Skip to content

Commit 3abbecb

Browse files
committed
new subfolder
1 parent 569102f commit 3abbecb

File tree

2 files changed

+83
-5
lines changed

2 files changed

+83
-5
lines changed

README.md

+6-5
Original file line numberDiff line numberDiff line change
@@ -48,11 +48,11 @@ par(op)
4848

4949
### TIA
5050

51-
This metaanalysis examines the rate of stroke recurrence following management in rapid TIA clinic. This study is in development.
51+
This metaanalysis examines the rate of stroke recurrence following management in rapid TIA clinic. The project will combine observational studies and RCT. This study is in development.
5252

5353
### Aneurysm
5454

55-
This metaanalysis is designed to examine the rate of rupture of aneurysm. The choice of method depends on whether the rate of rupture is framing of the confidence interval. This study is in development.
55+
This metaanalysis is designed to examine the rate of rupture of aneurysm. This study is in development.
5656

5757
### First Seizure
5858

@@ -132,7 +132,7 @@ bivariate method employs a random effect to take into account the within study c
132132
between-study correlation in sensitivity and specificity. The current project uses mada package on CRAN. It uses a bivariate method from mada package to assess spot sign as diagnostic test. There's also illustration of metaregression. It also contains codes for assessing positive predictive value. The codes are available in .Rmd document. Revman is a freely available tool from Cochrane but it does not support bivariate analysis. Data were entered via Survey Monkey. This work has been published in journal Stroke at https://www.ahajournals.org/doi/10.1161/STROKEAHA.118.024347. Fagan's normogram can be created using _nomogrammer_ package.
133133

134134
```r
135-
library(nomogrammer)
135+
source("https://raw.githubusercontent.com/achekroud/nomogrammer/master/nomogrammer.r")
136136
p<-nomogrammer(Prevalence = .234, Plr = 4.85, Nlr = 0.49)
137137
p+ggtitle("Fagan's normogram for Spot Sign and ICH growth")
138138
ggsave(p,file="Fagan_SpotSign.png",width=5.99,height=3.99,units="in")
@@ -182,6 +182,7 @@ GOSH plot of RCT on Associations of Omega-3 Fatty Acid Supplement Use With Cardi
182182
![here](./Clinical-Trials/RCT/gosh.png)
183183

184184
Metafor has routines for performing subplots using the subset function. Another way is to use the forestplot library in the example below
185+
185186
```r
186187
rmeta_conf <-
187188
structure(list(
@@ -209,7 +210,7 @@ forestplot(tabletext,
209210
col=fpColors(box="royalblue",line="darkblue", summary="royalblue"))
210211
```
211212

212-
Powerpoint slides can be created directly from R using officer package.
213+
Powerpoint slides can be created directly from R using officer package. This chunk of code is available within hint.Rmd in Vertigo subfolder.
213214

214215
```r
215216
library(officer)
@@ -240,7 +241,7 @@ print(my_pres, target = "Vertigo.pptx")
240241

241242
### Network-Metaanalysis
242243

243-
This project is under development. There are several methods varying between frequentist (netmeta) to Bayesian methods (nmalINLA and gemtc).
244+
Network metanalysis is proposed to be useful for comparing drugs from multiple RCT in which there is no direct comparison. An example in stroke would be a comparison of the different NOAC anticoagulants. Another use is to combine RCT and observation studies. This project is under development. There are several methods varying between frequentist (netmeta) to Bayesian methods (nmalINLA and gemtc).
244245

245246

246247
## Git commands

SeizureSigns/EyeClosure.R

+77
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,77 @@
1+
library(tidyverse)
2+
library(mada)
3+
library(dplyr)
4+
5+
#load data
6+
dat<-read.csv("semiology.csv", header=TRUE) %>%
7+
select (Author, Year, Retain, Parameter, TP, FP, FN, TN) %>%
8+
rename(`study names`=Author)
9+
10+
#filter data to include nonduplicate studies only
11+
dat1 <- filter(dat, Retain==1)
12+
dat1 <- subset(dat1, select=-c(Retain))
13+
14+
#filter data to include eyeclosure studies only
15+
eyeclosure <- filter(dat1, Parameter=='Eye closure')
16+
17+
#remove zeroes
18+
eyeclosure<-eyeclosure[-c(7),]
19+
20+
#print dataframe
21+
eyeclosure
22+
23+
#positive likelihood
24+
posLR.DSL <- madauni(eyeclosure, type = "posLR", method = "DSL")
25+
summary(posLR.DSL)
26+
forest(posLR.DSL)
27+
28+
#negative likelihood
29+
negLR.DSL <- madauni(eyeclosure, type = "negLR", method = "DSL")
30+
summary(negLR.DSL)
31+
forest(negLR.DSL)
32+
33+
##bivariate analysis
34+
(ss<-reitsma(eyeclosure))
35+
summary(ss)
36+
#AUC is available for both mada and meta4diag
37+
srocdat<-reitsma(data = eyeclosure)
38+
mada::AUC(srocdat)
39+
40+
sumss<-SummaryPts(ss,n.iter = 10^3) #bivariate pooled LR
41+
summary(sumss)
42+
plot(srocdat)
43+
44+
45+
#year analysis
46+
ssr<-as.data.frame(ss$residuals)
47+
ssr$Year<-as.Date(as.character(eyeclosure$Year),"%Y")
48+
49+
#sensitivity
50+
p<-ggplot(ssr, aes(x=ssr$Year,y=ssr$tsens))+geom_point()+scale_x_date()+geom_smooth(method="lm")+ggtitle("Relationship between transformed sensitivity and Publication Year")+labs(x="Year",y="transformed sensitivity")
51+
p
52+
53+
#specificity
54+
fitss<-lm(ssr$tfpr~ssr$Year,data=ssr)
55+
q<-ggplot(ssr, aes(x=ssr$Year,y=ssr$tfpr))+geom_point()+scale_x_date()+geom_smooth(method="lm")+ggtitle("Relationship between transformed specificity and Publication Year")
56+
q
57+
58+
#########Prevalence
59+
library(metafor)
60+
eyeclosure$xi=(eyeclosure$TP+eyeclosure$FN)
61+
eeyeclosure$ni=(eyeclosure$TP+eyeclosure$FP+eyeclosure$FN+eyeclosure$TN)
62+
eyeclosure$pi <- with(eyeclosure, xi/ni)
63+
eyeclosure <- escalc(measure="PFT", xi=xi, ni=ni, data=eyeclosure, add=0)
64+
res <- rma(yi, vi, method="REML", data=eyeclosure, slab=paste(Authors))
65+
result<-predict(res, transf=transf.ipft.hm, targs=list(ni=eyeclosure$ni))
66+
result$pred
67+
68+
##########Fagan
69+
source("https://raw.githubusercontent.com/achekroud/nomogrammer/master/nomogrammer.r")
70+
p<-nomogrammer(Prevalence = result$pred, Plr = exp(posLR.DSL$coefficients), Nlr = exp(negLR.DSL$coefficients))
71+
p+ggtitle("Fagan's normogram for Spot Sign and ICH growth")
72+
ggsave(p,file="Fagan_SpotSign.png",width=5.99,height=3.99,units="in")
73+
74+
75+
76+
77+
#

0 commit comments

Comments
 (0)