-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathtrain.py
264 lines (217 loc) · 9.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""Training WaveRNN Model.
usage: train.py [options] <data-root>
options:
--checkpoint-dir=<dir> Directory where to save model checkpoints [default: checkpoints].
--checkpoint=<path> Restore model from checkpoint path if given.
-h, --help Show this help message and exit
"""
from docopt import docopt
import os
from os.path import dirname, join, expanduser
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
import librosa
from model import build_model
import torch
from torch import nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from model import build_model
from distributions import *
from loss_function import nll_loss
from dataset import raw_collate, discrete_collate, AudiobookDataset
from hparams import hparams as hp
from lrschedule import noam_learning_rate_decay, step_learning_rate_decay
global_step = 0
global_epoch = 0
global_test_step = 0
use_cuda = torch.cuda.is_available()
def save_checkpoint(device, model, optimizer, step, checkpoint_dir, epoch):
checkpoint_path = join(
checkpoint_dir, "checkpoint_step{:09d}.pth".format(step))
optimizer_state = optimizer.state_dict()
global global_test_step
torch.save({
"state_dict": model.state_dict(),
"optimizer": optimizer_state,
"global_step": step,
"global_epoch": epoch,
"global_test_step": global_test_step,
}, checkpoint_path)
print("Saved checkpoint:", checkpoint_path)
def _load(checkpoint_path):
if use_cuda:
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_checkpoint(path, model, optimizer, reset_optimizer):
global global_step
global global_epoch
global global_test_step
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
model.load_state_dict(checkpoint["state_dict"])
if not reset_optimizer:
optimizer_state = checkpoint["optimizer"]
if optimizer_state is not None:
print("Load optimizer state from {}".format(path))
optimizer.load_state_dict(checkpoint["optimizer"])
global_step = checkpoint["global_step"]
global_epoch = checkpoint["global_epoch"]
global_test_step = checkpoint.get("global_test_step", 0)
return model
def test_save_checkpoint():
checkpoint_path = "checkpoints/"
device = torch.device("cuda" if use_cuda else "cpu")
model = build_model()
optimizer = optim.Adam(model.parameters(), lr=1e-4)
global global_step, global_epoch, global_test_step
save_checkpoint(device, model, optimizer, global_step, checkpoint_path, global_epoch)
model = load_checkpoint(checkpoint_path+"checkpoint_step000000000.pth", model, optimizer, False)
def evaluate_model(model, data_loader, checkpoint_dir, limit_eval_to=5):
"""evaluate model and save generated wav and plot
"""
test_path = data_loader.dataset.test_path
test_files = os.listdir(test_path)
counter = 0
output_dir = os.path.join(checkpoint_dir,'eval')
for f in test_files:
if f[-7:] == "mel.npy":
mel = np.load(os.path.join(test_path,f))
wav = model.generate(mel)
# save wav
wav_path = os.path.join(output_dir,"checkpoint_step{:09d}_wav_{}.wav".format(global_step,counter))
librosa.output.write_wav(wav_path, wav, sr=hp.sample_rate)
# save wav plot
fig_path = os.path.join(output_dir,"checkpoint_step{:09d}_wav_{}.png".format(global_step,counter))
fig = plt.plot(wav.reshape(-1))
plt.savefig(fig_path)
# clear fig to drawing to the same plot
plt.clf()
counter += 1
# stop evaluation early via limit_eval_to
if counter >= limit_eval_to:
break
def train_loop(device, model, data_loader, optimizer, checkpoint_dir):
"""Main training loop.
