-
Notifications
You must be signed in to change notification settings - Fork 121
/
utils.py
251 lines (202 loc) · 8.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import logging
import os
from collections import OrderedDict
import cv2
import h5py
import numpy as np
import scipy.io as sio
# import tensorflow as tf
import torch
from PIL import Image
def init_logger(name='x', filename='log.txt'):
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s: - %(message)s',
datefmt='%m-%d %H:%M:%S')
fh = logging.FileHandler(filename, encoding='utf-8')
fh.setLevel(logging.INFO)
fh.setFormatter(formatter)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch.setFormatter(formatter)
logger.addHandler(ch)
logger.addHandler(fh)
return logger
class BFM_model(object):
def __init__(self, root_dir, path):
super(BFM_model, self).__init__()
self.root_dir = root_dir
self.path = os.path.join(root_dir, path)
if '09' in path:
self.load_BFM09()
elif '17' in path:
self.load_BFM17()
self.n_shape_coef = self.shapePC.shape[1]
self.n_exp_coef = self.expressionPC.shape[1]
self.n_color_coef = self.colorPC.shape[1]
self.n_all_coef = self.n_shape_coef + self.n_exp_coef + self.n_color_coef
def load_BFM09(self):
model = sio.loadmat(self.path)
self.shapeMU = model['meanshape'].astype(np.float32) # mean face shape
self.shapePC = model['idBase'].astype(np.float32) # identity basis
self.expressionPC = model['exBase'].astype(np.float32) # expression basis
self.colorMU = model['meantex'].astype(np.float32) # mean face texture
self.colorPC = model['texBase'].astype(np.float32) # texture basis
self.point_buf = model['point_buf'].astype(np.int32)
# adjacent face index for each vertex, starts from 1 (only used for calculating face normal)
self.triangles = model['tri'].astype(np.int32)
# vertex index for each triangle face, starts from 1
self.landmark = np.squeeze(model['keypoints']).astype(
np.int32) - 1 # 68 face landmark index, starts from 0
def load_BFM17(self):
with h5py.File(self.path, 'r') as hf:
self.triangles = np.transpose(np.array(hf['shape/representer/cells']),
[1, 0])
self.shapeMU = np.array(hf['shape/model/mean']) / 1e2
shape_orthogonal_pca_basis = np.array(hf['shape/model/pcaBasis'])
shape_pca_variance = np.array(hf['shape/model/pcaVariance']) / 1e4
self.colorMU = np.array(hf['color/model/mean'])
color_orthogonal_pca_basis = np.array(hf['color/model/pcaBasis'])
color_pca_variance = np.array(hf['color/model/pcaVariance'])
self.expressionMU = np.array(hf['expression/model/mean']) / 1e2
expression_pca_basis = np.array(hf['expression/model/pcaBasis'])
expression_pca_variance = np.array(
hf['expression/model/pcaVariance']) / 1e4
self.shapePC = shape_orthogonal_pca_basis * np.expand_dims(
np.sqrt(shape_pca_variance), 0)
self.colorPC = color_orthogonal_pca_basis * np.expand_dims(
np.sqrt(color_pca_variance), 0)
self.expressionPC = expression_pca_basis * np.expand_dims(
np.sqrt(expression_pca_variance), 0)
def stitch_images(inputs, *outputs, im_size, img_per_row=2):
gap = 5
columns = len(outputs) + 1
# width, height = inputs[0][:, :, 0].shape
try:
width = im_size[0]
height = im_size[1]
except TypeError:
width = im_size
height = im_size
img = Image.new('RGB',
(width * img_per_row * columns + gap *
(img_per_row - 1), height * int(len(inputs) / img_per_row)))
images = [inputs, *outputs]
# for ix in range(len(inputs)):
for ix, _ in enumerate(inputs):
xoffset = int(ix % img_per_row) * width * columns + int(
ix % img_per_row) * gap
yoffset = int(ix / img_per_row) * height
# for cat in range(len(images)):
for cat, _ in enumerate(images):
im = np.array((images[cat][ix]).cpu()).astype(np.uint8).squeeze()
im = Image.fromarray(im)
if im.size[0] != width:
im = im.resize((width, height))
img.paste(im, (xoffset + cat * width, yoffset))
return img
def to_uint8(image):
if np.min(image) < 0:
