun p => goal (or_introl p)) ->
IntroArg n Q (fun q => goal (or_intror q)) -> IntroArg n _ goal.
Proof. intros Hl Hr [ p | q ]; [ apply Hl | apply Hr ]. Qed.
Lemma IntroArg_sigT n A P (goal : {a : A & P a} -> Prop)
: IntroArg n A (fun a => FreshIntroArg n (P a) (fun p => goal (existT _ a p))) -> IntroArg n _ goal.
Proof. intros H [ a p ]; apply H. Qed.
Lemma IntroArg_prod n P Q (goal : P * Q -> Prop)
: IntroArg n P (fun p => FreshIntroArg n Q (fun q => goal (pair p q))) -> IntroArg n _ goal.
Proof. intros H [ p q ]; apply H. Qed.
Lemma IntroArg_sum n P Q (goal : P + Q -> Prop)
: IntroArg n P (fun p => goal (inl p)) ->
IntroArg n Q (fun q => goal (inr q)) -> IntroArg n _ goal.
Proof. intros Hl Hr [ p | q ]; [ apply Hl | apply Hr ]. Qed.
Lemma IntroArg_unit n (goal : unit -> Prop) : goal tt -> IntroArg n _ goal.
Proof. intros H []. apply H. Qed.
Lemma IntroArg_eq_sigT_const n A B (a a' : A) (b b' : B) (goal : Prop)
: IntroArg n (a = a') (fun _ => FreshIntroArg n (b = b') (fun _ => goal)) ->
IntroArg n (existT _ a b = existT _ a' b') (fun _ => goal).
Proof. intros H eq; apply H; injection eq; eauto. Qed.
Lemma IntroArg_eq_prod_const n P Q (p p' : P) (q q' : Q) (goal : Prop)
: IntroArg n (p = p') (fun _ => FreshIntroArg n (q = q') (fun _ => goal)) ->
IntroArg n (pair p q = pair p' q') (fun _ => goal).
Proof. intros H eq; apply H; injection eq; eauto. Qed.
Lemma IntroArg_eq_Left_const n A B (x y : A) (goal : Prop)
: IntroArg n (x = y) (fun _ => goal) ->
IntroArg n (SAWCorePrelude.Left A B x = SAWCorePrelude.Left A B y) (fun _ => goal).
Proof. intros H eq; apply H; injection eq; eauto. Qed.
Lemma IntroArg_eq_Right_const n A B (x y : B) (goal : Prop)
: IntroArg n (x = y) (fun _ => goal) ->
IntroArg n (SAWCorePrelude.Right A B x = SAWCorePrelude.Right A B y) (fun _ => goal).
Proof. intros H eq; apply H; injection eq; eauto. Qed.
Lemma IntroArg_eq_Left_Right n A B (x : A) (y : B) goal
: IntroArg n (SAWCorePrelude.Left A B x = SAWCorePrelude.Right A B y) goal.
Proof. intros eq; discriminate eq. Qed.
Lemma IntroArg_eq_Right_Left n A B (x : A) (y : B) goal
: IntroArg n (SAWCorePrelude.Right A B y = SAWCorePrelude.Left A B x) goal.
Proof. intros eq; discriminate eq. Qed.
Lemma IntroArg_eq_Just_const n A (x y : A) (goal : Prop)
: IntroArg n (x = y) (fun _ => goal) ->
IntroArg n (SAWCorePrelude.Just _ x = SAWCorePrelude.Just _ y) (fun _ => goal).
Proof. intros H eq; apply H; injection eq; eauto. Qed.
Lemma IntroArg_eq_Just_Nothing n A (x : A) goal
: IntroArg n (SAWCorePrelude.Just _ x = SAWCorePrelude.Nothing _) goal.
Proof. intros eq; discriminate eq. Qed.
Lemma IntroArg_eq_Nothing_Just n A (y : A) goal
: IntroArg n (SAWCorePrelude.Nothing _ = SAWCorePrelude.Just _ y) goal.
Proof. intros eq; discriminate eq. Qed.
(* Hint Resolve IntroArg_and IntroArg_or IntroArg_sigT IntroArg_prod IntroArg_sum *)
(* IntroArg_unit IntroArg_eq_sigT_const IntroArg_eq_prod_const *)
(* IntroArg_eq_Left_const IntroArg_eq_Right_const *)
(* IntroArg_eq_Left_Right IntroArg_eq_Right_Left *)
(* IntroArg_eq_Just_const IntroArg_eq_Just_Nothing_const *)
(* IntroArg_eq_Nothing_Just_const | 1 : refinesFun. *)
Ltac IntroArg_intro_dependent_destruction n :=
let e := argName n in
IntroArg_intro e; dependent destruction e.
