Skip to content

Latest commit

 

History

History
42 lines (22 loc) · 3.2 KB

File metadata and controls

42 lines (22 loc) · 3.2 KB

💎🌟META LLAMA3 GENAI Real World UseCases End To End Implementation Guide📝📚⚡

🦌⭐LLAMA3 USECASES✨💫

  1. Efficiently fine-tune Llama 3 with PyTorch FSDP and Q-Lora : 👉Implementation Guide▶️

  2. Deploy Llama 3 on Amazon SageMaker : 👉Implementation Guide▶️

  3. RAG using Llama3, Langchain and ChromaDB : 👉Implementation Guide▶️

  4. Prompting Llama 3 like a Pro : 👉Implementation Guide▶️

  5. Test Llama3 with some Math Questions : 👉Implementation Guide▶️

  6. Llama3 please write code for me : 👉Implementation Guide▶️

  7. Run LLAMA-3 70B LLM with NVIDIA endpoints on Amazing Streamlit UI : 👉Implementation Guide▶️

  8. Llama 3 ORPO Fine Tuning : 👉Implementation Guide▶️

  9. Meta's LLaMA3-Quantization : 👉Implementation Guide▶️

  10. Finetune Llama3 using QLoRA : 👉Implementation Guide▶️

  11. Llama3 Qlora Inference : 👉Implementation Guide▶️

  12. Beam_Llama3-8B-finetune_task : 👉Implementation Guide▶️

  13. Llama-3 Finetuning on custom dataset with Unsloth : 👉Implementation Guide▶️

  14. RAG using Llama3, LangChain, Ollama and ChromaDB in Flask API based Solution : 👉Implementation Guide▶️

  15. Llama3 Usecases: 👉Implementation Guide▶️

  16. RAG using Ro-LLM, Langchain and ChromaDB : 👉Implementation Guide▶️


If you like this LLM Project do drop ⭐ to this repo

Follow me on LinkedIn   GitHub