return np.round((np.clip(image, -1, 1) + 1) * 127.5).astype(np.uint8)
else:
return np.round(np.clip(image, 0, 1) * 255).astype(np.uint8)
def fix_state_dict(state_dict):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k.replace('module.', '')
new_state_dict[name] = v
return new_state_dict
def to_uint8_torch(image, no_permute=False):
if torch.min(image) < 0:
image = torch.round((torch.clamp(image, -1., 1.) + 1) * 127.5)
else:
image = torch.round(torch.clamp(image, 0, 1) * 255)
# return image.uint8().permute(0, 2, 3, 1)
if no_permute:
return image.type(torch.uint8)
elif len(image.size()) == 4:
return image.type(torch.uint8).permute(0, 2, 3, 1)
elif len(image.size()) == 3:
return image.type(torch.uint8).permute(1, 2, 0)
else:
return image.type(torch.uint8)
def center_crop_resize(image, img_size, crop=False):
# set img_size to None will not resize image
height, width, _ = image.shape
if crop:
if width > height:
w_s = (width - height) // 2
image = image[:, w_s:w_s + height]
elif height > width:
h_s = (height - width) // 2
image = image[h_s:h_s + width, :]
else:
# padding
if width > height:
top = (width - height) // 2
bottom = width - height - top
image = cv2.copyMakeBorder(image, top, bottom, 0, 0, cv2.BORDER_REPLICATE)
elif height > width:
left = (height - width) // 2
right = height - width - left
image = cv2.copyMakeBorder(image, 0, 0, left, right, cv2.BORDER_REPLICATE)
if img_size is not None:
image = cv2.resize(image, (img_size, img_size))
return image
def split_bfm09_coeff(coeff):
shape_coef = coeff[:, 0:80] # identity(shape) coeff of dim 80
exp_coef = coeff[:, 80:144] # expression coeff of dim 64
color_coef = coeff[:, 144:224] # texture(albedo) coeff of dim 80
angles = coeff[:, 224:227] # ruler angles(x,y,z) for rotation of dim 3
gamma = coeff[:, 227:254] # lighting coeff for 3 channel SH of dim 27
translation = coeff[:, 254:257] # translation coeff of dim 3
return shape_coef, exp_coef, color_coef, angles, gamma, translation
def rotation_matrix_np(angles):
angle_x = angles[:, 0]
angle_y = angles[:, 1]
angle_z = angles[:, 2]
ones = np.ones_like(angle_x)
zeros = np.zeros_like(angle_x)
# yapf: disable
rotation_X = np.array([[ones, zeros, zeros],
[zeros, np.cos(angle_x), -np.sin(angle_x)],
[zeros, np.sin(angle_x), np.cos(angle_x)]],
dtype=np.float32)
rotation_Y = np.array([[np.cos(angle_y), zeros, np.sin(angle_y)],
[zeros, ones, zeros],
[-np.sin(angle_y), zeros, np.cos(angle_y)]],
dtype=np.float32)
rotation_Z = np.array([[np.cos(angle_z), -np.sin(angle_z), zeros],
[np.sin(angle_z), np.cos(angle_z), zeros],
[zeros, zeros, ones]],
dtype=np.float32)
# yapf: enable
rotation_X = np.transpose(rotation_X, (2, 0, 1))
rotation_Y = np.transpose(rotation_Y, (2, 0, 1))
rotation_Z = np.transpose(rotation_Z, (2, 0, 1))
rotation = np.matmul(np.matmul(rotation_Z, rotation_Y), rotation_X)
# transpose row and column (dimension 1 and 2)
rotation = np.transpose(rotation, (0, 2, 1))
return rotation
def rgb2hsv(im, eps=1e-8):
img = im * 0.5 + 0.5
# import imageio
# imageio.imsave('tmp/blur_uv.png', img.cpu()[0].permute(1,2,0).detach().numpy())
hue = torch.Tensor(im.shape[0], im.shape[2], im.shape[3]).to(im.device)
hue[img[:, 2] == img.max(1)[0]] = 4.0 + (
(img[:, 0] - img[:, 1]) /
(img.max(1)[0] - img.min(1)[0] + eps))[img[:, 2] == img.max(1)[0]]
hue[img[:, 1] == img.max(1)[0]] = 2.0 + (
(img[:, 2] - img[:, 0]) /
(img.max(1)[0] - img.min(1)[0] + eps))[img[:, 1] == img.max(1)[0]]
hue[img[:, 0] == img.max(1)[0]] = (0.0 + (
(img[:, 1] - img[:, 2]) /
(img.max(1)[0] - img.min(1)[0] + eps))[img[:, 0] == img.max(1)[0]]) % 6
hue[img.min(1)[0] == img.max(1)[0]] = 0.0
hue = hue / 6
saturation = (img.max(1)[0] - img.min(1)[0]) / (img.max(1)[0] + eps)
saturation[img.max(1)[0] == 0] = 0
value = img.max(1)[0]
hsv = torch.stack([hue, saturation, value], dim=-3)
return hsv