(* Hint Extern 1 (IntroArg ?n (eq (SAWCorePrelude.Nothing _) (SAWCorePrelude.Nothing _)) _) => *)
(* IntroArg_forget : refinesFun. *)
(* Hint Extern 1 (IntroArg ?n (eq true true) _) => *)
(* IntroArg_intro_dependent_destruction n : refinesFun. *)
(* Hint Extern 1 (IntroArg ?n (eq false false) _) => *)
(* IntroArg_intro_dependent_destruction n : refinesFun. *)
(* Hint Extern 1 (IntroArg ?n (eq true false) _) => *)
(* IntroArg_intro_dependent_destruction n : refinesFun. *)
(* Hint Extern 1 (IntroArg ?n (eq false true) _) => *)
(* IntroArg_intro_dependent_destruction n : refinesFun. *)
(* Hint Extern 1 (IntroArg ?n (@eq unit _ _) _) => *)
(* IntroArg_forget : refinesFun. *)
Ltac IntroArg_base_tac n A g :=
lazymatch A with
| _ /\ _ => simple apply IntroArg_and
| _ \/ _ => simple apply IntroArg_or
(* | { _ : _ & _ } => simple apply IntroArg_sigT *)
(* | prod _ _ => simple apply IntroArg_prod *)
| sum _ _ => simple apply IntroArg_sum
| unit => simple apply IntroArg_unit
| existT _ _ _ = existT _ _ _ => simple apply IntroArg_eq_sigT_const
| pair _ _ = pair _ _ => simple apply IntroArg_eq_prod_const
| SAWCorePrelude.Left _ _ _ = SAWCorePrelude.Left _ _ _ => simple apply IntroArg_eq_Left_const
| SAWCorePrelude.Right _ _ _ = SAWCorePrelude.Right _ _ _ => simple apply IntroArg_eq_Right_const
| SAWCorePrelude.Left _ _ _ = SAWCorePrelude.Right _ _ _ => simple apply IntroArg_eq_Left_Right
| SAWCorePrelude.Right _ _ _ = SAWCorePrelude.Left _ _ _ => simple apply IntroArg_eq_Right_Left
| SAWCorePrelude.Just _ _ = SAWCorePrelude.Just _ _ => simple apply IntroArg_eq_Just_const
| SAWCorePrelude.Just _ _ = SAWCorePrelude.Nothing _ => simple apply IntroArg_eq_Just_Nothing
| SAWCorePrelude.Nothing _ = SAWCorePrelude.Just _ _ => simple apply IntroArg_eq_Nothing_Just
| SAWCorePrelude.Nothing _ = SAWCorePrelude.Nothing _ => IntroArg_forget
| true = true => IntroArg_intro_dependent_destruction n
| false = false => IntroArg_intro_dependent_destruction n
| true = false => IntroArg_intro_dependent_destruction n
| false = true => IntroArg_intro_dependent_destruction n
| @eq unit _ _ => IntroArg_forget
end.
Hint Extern 1 (IntroArg ?n ?A ?g) => IntroArg_base_tac n A g : refinesFun.
Ltac IntroArg_rewrite_bool_eq n :=
let e := fresh in
IntroArg_intro e; repeat rewrite e in *;
apply (IntroArg_fold n _ _ e); clear e.
Hint Extern 2 (IntroArg ?n (@eq bool _ _) _) =>
progress (IntroArg_rewrite_bool_eq n) : refinesFun.
Hint Extern 4 (IntroArg ?n _ _) =>
let e := argName n in IntroArg_intro e; subst : refinesFun.
Definition refinesM_either_l_IntroArg {A B C} (f:A -> CompM C) (g:B -> CompM C) eith P :
(FreshIntroArg Any _ (fun a =>
FreshIntroArg Either (eith = SAWCorePrelude.Left _ _ a) (fun _ => f a |= P))) ->
(FreshIntroArg Any _ (fun b =>
FreshIntroArg Either (eith = SAWCorePrelude.Right _ _ b) (fun _ => g b |= P))) ->
SAWCorePrelude.either _ _ _ f g eith |= P := refinesM_either_l f g eith P.
