diff --git a/README.md b/README.md index 77611de4e..b4f883788 100644 --- a/README.md +++ b/README.md @@ -927,15 +927,14 @@ will return much faster than the first query and we'll be certain the authors ma | `parsing.chunking_algorithm` | `ChunkingOptions.SIMPLE_OVERLAP` | Algorithm for chunking. | | `parsing.doc_filters` | `None` | Optional filters for allowed documents. | | `parsing.use_human_readable_clinical_trials` | `False` | Parse clinical trial JSONs into readable text. | -| `prompt.summary` | `summary_prompt` | Template for summarizing text, must contain variables matching `summary_prompt`. | +| `prompt.summary` | `summary_prompt` | User prompt template(s) to use when generating contextual summaries. | | `prompt.qa` | `qa_prompt` | Template for QA, must contain variables matching `qa_prompt`. | | `prompt.select` | `select_paper_prompt` | Template for selecting papers, must contain variables matching `select_paper_prompt`. | | `prompt.pre` | `None` | Optional pre-prompt templated with just the original question to append information before a qa prompt. | | `prompt.post` | `None` | Optional post-processing prompt that can access PQASession fields. | -| `prompt.system` | `default_system_prompt` | System prompt for the model. | +| `prompt.system` | `default_system_prompt` | System prompt to use when generating contextual summaries and answers. | | `prompt.use_json` | `True` | Whether to use JSON formatting. | -| `prompt.summary_json` | `summary_json_prompt` | JSON-specific summary prompt. | -| `prompt.summary_json_system` | `summary_json_system_prompt` | System prompt for JSON summaries. | +| `prompt.summary_json` | `summary_json_prompt` | JSON-specific user prompt template(s) to use when generating contextual summaries. | | `prompt.context_outer` | `CONTEXT_OUTER_PROMPT` | Prompt for how to format all contexts in generate answer. | | `prompt.context_inner` | `CONTEXT_INNER_PROMPT` | Prompt for how to format a single context in generate answer. Must contain 'name' and 'text' variables. | | `agent.agent_llm` | `"gpt-4o-2024-11-20"` | Model to use for agent making tool selections. | diff --git a/docs/tutorials/settings_tutorial.ipynb b/docs/tutorials/settings_tutorial.ipynb index 6dc470d26..b7df46fdb 100644 --- a/docs/tutorials/settings_tutorial.ipynb +++ b/docs/tutorials/settings_tutorial.ipynb @@ -129,10 +129,10 @@ " default_system_prompt,\n", " env_reset_prompt,\n", " env_system_prompt,\n", + " include_text_prompt_template,\n", " qa_prompt,\n", " select_paper_prompt,\n", " structured_citation_prompt,\n", - " summary_json_prompt,\n", " summary_json_system_prompt,\n", " summary_prompt,\n", ")\n", @@ -201,8 +201,9 @@ " post=None,\n", " system=default_system_prompt,\n", " use_json=True,\n", - " summary_json=summary_json_prompt,\n", - " summary_json_system=summary_json_system_prompt,\n", + " summary_json=[\n", + " summary_json_system_prompt, include_text_prompt_template\n", + " ],\n", " context_outer=CONTEXT_OUTER_PROMPT,\n", " context_inner=CONTEXT_INNER_PROMPT,\n", " ),\n", diff --git a/docs/tutorials/settings_tutorial.md b/docs/tutorials/settings_tutorial.md index a815e012f..b9b5ef2af 100644 --- a/docs/tutorials/settings_tutorial.md +++ b/docs/tutorials/settings_tutorial.md @@ -102,10 +102,10 @@ from paperqa.prompts import ( default_system_prompt, env_reset_prompt, env_system_prompt, + include_text_prompt_template, qa_prompt, select_paper_prompt, structured_citation_prompt, - summary_json_prompt, summary_json_system_prompt, summary_prompt, ) @@ -174,8 +174,7 @@ settings = Settings( post=None, system=default_system_prompt, use_json=True, - summary_json=summary_json_prompt, - summary_json_system=summary_json_system_prompt, + summary_json=[summary_json_system_prompt, include_text_prompt_template], context_outer=CONTEXT_OUTER_PROMPT, context_inner=CONTEXT_INNER_PROMPT, ), diff --git a/src/paperqa/configs/contracrow.json b/src/paperqa/configs/contracrow.json index 3985ec5e8..40530ff95 100644 --- a/src/paperqa/configs/contracrow.json +++ b/src/paperqa/configs/contracrow.json @@ -36,8 +36,10 @@ "post": null, "system": "Answer in a direct and concise tone. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them.", "use_json": true, - "summary_json": "Excerpt from {citation}\n\n----\n\n{text}\n\n----\n\nQuestion: {question}\n\n", - "summary_json_system": "Provide a summary of the relevant information that could help determine if a claim is contradicted or supported by this excerpt. The excerpt may be irrelevant. Do not directly answer if it is contradicted - only summarize relevant information. Respond with the following JSON format:\n\n{{\n \"summary\": \"...\",\n \"relevance_score\": \"...\"\n}}\n\nwhere `summary` is relevant information from excerpt ({summary_length}) and `relevance_score` is the relevance of `summary` to support or contradict the claim (integer out of 10). If any string entry in the JSON has newlines, be sure to escape them. " + "summary_json": [ + "Provide a summary of the relevant information that could help determine if a claim is contradicted or supported by this excerpt. The excerpt may be irrelevant. Do not directly answer if it is contradicted - only summarize relevant information. Respond with the following JSON format:\n\n{{\n \"summary\": \"...\",\n \"relevance_score\": \"...\"\n}}\n\nwhere `summary` is relevant information from excerpt ({summary_length}) and `relevance_score` is the relevance of `summary` to support or contradict the claim (integer out of 10). If any string entry in the JSON has newlines, be sure to escape them.", + "Excerpt from {citation}\n\n----\n\n{text}\n\n----\n\nQuestion: {question}" + ] }, "agent": { "agent_llm": "gpt-4o-2024-08-06", diff --git a/src/paperqa/configs/wikicrow.json b/src/paperqa/configs/wikicrow.json index d1ba4f753..e1adda15c 100644 --- a/src/paperqa/configs/wikicrow.json +++ b/src/paperqa/configs/wikicrow.json @@ -36,8 +36,10 @@ "post": null, "system": "Answer in a direct and concise tone.", "use_json": true, - "summary_json": "Excerpt from {citation}\n\n----\n\n{text}\n\n----\n\nQuestion: {question}\n\n", - "summary_json_system": "Provide a summary of the relevant information that could help answer the question based on the excerpt. The excerpt may be irrelevant. Do not directly answer the question - only summarize relevant information. \n\nRespond with the following JSON format:\n\n{{\n \"summary\": \"...\",\n \"relevance_score\": \"...\",\n \"gene_name: \"...\"\n}}\n\nwhere `summary` is relevant information from text - {summary_length}, \n`gene_name` is the gene discussed in the excerpt (may be different than query), and `relevance_score` is the relevance of `summary` to answer the question (integer out of 10)" + "summary_json": [ + "Provide a summary of the relevant information that could help answer the question based on the excerpt. The excerpt may be irrelevant. Do not directly answer the question - only summarize relevant information. \n\nRespond with the following JSON format:\n\n{{\n \"summary\": \"...\",\n \"relevance_score\": \"...\",\n \"gene_name: \"...