81
81
library(INLA)
82
82
library(meta4diag)
83
83
res <- meta4diag(data = dat)
84
+ png(file="SROC_hint.png")
84
85
SROC(res, crShow = T)
86
+ dev.off()
85
87
86
88
#sensitivity
87
89
png(file="sensitivity_hint.png")
@@ -91,6 +93,7 @@ forest(res, accuracy.type="sens", est.type="mean", p.cex="scaled", p.pch=15, p.c
91
93
cut=TRUE, intervals=c(0.025,0.975),
92
94
main="Forest plot of Sensitivity", main.cex=1.5, axis.cex=1)
93
95
dev.off()
96
+
94
97
png(file="specificity_hint.png")
95
98
#specificity
96
99
forest(res, accuracy.type="spec", est.type="mean", p.cex="scaled", p.pch=15, p.col="black",
@@ -127,18 +130,33 @@ library(flextable)
127
130
128
131
#initialise ppt
129
132
my_pres<-read_pptx() %>%
130
-
133
+ add_slide(layout = "Title and Content", master = "Office Theme") %>%
134
+ ph_with(value = "Vertigo Meta-analysis-Bayesian Approach", location = ph_location_type(type = "title"))%>% ph_with(value = c("Bivariate analysis","Bayesian approach appropriate for small sample size","Integrated Nested Laplacian Analysis"), location = ph_location_type(type = "body")) %>%
135
+
131
136
#add first slide
132
137
add_slide(layout = "Title and Content", master = "Office Theme") %>%
133
- ph_with(value = "Vertigo Meta-analysis", location = ph_location_type(type = "title"))%>% ph_with(value = flextable(dat), location = ph_location_type(type = "body")) %>%
134
-
135
-
138
+ ph_with(value = "Vertigo Meta-analysis-Bayesian Approach", location = ph_location_type(type = "title"))%>% ph_with(value = flextable(dat), location = ph_location_type(type = "body")) %>%
139
+
136
140
#add png to second slide
137
141
add_slide(layout = "Title and Content", master = "Office Theme") %>%
138
- ph_with(value = "Vertigo Meta-analysis", location = ph_location_type(type = "title")) %>%
139
- ph_with(value = external_img("LRpos_hint.png"), location = ph_location_type(type = "body")) %>%
140
-
141
- #add ggplot figure to third slide
142
+ ph_with(value = "Vertigo Meta-analysis-SROC", location = ph_location_type(type = "title")) %>%
143
+ ph_with(value = external_img("SROC_hint.png"), location = ph_location_type(type = "body")) %>%
144
+
145
+ #add png to third slide
146
+ add_slide(layout = "Two Content", master = "Office Theme") %>%
147
+ ph_with(value = "Sensitivity and Specificty of HINT",
148
+ location=ph_location_type(type="title")) %>%
149
+ ph_with(value = external_img("sensitivity_hint.png"),location = ph_location_left() ) %>%
150
+ ph_with(value = external_img("specificity_hint.png"),location = ph_location_right() ) %>%
151
+
152
+ #add png to fourth slide
153
+ add_slide(layout = "Two Content", master = "Office Theme") %>%
154
+ ph_with(value = "Positive and Negative LR of HINT",
155
+ location=ph_location_type(type="title")) %>%
156
+ ph_with(value = external_img("LRpos_hint.png"),location = ph_location_left() ) %>%
157
+ ph_with(value = external_img("LRneg_hint.png"),location = ph_location_right() ) %>%
158
+
159
+ #add ggplot figure to fifth slide
142
160
add_slide(layout = "Title and Content", master = "Office Theme") %>%
143
161
ph_with(value = "Metaregression", location =ph_location_type(type = "title")) %>%
144
162
ph_with(value = p, location = ph_location_type(type = "body"))
0 commit comments