Definition refinesM_either_r_IntroArg {A B C} (f:A -> CompM C) (g:B -> CompM C) eith P :
(FreshIntroArg Any _ (fun a =>
FreshIntroArg Either (eith = SAWCorePrelude.Left _ _ a) (fun _ => P |= f a))) ->
(FreshIntroArg Any _ (fun b =>
FreshIntroArg Either (eith = SAWCorePrelude.Right _ _ b) (fun _ => P |= g b))) ->
P |= SAWCorePrelude.either _ _ _ f g eith := refinesM_either_r f g eith P.
Hint Extern 1 (SAWCorePrelude.either _ _ _ _ _ _ |= _) =>
simple apply refinesM_either_l_IntroArg : refinesM.
Hint Extern 1 (_ |= SAWCorePrelude.either _ _ _ _ _ _) =>
simple apply refinesM_either_r_IntroArg : refinesM.
Definition refinesM_maybe_l_IntroArg {A B} (x : CompM B) (f : A -> CompM B) mb P :
(FreshIntroArg Maybe (mb = SAWCorePrelude.Nothing _) (fun _ => x |= P)) ->
(FreshIntroArg Any _ (fun a =>
FreshIntroArg Maybe (mb = SAWCorePrelude.Just _ a) (fun _ => f a |= P))) ->
SAWCorePrelude.maybe _ _ x f mb |= P := refinesM_maybe_l x f mb P.
Definition refinesM_maybe_r_IntroArg {A B} (x : CompM B) (f : A -> CompM B) mb P :
(FreshIntroArg Maybe (mb = SAWCorePrelude.Nothing _) (fun _ => P |= x)) ->
(FreshIntroArg Any _ (fun a =>
FreshIntroArg Maybe (mb = SAWCorePrelude.Just _ a) (fun _ => P |= f a))) ->
P |= SAWCorePrelude.maybe _ _ x f mb := refinesM_maybe_r x f mb P.
Hint Extern 1 (SAWCorePrelude.maybe _ _ _ _ _ |= _) =>
simple apply refinesM_maybe_l_IntroArg : refinesM.
Hint Extern 1 (_ |= SAWCorePrelude.maybe _ _ _ _ _) =>
simple apply refinesM_maybe_r_IntroArg : refinesM.
Definition refinesM_sigT_rect_l_IntroArg {A1 A2 B} F P (s: {x:A1 & A2 x}) :
(FreshIntroArg Any _ (fun a1 => FreshIntroArg Any _ (fun a2 =>
FreshIntroArg SigT (s = existT _ a1 a2) (fun _ => F a1 a2 |= P)))) ->
sigT_rect (fun _ => CompM B) F s |= P := refinesM_sigT_rect_l F P s.
Definition refinesM_sigT_rect_r_IntroArg {A1 A2 B} F P (s: {x:A1 & A2 x}) :
(FreshIntroArg Any _ (fun a1 => FreshIntroArg Any _ (fun a2 =>
FreshIntroArg SigT (s = existT _ a1 a2) (fun _ => P |= F a1 a2)))) ->
P |= sigT_rect (fun _ => CompM B) F s := refinesM_sigT_rect_r F P s.
Hint Extern 1 (sigT_rect (fun _ => CompM _) _ _ |= _) =>
simple apply refinesM_sigT_rect_l_IntroArg : refinesM.
Hint Extern 1 (_ |= sigT_rect (fun _ => CompM _) _ _) =>
simple apply refinesM_sigT_rect_r_IntroArg : refinesM.
Definition refinesM_if_l_IntroArg {A} (m1 m2:CompM A) b P :
(FreshIntroArg If (b = true) (fun _ => m1 |= P)) ->
(FreshIntroArg If (b = false) (fun _ => m2 |= P)) ->
(if b then m1 else m2) |= P := refinesM_if_l m1 m2 b P.
Definition refinesM_if_r_IntroArg {A} (m1 m2:CompM A) b P :
(FreshIntroArg If (b = true) (fun _ => P |= m1)) ->
(FreshIntroArg If (b = false) (fun _ => P |= m2)) ->
P |= (if b then m1 else m2) := refinesM_if_r m1 m2 b P.
Hint Extern 1 ((if _ then _ else _) |= _) =>
apply refinesM_if_l_IntroArg : refinesM.
Hint Extern 1 (_ |= (if _ then _ else _)) =>
apply refinesM_if_r_IntroArg : refinesM.
Hint Extern 1 (returnM (if _ then _ else _) |= _) =>
simple apply refinesM_returnM_if_l : refinesM.
Hint Extern 1 (_ |= returnM (if _ then _ else _)) =>
simple apply refinesM_returnM_if_r : refinesM.