\"\n}}\n\nwhere `summary` is relevant information from text - {summary_length}, \n`gene_name` is the gene discussed in the excerpt (may be different than query), and `relevance_score` is the relevance of `summary` to answer the question (integer out of 10)", + "Excerpt from {citation}\n\n----\n\n{text}\n\n----\n\nQuestion: {question}" + ] }, "agent": { "agent_llm": "gpt-4-turbo-2024-04-09", diff --git a/src/paperqa/core.py b/src/paperqa/core.py index 131bf7382..ceea509e7 100644 --- a/src/paperqa/core.py +++ b/src/paperqa/core.py @@ -136,7 +136,7 @@ async def _map_fxn_summary( # noqa: PLR0912 text: Text, question: str, summary_llm_model: LLMModel | None, - prompt_templates: tuple[str, str] | None, + prompt_templates: tuple[str | list[str], str] | None, extra_prompt_data: dict[str, str] | None = None, parser: Callable[[str], dict[str, Any]] | None = None, callbacks: Sequence[Callable[[str], None]] | None = None, @@ -154,8 +154,9 @@ async def _map_fxn_summary( # noqa: PLR0912 text: The text to parse. question: The question to use for summarization. summary_llm_model: The LLM model to use for generating summaries. - prompt_templates: Optional two-elements tuple containing templates for the user and system prompts. - prompt_templates = (user_prompt_template, system_prompt_template) + prompt_templates: Optional two-tuple containing + the user prompt template(s) and a system prompt. + prompt_templates = (user_prompt_template(s), system_prompt_template) extra_prompt_data: Optional extra data to pass to the prompt template. parser: Optional parser function to parse LLM output into structured data. Should return dict with at least 'summary' field. @@ -202,13 +203,27 @@ async def _map_fxn_summary( # noqa: PLR0912 else cleaned_text ), } | (extra_prompt_data or {}) - message_prompt, system_prompt = (pt.format(**data) for pt in prompt_templates) + user_msg_prompts: list[str] = ( + [prompt_templates[0].format(**data)] + if isinstance(prompt_templates[0], str) + else [pt.format(**data) for pt in prompt_templates[0]] + ) + system_msg = Message(role="system", content=prompt_templates[1]) + prepend_msgs = ( + [ + system_msg, + *(Message(content=m) for m in user_msg_prompts[:-1]), + ] + if len(user_msg_prompts) > 1 + else [system_msg] + ) + msg_with_media_prompt = user_msg_prompts[-1] try: llm_result = await summary_llm_model.call_single( messages=[ - Message(role="system", content=system_prompt), + *prepend_msgs, Message.create_message( - text=message_prompt, + text=msg_with_media_prompt, images=( [i.to_image_url() for i in text.media] if text.media @@ -231,8 +246,8 @@ async def _map_fxn_summary( # noqa: PLR0912 ) llm_result = await summary_llm_model.call_single( messages=[ - Message(role="system", content=system_prompt), - Message(content=message_prompt), + *prepend_msgs, + Message(content=msg_with_media_prompt), *append_msgs, ], callbacks=callbacks, diff --git a/src/paperqa/docs.py b/src/paperqa/docs.py index 35947612d..87c8d331c 100644 --- a/src/paperqa/docs.py +++ b/src/paperqa/docs.py @@ -643,18 +643,14 @@ async def aget_evidence( else matches ) - prompt_templates = None if not answer_config.evidence_skip_summary: - if prompt_config.use_json: - prompt_templates = ( - prompt_config.summary_json, - prompt_config.summary_json_system, - ) - else: - prompt_templates = ( - prompt_config.summary, - prompt_config.system, - ) + prompt_templates: tuple[str | list[str], str] | None = ( + prompt_config.summary_json + if prompt_config.use_json + else prompt_config.summary + ), prompt_config.system + else: + prompt_templates = None with set_llm_session_ids(session.id): results = await gather_with_concurrency( @@ -666,8 +662,7 @@ async def aget_evidence( summary_llm_model=summary_llm_model, prompt_templates=prompt_templates, extra_prompt_data={ - "summary_length": answer_config.evidence_summary_length, - "citation": f"{m.name}: {m.doc.formatted_citation}", + "summary_length": answer_config.evidence_summary_length }, parser=llm_parse_json if prompt_config.use_json else None, callbacks=callbacks, diff --git a/src/paperqa/prompts.py b/src/paperqa/prompts.py index a6ede56dd..365566a14 100644 --- a/src/paperqa/prompts.py +++ b/src/paperqa/prompts.py @@ -1,10 +1,15 @@ from datetime import datetime +include_text_prompt_template = ( + "Excerpt from {citation}\n\n------------\n\n{text}\n\n------------" + "\n\nQuestion: {question}" +) + summary_prompt = ( - "Summarize the excerpt below to help answer a question.\n\nExcerpt from" - " {citation}\n\n------------\n\n{text}\n\n------------" - "\n\nQuestion: {question}\n\nDo not directly" - " answer the question, instead summarize to give evidence to help answer the" + "Summarize the excerpt below to help answer a question." + f"\n\n{include_text_prompt_template}" + "\n\nDo not directly answer the question," + " instead summarize to give evidence to help answer the" " question. Stay detailed; report specific numbers, equations, or direct quotes" ' (marked with quotation marks). Reply "Not applicable" if the excerpt is' " irrelevant. At the end of your response, provide an integer score from 1-10 on a" @@ -18,11 +23,6 @@ "\n\n------------\n\n{tables}" ) -summary_json_prompt = ( - "Excerpt from {citation}\n\n------------\n\n{text}\n\n------------" - "\n\nQuestion: {question}\n\n" -) - # The below "cannot answer" sentinel phrase should: # 1. Lead to complete tool being called with has_successful_answer=False # 2. Can be used for unit testing diff --git a/src/paperqa/settings.py b/src/paperqa/settings.py index dbb34329f..85fc84de0 100644 --- a/src/paperqa/settings.py +++ b/src/paperqa/settings.py @@ -58,10 +58,10 @@ default_system_prompt, env_reset_prompt, env_system_prompt, + include_text_prompt_template, qa_prompt, select_paper_prompt, structured_citation_prompt, - summary_json_prompt, summary_json_system_prompt, summary_prompt, ) @@ -371,7 +371,13 @@ class PromptSettings(BaseModel): # SEE: https://nwtc.libguides.com/citations/MLA#s-lg-box-707489 EXAMPLE_CITATION: ClassVar[str] = "(pqac-0f650d59)" - summary: str = summary_prompt + summary: str | list[str] = Field( + default=summary_prompt, + description=( + "User prompt template(s) to use when generating contextual summaries." + " Must contain variables matching the default argument `summary_prompt`." + ), + ) qa: str = qa_prompt answer_iteration_prompt: str | None = Field( default=answer_iteration_prompt_template, @@ -392,13 +398,22 @@ class PromptSettings(BaseModel): ), ) post: str | None = None - system: str = default_system_prompt + system: str = Field( + default=default_system_prompt, + description="System prompt to use when generating contextual summaries and answers.", + ) use_json: bool = True - # Not thrilled about this model, - # but need to split out the system/summary - # to get JSON - summary_json: str = summary_json_prompt - summary_json_system: str = summary_json_system_prompt + summary_json: str | list[str] = Field( + default_factory=lambda: [ + summary_json_system_prompt, + include_text_prompt_template, + ], + description=( + "JSON-specific user prompt template(s) to use" + " when generating contextual summaries." + " Must contain variables matching the default argument `summary_prompt`." + ), + ) context_outer: str = Field( default=CONTEXT_OUTER_PROMPT, description="Prompt for how to format all contexts in generate answer.", diff --git a/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml b/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml index 336d323c6..f76579063 100644 --- a/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml +++ b/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml @@ -45,20 +45,20 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jJLfa9swEMff/VeIe06G4yZxyNvYoHRQBoPRsjrYsnRJ1MqSkM7pj5D/ - fchO4nTrYC96uM99T/e9u33CGCgJSwZiy0k0To+/fJu336/udj/vF/OX1+tfdfb17fbp+vamztM3 - GEWFrR9R0En1SdjGaSRlTY+FR04Yq07y2WKep4ts2oHGStRRtnE0ntpxlmbT8WQyztKjcGuVwABL - 9pAwxti+e2OLRuILLFk6OkUaDIFvEJbnJMbAWx0jwENQgbghGA1QWENouq6rqnoM1hRmXxjGCiBF - GgtYsgLuP9+wH7hT+FzAqKe8pa31IfKHAu5Qa/7MiZAhMa4LWB3zpFUxx7RaF+ZQmKqqLv/3uG4D - 18eMC8CNscTj+DrnqyM5nL1qu3He1uEPKayVUWFbeuTBmugrkHXQ0UPC2KqbaftuTOC8bRyVZJ+w - +y7P+nIwLHGAVydIlrge4pN0OvqgXCmRuNLhYikguNiiHKTDBnkrlb0AyYXpv7v5qHZvXJnN/5Qf - gBDoCGXpPEol3jse0jzGG/9X2nnIXcMQ0O+UwJIU+rgIiWve6v78ILwGwqZcK7NB77zqb3Dtytl8 - UmezPJc1JIfkNwAAAP//AwAiGuqTjAMAAA== + H4sIAAAAAAAAA4ySTW/bMAyG7/4VAs/J4Hy4GXLrell32GFY0WF1YMsSY6uTJUGikw5B/vsgO4nT + rgN20YEPX4ovyUPCGCgJawai4SRap6d3X75WPx/rm/19s3OLl4fP2adF+K6r7PbuYQGTqLDVMwo6 + qz4I2zqNpKwZsPDICWPV2Sr7uFpkaZr1oLUSdZTVjqZLO52n8+V0NpvO05OwsUpggDV7Shhj7NC/ + sUUj8QXWLJ2cIy2GwGuE9SWJMfBWxwjwEFQgbggmIxTWEJq+67Isn4M1uTnkhrEcSJHGHNYshx+3 + 9+wb7hTuc5gMlHfUWB8if8rhEbXme06EDIlxncPmlCetijmm0zo3x9yUZXn9v8dtF7g+ZVwBbowl + HsfXO9+cyPHiVdvaeVuFN1LYKqNCU3jkwZroK5B10NNjwtimn2n3akzgvG0dFWR/Yf/daj6Ug3GJ + I1ycIVnieozP0uXknXKFROJKh6ulgOCiQTlKxw3yTip7BZIr0393817twbgy9f+UH4EQ6Ahl4TxK + JV47HtM8xhv/V9plyH3DENDvlMCCFPq4CIlb3unh/CD8DoRtsVWmRu+8Gm5w64rsZlbNs9VKVpAc + kz8AAAD//wMAlfw7QYwDAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de30be9742712-SJC + - 984401f75d621587-SJC Connection: - keep-alive Content-Encoding: @@ -66,7 +66,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:24 GMT + - Wed, 24 Sep 2025 17:30:06 GMT Server: - cloudflare Strict-Transport-Security: @@ -82,13 +82,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "500" + - "584" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "532" + - "605" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -104,7 +104,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_ac08f9e5f4a54257bdb95a88262b9791 + - req_901c2b56a6fd4b03a012f8a3b7f2da3a status: code: 200 message: OK @@ -126,21 +126,21 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAA/7VVTW/bOBT8KwLPok192LJ8K5IukKDtGkl6WdsHRnqymVKklqTcGob/ex8pNXYX - yWIve5P48TjzZoY8Eeu46y1ZEv2NxKQFa/kOqDt2gGPftflGpbDuauoAxgqtcDaZsAm7zJDliTS8 - AofVTueYOO24pAZsL/1Qms3yPCbCQYt/6xMRqoYfUPttNXdAO278uvU6ZWkeL+Jiu42HGSdaj8aP - U7agrHhi82VeLJPyLzzezyKLtiPLpEgzlmRpVs5nBUIw0IABVQGtdK8cWbKYdP0zMtqDwYpPhitr - HUjJTXSve6O4jFZ+QcUdkrQRV3X0ABa4qfbRDY4gGa6qY7Qy4oDYok+iRUo14hDW9h5mht+VVg6U - o7VuuVCB4vi1RlKV0da2HHuL3XFGVC40tOHSAqK2e20c9SVwBxik7yQWXpO7+8+rjw+3ZHthUdPO - CM/sjSay7Rar3f5557VikzRP82IzFS9tB6Z+6ZVfUiYe7ij3y9ABijVEhUd6pMDdOxox1Ch9SyTm - RUpRJLbMsjdEmpWLfLHIypIxhgC74B1SzooZLWeLFFdbBFL5wRvfKVQxtJe+ylnT5+OVpK8N+oBa - HQR8j1YcOUZaRX9oXUePUPVGuGNoHBYRP646gqUPWvYBfOLtzHuHAgSL7sQBvNM/oO4tWoW36A9w - EZeTGFc2vBXy+P68hb97DxdXNMKEFPGmEVLwQfA16nMiioezn+5XDze/b+J1LfxKLt/YufXBa5+D - jxOW5fPRdv/0DBoRRR3KvHpcN9FnqPZcodFlMPnK6LoPRow+qh3WAPTV7uJ9v+YWDiB116KzfSsl - V7t+EA+7hDaATlvxf9vFVtrgzjSflLPZIit8yn/55YTyCgzW0X9+ffiEB+yd65ab6WbqXjpTTbTZ - baZjeDpvEruZpnReUH/MjKVFmVLMxJi0+69fxpBMuroh5/OY8ncYhry9mtReOfRXssY74vTbZfFf - s4zFuRzVPAAVdbA8ikOTrCiYl+TC2QbStRYD5X/P/93j4xdfLE3zks4XZaiFENX4EGAUxitiQIiR - 4TLgv+w4X99K73PYjk8ARRB0iH4SE7T8IBqKjndfeBpC4wb3UWTtXw3VS3k+n38CYhqtPrYGAAA= + H4sIAAAAAAAA/6VVzXLbNhB+FQ7OhARQlCjx5jiZjt20dWznEkmHNQnKcECCBUAlGo3ePbukbMuJ + 3elMbiAWWOz3s8s98wFC51nO7FcWs1p5DxvFw65VuPfNuq/caB9OQlvlvLYNRuVIjMRzhOV7VkGh + AmbbH2IWbADDnfKdoa1kMp1lMdNB1fi13DPdlOq7KulaCUHxFhydWy4TkaTxPM7W63iIBF1TNbTP + xZyL7FbM8nSaS/EFn6cooqhblsssmQg5kVLMZjMswalKOdUUihe2awLLRcza7g4R3SuHGW8dNN4H + ZQy46NJ2rgETXdGBAgKC9BE0ZXStvAJX3EfnuINgoCl20ZXTW6wt+qhrhFRiHdr7jsqc4bqwTVBN + 4KWtQTc9xONqiaAKZ72vAblFdoLTRegJrcB4hVX7e+sCpxR4QzmEHwwmXrKLy7Oba7Z+xlDy1mnC + 9SuFEunDXO//uSClxChJkzRbjfUDeFeqgg4kKbE3KP0wgOeYQBf4GhWpILwuj8xiKePFr/rIjEvJ + xeJWyFzO80nysz5TKeRCTGQihMDq2t42TGYTLudkJY9lFLR1ThShfD2v/EnHkt/tTrR8Yuad3SJV + 0V/gcUv7OPrD2DvU8lOHAoLbRavVip2hklutvtG6ZxHT6u8n9OBjW2u6Hgx9QBdQit6sG71V5Pk/ + oQZTKtVGKkRgRjEeq6DWZvdG0Kt/O6ocw5V2fSdBVWmjYRB9iSrtWQP9o7eXV9fnLy9BWWo6CeaV + m2tqvvqu97IUk/TRej/7Bs2I6g5pnnxuq+hsg+ZDR3cOv28KTW++sDzRZKDZdINQSAFKrlrr9e9Y + I0nzdPG6NWbzxWANX1iHN5N0tJjOs0VKzfzojj1Kp7F/drT8fP0RH7gPoc1X49U4PLSuGFm3WY2P + XdJCiyNrNU74VHB6JhHziRQcU/cN9f7D+dANo7as2OFw7OQ34PVd9eRHf2LGxxY6zoH9i4HwfzsW + k4M5qrVVXJek3xkqwRdJNiU5nvH6HnBp9QD3P5r84ubmb0qUJEiBENOMEmF5zXHQo8GPc2CoDvsA + TF/7843D6dx5u/71ccRzJJ0P/S1jhnYe1EK1cbb1o78nbbAZR8T0V2g6Yw6Hww9mwqZKlgYAAA== headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -154,11 +154,11 @@ interactions: Content-Encoding: - gzip Content-Length: - - "854" + - "853" Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:25 GMT + - Wed, 24 Sep 2025 17:30:06 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -209,7 +209,7 @@ interactions: Review and Dataset for System Health Indicator Construction},\n year = {2024}\n}\n"}, "authors": [{"authorId": "2167438752", "name": "D. Nguyen"}, {"authorId": "2184162840", "name": "Khanh T. P. Nguyen"}, {"authorId": "2267984723", "name": - "Kamal Medjaher"}], "matchScore": 58.366554}]} + "Kamal Medjaher"}], "matchScore": 58.45942}]} ' headers: @@ -218,31 +218,31 @@ interactions: Connection: - keep-alive Content-Length: - - "1440" + - "1439" Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:25 GMT + - Wed, 24 Sep 2025 17:30:06 GMT Via: - - 1.1 edc643c7c426bec36e205453aa531064.cloudfront.net (CloudFront) + - 1.1 412c0797c582f734d2a53446693c889e.cloudfront.net (CloudFront) X-Amz-Cf-Id: - - c93zKq7Tg9bSjD5LwbD0NSzxaBBIAqkcTALfXS-TwiIvjJufngNrmw== + - Zlhueuzi0b9zZ396SwlJf9_uADgTPMl6Pn9hMeCcHCAZMN547vi_dA== X-Amz-Cf-Pop: - SFO53-P7 X-Cache: - Miss from cloudfront x-amz-apigw-id: - - RYRseFoPvHcEDBw= + - RauYxGX6vHcEtQw= x-amzn-Remapped-Connection: - keep-alive x-amzn-Remapped-Content-Length: - - "1440" + - "1439" x-amzn-Remapped-Date: - - Tue, 23 Sep 2025 23:40:25 GMT + - Wed, 24 Sep 2025 17:30:06 GMT x-amzn-Remapped-Server: - gunicorn x-amzn-RequestId: - - e4651cdb-7028-40ce-a1fb-c8f58dca6c99 + - b4a5e312-080f-492b-8256-bb9bed25c71c status: code: 200 message: OK @@ -1335,1695 +1335,1696 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA5x6y86CSrTm/DzFzp5yErlX1ZkhIHKTQlDEHgECAipyK6BO+t07+Cfd6aRHPTFR - UaDWWt+t+O//+Oeff9u0zrPx3//6599XNYz//uf22SMZk3//65//8R///PPPP//9e/2/jszfaf54 - VJ/yd/jvy+rzyJd//+sf9n9/8n8O+q9//jWOherNHPsCq6kpPPjKwRMfhtQM+bpGFaQieybF83vS - liwEOYy9UcLe9+xri4ysCiF6yUnOkTVdd4oawFfF7cmep1dtfbzsBlrqCWHDcR1N6It9DGE3pvjY - s2+tPVB3gFxPo4nbkX3PR06mw8+OXqfZADUlcHh6oGxkFrtWe3GWV+Ix0FwzmyS0dMEqvtMBau5D - 9uA8fdOxt4YKVn2UYRwzt34OncmDTnoBxFQnSVuYBRvw0PoYX28t7anDlDLKBjmcGhfx2iqXq4wm - UOjYGB6Vsxw+rg+g6Qek+OR9OqwkzGH7XV+elFRTP3vyWUXb+k1vT1VTjvozD9zPcsHRidk582dm - V0Rf14kcLHNHZ9HreFifA4uome5q7HHsZciamo7NL2JCOkCfQXQeHXK3fIOO5d1UEIuYmVhnLewH - v6lUCL5dgXF/FjWagbVCAiteSWZ8XTBFTmbIJtVsbMaV0XOQ/8jIHVKB7N995NBX1eUA8r2Ija7V - auEzFAosyusVH/F+qWlgWj6MRdvCJ/mZOzyXUxsF2nzB57DBYGlOpwam9XDGKnUCZz0dlAa+L6M9 - vb3dja5zgRN4GfQD8fklTbnxmfqweSkpKdhPnQrfY9KhpdcJtp07A+idPUNUntucpHZeO91OjXzY - JCdmQgbL13MhVB1S1UHEmcqXDlcXnxWyyZDgg22J9XqWPB2gz25PDCN+9ax9CCbE9W5ELls9x08Q - mPCsPhySPCOYruVQm6iI85S4zElPV/W682FU7G0SlrKTEvt5v0D+rkBs5OE5pedTpSNhbFKSPGrc - T+8+MuSnfvgQ44U8jRzv4oo4t6nxbQmfoYCyVIG743cmpnV7aPMJvhSETvFCTima0vkVrSpq7MzB - d3w4OKzUrwly/SIl2BBth1/ss4eCKaqnNXj5YGX39Vu6J0pAlMm2tBEI7QCab8uQu5Oa6Uw+q4zY - dycQHfACXYLStkFfDjbxzbkKf/OIbp/2RB7XneKMcjaa4GC1GTYl8whmSzz7iLD6ET8SyNVzI3UJ - DMm9IPvdJ6n56tKagMUAYVt01H4O72WMxtrA2GGLLFxe9vL+O78hS0HNGc3sI1U7i0TZZT5gzdSa - kKInkSdvv2d37fmCxEWasN1odc+7x+wNtanxibIoSsj2YQyhv1tYfLnkKliOzz6DdsLucHxIlZQ7 - KTKPnpPOTxI+HDT2cEU29D8ywPaGB3P5UjLUyetj4oeH6rCCz/PIHqsrtuKmTIX4Zifg07QGdr/6 - UM/p1ahgZrsI79ubXvORpRjovTvf8cO3n3Sll8MMPel9n1aRPlL+3Uc6MLPqgXUXRZqAVTjB2+Ep - YMcN9/0aiQsPHyjG5MoeXs5csg8e9uVkE61tWo3KzZFHn7vwJfi4T5ymMQUWHo+QmeooEcL1fO9K - 8DL9BesNWcA6qWKHLoNxwNfDlToz937xsOMneVoGe0m5AswJEkTSe3y/uiF/TasAnVg8Yj31o3oQ - mewNbqQ2cEgiAOYXf31DUVZYnImx4XC2FHjISMyY2DsGO3znez6wvPhNYt4q63F/YSKYBUfBE89S - 1VO3P4lwh5QMX7rGd5b9S69gLyoaTkRHrddp7WKw4Sc5RLkNRsuBmby3Dxw5UWI76zNRIFLPUk+O - Pu9rq+6pOdIwfOBIq6Z0Tbs6QeoYHomSairlz1YWgfxjBUTfjR8we7eyQyCI3uTHTysUnx2yv9lK - wjE+1Wv1US/A7rQV24e2ppPsxROE2bH1urxpw3mX3Ew4Fp/ek62g7KlCWBW9zXUk9thP9Wxzeg7d - E9bx8TKWDieehRWadG+Tmx6f6Bw6bxfu7SOHHeBqKX0/rBaK6X2PcyqHVAjsawDshN9Nu8it+9WQ - SQINQ1Sx7TxUjWPOdYXqMoe/+wPEx4wuPaU8JOZZquof3sPp1Ob4HuhuOjvqSQQhwxbT89U90tnf - Sy2kkQmwfgildND5cyXPT3EkIT31YD3fqwrhbF9N0kut+rUHvoJyfbKIsW8UjX+nWIT7lrQe3fWT - Q1+qZ8Affxw/iNdmNHsm8HsmJ3jnf5yN30sIzSAgni5WDrvuvh38Vky7zZOS8otsQ9ic14O3k7Nn - PUtOpKDrc3nh04U5ptyt2suIzJ/G44C49MMuKUxgHtwG58VXBzPg3vA3XxtezHRR1YuJ2Eq5kNuc - ivVPj6Cx1rGHtP0XzAEzzHDDF1xk3Kdm8ZtX0B8fdn6RLkt07qC2sB+S62KlTRefFdGNPA2clfeb - w++NrwyrFGQk8TDvzOG9jdGmJ/C1WZyeRYwSgbF49SRdRjMU3rtVRdlMOmKSr9vzho1a8OKqG8HW - tE959SoEf/13txNcz7tYs9EPz9IIvsKtHyPk73d401Nt2Jb6oENr9mfsm9KarqZm8j+9hC+iMIPZ - byoFAWxgjCk81bOUDq4sZQ/kVbUQ14tb1x66B8MdG4LxAqthow5wSnskbkaS9I+/pwsTk8c6LeFa - 63cGLevu+9dfCx+fY6SFLkuUV0HrtWEWHfk0iIl9H4p62b/cCn7aIpsEmhQ1VR53Fu5u+jyxswvC - 7jt3Hdz4wINedq/7rd8RLBoHp9C6OxRZIg9b7F3xySxfWosKAUr6bQ6Jts0n/4mBCKcLjPFxTsWe - uk51Qa/Olon1UquaPtHqI+vxunvvNVDCSeSfIhz5y4scXSfp1+JMGmg1lxCrtzufzvf2W/7hr9ZV - fDih404Hl+vNnV5nyoVzOKhvGC3Tc9rFe1UTGKlrIDWgiS2IpnSBBmMDs2ZvJOI95NAnkn2Y1tN5 - 66ddOBhlVSIvijRykmPPYQ/h00SjkkjEpeOczudi70KTrBTrSqQBcsVfFjqm8cLm0B16+n7sW3CU - hCPRnqBxVh7aAzwWvoDPg72Ei+zmDKw+vjTBKzJSoT5OMsTy94oNIz70HDfiNwi09TKtPDeB+eiZ - ERyJ2hNvnXttia5mBc7iTpiE9WFrQ1qbg9S3H42Ynx0B00+fjcpOIt7FjNNZ6uUERqhFREsDReO8 - 3E7g9S73E9oLT2ddj3oCV6E2PaFhiDOcHvtc6jKzIz7dfUJqnx0bJo6c4oOkJvV8m6NILqE3Eqvl - cDg7wUX/0w+Rz0Ypa92gLAbSpExLOR4ptedpgD8+cD8x4/SesS/R1LrTBGjP96M5NSyMDV8hV8de - 0i9z7kt4vi/6NEuftabhy+d/fEMsPdun1KKggvXZt7y1jw/pIs6mDa957eFjZQqANOvcQQE/WxwV - l86ZD1oCf/6G7Kmy8UF7jtDufa5xmBkHSrhgnQCAIkcuy+my8feVhb/r/63/1xcPJnT3fovtZBTD - lezq+Yd/xGNf374rdocIJuFyJdpDS0O6030VDl/RxY+9sHeEZx/rkPGK0Vvryawnq/RjiAC+Efsq - BYA+e9+AXmfdiVMnx1qoTniAm172oG+22no+mhH4Xa+TVwwdJnd3Ae5eaInlnWC6aDscAKE7igSP - RtTTRPvEsBG5BeP3Re1XdJV8+F2a9E8PrFDmWrjhmydhj9Nm78620N/HmETL+VNTVzINOD/lkZye - mVXz6SAkcLLeYBKuHddTZSxVRNSV8Wbw1R0uC0EGZ8l7YyutP+li5VELjgUneCgMRNB/37wr/ebH - OF6Bsxa7UwQ/7F3y1qfUpd0gOh6U4u5DMpVXHG7/cktwU6TLhBhHpuTlKwEa0/XqURuNYI1rlZVH - 5pTjeMNnbvOjEE7zn55Ku60+iDeub7LpAbBIhQThYfc28entE22ptLsKD5m4krTT+noBQjuhh3QZ - iKm+vhpNlpMN14wRiQnXpp5VIEcwJd3oiV/EpEOLGFtOV0nH5vwIUiHn7wPUbv6NaPd73s9P1Tdk - cepvv/lIlxvbGGC53HhytFwazoyzn+HsxMpWj5SOQ1PqcFwGFW/81y8eejHwHkx3Ysy+RxduPL7/ - 9GU0PCqNLIw/wK1fsRn3fD+vJM1BIfQeNjb/OZ304wwFTXGJLTpVvXyq9gIfUR8RNchKSgknRPDB - hdYk8Q85XZ+WvMJdkJ2wPXcc/RhDwIBD4w0es98H2npXpwwWpy+DTd4q+8W2yhxQm+ZT2V8WOmR4 - nIBc5g9yrBWlX2bLD1AxhAtx8nflkPytVQgdwp7sd3nXz9bxPUApKxA5OPY5HZNvlUEAZQ6fmqAE - S3TLKjQkhfvj31o4tYsI78/IxafTpeuHwAOqzL5bAV9Wz6X0gLUE3aXTwRPFI3GW2Yp9aEQ6t/mH - MlzG5ZtD+SCfiCM7dr+QQWllpZNUbCYlC+YQFAz88cHph4fne1VC/RLOxDBPjdPe5ugCxSJvsMOV - V20RqxMDl4IEHqyzZzrf5vwClFs7kLNxYOmw8T2wPbnC9nVWwfr4RG9Z8GCL73r2TFcUH3x0f17c - CQkVT+kecglqX7ZKDvvqHf7uB7bPb0HwN/yCNe36GG5+dNMPQTr/8gDpEyRYP9jfdJtHBf3mT3kO - bzq/+McbGt+bQ+yv+ATLwiEXTjGdiPEBMFwVqczRm/+E+PhdLz1/fTAB0F6iTVSe8+jiah4P+YdR - YJUVlJp1VjGHy5p8f/2lzXxUdBAJ8R4rHPuiq3vMGrjxL7H4hxzOhcR0gHh2gn94OK2fdoaPSqEb - PoJwPo61iGhwiDGWX0s9p7Uywd1iKMTFjzWk+5PTgrhkfVysgKXr9cH7YAVNj4OSPGsq2octz+Ew - UR3oAh61aQYXPneJyV7UVPAxb4CDDyNcnDpG+/OHjJij33rSxTE/LeQfeoGdCB7SxWSAAhelKrFS - sowzFxLfwq3/8Em6celyEJIMCMnlMPV7iOq1KJ4zNLhzOzW3hwW4X760MNcDsUj/TqceDYr8GHfY - Q5v/nvSy6f7m5yDogzZ/pnYFu+9seIHAf+rpO3ctxC5L8HHj3xUwdgZi+xBhUyNnOlf5xMMhLwk+ - KM9TvfHBBfzyh21+wnkJNBHlN6aYSBgN4dy9gAkvrVKRu1EX9ebXG0TmV4N/+mGstLP65xdP63QO - uWO9y4CHUuIx50hPZ1mk65/fc6bp+bueHBwX6GEna+ae5Fcugtr09nFGGyWd8yTVYUracZoShoSb - v9Bhvlbkx1egfRk1C4u7luIjG7T9ipm3iBj2nkz8mvrhjNnZhRKBJU5CoKfrfdZdyJSNTmyy+cUS - LhewzYe3/vpxqQJDhrfiQPan974XaPscQJNgZgqH2wXMqqu8IfOQR3ziGrPmdQQ9aDVR6L03/Fw/ - MZWRJzX309KWbL3uja+IQpIWWHMYox84nlUhq+2e+Mj7EVh1z85//m8SSF4B7usuEQz7xsLF+SID - WpbVBDt+kD22fT/p6n/nAanPqCeKOavhEqzDBbDpOfGE77ep15bXMuj3MCfaiR605csIBtj0HTZ3 - ctq3N8Yv0ebH8EnbW2DFhRPBXXcziBbMSb2CkfXRxdoRrCkX2+HvftkhO3Izom58OpbyroGi63lY - ExSxXg99okLmDM844+tjzbq+qUNVncSpec1dvcCbe4H5DRYTpxYAkM9wU+Dwvn/JXbhqDtU4pfnL - yzb8refuRW3U70SIbyF300ZfPJnw2wnPSd7qxT25fIVBFR9JAnettumPAORmXXgrU/T961OVETL9 - Zo/zUYd0lAqJgVueSpSr1/T03mgz8gKhJHYI9JBqzRqjMgr3084QO23SEeshywhLj+e9hzPx0J7A - 5t+JHmVnZxkpyqDxzAJsZOcd2PIyEd5W+sCKI0rp8vP3zF2wiePjPKUXdnKBxvXol985M80k/8/v - gHip6XKsdzl8OJVB9oVUOesrzwZZJ71LDN5D2iT7w/DT01gxpSCctzwSaph5ePOp+dAlNWRdSrPd - zUPZctGGzuzfYOC0DKvXtHXouVtaeB61hKjr3gqFjPEq2I+nN3FoH/VTcw4vUEOehk9eTlNaUFf8 - 9Tc5wEEIhw1voU4Ml6hSbzhCfUM60PnYwA4O2prrj34Fb43TEc1dh5D0HnBlnRF2WDcVpecN+ZPA - zV+SR7aw2nS+dxWMPVPCia+z9XTS8QwZ480S4xHEPbf5UXA9nq5k/xT8ngb21Yfn/P4h1lwM2lqc - P2/w0yvxeX+nQ50lPOhH/MZYzp79Yg0xC3/nd6q7B355h5QC1fa+caOE/CKrEO4vYkB0ZiDalrcr - 8Oc3DgHrOXNzNxSo19M8zeH9rfUv3wzkXz5pbfkgZzJABb/+4JYYgaUuywY6RZwTZ+B2/fjLpzc8 - HOUQNOly/XQTuIplPsFRDDSBGKcGOoxyxtbW//zdb1uoGnNKEo2+wuU3X2sGRWIyyHBofI9i+PiC - gdhwZ2pzi3gbfvFwJpqgxPWiHCGEm373lkxdQwqegIdu1urY3/hzsWPEy+bBa6a3YByAEJj74OfH - iXtF73TspSiAzJk5e3B7T5MQveGuuxpYZQqnXx05NWFXZw0uNn6bT0POi7986HAr6p74pR5Aq5FC - nLjnI6XjvXzDwQnuHqiTY7+w206Kf2lf+ISLQSP7k9ahJZx5cvnWQtr356P72//Ah4CdHAJ3Tixv - +h17n3BfTyg++XB2EgVb2tL3tLLBBK8vwSRbXt/3oQBUwBu3N1FFitLMTPcT2vAYu9IV9FueVcIt - HyK4/oCQHM5FAu15HrAH0rLe8q8OdIf7gg9j9nQIVtoBbnxEbh8UOZR9XcQ/PY2boglnWOsr7E6V - QNTNby3b/gx8daZM9MeB0wYJHFcYoQ5hdVc26WzatESf68n47SfUk2N/Y7Dh81Q65JsuX2ZngCt8 - 74khYA4su4nqUFEA9SY3T3sqCRULHNc0cRovGl3HD6eiGfkWPp60Oh0uksbAyykLiDZ4OuAGXRvQ - RK8MVgX+06+vzJxgyI93bF2nr7PeIisD8S5TsYEFpea2/oB3tqlwcZQqQJm750GtcHx8CoOY0omf - bVAcvAPxrsre4dBTmsBv/2Lz+84sLKkLLGvWsK/6U/jL/+UTjOiEBinUlvfBn9GWP5Cj8no6c5yW - JmxH1iQJ9j26smdphpFyj8lx479f3gfWs5J5NNcvzlwcRVH+GGqI1cF1tjxCmcB2P5NQmTfQe9dI - /M3b9DxAHXBUZbrf/REl50k/QoMxwV3CB2+ph4kufvxsQO5+VGxc25TOiFEu8Ldem5+t1/H1VYCQ - Wyk+/fCqB7ECfvOmY4icWQLH+cff064/i85yEIIM3WJ8mmR1HepZ0T7eT7/hh9G/61kCeIVJf/Cw - LV7WfrhqSwIf6VnC9jQc0wm7XxvqQP1O3NbPS9IzOQx9dyS4bNlw1t/aBVoQu1u/tXX/HAcdfu7B - 1xNK2+rXlncyeGnViti+fqmHKn/z8PR6yeRwv6gO23puDOvdd8IWzUOHiN03gxsf/fifCkX4jGC3 - SxVv1Pk2HLhbnEPLOJeeNH5ZSpmPkiA1Ny4Eu+U17aqPHcFv2k1/+nxOuEpEYliZePNnNfsOXy6a - Jfc9cXC4hVv+HqMB2RVWmlymvfleTVhepz3ee3OXzm+t+Jtf755UU036pW9+/IQTK53rNR128c8f - k31yCunCTkqMNv1LdIvxQJscFhMK3UH0Pk+nCqc+oe1ffqf2Ty5ccaFd5C3vxodt/4S6/UGGNi4q - cqjgqPHrfXpDq2X4aXd6TtryWBwF+vFkEtvOrJBueA0KMl9w/g5aMP32U7SuGom6+15SesVPFr20 - 1sO37fzDNQrfsPuUR+wZoxJOH+M+weCmdMQFt9EZz9fLjKIpt//y/vWriCJMmGuDDRHo4WLifQDV - +ZkT9bT0IRkl3YYK7xfYzG864JKeyQAuqgNWt3yKVwCb/87nPbtrQNsH0jJ0PosOvt4fq7M25zBC - +8F1SNFaT2c5h+YMj4pxwGp8yjTql7oPg9ur89AdwC0/nxi4t0oO/+Zx2E8iIxvJGGONU+2Uax7h - jHBRHohtJgIl/fORgBiggjjh4ZpSI3Nn+O/vqYD/+Z//H08UcP/vJwrwkmnY7CSN8tcEBhAzWo6N - e6FrbH7DFTB8nBNtGCFYFlKx8MaHh+mZFBVdBGR1aM3mC/EvtpIKIy7fSDqfLsQ6oFPNq8nKQnYP - uKnajXuNg8yXB+LSecQx73o/SykLkRscR2ID9gY4C3g+PH3fvBdJPK1Hdfxk8MYuPi5wN/XLfdp7 - 0qe3BnI87XtAn3Lnwl0p8kQf2MWhbx/IoHqskGhBk/bjB1wa+GpdiYRs5QF6q+YETS3+YD0p94DW - RitDrRDP5PLMO0rET5LAr5JZOPOmjzP53JyDScvtae2x5gxHA6zQ7aaWGLV9dNbOLwLYpvBLonuh - O+xMxwsQjX2Lb/EtcIQyNioonuyJKOGqUv76fScwUIYLue9ffsjvqqiFTq4d8Wkddxo9p7EMv8Nl - IEX1+PYLOR5ZZIn5SPa3pE/Jwb3LMD2yJn60XU6XJ+UMZBx4Qo4F++5JH2QGvCXxkxzbw7Xn4nYv - oyrYXYjZEE6j1752oaUhD1ufWgu5nDxjyLYXzZOHfAFf9lia6FQVM/Ye6QDm8RtEyGbIDitqcKLz - 57mySI6nh8ez9QhW77uwMFdm3+Nf80qbd0ortIuqIzGw/k65/n52UZM+Y3Ke/TfgpaozfvX2WqWm - PQXLGMPBin1PWpi9xs9yksGud2Wsh+84XJ7qJ0Dfco9x9Iy5fqmy2Ib30+x5u1NWhlTu3zpMH2pB - nFKoet4MSw89BWMmNnF6sNhHHcJjUPnkqu2+ztyZlQ8VyxSIIryP2tTtRxNOWmaTNNCP9W+9ofVc - n9hL528/87enj0AoW8RyQdSPrn7OpM9rdyWm/Pmk82JGPLop4YJPlnejvIv3OmIqpSV3tRTpmKjr - gGDjuwSfReSM9tFloKm9HPxYknvKrpmS/NaX6Db/AOwoujl8WGeDZPs3SVe0f7//5tFJfYbOEzm3 - 8EPnluR9PjpTXWQ8FBO4J0VADI3Ph2mF2flwIG5oNOFXa9gOYeVrkHBsXnSVqk6H552XEw1rn7Qb - q6uLnLX6YOXlfOvFwsIKd6MbkrxdQo2f7NmHj5txx452Hvolf+5MaHV9gvEgHkPerIII1WeuIodD - gDX+4zoNJHe1IY50LXuW2Yk8Kh7jtNXDAcLSvgZ4bJQDjnot7tmzBU0gxF+MbbHfa8Lt6pnAQRHG - lzTt0uV9WxSYTuUFB/zLSvntftGrKW84shalZsOj2cEEjTe894KwZ8PrukLh0L+w/uJNR9gXtY0E - m4OTGBtfh7PXNIOAPjDZM30TLu93b8Nkz7LYKo2JrntFNZAQZiLePw5TvbzftQk/lU/xaasXf7lA - KO+KVPGQeKkoLy4XD+n5XEx87COwkDWPID7OLrncvyJY68lj5HwRHGJYS1nTLvVk+PyGj+n+KDWN - KrziwuJ96aYNr+r1YF8NyZGknuj+Y9/TBd1sNJZZiS+qWtO5M7sAnsfhi72t/qwo3iP4UVGPtfWi - hJz1qFQUNtfdBP39yVnJWcjhdK5THM9QDzlanAw4B1OK92t+dVZMFhs5+7HzKkUKwDY/LmpT5kus - 7CtrYyXBBHLlwSEWgzElW30g5Nb9ROvnISXWnubg+KIiNq/7c93nB3OAp+oxk5PmCOErUeUJqtmx - mwAJFIe/2XkJ0bl9YWubj7mOPxMSBHjz+ldYpHPLNwFCD6iS4no9U36yRR+mGLvkcNSVft59wxXl - er4S9zrM2tIkTYWS294hqQ4xHXbJs4U7EDZYXQKtn3PfvMDkUEee7B+rcKsHhJ1eTdNWP0BvV8OG - Z3vaEbPWz2BpDsAA9AYVfImj0OHOl3qFgepa5Mz0eij8+KabpAx7nGTTed9VM5p1ycQX8nS0rd9Z - SG+MMiElf6Qrz+IJStxAsTYJTk1vX+GNBNBK5C4JQc8/NE2E5bOMyAk87j25VXOMdMnxsEo+Siok - 8R3CZ/A6k+MJXlLiX++NfBJiCx8l9AF0iMMY6QM3k6R4tCnNsrEDyU1zsCuVl3R56ziD7ZjlJJRP - Cxjuj8BHn1k38PVy6JyFKc4QiEvr4eh7OvarqHgx8Jq5IurJUB3uXuYQ7pjBxJ4W9D1HxGuHAn73 - JsdK5bRpNe42WKS1w8fncaipLMUXZBtPBltHP0z54/H5RndGsLzSH51+Ox8Dl4do/NbL4XezKcJb - L0eTPPNY457+vUT98ZiToyZROoviOYJ+nwrYzQIAlsv7OaAdODc4urEl5bxzAeFzGPY4aqO8X1Y7 - 7MD4ERpyKJg0pU+5ctES6jkOD7GectJNzqEpvQuy4W84+feLjg59rmDf6ByHiyKNAc6edOSYWFrN - 34+9CiNwvBMckLdDT4WoQCZjfZLLZ9NZvpk+oRt/PpD7TdqFXcLMNlINEJKTXJ2dFTV2AG/KeZnm - wVrrJnKyC0S1meBofDVgDvZWBLvyHuD4Njl9Z6yzjl4n3ib7CSl0boa7D1exE7GNmDddBIfyQK6P - 7iQ8j0NPMU4C8Jsv4eDeAWXxw4Tfm30lWWjoIbv9PzrMbUzuT7EMKXIjF0maqZFwV95q2mtfCMsY - JAR3U5wuRqvk6Lk/Zt47zOp62ce8gnLuOWKcH9xw0b3iDTY8x56/lnTguEOF2AYU2Ku/qbNA5smD - ljV7oii71qHKveYhDOYb2b7X+Jcn6PApLwE2ysfJWc/+00eZMUTk/Hz0dMHSClEschw+hWfRWYfs - KkPY9z6xwLdx1vJqsfCZi5PXYdIAGkITQiA3V6y0/lOjWC5niB6M6m39rVFGqxM4nIwV71V4CmeL - MUVIhdqY5lEHznxguRVd4ckhV/kI+9V9AA8Qeg+xJRXXdDRv1YB+ehVXnAHY0ssG6OpKRvTeOoE1 - VLQSLG3AeQwn2WB+n6wYyqPMerdXYdGF7ksWvqJRJ04T83TyW8+FwjNw8HGr13LLtADN3/hDTFBh - wH8SNMHme+mxAbMinRas/fU3UR9uBWbhUb7R1r8eMkMSToD7yPDVepK3LA5JpytzY+EeVs0ETTfV - 1rq4sHAvsio5n269Mz79cwU9kE1eOzRHjc30/QSt6Qq990OJUzpY3wAyWEVTH95O6cydv1CO4gMh - 18rswtl0qYGyC/1MdOufRbrJGfg8jNRrnScMqV7zvEzEV0einSWla/kFPqzWIJu41eud/lcf9e2l - 0y5ejbqtnK8LX+urxV41rf0UF0cIz2zCT2LGa/3KhkULam0+T+jS5NoCxK4C4PbuiaY/QdhlRRmg - OmZa7CrhtycSvasQcvMeR7stx0+b+A2dnk1w4N2PYNMnb/hYISKK7K50ndnUhupXRPg+ekY9P5Mw - gmUsJSRmH3E/6xOTQVlVz0RvdjunNwGrQ8ubeazeiaexVrDGyN6egPj1L62akyn1gphiZxEdOlXc - IkLzgSRs3qa+X6kbZ/AMqDyBlbJhc2N3Log5KySem9T9ovmaB5+CPpNDVR5rzvm2LXS7ocX6SKR+ - CvtEAR8cmtg2dl1IWtMyIAn5E9FF+5aOm/6QvEOREDfRT+lqJSSGvZZAbN7vHqD6dXuC+54w2Gxd - Cwhjngzyj689+Wxqmx4w0f2pCcRs3S9dxHIM4OXdLcSqHeOnz3OgCoP/p+d+/gKE+ioR7fheexq2 - txh2d3LAds0d+hnS1YPZZfmQ0+MS9xNl3jY0xLQg3ncA/azQxxvaKpd5lK0msKbCwYNK/XyTq/Cc - wbJ/tz4cfONB9DYLAXVRFkChWK/Elt7ffvOfLWSTcsaFpWsO97jMHdr0vofA416TM8Nm6ByXAQnW - 06At+VMwwbDrK6wITBOu5+lUwSHrRXLIuKZfzgepQ7524ifuClJtppdHDltjDYj1XRZKrFehQuM5 - hlgVygVQSdU8wBimjsOPpPa8jAL2z08exa5yaOOWLrSZbD9B9jTVnT3FEML1+vAWdd/QP38ShDuI - 96IVp2s+vFf5G5LFk+7mi34LPZCh0o5oklgX13T4nCqIr8KD7BeHhFPwCgZ43KspPtpF0c/lPCfw - 93uUO/uefe3VGVq1H3m7l3ZNJ+90zcDG/+TReKrGyyWTw41vsDI/Mdj6M4ffQ1fiTQ/R1WPqAJZe - 1WM9Mpt6GOpQQZve8xjg+j096m8GXv2oJafcefZzIfUesAfoEiU/Kf0aF0cGjrogE+dG7Jqy/VKh - ne1+Scr7lrNev1MMz9pHIqf8k6erPcUMOJ5ePD6p/gQWFdwnlN4/YKqWQKuF/GBO0MoaC18Wd0pp - j6oG1PX1hlPvE4DJcrgA7Yq74rGb/p7rc1misOwf2PQ0s5+WvoyQQbFJ9klRgWXTN+DtTrFHcdr0 - 8/hNLsCRQE+0qsvSJSSXSs65evReV5A6s9uIkcz3AY91Z3zTP/2oesp94nt536/G68SCusse5J5G - rEOfw44B3ipQ7G54TJ1wSeDceP6fnpo/hyhDWew5+OcPuNvuzaO0HgZPyJ8lXUOP66BQzFfsXu52 - uhRcOcDNf+L9hEo6+VDo4KhzMlZ349OZNzyB2XfHeNxRL/vlzT0CqLLngZyM1tWm+fVVYDaJN+KH - a0Xpte89eDjffHzY5m19nnIR/PIPXRaWsGuiToVbvTyWLy7aOoiyD3BgA2ymThnOJy8MUOWGR6y6 - +K5R4Fn8bx6ICeSTxv/qHx9nGZ/OzBpOpPgOcJAfDnFfSVhTNZovKDk8I+85GcL/AgAA//+kXcmW - gjgU/SAXMkmSJZPMEgRF3AEiAiIyBcjX98HqZe966bFKGd670wuRbnibA7yT859+C2drjlr4PkwT - VtRdp9KLL2ZwSMQj9tqFqrOyzzw4p58LOR2wkzIc0BhgMbNDTN2L+vl4O5dA1qIKxyezUOekutfg - +uIeHjWataI3/suImtYTbz9STFf6hQPMYtfB0XY/GUOCGRTtg43lLb9YBFWWoGMyM1ai4BBSK6oF - GN6RTyRHMVP+/Yl30Dh9OPyrn/an79b7bZ7mIyn7GThPDwxvn8H3A7/2wyNfc9T5jEu2CVg4I7Ma - IKBPjI38JYH5EVMbWtenil2tb8DiKW8OOfV48YR396jI08UiyHd2i4/3GFPaitGMpGhnYzuxy2qr - 3wI2uXsi+dy81ZXzaxNt5+N95P5YrcapFeGNoT4+3akW8uTE7ICMTWcSzjUEJHbT6HC6JE/sXpZP - v2BKu59+8bLNX8xbkAvu+tfEv7xujZ8YwltuqBMTT3O48XUBTNfTPWF84v6X54DN3+FwyxNnv7i7 - aDHRSBTv/gFtIqjST79hC8qv6o/vbqQRiKHvnHB0tXsGdn5JsVzOS0UWR84h0HVu8g9nO2Uzb4mg - ycQmNjpcpzS/rza8praPnT1wVX4vziXMW3j29geLc3qdoBxq+frc/BUTku1+Is4XTewuHwXwHd8H - P77y0OcWA7q04/TD62mrF8DGoZ8j+3I7480vO6t5ZCEcEuGIpVt4U+t2WyFu3KaPN6a67cz1cPbh - j++t0Wuq+b36NYpOo4TV2yX614/96tvKaUvXNlAEZFVB5BW7enbWCx938ATrgpw3/pgaSYNIbRcH - J4ld9n/5Qu959YQ2/z3oD59Ba5W/yPGpBvTvetT8HeIfHjM4OQtwFVoBm7rHVePazBIMn87H+2As - OhP3zH1orMeI5HIhOoOx2v4ffzGLO4UzZ/HKD29xNsSwWgo7cWEff8KJ23k+5bZF/ujcfCoiKcFI - SedeZqBpXzKtvIDVldHGEk6JHWFL6gw62PFhghMypV8eC2bhilroR7jwXlu+Q8lemRErTDoxpyR2 - 1iPoxD99pWTXAyABZ7XixpeeIFVhvyykY8DOYhqsO5+ln6/HqwJzMdPx+erDnjxOoIROTS7E4NO0 - XxXdiuEkqQ3RNz282qqdiQeiNNj+ykjd+CGC/iNqiNtcobPeQB0B5TI0RBIimbInOGUgkKYLdu3o - S1e5endQfWvfjQ+LarGAF8DAep8mRURNP5beW4S//pKN4QPm5vCcwVy7PgnZBx8u4CskUB2eI3EW - oQdf76l4cL+bTA8K7x7MQ5VKMPsOEvldf2JROYD56dZP7eYnuTiXNPg+MTbWpqasWDa713/+zKnj - iK6WgwJgiMMZP8bD0eFkydZFvoYjeezEKRzleKdA9+5SnNqYrabT1YzhE7cPErS2A9j7JLvwYty+ - XqDXV0A2/IEnPrGmt99eQ/q+TwM0is+L/PTnx18RB/QXCbHh50VPL0wkwfjanLbjU6o5Ngvur5/p - 68ZVVPEXBbxDpfQqbkYq3TGLC/n9NSX6toiVHFNXgrYFy4kJekJHbI42wOIF4p8/WLlnFMDxvoZ4 - y98BfduwBr7DLcT48obaYoQyQJzTedpfr2ewCE3dwOH2fHlCRFWVTc1VgunumOAtjwDLCTYZeKpX - iYT8p1FXx7JmmGpp/ecnu4N+HMCW/+FT2+3on/+XBU7BPz0/t4kh/OG5/RUalbD8bKN3cm+wHBnH - iu/cy4oyuG+9W0ZwynmZ0cCnepPIqVjGlEwG20L2455xutXDJPV+gw6qrWLrxyeOkrVAUmGBw85Y - VPpdegg+Tt0Qd4izfvkMZQ43fsVBbjjhsr99lF8evuFhpH4DR9jB3/ezM3in4xuZHmQLwyH4vXvQ - 2XrVBVBvYYTtaBzB9+2sCQjypcbeLXbTTe9AOMteg23OYsD6y3+eZzMkfgDuYMvLVmDT9k42vugH - AN8KQjaM8TM01JQ+XUMAv/OVvxEKVx/uO9hpxYTlWr1V9Fc/jUH33ny8HdO5ttgazqKQkduG98vr - bUN46C/aLy+smFtxXKG8DJDklz4Ix9YINz/qZ0Ta8ywdBTafROUrot/8xenuwsygcsfzW76r0AWb - owns01ebdjqRUnb98AIMcf0i0keoetJmawmFZCdPQupIIbXeT+kvT8sJ14VTeb+WiPMFE/sfQa0W - Zfzk8OBKcFpkO938kyXAMGhc/JuvzXReOFhGPYetlyClrKvdcxiZ5dcTFt6l9MdXTi4bONjyAPrq - BR2qr8TAshga6m8+BiWXvU9oqxe6TqME/AO2ibbl6XTLD2H2RTvs3nK54vd5ZsN9Y5yw3KYMXbNn - 