"""
# create loss and put on device
if hp.input_type == 'raw':
if hp.distribution == 'beta':
criterion = beta_mle_loss
elif hp.distribution == 'gaussian':
criterion = gaussian_loss
elif hp.input_type == 'mixture':
criterion = discretized_mix_logistic_loss
elif hp.input_type in ["bits", "mulaw"]:
criterion = nll_loss
else:
raise ValueError("input_type:{} not supported".format(hp.input_type))
global global_step, global_epoch, global_test_step
while global_epoch < hp.nepochs:
running_loss = 0
for i, (x, m, y) in enumerate(tqdm(data_loader)):
x, m, y = x.to(device), m.to(device), y.to(device)
y_hat = model(x, m)
y = y.unsqueeze(-1)
loss = criterion(y_hat, y)
# calculate learning rate and update learning rate
if hp.fix_learning_rate:
current_lr = hp.fix_learning_rate
elif hp.lr_schedule_type == 'step':
current_lr = step_learning_rate_decay(hp.initial_learning_rate, global_step, hp.step_gamma, hp.lr_step_interval)
else:
current_lr = noam_learning_rate_decay(hp.initial_learning_rate, global_step, hp.noam_warm_up_steps)
for param_group in optimizer.param_groups:
param_group['lr'] = current_lr
optimizer.zero_grad()
loss.backward()
# clip gradient norm
nn.utils.clip_grad_norm_(model.parameters(), hp.grad_norm)
optimizer.step()
running_loss += loss.item()
avg_loss = running_loss / (i+1)
# saving checkpoint if needed
if global_step != 0 and global_step % hp.save_every_step == 0:
save_checkpoint(device, model, optimizer, global_step, checkpoint_dir, global_epoch)
# evaluate model if needed
if global_step != 0 and global_test_step !=True and global_step % hp.evaluate_every_step == 0:
print("step {}, evaluating model: generating wav from mel...".format(global_step))
evaluate_model(model, data_loader, checkpoint_dir)
print("evaluation finished, resuming training...")
# reset global_test_step status after evaluation
if global_test_step is True:
global_test_step = False
global_step += 1
print("epoch:{}, running loss:{}, average loss:{}, current lr:{}".format(global_epoch, running_loss, avg_loss, current_lr))
global_epoch += 1
if __name__=="__main__":
args = docopt(__doc__)
#print("Command line args:\n", args)
checkpoint_dir = args["--checkpoint-dir"]
checkpoint_path = args["--checkpoint"]
data_root = args["<data-root>"]
# make dirs, load dataloader and set up device
os.makedirs(checkpoint_dir, exist_ok=True)
os.makedirs(os.path.join(checkpoint_dir,'eval'), exist_ok=True)
dataset = AudiobookDataset(data_root)
if hp.input_type == 'raw':
collate_fn = raw_collate
elif hp.input_type == 'mixture':
collate_fn = raw_collate
elif hp.input_type in ['bits', 'mulaw']:
collate_fn = discrete_collate
else:
raise ValueError("input_type:{} not supported".format(hp.input_type))
data_loader = DataLoader(dataset, collate_fn=collate_fn, shuffle=True, num_workers=0, batch_size=hp.batch_size)
device = torch.device("cuda" if use_cuda else "cpu")
print("using device:{}".format(device))
# build model, create optimizer
model = build_model().to(device)
optimizer = optim.Adam(model.parameters(),
lr=hp.initial_learning_rate, betas=(
hp.adam_beta1, hp.adam_beta2),
eps=hp.adam_eps, weight_decay=hp.weight_decay,
amsgrad=hp.amsgrad)
if hp.fix_learning_rate:
print("using fixed learning rate of :{}".format(hp.fix_learning_rate))
elif hp.lr_schedule_type == 'step':
print("using exponential learning rate decay")
elif hp.lr_schedule_type == 'noam':
print("using noam learning rate decay")
# load checkpoint
if checkpoint_path is None:
print("no checkpoint specified as --checkpoint argument, creating new model...")
else:
model = load_checkpoint(checkpoint_path, model, optimizer, False)
print("loading model from checkpoint:{}".format(checkpoint_path))
# set global_test_step to True so we don't evaluate right when we load in the model
global_test_step = True
# main train loop
try:
train_loop(device, model, data_loader, optimizer, checkpoint_dir)
except KeyboardInterrupt:
print("Interrupted!")
pass
finally:
print("saving model....")
save_checkpoint(device, model, optimizer, global_step, checkpoint_dir, global_epoch)
def test_eval():
data_root = "data_dir"
dataset = AudiobookDataset(data_root)
if hp.input_type == 'raw':
collate_fn = raw_collate
elif hp.input_type == 'bits':
collate_fn = discrete_collate
else:
raise ValueError("input_type:{} not supported".format(hp.input_type))
data_loader = DataLoader(dataset, collate_fn=collate_fn, shuffle=True, num_workers=0, batch_size=hp.batch_size)
device = torch.device("cuda" if use_cuda else "cpu")
print("using device:{}".format(device))
# build model, create optimizer
model = build_model().to(device)
evaluate_model(model, data_loader)