Definition refinesM_bindM_assertM_l_IntroArg {A} (P:Prop) (m1 m2: CompM A) :
(FreshIntroArg Assert P (fun _ => m1 |= m2)) -> assertM P >> m1 |= m2 :=
refinesM_bindM_assertM_l P m1 m2.
Definition refinesM_assumingM_r_IntroArg {A} (P:Prop) (m1 m2: CompM A) :
(FreshIntroArg Assuming P (fun _ => m1 |= m2)) -> m1 |= assumingM P m2 :=
refinesM_assumingM_r P m1 m2.
Hint Extern 1 (assertM _ >> _ |= _) =>
simple eapply refinesM_bindM_assertM_l_IntroArg : refinesM.
Hint Extern 1 (_ |= assumingM _ _) =>
simple eapply refinesM_assumingM_r_IntroArg : refinesM.
Hint Extern 2 (_ |= assertM _ >> _) =>
simple eapply refinesM_bindM_assertM_r; shelve : refinesM.
Hint Extern 2 (assumingM _ _ |= _) =>
simple eapply refinesM_assumingM_l; shelve : refinesM.
Definition refinesM_existsM_l_IntroArg A B (P: A -> CompM B) Q :
(FreshIntroArg Exists _ (fun a => P a |= Q)) -> existsM P |= Q :=
refinesM_existsM_l A B P Q.
Definition refinesM_forallM_r_IntroArg {A B} P (Q: A -> CompM B) :
(FreshIntroArg Forall _ (fun a => P |= (Q a))) -> P |= (forallM Q) :=
refinesM_forallM_r P Q.
Hint Extern 2 (existsM _ |= _) =>
simple apply refinesM_existsM_l_IntroArg : refinesM.
Hint Extern 2 (_ |= forallM _) =>
simple apply refinesM_forallM_r_IntroArg : refinesM.
Hint Extern 3 (_ |= existsM _) =>
simple eapply refinesM_existsM_r; shelve : refinesM.
Hint Extern 3 (forallM _ |= _) =>
simple eapply refinesM_forallM_l; shelve : refinesM.
Hint Extern 3 (returnM _ |= returnM _) =>
apply refinesM_returnM; (reflexivity || shelve) : refinesM.
Hint Extern 1 (orM _ _ |= _) => simple apply refinesM_orM_l : refinesM.
Hint Extern 1 (_ |= andM _ _) => simple apply refinesM_andM_r : refinesM.
(* Note: For the moment, we don't automatically apply refinesM_orM_r or
refinesM_andM_l - use continue_prove_refinement_left and
continue_prove_refinement_right. *)
Lemma refinesM_returnM_bindM_l A B (a:A) (f:A -> CompM B) P :
f a |= P -> returnM a >>= f |= P.
Proof. rewrite returnM_bindM; eauto. Qed.
Lemma refinesM_returnM_bindM_r A B P (a:A) (f:A -> CompM B) :
P |= f a -> P |= returnM a >>= f.
Proof. rewrite returnM_bindM; eauto. Qed.
Hint Extern 1 ((returnM _ >>= _) |= _) => simple apply refinesM_returnM_bindM_l : refinesM.
Hint Extern 1 (_ |= (returnM _ >>= _)) => simple apply refinesM_returnM_bindM_r : refinesM.
Lemma refinesM_existsM_bindM_l A B C (P: A -> CompM B) (Q: B -> CompM C) R :
existsM (fun x => P x >>= Q) |= R -> (existsM P) >>= Q |= R.
Proof. rewrite existsM_bindM; eauto. Qed.
Lemma refinesM_existsM_bindM_r A B C P (Q: A -> CompM B) (R: B -> CompM C) :
P |= existsM (fun x => Q x >>= R) -> P |= (existsM Q) >>= R.
Proof. rewrite existsM_bindM; eauto. Qed.
Hint Extern 1 ((existsM _ >>= _) |= _) => simple apply refinesM_existsM_bindM_l : refinesM.
Hint Extern 1 (_ |= (existsM _ >>= _)) => simple apply refinesM_existsM_bindM_r : refinesM.
Lemma refinesM_orM_bindM_l A B (m1 m2 : CompM A) (P : A -> CompM B) Q :
orM (m1 >>= P) (m2 >>= P) |= Q -> (orM m1 m2) >>= P |= Q.
Proof. rewrite orM_bindM; eauto. Qed.
Lemma refinesM_orM_bindM_r A B P (m1 m2 : CompM A) (Q : A -> CompM B) :
P |= orM (m1 >>= Q) (m2 >>= Q) -> P |= (orM m1 m2) >>= Q.
Proof. rewrite orM_bindM; eauto. Qed.
