-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnncf_quantize.py
37 lines (29 loc) · 1.2 KB
/
nncf_quantize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import nncf
import torch
from torchvision import datasets, transforms
import openvino.runtime as ov
# 加载需要量化的模型
model = ov.Core().read_model("./IR/FP32.xml")
train_transforms = transforms.Compose([
transforms.Resize((512, 512)),
transforms.RandomCrop((512, 512)),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.ToTensor(),
transforms.Normalize(mean=[0.21390933, 0.20562113, 0.20215689], std=[0.2041261, 0.19696569, 0.19321205]),
])
# 校准集数据加载
# calibration_dataset = ImageFolder("./calibration_dataset", transform=train_transforms)
# 校准数据集预处理函数
val_dataset = datasets.ImageFolder("data", transform=train_transforms)
dataset_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1)
# 第一步 初始化 transformation 函数
def transform_fn(data_item):
images, _ = data_item
return images
# 第二步 初始化数据集
calibration_dataset = nncf.Dataset(dataset_loader, transform_fn)
# 第三步,推理nncf.quantize
quantized_model = nncf.quantize(model, calibration_dataset)
# 保存量化后的模型
ov.serialize(quantized_model, "./IR/INT8.xml")