Hint Extern 1 ((orM _ _ >>= _) |= _) => simple apply refinesM_orM_bindM_l : refinesM.
Hint Extern 1 (_ |= (orM _ _ >>= _)) => simple apply refinesM_orM_bindM_r : refinesM.
Lemma refinesM_errorM_bindM_l A B str (f:A -> CompM B) P :
errorM str |= P -> errorM str >>= f |= P.
Proof. rewrite errorM_bindM; eauto. Qed.
Lemma refinesM_errorM_bindM_r A B P str (f:A -> CompM B) :
P |= errorM str -> P |= errorM str >>= f.
Proof. rewrite errorM_bindM; eauto. Qed.
Hint Extern 1 ((errorM _ >>= _) |= _) => simple apply refinesM_errorM_bindM_l : refinesM.
Hint Extern 1 (_ |= (errorM _ >>= _)) => simple apply refinesM_errorM_bindM_r : refinesM.
Lemma refinesM_bindM_bindM_l A B C (m : CompM A) (f : A -> CompM B) (g : B -> CompM C) P :
m >>= (fun x : A => f x >>= g) |= P -> m >>= f >>= g |= P.
Proof. rewrite bindM_bindM; eauto. Qed.
Lemma refinesM_bindM_bindM_r A B C (m : CompM A) (f : A -> CompM B) (g : B -> CompM C) P :
P |= m >>= (fun x : A => f x >>= g) -> P |= m >>= f >>= g.
Proof. rewrite bindM_bindM; eauto. Qed.
Hint Extern 1 (((_ >>= _) >>= _) |= _) => simple apply refinesM_bindM_bindM_l : refinesM.
Hint Extern 1 (_ |= ((_ >>= _) >>= _)) => simple apply refinesM_bindM_bindM_r : refinesM.
Lemma refinesM_bindM_returnM_l A (m:CompM A) P :
m |= P -> m >>= (fun x => returnM x) |= P.
Proof. rewrite bindM_returnM; eauto. Qed.
Lemma refinesM_bindM_returnM_r A P (m:CompM A) :
P |= m -> P |= m >>= (fun x => returnM x).
Proof. rewrite bindM_returnM; eauto. Qed.
Hint Extern 1 ((_ >>= (fun _ => returnM _)) |= _) => simple apply refinesM_bindM_returnM_l : refinesM.
Hint Extern 1 (_ |= (_ >>= (fun _ => returnM _))) => simple apply refinesM_bindM_returnM_r : refinesM.
Lemma bindM_returnM_sigT_unit A (m:CompM {_:A & unit}) u :
m >>= (fun x => returnM (existT (fun _ => unit) (projT1 x) u)) ~= m.
Proof.
assert (forall x u, existT (fun _ => unit) (projT1 x : A) u = x).
{ intros [] []; destruct u0; easy. }
setoid_rewrite H.
apply bindM_returnM.
Qed.
Lemma refinesM_bindM_returnM_sigT_unit_l A (m:CompM {_:A & unit}) P :
m |= P -> m >>= (fun x => returnM (existT (fun _ => unit) (projT1 x) tt)) |= P.
Proof. rewrite bindM_returnM_sigT_unit; eauto. Qed.
Lemma refinesM_bindM_returnM_sigT_unit_r A P (m:CompM {_:A & unit}) :
P |= m -> P |= m >>= (fun x => returnM (existT (fun _ => unit) (projT1 x) tt)).
Proof. rewrite bindM_returnM_sigT_unit; eauto. Qed.
Hint Extern 1 ((_ >>= (fun _ => returnM (existT _ (projT1 _) _))) |= _) =>
simple apply refinesM_bindM_returnM_sigT_unit_l : refinesM.
Hint Extern 1 (_ |= (_ >>= (fun _ => returnM (existT _ (projT1 _) _)))) =>
simple apply refinesM_bindM_returnM_sigT_unit_r : refinesM.
Lemma refinesM_forallM_bindM_l A B C (P: A -> CompM B) (Q: B -> CompM C) (R : CompM C) :
forallM (fun a => P a >>= Q) |= R -> (forallM P) >>= Q |= R.
Proof. rewrite forallM_bindM; eauto. Qed.
Lemma refinesM_assumingM_bindM_l A B P (m: CompM A) (Q: A -> CompM B) (R : CompM B) :
assumingM P (m >>= Q) |= R -> (assumingM P m) >>= Q |= R.
Proof. rewrite assumingM_bindM; eauto. Qed.
Hint Extern 1 (((forallM _) >>= _) |= _) => simple apply refinesM_forallM_bindM_l : refinesM.
Hint Extern 1 (((assumingM _ _) >>= _) |= _) => simple apply refinesM_assumingM_bindM_l : refinesM.
Create HintDb refinement_proofs.
Hint Extern 1 (_ _ >>= _ |= _) =>
progress (try (rewrite_strat (outermost (hints refinement_proofs)))) : refinesM.
Definition DidInduction {A} (a : A) : Type := unit.
Lemma didInduction {A} (a : A) : DidInduction a.
Proof. exact tt. Qed.
Tactic Notation "doInduction" tactic(ind) tactic(smp) ident(l) :=
lazymatch goal with
| H: DidInduction l |- _ => assumption
| _ => let l' := fresh l in
ind l l'; try pose proof (didInduction l'); smp
end.
Tactic Notation "doDestruction" tactic(dst) tactic(smp) ident(l) :=
let l' := fresh l in dst l l'; smp.
Ltac list_destruct l l' := destruct l as [| ? l'].
Ltac list_induction l l' := induction l as [| ? l'].
Ltac list_simpl := simpl SAWCorePrelude.unfoldList in *; simpl list_rect in *.
Hint Extern 2 (IntroArg ?n (eq (SAWCorePrelude.unfoldList _ ?l)
(SAWCorePrelude.Left _ _ _)) _) =>
doDestruction (list_destruct) (list_simpl) l : refinesFun.
Hint Extern 2 (IntroArg ?n (eq (SAWCorePrelude.unfoldList _ ?l)
(SAWCorePrelude.Right _ _ _)) _) =>
doDestruction (list_destruct) (list_simpl) l : refinesFun.
Hint Extern 9 (list_rect _ _ _ ?l |= _) =>
doInduction (list_induction) (list_simpl) l : refinesM.
Hint Extern 9 (_ |= list_rect _ _ _ ?l) =>
doInduction (list_induction) (list_simpl) l : refinesM.
(***
*** Rewriting rules
***)
Lemma existT_eta A (B:A -> Type) (s: {a:A & B a}) :
existT B (projT1 s) (projT2 s) = s.
Proof.
destruct s; reflexivity.
Qed.
Lemma existT_eta_unit A (s: {_:A & unit}) : existT (fun _ => unit) (projT1 s) tt = s.
Proof.
destruct s; destruct u; reflexivity.
Qed.
Hint Rewrite existT_eta existT_eta_unit : refinesM.
(*
Lemma function_eta A B (f:A -> B) : pointwise_relation A eq (fun x => f x) f.
Proof.
intro; reflexivity.
Qed.
*)
(* Specialized versions of monad laws for CompM to make rewriting faster,
probably because Coq doesn't have to search for the instances...? *)
Definition returnM_bindM_CompM A B (a:A) (f:A -> CompM B) : returnM a >>= f ~= f a :=
returnM_bindM (M:=CompM) A B a f.
Definition bindM_returnM_CompM A (m:CompM A) : m >>= (fun x => returnM x) ~= m :=
bindM_returnM (M:=CompM) A m.
Definition bindM_bindM_CompM A B C (m : CompM A) (f : A -> CompM B) (g : B -> CompM C) :
m >>= f >>= g ~= m >>= (fun x : A => f x >>= g) :=
bindM_bindM (M:=CompM) A B C m f g.
Definition errorM_bindM_CompM A B str (f:A -> CompM B) : errorM str >>= f ~= errorM str :=
errorM_bindM (M:=CompM) A B str f.
Hint Rewrite returnM_bindM_CompM bindM_returnM_CompM bindM_bindM_CompM errorM_bindM_CompM : refinesM.
(*
FIXME: do we need these rules?
Lemma bvEq_sym n x y : bvEq n x y = bvEq n y x.
admit.
Admitted.
From Coq Require Import Nat.
Lemma bvEq_eqb n x y : bvEq n (bvNat n x) (bvNat n y) = eqb x y.
admit.
Admitted.
*)
(***
*** Automation for proving function refinement
***)
Definition StartAutomation (goal : Prop) := goal.
Lemma StartAutomation_fold goal : StartAutomation goal -> goal.
Proof. easy. Qed.
Hint Extern 999 (StartAutomation ?A) => unfold StartAutomation : refinesFun.
(* Create HintDb refinesFun. *)
Hint Extern 999 (_ |= _) => shelve : refinesFun.
Hint Extern 999 (refinesFun _ _) => shelve : refinesFun.
(* Definition MaybeDestructArg A (a:A) (goal:Prop) : Prop := goal. *)
(* Definition noDestructArg A a (goal:Prop) : goal -> MaybeDestructArg A a goal := fun g => g. *)
Definition refinesFun_multiFixM_fst' lrt (F:lrtPi (LRT_Cons lrt LRT_Nil)
(lrtTupleType (LRT_Cons lrt LRT_Nil))) f
(ref_f:refinesFun (SAWCoreScaffolding.fst (F f)) f) :
refinesFun (fst (multiFixM F)) f := refinesFun_multiFixM_fst lrt F f ref_f.
Definition refinesFun_fst lrt B f1 (fs:B) f2 (r:@refinesFun lrt f1 f2) :
refinesFun (SAWCoreScaffolding.fst (f1, fs)) f2 := r.
Hint Resolve refinesFun_fst | 1 : refinesFun.
Hint Resolve refinesFun_multiFixM_fst' | 1 : refinesFun.
(* Hint Resolve noDestructArg | 5 : refinesFun. *)
(* (* If a goal contains W64List_rect applied to l, then destruct l *) *)
(* Ltac destructArg_W64List := *)
(* (lazymatch goal with *)
(* | |- MaybeDestructArg ?W64list ?l ?g => *)
(* match g with *)
(* | context [SAWCorePrelude.W64List_rect _ _ _ l] => *)
(* induction l; let IH := get_last_hyp tt in *)
(* try simpl in IH; try unfold MaybeDestructArg in IH; *)
(* simpl; apply noDestructArg *)
(* end *)
(* end). *)
(* Hint Extern 1 (MaybeDestructArg _ _ _) => destructArg_W64List :refinesFun. *)
(* (* If a goal contains list_rect applied to l, then destruct l *) *)
(* Ltac destructArg_list := *)
(* (lazymatch goal with *)
(* | |- MaybeDestructArg (list _) ?l ?g => *)
(* match g with *)
(* | context [Datatypes.list_rect _ _ _ l] => *)
(* induction l; let IH := get_last_hyp tt in *)
(* try simpl in IH; try unfold MaybeDestructArg in IH; *)
(* simpl; apply noDestructArg *)
(* end *)
(* end). *)
(* Hint Extern 1 (MaybeDestructArg _ _ _) => destructArg_list :refinesFun. *)
Definition refinesFunBase B m1 m2 (r: m1 |= m2) : @refinesFun (LRT_Ret B) m1 m2 := r.
Definition refinesFunStep A lrtF f1 f2
(r: IntroArg Any _ (fun a => @refinesFun (lrtF a) (f1 a) (f2 a))) :
@refinesFun (LRT_Fun A lrtF) f1 f2 := r.
Hint Extern 5 (@refinesFun (LRT_Ret _) _ _) =>
simple apply refinesFunBase; unfold_projs : refinesFun.
Hint Extern 5 (@refinesFun (LRT_Fun _ _) _ _) =>
simple apply refinesFunStep : refinesFun.
(***
*** Top-level tactics to put it all together
***)
Variant ProveRefOpts := Default | NoRewrite | NoDestructProds | NoRewriteNoDestructProds.
Ltac prove_refinement_eauto :=
unshelve (typeclasses eauto with refinesM refinesFun).
Ltac prove_refinement_destruct_prod_hyps :=
split_prod_hyps; unfold_projs in *.
Ltac prove_refinement_rewrite :=
try unshelve (rewrite_strat (bottomup (hints refinesM))).
Ltac prove_refinement_try_solve :=
split_prod_goal;
try reflexivity || contradiction.
Tactic Notation "prove_refinement_core" "with" constr(opts) :=
prove_refinement_eauto;
match opts with
| Default => prove_refinement_destruct_prod_hyps; prove_refinement_rewrite
| NoRewrite => prove_refinement_destruct_prod_hyps
| NoDestructProds => prove_refinement_rewrite
| NoRewriteNoDestructProds => idtac
end;
prove_refinement_try_solve.
Ltac prove_refinement_core := prove_refinement_core with Default.
(* Automatically prove refinements of the form `refinesFun F G` or of the
form` P |= Q`, where P,Q may contain matching calls to `letRecM`. *)
Tactic Notation "prove_refinement" "with" constr(opts) :=
unfold_projs; unfold Eq, Refl, SAWCoreScaffolding.Bool;
apply StartAutomation_fold;
prove_refinement_core with opts.
Ltac prove_refinement := prove_refinement with Default.
(* After a call to `prove_refinement`, give user input as to whether to continue
proof automation in the left or right branch of an `orM`/`andM`. *)
Tactic Notation "continue_prove_refinement_lr" tactic(tac) "with" constr(opts) :=
match goal with
| |- _ |= orM _ _ => apply refinesM_orM_r; tac; prove_refinement_core with opts
| |- andM _ _ |= _ => apply refinesM_andM_l; tac; prove_refinement_core with opts
end.
Tactic Notation "continue_prove_refinement_left" "with" constr(opts) :=
continue_prove_refinement_lr (left) with opts.
Tactic Notation "continue_prove_refinement_right" "with" constr(opts) :=
continue_prove_refinement_lr (right) with opts.
Ltac continue_prove_refinement_left := continue_prove_refinement_left with Default.
Ltac continue_prove_refinement_right := continue_prove_refinement_right with Default.
(* For refinements of the form `refinesFun F G` or `P |= Q` where a subexpression
on the left has a call to `letRecM` which does not match one on the right,
this tactic tries to prove the refinement by transitivity, where the new
middle expression has a `letRecM` which matches the one on the left as per
`refinesM_letRecM_match_r`. After giving values for each of the needed
functions, call `prove_refinement` to continue automation. *)
Ltac prove_refinement_match_letRecM_l :=
prove_refinement_eauto;
unshelve (eapply refinesM_letRecM_match_r);
[ unfold lrtTupleType, lrtToType; repeat split | apply ProperLRTFun_any | ].
(* It's important for the tactic above that `letRecM` is opaque! Otherwise
`eauto` will unfold it too soon. *)
Hint Opaque letRecM : refinesM refinesFun.
(* Ltac prove_refinesFun := unshelve (typeclasses eauto with refinesFun). *)
(*
Ltac rewrite_refinesM :=
try ((rewrite returnM_bindM || rewrite bindM_returnM || rewrite bindM_bindM ||
rewrite errorM_bindM || rewrite existsM_bindM); rewrite_refinesM).
*)
(*** FIXME: old stuff below ***)
Ltac old_prove_refinesM :=
lazymatch goal with
(* Bind cases *)
| |- (returnM _ >>= _) |= _ => rewrite returnM_bindM; old_prove_refinesM
| |- _ |= (returnM _ >>= _) => rewrite returnM_bindM; old_prove_refinesM
| |- (existsM _ >>= _) |= _ => rewrite existsM_bindM; old_prove_refinesM
| |- _ |= (existsM _ >>= _) => rewrite existsM_bindM; old_prove_refinesM
| |- (errorM >>= _) |= _ => rewrite errorM_bindM; old_prove_refinesM
| |- _ |= (errorM >>= _) => rewrite errorM_bindM; old_prove_refinesM
| |- ((_ >>= _) >>= _) |= _ => rewrite bindM_bindM; old_prove_refinesM
| |- _ |= ((_ >>= _) >>= _) => rewrite bindM_bindM; old_prove_refinesM
(* letRecM cases *)
| |- letRecM tt _ |= _ => apply refinesM_letRecM_Nil_l; old_prove_refinesM
(* either *)
| |- SAWCorePrelude.either _ _ _ _ _ _ |= _ =>
apply refinesM_either_l; intros; old_prove_refinesM
| |- _ |= SAWCorePrelude.either _ _ _ _ _ _ =>
apply refinesM_either_r; intros; old_prove_refinesM
| |- sigT_rect _ _ _ |= _ =>
(* sigT_rect *)
apply refinesM_sigT_rect_l; intros; old_prove_refinesM
| |- _ |= sigT_rect _ _ _ =>
apply refinesM_sigT_rect_r; intros; old_prove_refinesM
(* if *)
| |- (if _ then _ else _) |= _ =>
apply refinesM_if_l; intros; old_prove_refinesM
| |- _ |= (if _ then _ else _) =>
apply refinesM_if_r; intros; old_prove_refinesM
(* quantifiers *)
| |- existsM _ |= _ => apply refinesM_existsM_l; intros; old_prove_refinesM
| |- _ |= forallM _ => apply refinesM_forallM_r; intros; old_prove_refinesM
| |- _ |= existsM _ => eapply refinesM_existsM_r; old_prove_refinesM
| |- forallM _ |= _ => eapply refinesM_forallM_l; old_prove_refinesM
| |- returnM _ |= returnM _ => apply refinesM_returnM; intros; try reflexivity
(* default: give up! *)
| _ => idtac (* try (progress (autorewrite with refinesM) ; old_prove_refinesM) *)
end.
Ltac old_prove_refinesFun :=
apply refinesFun_multiFixM_fst; simpl; intros; old_prove_refinesM.