68NtPjOJuvYCdJvnCb7DLOTZFraz6UUXfPPXnShb/y/0edRFZy0+mz+99xt/KDCypRyr3PxwlvQ2 - 2AC3vOFx1lL0AzcEgzjLbkMcG7P90hppAL8Jx3tdNk/hOIlygEqzfnvc9/SpZlGLJXhkItHbnUYr - nGxVyX/5qye8PAlQSRMTcFv0yYNr2Yezjpsa7vmPQiTjTfs1Yt8SdHaMhrGlVc6cvkYIm49hTIx7 - rNNlr7C1WHhFj8+yDeh85ToOZHN8wjrW9JTf+ATSE4ux7RtluuU7CWTc8THRLU/d+keCk2EPRKmS - xXlxl6b9y/+fa9WF43Z/Qex/mQk05bEnbT+0cMsXJ9CzfTgO5yaAKXy/ieWNpsPkSqRBh8PWRJnS - o0OT0gLF3Vpjo0yCkL+zOw/YT/vgraR/AvLVHzk0z0mOJb75qLOvMhy889lxsup8cIZPaE5QiqCN - g2LkVcrk2AdNQr8ev+W366laN3/0fUxZy7fh4u9XH8n+YT8BRhfTed1XEGqmHnr7VGLAMpynAGzz - vSlUvWtIsv45w9vVtfH59XAAJRnR4EdPMDE/GVanfJhmuM1H/viCPPZyJLpoCn79U32F4h0IfJgL - +CRfm3COzZaDhc1YWFFVuZ9n31rhDz/sc9KqrBopJfzgs+ntU/AI1742GWhyDiAGdKJwqycfbnoa - 39Lsm47dvLPhrRciEitjmdJPRF3UmdjHXigR9SvHnHK43sZhopk20/4ldh4sEz0h2FdcpwHsR0AL - p5k47J5eONyK03r44e1PLzPbc5Tgo+x7corllXZPbP/la/i45YlLHMY5YMYywfqWr/Nb/g8T6bLH - TieWlI6jy/zNQ67q3nLYQWFMYZvPkN88a64xFH78iR1GF8M1XpcSCoV5n+gCVWflRqmEtLwQckus - qt/wUwRfxLzwb/7LW1T20TZf9sbjWPVbXjBBnt/dJhRFuFp/fux/rCjg/ntFwW6yPkTqlk+40Kvm - wqptiHe4ikK1mJWbwzl2RqI02ccZCq/eweh98YiZlFd1JSPuoNRejGk/PFaw9pjk8CqGNcF16VVs - C+IVgOyaEqwAX+XPjKvDkBZ7Yp4+ozob+VojxC01tvS9CbjE+nJwF9iiB+7p0g/Wo+pAeXdP+Hnm - 9mD97ssOSJe9T07cKvbDY1fYUDb7eRJIyKXjg3E4yPoJ56FE7pwxsrQEpt4rIWccv8DA+DsbHtg3 - xRiFBCz1fFPQqQcX4txSizLlYEUwJAXxuBtvgVHWgQcarL6JN0tSxeWGuhOzB4DeV9N4ML+tjTEr - TSVeie2e6W9aC0PeLXEAT0O6wsqd4AP2OtHCc6nOcogUGGaOQPRpRHQmNNBAUS5nnDmCSymTXV1Y - q/BIEo7U6azKSYyEHSbEaptP+pWaxUdcmmcYG4Buf//woJuxObF88QKWPKAKctuqILJT3gDr7a8T - ml7GfTrQ16dauk4SYBIwGbbJYaKzm1oQBuZiEGOSuPT3PhrZOCFarag92/Vhh+7q3OCABpo6Am8R - UGtlCzkpV75fF+seASUdWSzdj7CaAz714BDtobfSG3aYUeskyJrxjUS7+8thzAmUiN8VL3x3xFdP - g3W5INZNGu8zgj58RwcnhqAfVGzBm0Y5+Fp2aH84eVjJXwrgl/Hrw8HbP4gKOrEaXmOmAWm+NCQ6 - yu+UC/MyQueDQT3l2Zz70Xn6Ekpt90nOB9EMJ3f1NWCoO5mc0Jg6a7BrYwjMXiBOdVZVvjQZE9Zm - KGF17khKVThnyLFMmUSHiqbkYFYdDKkXTjuruqQMPMQ6UpXZx8HzpVc8jj4DrD/7M5GT8FytTlhA - FPCMROTgIaQ0LvIIal+mxtHaroCl76ONNMVcSXTjv4BbDn6ElF5/kDO/d3r6/hAddiCQcPRer5S1 - pFYEtq4dSDoYRTopzkmH0zyPJDrqfjgrdCeCqxJY2FuOOJyHI7NCye+uxLMqJpzHKzsgcx1M4lwK - gS6nZ8ig4mmM2FK0WV3eaM3RpakNEtdxpHJiZQrwFT2Wv3pY6T3S4M26Jd6if/bqiubCRnImfcgD - +/tq7TxfQI5lywQvsdNzxC4CtHszDw/cCgbQ3/U5vj0ey1FYpsz5y8/AvEn6NAb6kbJCMF2gvWQY - 3+Gtpr3udCVAycphL7k06WTq1oQ64Es4Pn1OKqNLTg7zi3LCHpAcwFfCDsKtfvHjIbP93B/nHbKm - cSXKvbEd5lrPNXx9mRafwEjD+fSdbdTRj+PR5+FEV6eGHUzUJzNxOc+GU9r6EJXHsvNeVAvAUvlX - G8634uohZg1Vxnr0nWhcwo44ZvfsFzB7JeRvTkqks6SkCw2XDFRtoGK9X1E6XBrnAhaxToi3k/h0 - 2PofXtQXnHZ61QLqRoUO70ZuTaz1lQHr4kCEOOlT7E22B8booCZo2YHrxK7XqGdemRQDLXlCD62j - FHLtDHPwMHfNBG9T4xBULzraXuNz47F0zp7Lhnd1O6GG/zijqu8l8PpyrYck/+hwkJ5asCr1gaSX - Iqbzhr8oWT15QmgE6lLIvSkGZp5OF1Fo1XlgvgoE9U3EyokFYJ6ryw6OiNTEcHHpEO96t2EeX01i - X05ZT3NwYWChzBeSS5WcLofXpUSMQFRvb3At/XqTrUBSP08e/zw2Fb+MLx8+5m9ErA2/tv7VkVt4 - EcmB5FCO3nMdOpB7EfzjBx8LEeyrMMPGbjHT9XlzBWhf1xM5KtQNv3jaEl+3kbG14c9CPpWCbndl - Ip5etbTnUz2Ak5yaUxXs3oBfx7eOsiPIyWlYK7AM8UGCFfQDnAqKVjGDYRSIS7MMx/LQ0uX6VTLo - XJ/pdPDE0RkfpWCLXEpNfOQcqR8yPOvoo9+/5Haxm3TxPTyDhtM3xwi7iqrukiFrpyfE/ISGs2jH - wYfTKRaw5+RyP2X3phaD2nx4vHff9xRHZIB4+nbkLu/fzlwOcoR4bEOsMIGp0tJ4xej50QLyTIdz - uNbhxUdoyu9e24RVuj6vog2tPLFwOhhSyinOUUNV66vk1MIDoJeli6EuCQevgVUO2N/92h+w5xWR - 1Gz8LdawKPM3xmXZUFrdygsy8SXE8TecAA8aSUHDdFMm5DjHlN9fAIQb/uI7k0k/fmlR4jEuNu62 - rTIFurso3s8RSe33QMnTeXBw9ZovweflAtb1kJkQ7KcAXxYlqvinc2XQWn44rA3GA9DmLdfITK8y - SZZD1C/TrdN+/YrDqTN69gy+AUTpsSTJdxeEW71cUOOo0Q8PUpr3oYBekXMk3in/hkyedxrMxqAm - TueqPa/tDAk6M7cQ55neHTbTLAXNpKDEX5YV0EFORHh9wYRc3UlIaVhCF4xorD3usTbVqrXfDG74 - uz3ThcD8af0JfRRtwuHckZDeiVb8XhNH7dyQ2z99H6W5O2GVfZvOTAsQwILLmQ1v9v0yCquI9Eud - YXth+n7gkTnA6ngSyLN+VNW8a00PZWyoEu9jV2Ev4dBE01nLSOiae7o48j4Huzf38Hac1Dokg9WK - PBHZxFWRWREJp+bvfuBLpzjqWtaDCTe95gnVAznkezQiBC7SGfv3Y9bTWk9y6KXBgTjjWXSI+AlW - 6FxNQpxjd1FpwyoF4jtuR/SYPwF25AsTwf5+Jsf381DRg+ELP376XY90uX7tv+tF7ifxm65MqwWw - Nz7JNA8Lcebz7RyBbh9g4tiFvOmFA4T+KzaIwXAOWPVPUEA1WSePKd0zXYu6uIBshia5Vs8FrOc9 - sFF7WgbyTD5lz53l4w6e9r6z6QPgTOCSF9A/xG9yW7giXS+jX8Df9Tz6dZmuXARjAMPx6fEXvKTz - qbdF8DnPCr4wgtTTd3OJwDMk6YRyWILVVlsJ1u4H/OrdWQ3OnBBerx6Ws/CQ0sVDO/h0Et+Dj28J - iPuhM0Teak6Hcmb7rb4bmPPT6DGJq/T0MTQdjK6oIdb4KtRZOnoMVMPjgbgnganWhyHZf9fD+jRq - uETG0sHplAjEyGy2WpMEFSI7GwaWtcerp/1yF0GhrxVxTQQAZVM7g29eNojfc5E6n9xbA6u2JkTe - +HCdu84EQJAfv3qsaP+KIYy+lwfJ9lfXWUBxqiG4KOeJDaYnHV6ZGYv64HtE6rg1pdlQMsi+zqcp - PxzzfkSncgd2C+sQ1Trtwx5dZhOxvmZPszDQcHy+vh7s6Nshlq09w84wLjlSG5p5B28vOAt+3jrR - X8iMMeZih/z0Vk6HHGdnavVsB0kESoTv3rIXCaWvVvTgw4TNn76avfQ4AyH3VnJK9ZhOcXIYDtTq - fCLnXlORTvky8HzVP/jYJWtI5xxo8DPmKjnBdkjHQyHPqHOxMa33xlZ/+hrgqe88/iut/Yzj1v+7 - P/qm/xZBDlrwaPe/652CVd4S5DllfaK8MzVkUzaYYXl+xcQJ33vQzWKvwR8emPrgVuPmr6AcSzFJ - e9dIee4rdHDT6xu/vlLSVmILzyfNxAq47cJx1XMJBrPlYC09n1MmDa41bK18IUYP1Io3xaCGD+Hi - kHPheSHlrbVBhxm65F7O14pB90CC9XO3TsyEVMA8d9UOGv45JUf8/aYr2xwKcRqP1rQe2aFaiLkf - RC8MY2IkOKZrkrAl3OmmS3zw0VIubeMdKPJFxjppjXRWKCdCE0chsfz9E6zUepiwFIScPAL9CObc - e9lo07fTbrV3zpJcfQH59nXA1yO9Aa5iRh0qH80j8qncV0teewOUXLiQy8Od1PkSKQnUlEeO5Xss - 0HXIHx3UGX8koWEO1XRS7jrKYynDpvM5hvNcfwbR16WFBCqrAbqL9Alu/Lz51RbMbirvYMNpEk5i - 89xPAWZsCPpJnVjeJyk59m0Db8ebg5086tK1rq4uNPkrIcrmp371AzZ/9+v/cA7jjyh+8mOKlUuj - p+vNFlZo7e46cYuvF9Kr3MfwJkx7TyxUlpL11LuAey437O2B1jNzIAdQGxmKt/pJGTe7DOD2uH2x - KVoO+OkxMJ31jCin2aeM+PByeLQK1jtwWasuDzZvQJp7EzHq44HSQDtqAE/RDpubvulrvnbRKRQ5 - bw892WF7c9ag3Rw5b7EfX2dB+a6Dx+X0JvI9HMH46zf6jgJyust6SvLE9P7q8869QnXkl3sH6KN7 - Euwt35R+VGGG4a0446jgH87SgaxBTssFP/0czu8EBVDlTA2fC6tK+yN4FeCNLzd8vNaNM+qV1KFq - 9ktizS+n//Nv56v2wYE9H3/+VkS73O6IWcT6lid0HVz1A+PBM/329OEkCozdpCQ26jTAZWYgoiTi - euz+8GNMcAP14m1jp4nu1dI8DRse5ObjHbK+UgfhZA3gKIgJMbz7s1oe66LD6X5vNj7D4Xz+7lfw - PVrzxFip33P8u6zRWdZi/PNv3NYf6P1R7I3PnWoM+tqGAiu8saa8U3XOsKBDUYjw1r9LuIZ5dwEc - tTGRVFtOF3EnCGDDV6yedqUzRZnZwdtX7qctz6CL37cXcM0/JTkF+puOTLUmv/PFntam/dKcQAb4 - nPPxURL26hCrVQPt5Gh6qIGrQ8bXZYXxoFPsasKr+gaQ51BR0jPe+ILO1SPf/eHpsU8idfNjO+hq - xQW7wrWg64v5BmD/rnpyKuV7yIbgraGQr7yJGVGh/vAbJiLPe9WHfBzqHX0PbHyIT7JvUiYNHjWs - XGHE8qoRdXmujIhi5hgQrIEb4M/HJwesiayTkJUQTI+bpf/yKHz0vseKs/RjCeBeZ6bDt4/UkaEg - AvzNSr1lskSnyJ6LhLDXjdgMy29P88R04bfwEmyzpOjJlldAQa8kbyygXfF5nwqQEUZ1Qhe57Clv - iQ2U2sjwDve57OcCnb0fXnvzTfqCxXwdBoi52wM751RJly2fQq3ARd7h01ThmOpNAZ80HX54nZLH - MHXQj9QJa4i2/cpya47Ow3rHVt1vKzR6RhRrvntjw8ifzrz1O7LtO4Ot+6xUzEM+DVAUOkCOxZOl - 8502MYIheRItP0NKU7fdgZ9+dPLIDtnJeJmQlUjpLaPWp9Tozi2UC4n3Tpt+Z+bwoqC7a8ze+/YV - qr98QU1yxYMXyqqDNfEX2H6f07Qwe1KNe/Se4dBdKHF1JU3b556beFcqjxhrgAdLCEYN3p/5h3he - fnLms+HHMDvVITaku0mpRO4u1C9Nhr3B5v7lz8uufhMcLXG/dvmdg2dmFbDd7SKH3fIvaICLhpNG - RSlNkDjBLsYs1iO+cWZu37igFMQcH7Xp63y16+jBMVArj9N1xhn5tY4RZb8AO6vxAX951s+vSo49 - 9ytSvVY09vueSKh8Ofw67TnYUcB7J7oSZ/x9XsUEi7eL7ud0nli+hly1fPDpzaspcwIOA0htvshf - P2z5Cdz4Bdve6d1T4QtzUSFpjI38WNLJ5J8+vKvrFsge85604WGC9ROuJD29hZS4UavB6wEK2C+B - 58z0WZTQtSxAlDUowqU50ewvX7pfRaFvv8I1h8JLiPAvr/nzs6vin/CVd+p0CI3MFS17an79Csht - b7UQR1+XnF9e4HQVDSKg7h4ekc/xt5qhXXFo8/tY45WdOrdxWsMlPF2w4s9ZyJmR3f2OjyRWMIDJ - W0NBDACDsf00MzDjuAj+9K+h3mswlkUSwOwQBsQ44TdY7QbHMH2LL4z9ZXHoU7S1P/+ETW4AC0Kv - HUwfgkLss6k7y10vp1/+Ox3qPkhX/vpqoXKLRSLv2JczjelsI9EKI7zll1V7Ag4HNeWZExufrJTO - jzYCuzPnEeNiN+HU79IJotQof/1X0Zt/jcWQsCmR3pzXM/Y4NLB7it30CHWrWrb6gZufwJJ0AeGM - 71QBe0YIyXHxP5RwQIvQTrfdiSPtJ+xftifCr1RYOJ+OKp2WQxzBeNAoib0hpYtJTwmMpXgl+vb3 - dB++PMinToetqfEAjV6jD2Nf00n+tR1nYlrXP1g7LSHXMqmcH3/DV+dctvqrQjYUgwj8/J0Tvp9g - 4ZUxEXtx72ElaUaw7hdugvtXlREnSnWVex1Z5Zfv//JKSsz0E/z5Dbmw1HQNdkUMEUdrb2WDHvT3 - h8DALY+aduOxUGlfVgM8XAOb6Ft+sJ6CROK/EsNifdPb9KLsNj8/BB4Fb9wP35vJwVllVm9uAAop - O+Q2XPW3iY0LXsLl9RolsOWzRNp/aD8ZJvHEYH7wWP3pN57jfMBt2a36PIx04o7FBMz0JuPTuH6q - rV4gvKgV3PiCp98ffz+fyZMckf5SJ1ttFWCz1CbmJ17VpQg4Djhnu5gAb/Q9rZu4hLPDhCTa54Qu - mSZLCDCyR45b/2x+sQQ7VGAskUFS2YQbS0igufeEZ7ztUWRIJkLqUcPOkTzV1apnDt3O6mnjB4vy - B7Pv/vSF8bTPPbfaHxH8/PxJ991+/vHx5k+w/dpV6pbfKfDpxP60cPsPWF9HJMFLLlzwLbwIYZ8h - rvjNU8jJ8Ofwuz81M2Rr7Y7jJqzC5bBcM8gcr3gqHAz6yb3wJZiG9THthdBV52NhlbAvtz2SN781 - 67u5g+yg8ThaqtoZilPgwqeRyBMbfRmwnMHLR8RdEuwExaISNrVzyOeMTx4bfy/bfAagLt/2ONFL - Zx37gw7ZS3rc9GtdDQCgGm7640+frPy7a+Ajay0cYXistvxSgrL5nSc2rU/VPLBgBkcofidhy7MW - kx5jNHC3lzfVl0e4JM3QQPpFB3Ltrp+w3fQukMxdiY/uJIRfUXImoC3FbeKJJKrtGj4ZaDcGt+nr - K11/+mExvMaDKNmBRdzNAqQWhNu8JAqH42xnsDyykbfM+yL846/agJef3gz7g+GLyIUnlXhaC6qx - eWL773iUsD+lfMhgAcySgyebI1rKtRLK4b0yHRzdYdbP7ZcEQHWOCdZ3uav2NynLIR9aLlYl85XS - y4rsnx704Ou7qsturBmw8c+05dPOejSrGH5e855cHkblDIOBCzCst8BbgvgUMhjgTrynWYx/+ETn - R3FBv/kZZd51OtOZccUtLybxXqv7Vf7OMciu9fo3zxgPcpRDaeiVDZ/PzvyQT5M4MTPEJ3HE1bp7 - oVk0QKTh4+zX6igEUyReGpF6/BWzzvqIUw6IwgVj42XfU5qcwAR2tplOe517q6vAxDPc8uiJm8YH - HdIyKuHzNnbTbpakniFqqEG3fRXYFRMabvoT/ul3+e6VYLYzXwCksANs44BJV03oYriITULUF2NX - 692GDRRGQcfXn57Rd0IrqqFxwMZhqftFObYZVCSZwcqtUVK+f8U7uOVH3ix8zHQlduGj48trvcPm - Z+aJ3dfQzcqVqDMRw/b0FUwIjWGZAK8U/TgbA4RKmPREcjCoZu9w0OGJgIrIbnwErO1/GbD1D3Fd - YaaL+VoG9MtPMBsW1dLCqoDKXh/Ib54wDSd5B+NLKmMJH98VlaR6B4dOMbDTnKdqWKVDAqRLW+Mo - 4ht1DOCegd+s4LBd77yKG/tFQ6N33RPdli2HykXDwEI1JGKElzhdRr414bYGDR/P37Oz9l42Qd7m - ZCyfY6v65V+wECnBKttRp7/5jxiemcwlxq+fNr2FVnY3Ep1t83TdP2Mfoim7E9MbAFjc/VkAlqg5 - 3kF4iXRS46JEL8TxWKuMrl8m42uC9FBrv3lSxfnPJUC/+ek2j1ZnVXmb0K2rM/GSi56u7oUvYIJN - Ad9+ecNvHl1M+ZWor8O1GqBdMeiq+BaOinV1hi3PEGf+FeBT6Fz6qXgDHSbEYadxy4MHiYItP+bl - X57jjAyrazBwaTSNvhNXv/kvjKzOJYaR79Xp0V7m33zL27Nh0c+qMppgy/umqmGmdHFxIsKgtQdv - b4NnuAYvg4FLIljY8sSTw8z1Z4LbfIds9ZwuVzE34bzttSbF0omyD81lIBHMmWhy4W55fhZAU71U - JIRvWpGdflr/jrdM+6ynB6HsgC68W2IMwKjIXi0ClJPBI37JVep6uAQD+B8rCvj/XlGg3D+Wt1+O - orosbpPBg7EuHsMmHV0h4+nwE6s9kZpudgYSvnRk9s9wYjlWoTPw1hLZEPlEqb4E0C6pdVgXbUSy - U9uo886tFLheosWDqLEqvl2lFbYOwROQjl64crImITaKxokOpg8YTfMDGBvNhI3rGAAqLoEGFS3k - sFnuB0DDNu6genj5xPa/TUqv94SBcrPPyMlyT5QeHMOGcUkTbN66Jm2bSDKhM7108nhlY7jcz4yN - mA/MPH5vfR16fZQBGoZ3SuQUmSGvSIMIx6N+web0XpzlfTo2QGv4jnjuEaqLPpNA3P6faIfe7GcW - KzpcavFLZLuggE7L4iKPPBzsxLyVMl/nvkIlmydyiXSlYkIU2LCZdiMx0vAd0vFyMgFHDl98OcAm - XQ7AnOBewSLRB2kHptkSM7Suo0IeBh+D+T5ffCSjqJmGhRgVu58UDoGxsEmw3JSUPb7aDp4HiyEm - DKueu2qvCN0k8vYWzLZVb2rDCi8y8LBMYafOdznQ0HcgJ3wM3CPgTXhk4KqcVCwp1dTP4qInyL7s - bOyuZ9Xhp4JmKH0wOjHmo9Szl08sAjCW9sSPKUcXkB5tmIwXgwQlF/Xcxz0XKPyKBpH6fQ34rLMU - ZMbnCZsPwIK1md4xEiIPEDt1aLj6xZuBscPY3p4VwpA9v/0d0txh27Wy59LlDY0ZLK3uEfmFEmfS - MlSK929XTcxxfDss+IAcDtfWncCjU3rO+7gz9CNum2B6ojqIix7DFcsPYuwEJxyur0mCedo0REro - pC7NdcgPdksYLIuEdZbH1/JhQ12bnN1WUddcsQMg+fWRnPell7KPpbWRp3pfbPuipvIFwDV0hjQm - 9iN8VTR7b7sMqvGATemzT7/FFSrwuV8tfEtZCQh8t1egtmRnkqfwAfjXQ7VRdgo8co0n6sxPCBSY - RBDhbGceVaYIzAAeePdA7ubwUumOf+VoynufSOr2TOZN3plicXn3WOX3QU/dMFRgnZcf4n3NC128 - ZDXRy7rpXhGS9zZhuF6Q8I0LHEf8qK67ZddAY/Zbcgd8r3Ji1tbQLNYPdvYi7WlPDj6EC2WwI30s - yslBNCGmEd4knjO5Yup8H0NxpysES+q+X3P7a0PeqQ1sst87oFd/myg2o+AtR+fpcFCCGajkdVtz - fqHh3AtaBnlBeOFgCPt0TYhb/n2fItZiNUrDJ0HcKsfYMlqLcglYOVQ/8hnrt3nv0PRCGXS5XzD2 - XxrqaRwAEY5lPE38S7mn3AhcE8BcsryZiZWK4SU3gAFhY2yP6StcmWy24ROU43TorJgu0kBiWGI7 - JqfX6DgzfjQ2PKHDFauCP1ezJkkcJMPzOyGezdL15c8lkqqzQIxxYPoZKJoLY7N7Y/XwPqZdbAsD - 5BhL96jhsWDqbEVCXCKdydYPlPAksSH/vC3e7ijT9Id3wN5WAMW5S6tJPfoKCkzRIt7kOoAb1UqH - un95ebxteBWTV1ECPD32Jv7AMCGtvVME86Qk+PIYdDp/3t4K37tswtZAy+r7w5t5kp9EN9MYsGyA - OGCV0YM4N0mgQ8tpJWJlOcFqJi3OWJTdBeyu+xu25CKlNI/oCimfP7CELg+Hj5+dBzVVl4iUag6g - zvLMQJ0lh9NaZFa4Ym3edt2XQ+JVpupQHYc2+h3fMedkh/afYPvVA+aNlcvlWzFqmQ3ihT60Dc/U - qg1tqUQmGchWn47KyjLs4CGBEbn9rnfLaQW8Ct4Ta2kt9EOe7Au48Qv2zr1XzX0f2WILTx7W1Mvd - WVrl6cEfPjnltg6AudwDGIYl2u7XO2W+4dwhmHA1waeCUSftncXwkEknfO1GVWUzXLdI6486vgum - pc7Xu2FDsvvciPo83XpaW6wA7p+Cxee9tNLlkosKPCuyRB4lbqrWBt8VHAnzIsFtPYFVTlANF78/ - ed+8YvquO4qNeO+mxJvYVxDSHZgF+PTcEOtJ3/SLNT1naB3OAznby9IvkHmtaIclA4c7Q6LUM4cW - XthmJYYdD+H68QuIThcunt7yeQArdxIj+DyZGb6HnucweOoFaATQGw+nGwKL8Ko19K4Pe6K++FfK - HcVXg6ro/SFHKadVr2dWLr6ExcNh31ydxXkXBXplRY/vl+CdMvpAS6RJMPAu2/1YHvWBgf65krdd - Jx5gLo2zgE5SDbG67GWVtffXAtW6TIjVJVH1wY+FQ5DoEsGBQvrlDicB6n70wheeiVX+PZsMcg+W - iDc8dNYo0xlon14mCYrsm1I1kQtUvuUF3zR/l84hQwNBmK8ziQYpB3N4UAbUN56GbW3VUsZABx9e - OW2bQA0N5Q7ctYbjUbuQ26u+AE5O2Boa6KiQ4+2+c9bcftmoKswbuQvm11mVHkTw86pTEp281aFH - ZeDgdr094dhH4XL5+ALS1sLEZ2mRHF4mRIcfkg3Yt6J7RcvJFJCinTkiR7qgzhFHXbTuHm9iaOuB - 9le3LuHgYXti2MQGK0rOOvp2nyc+PlZbne/IrmEyRgY525hzmu6geWjDT2I3xYFOCQ0heoo5t/3K - hVQxhu670K2CkngbP3a5fp5Q9rmr0058f0NavjsJzWz2wumnu/z0jy863bmbXmrWOx9Pu3qoe+Vf - rOZ95swWtUU4WVdE7OfO7VdP+uawwcWbGFT+hsv6GFz4Yj/f6TCcDYe11VGCAe8n2Cs116FR59eo - KHwL30373c/r9StBM0mzqZEPTs+jjprQYXemd9jeHybRjeGG/z+8rdbwymfwx2d2Il6rZffKCpiK - 2nfaPagXzmx4LmFyBTpx6BqCZfc46b/vI5dz/XHY29j6sBlFjhxz7uXQOA1mRC5ZRR67p+6w9RLX - oC5njfhUPfV0hb4ELxJ7wwaVrXR+wz4DSjrw2H82n5QUwGhgMdkJ1jKdSWnUWCa83NwXvrKLA4ag - Yku09Rs+fyq3Z8SWlJDTuQFbB3fb9d3rIDS1UiN6I50cFq+3DlbR5zPlWX6ousfi5rCIyH06XIJ3 - uAb6zKBJPFCiLK3kDNa9CYBbX+5Y2hlcSmaJF0A1KS0xpc8zXM812p7svaF/z1eRBgGQmehEYr5S - ytnZuAP3fj5v18dQKcpdDg5afSUY5G+wsLeTDwYcykQ+Ont1vTRbfoIOV5K9I9vhHDGRoG6w7ZQz - 092hCY8HsOEb2frdYYX7yYVT/vWJc6ZSPx/DSIS/esfko9JZA4cLvGWJMh2KXqHzWxJ3EB6r87Sa - 7he8i1720PnovT3+Oq5gjTKPg58jQFieIr4frG5Q4Ld9LPgql3bP3K15B5NYYqbO/zYhTfZTAyXh - 7eBguZXhpm8C8PMT2/k49GI+dOiL7513KCwjJcopdWF+2PHYMvQpXH98bu+1HXmGul7N1zs2oQS5 - D5GjNqyWplta8MZSQ7zpYfWMO4MY7nY5ng7CvQFzr4mMaLR8M6FDip25Oc8T3NNl9qon2VYs3icf - Rr2oEufrb/ujbXrpy7r6xN3mpzqf5MWDRQdZ4jcm0y8v2uqQrz4e0aJbkc6GIs3owFkKlp78UR02 - vXOQe0/Asl2EYP7p32MlGdjOCjPkTud9A3I9DDd8KPqF1KqNouB2IVbOBCGTiUCD+iHNPXTlLIeF - yGxBeVK6yVcqr1+xJV1Qicqvt50fXY0TPwH/MjUE58islqIsI2D5HiEe8RXARBzw4PNkZ1iJJo6u - L83eVkgfbiQc3c/2jOI5Q9ppHkhaP8aevl5JA/WHDTb9sCXmz2VGSzAD7G/6gzU/s4IO6us6wc1/ - rlM8+4i3sju5tM+FUpplGWRvce3tpv1bnbO9XUKdP8/kXM40nOrgtyO6hQmuB9gPEbC7P/zKqvkW - trYmTRBKp503JMErnauL5IKG8WXs70TSE9z4E7waU+HNm/4cS+fUwX26fje/Ijqr12fu4d6vZ+LU - LgZDq6wCNFlFxdJJuKoLFBYXkpP82iaCaTrjF9uA9MHpRPOX7VeXjou27aHXY5kmU0X22JBg/RpO - WDEfRs+99uIgrLcywlg2uP53fDA+PiSsaWJPiVQUmejEDiTGgbmEdH8bRahXpY7l2NNDckY795AC - uyCnZlFURk/ZFfz0xNm91elQfyIfvVHMb/3wSeedGdZQ85gK4zwdnXmRQg6+srKf2HlkwGCbsQnG - YnseRFhdddJ87MHS017k2u0ksNb2vQaHmGuJu+RfQNWrqAF0ys44Fd85GK53bKOvUt+343co953H - CPRP5oBPtq/R5ZElOzED3RMri65VnFFpIhIPXLM9E+sDfsd/M5indYMTHnnh+B2WBv31I/FLsOy5 - 7wR1g2+9w93bnliY3xHgBfF1opfe7rnd9zbBTx6zBN/a0llvS6bAUwR1nFJfCJeq7oIfnk5oL8v9 - mnRIg0uwAqLyD17d8G4Sn9i3ccoaJp1t0zfFT9kFHrPvRWeWlqBA8cGusWvWWGV8EHjIwHOLleBx - 3/ZEjF2QDIE/HTa9PtyZagJnbk3xVp/V3/09TnP3p///rl/K0MhbwY3SxZBHHXrM+hyFM+UcIkAp - h846VyQQ7DElznLLRE+xV2zgUXb4Hz9c34p4QodhoOSsHCeI3DjBdtuaKgWHGcLsrB68RVokdb2a - 84oShbww5k+mOvvbr2LJJzGfKrOyKSc/jwr87jiw+eNaXenelcR9xhVE/lRuxcrp2UdfHNNNn0/V - z5+ATf9NOzsyHf5X36tkXLEldFrFNncgQBFJDg4P6pcSKTsrf37ATgyYzsFccfBD8oHoXvB1Vnjq - VmA9bR7rCiqrlVQkA1t+RfTmbANi5VYCJf51IXoYSer6ZeAMw0vDYElhhpTeDk8X7qedN6H11oQk - fXUmfO6mAKvGtkJb3pkMBOE+9Xopcp31vPQNdEiNtrwocygN2QYex4F6u+31qgjfFrpNbnjZZZjo - d783G8heA+7Pr3cosrb3MwPnG19s+BX88jSM9V0DZn+lEdo+f2LSOu7pIpg1fNEHwE7c9P13fdEW - +df1MRF9/Krr/b6/wPLjPIm18Se7V2MNna4CJicT+CrVC19E5vCyp176fCm1zqkGhS67TT1OLj3t - hdgUOxKJWJfbE2DZijbInk0Oy/vSC3n31uWg6gUR5/6Hr+ioGjH0WCba/HwYDuVuhdBhoYnNoyUC - stUP+qTYxxu+OGxCChepwvNOTpO+7WxVtBl424v91z/LOB0KuNWXtxPVE+2EkRugLEkn4u7uJSVT - AXKYPzkFq69G3X5FUYrh5k+w3epDP9vgtaLb3X3g0HjSnozO5B/kuXSxVSRvZ/qYtg5BcKh/fqoa - LY5r0QnyOda0eE4n76OtYNPbHrv5JTqJvg4bdVW2estS7tvqOYxfY4Wl9bU636c0cfDZXs2JFudp - +/tYg037rrAsLYWz3I9HBuy+NiTSnfDqrNdZB/jq7RGzepnpWqPKg9XqH/HPX1Gx7ue/+3cMHlU/ - XchF//HlJDKzAVYOwgJGTT3jZz7YYK5zPvnlK0QyPu9qzkSqofvZ6QmOw73TbfgFSmzGOD5LkNI5 - yQqIxLXHyhmgioRt3ALZ212x3lA9ZTLjlaGtHsgZarbafZ+fBuzZQ05O3iqFzOvliZDThh1+NIUW - zuQ2F+jFk5s3v/mIspfKymEG2ufPH6nfW3GAAKZi6onKPU6nq3QWkZTnkXcAvOOsCjzocEB9QNy7 - Z6dky0dhykOw5T9JTybR11AP5Lcn+l89ZW3XEeH9FEtYxuHJmSCsd+D+Tg2PaWfSb3mdD606d6Zk - 5yHQ+cXIwbFMJuzUk5OurmEmkNOZgaTxdQRr0rw7kPI7QMzZUelyy8oS2tI0YctMq3BVj7EEv3JR - kpv6llPOJMD7fR6x1QcOVyZuB8iNFHiccIchRWUWgC6zrsQdkoBSfO8SmB6UdVqd+xxOG96IZGUY - fIMnKWXJ0Clg06/EMgdZ5T6XOUE/v6FekoEOi9YHkKMGxqexHtVxnpcMMnanbH4xdmjfvzigGvuE - /PwDs3u0M5w1WP4dP5eUkQujy0OZDoP0TYfn8b6D4vttY5+JlZ7b8itI2YgQRbDHkEqhaEMktAhf - sAPUETLfFR6SXeQ9Q73pZxJ+tV/eizU8cv27l4wBtqF9nhjms1RzL7gZFMHuQtSu3DkjGyBGsNuR - wTa+nEMKz3kBN32G7eTLg+UUpAF8KG8yPYT2SpmN/8GGd9ixP2m4srPuQiVKa6J532e/FCRuQXww - a3L8rKAaN38Kgrc9YMXdq04fB/+QdiXbysJI+IFYyCRJlsgkcxAQYSeICIogQ4A8fR/u38ve9dJz - vSpJqr6hkhSVwO20Ftg1OZduuazEIOrFM8me36HZUNlVkqETidg0DynVpmcr0IEe9vyiUHZpBRPs - fIxouYKcrRIiHrL1YBFNjY/qItCHCHd/fBa5c5nPv6PmQjC/T7NcZBWl4fO4wTlYDtgu1tahe/6B - tSXo/sHDSTT/rcfTGJJ/+MlBJP+QOX1OxNgyexCWxDOkw33ciPEpL8MqfkAN0QtDH2AYOMt2ubTo - W9XvmVbUzqmiwfhPH+Lztbiq1Gq7AEzZkdv5JqFEkd8ixJ+gxNhlxGZ2Pi4PwkZhZvI7XSLyae41 - TMJrvK/fIqLuO9jxfXoRc+ZnML6/ZfA3/tgLXnG0REd7hIMIBJ/pge/8w8u9fuMvuTbQre/8ElJ1 - OZL8m/HRZMe/BU4P/e7/cLzm43bJWpiCMMT6Oxby6beeFMB0Z33ni6O6Wjz/+/Mz8Alev3Rm+ucM - dr/eP3rHY/57BWIFLUt4E+Psy7mw+99QTOOenK+OEC2ils8Q3tk3KU64axbRHEzwV0/A5fijJI8p - DwnzuWF510/bojcy+tMjehbMzY5/NnTfSebzim3lmy+/ij98IGfrQx2SzJ0MI2bqiEZD2Gw3rin/ - +BgOkzmhdK3pHYEI5T7bh4M6/8JKQhcjKIjuXrlh10Mx/N1P31mEkTrsetiHXOSY2HSvsrPz0/GP - D8+tc3yoS9i5DBxaV8Ppjqd/+g+B5GzNHFfN6hqkdSedZb4i/uUeAKqIOvzHt//8rykKnRHwBPS+ - xPpuxJ+auIQg0S2sjuCnrvFQxUh24+5v/B3qCzMLov2yW+XNvMFM2I8LBavMyPm+9oDmbsGA9/Nd - Yoc7m2DXn5oUisnF5xYmbFbxEf+go8a5L53nyVmIsS1QOyT1P7xc7/VRAp3HI5/d/Vjy9vUESt9R - JD55Vc2SWSKE261K5n/jf+GoDNfLpM2Nlbwd+llkHuI2vs51yn/UvV4iQ/VS2aTUw9VZrh+uBPv8 - YX9fn1sruAEMW7chTqoFKr0o3gyYn0v//MpoGS07hLnV/vBfPh3rcyYBZrqnvvScfLCGIlGgkmTv - uQbdpWn+8hcIKO+vnfhq1qeIRRjrGiWX5HYFTd2vxT/80yTv7dC/+tleXyOXd9KqS725P1g+WYXE - utMPa20wLlBeskNO+99JDw/wr36KcWS0DQnzOgHu0ZHmH+M/wFo4V1dKHd7G52OTNPSvfrCY5hmb - zWaof34k8CSy/Muv43UuYnhekyc2SW+qXD+ubxTBr0QMv2nBVrWlBq0chf/40XZbYxl+HOGEzzs+ - jXKhJ0A4MinGvLWq9LmkKQRjEeFozPxmTc6PGB4qxSCu+SZOFwjKgoh/Tonu1IVDRSgXaMdbbO/8 - ZVlJIsMalhtWnyUXLYV6V6DxMHe9cP6BleTvAPy4Uf83vsKfXiWe+iLWM5kozR/3ETpqkhN5fQB1 - ZovFhOYmXbHHPA11Y9NqRvSlR8S/XV5q77wuGtKQy+KCryuwRkluw/z1WbHG6omzyFWxQYUw0Tz0 - r/cwMS6O4e7HYtwsL0DLXPUhp+gX7PRBC8bkfJThrp92v4cObaj0KWyTBzfz/snJNyrBFrzrTSP6 - mw/BclbMDe7XSWGlKvqIpDcnhgUck7ndzBEs8LmECNfakSRiBvN/eqH25B/Ww4facH6TyVCvxIw4 - arMNnbEqDIpnZyH6wmzNdpQ+CoiVg+5zrnBxVvO7yNB6mgL5499jFcohso7ROCNmaej6Wy35/7mj - QPzfOwrkRqiJIThGQ4Po08LG4Fp/YY9HdZYd24dLwpyIubZR/hPFC4+Aeh+xbqUHMJ4VnkfPBRvE - aAzZYaubG8CP54zE56aZLgans9B+6rLPIXRruOBb3SWx8S/zmAQH+g7nNUA3qmlE3pAGWKNZF2jX - TTBLn6sfrWvPFbA73ipsBdbTWdUXauHZlM8kbuE9n8OzyMLLC1x9/gDezuTFfAJuwUHGCpykYaGr - kYBi2StS63NSqZbcFGQleonNdToO/azEPoi8Iibyr5bU9SvOIWTguyce6HJAY1PgIT23HFHH3G/o - 6fH6Ie1gNtgAWhVNOpgkKI1M66+nuAHrhcti0B52htaQ2uHD88JDF0YfIit21ayGqGxIY2bb/9pZ - H60112gwZl0Wm/XFjtZOm2YIBedKnOZ1juj38XERlsaCRJap59xwl0RoGvjhv/rxEQlvgSth+cZ7 - nyTCDFNNjzU8M4Xrr/34yIXzT/qhOz/O82d5wIFOJcNK4a3o8CP23YZX2YcMYRAK8wFlqrNU7byA - 52EbsRt4n0EYGdNHv5P4wwHJHmBrD0aMntXwxD6/PZ3VHoYSHslPmWmadOrG8GYM9g0pJJNBkfNN - bEG4HtSBGM86czjzAmx00pnWByA95awnTzF8q9NK8OWhDJP1HDWYyF3rH8I6pAKvPAzISnKEU8nU - cj76uAHkR8megUGtZsvqbYFlsJYkdyMNcMSPWgS9SMb6m8qAy/zXBnqyfsj1Omo5/XENBNW9ocQ7 - yT1dD6QK0ON2q4mMer6ZRWuC8NggDeeUlfK1mgwWylt9I5bMJg4Xe4EN40dyJfiT12Bx+FuJTjps - cTTWLKX5oZMhXZWVaPT2UdfgW6VIF02DRLxCwOpF7gY9Nk3wDbjTwH2NWwhjuuTkcVfvOfutNhu1 - 6TiSQixFsB5kmEqO9ouxLZRVQ1tFTeDwSkKSiIrdbKQCMqDO87F3S2LV9XRlXPi0cYbtQb1Sym9b - jWbvpxGLsZz8vT2lULqWSJrXa/bLxyU7v5Hw82fs2pMdsXu8IEVkH0RXylfDaUUlIkGNA1/M+EOz - 5PFJQ99rKxBz74W59ielRSP3isnT23cx9F8qo/MqFbOQfV1HyL6vAOhd+/R7OrTOwu19rAv4zvF5 - a/icck2qQL1/Xoi9x7tAvrkGwYexcKBcjH1TQwEhQFOG76pMHFIpTYhMPRnw6fBVVf7lfGb0tFaZ - YNVQh/X13Uz0iOQXxp9cAezbTWrE9OYdyyZKB2Eavxv8iz/wvnzUDZSnFn2exJqPhzMXjR6ybZgh - 4vhjOfwa6pZRjB6tciPeAu1cmG9LiwiO+vmw6kxDNd2GgPOKGrtB7AD2OGQzDN77DoR6vAwLU0op - yM7k6dOHN1B66JM77BzbJnqlqvmGjkMBbzwz/lvPIxEDBgorOmAr0vyB5a9ajbZHeMZxesMOEQJf - gTzrKcQ12GUQ0mxJkD9PKvZHL6LcfOFniOPwhnXx1AzTgXQhPDzt/Za/zM635ntu4TmXCNY/ByFf - pYBhpT1/YvnytIb9+d5I8aFJ8ru4OLP0wTx8Vv3ThzrfDuv303Xw0RYLVslDi+g9voUwC6GO9Y94 - cTjukdgwSTPePzzZU07du+hDgi89cSD+5KssxcG/+H5z0TFf0jlLUFxtH6ype881qh19COOvSIyt - xpHwpOYMjwHy93jSVSI/cx/i4eOT2FIMlc9qaQEtfVLi6weJkkNf3qUoKB2sI+Ko9JynJkT77n3p - c35RYkpXE73F/cwZyLr8h4RVQp18ZYh9XtxGUI9OffzC44y1vBocVn2cjX/51VEkTLd4VTt40G4S - tsxnEy0KTkw0d5mDrVEo6OaawQa/4nsiepHyztZcQQ279vrDT78/qosnfxJUF4cLUQTvkFMn+KWg - 6aoLMY2uoN+YlVup3hhm7lXeoetw30RwnX6EGGacDOtf/h8+roSV7L7mCzMXImxHE5Bs6YN8u+17 - ol/1742NMlEGVn1gDTYd/M0rq8Jo877XBRntrZgPiSc7fO4JLsgFIPnc/nvnaqx+cCqyjaind5nz - d9kP4ILuxgzFMgV8IR1r+Kp9h/g2zwzb7ZyKUNReBb7T0VNZptxSdM3PIVbWy5CvsqmHiLD3N7Fb - N3SWc0AWIDbuBd/un0TtJsKOyP+lCta0zKecoohvpBVfYz56WKYjTqQairKfz+y+PvgEXAp06pgC - p1zaUvZ88gIo08zC2Z5fiHfkXBRKik6MLe+dJbjKEJXe1cfRr5UHlgWxCY3o1v7jD9O0Hbu//IyT - flsBpcUUg8Px6BH7WVURz8+aAqTpfiC4nZ8De4175Q/viLzjO/VGLURHWg0k3fPj/HWFBH7y1CTl - 61Wry+UlJygO9QXv/MKh7eXDgtfTjXHh5qEjOJUrHQl3SXCCGGZYDr/jgiRDM0k6EtKMf/MHEh7M - Qq+C6F0/qxr8rskRW0sfRNS0hBnq0+04g6vUOsR58QXiGqkj0Z5vvqdcNNBGR488WSFUlxd7G9Ez - lXzi7vltuS2KiEanOxBn44N8u05dBQL/q/2Lx6WozALt+DzD6luCpWiaN1BE/uFLytEE44u9zai1 - PqW/14EH2rdWCdMD9LF8TdV8zY+tDT/8pyOe1Z9Uju8fFbyeBxV7oANgLc5PE/5OxYUYQkbVrZrv - LjxSLcTXuZubySL+Gw7+xu6OtgZYYNAOOszh5LOiIOfr56GlUGx/FbGsxxStBZsVMPDGkOjLo2i2 - WqwUuPzuAVE5TadcGroSmK/Zlbh8/W46IGQGMqJr+w9/eWQLb6g+RzDTsKuiLWbbBT0fQ0fk3Ls4 - 3CfrA/CXz+zPdc6nzBV96RzgFcskvA0/a7lAOF+FGZvxIQd90VYVYlRzxop8k8H093uvyXLBN73+ - NBNl1RDJDbcrbOPk8MfrlEDC8shfg7od6PW0tiBh8pro9PIBdENViP7xD3YZ6KYtqyhF8epinTV7 - Su/GHMM/vmtscQ02KdxPD35ehxkkZjisJyMfpVnJn8TFyavZ9vwH7ecrw5Z0E8CqhJEBay//zQdW - CJ2V6s8UOJvwIw47lNF2vH4S+Hzp4j/8nqlRb9C6bI+ZGXDfLKo3tkAqLyt55poKlo8eBEDbnXBF - Wo1ICKLpDT85/5or6lxyVm6dAKqN5cygee19CskmgwduL/PiTYmz+CB4I8fK5r/3R+vYSiGsC3Tx - pcGGzii/sxkOtujO37ivnQ0OUg0f6jHCp1I5DeP9NvpAyqobvglRBNix4WIwrn40H+TwHk0PfWrh - zv9xUb+1aHtBx4S0fEZEPYJ++IhcLAHOky1ydspsWOpnV8GvP6dYDUnbzPjkm5C3k4lYj15Sl7/n - 6fDTIb6sGnTZ+YTkdikiujL6Dr8s1wqoDh8RNcUvsFlLBuGOR2Tnd8Myj5c35I1SJ+YrqiKuxCCF - 7HArZ3RXpYjURfSGGWO9ZyL2n4G2GIYwzWqLGM88BGsaMSXI1LQk6SuSc56r3e6PX+IbVuSGHtM6 - BFxM7zv+mTkXl6MLGgAr7Oz8g/+6h0T8pdQk2mdp6P57WsS/PPe/8WMRv5V2Pkg08lmHNQuiRLqU - oMS+17zAzJyLAu75Afvp6ets9tylgC5tSkx+7+m3GCcG7HhE4pds5CyvLiVK2anHVrol0UJJscHU - iSainwtnmBZbLEG6pB3JPwmXf5Sgr+HOL4mWZxrdfttXhsg/UZwVD3UQlrWToNklr3nc45tWyhDA - NQ4+JGu1N93X6wLH1Y1wtM/fyrm2AdHjeyfqX7xXi7MhjQJmjtX83WwIXBVoz65PUubQqcuhl31A - Xuk8g7sYOB2qHxWAzWT4LBdl+SqL9QgDUZXn0QA8oIm3MNAIgTcf/Xh1pjTiS7B+g3xu+2PqUIsz - Syh7AofPa9mqtPAyGRC7wkQ9smrOL89TAd7H6TFPwTWkqzZBBsKT089C3NfqWD+7Gt68asGqnlzA - homkgPMsfrCaxZuzuXmS/umF+Rf6K/1bL+B3jY97fLyaKT/ONnw1GvK/3/PXWdtv6EtpBut57xWS - jx8T3IFff0eMWUaMyNxrHcLA5nz0+r7yPz0IZS8v/GMbrvmaiEUFjKfyJrJz8PO5QuwsCcn23F/P - +UgAayAhiQ2Saa3VEJd872C8Lx5J0xVHSwMphK+6e2P3m3dOf969j1X/LtgRWo+ynp8EEPwiGyur - raub431KuH7D3EeDrzSC2Z8MVA8/g2i+HDh8DhsNUu664eKq9dHm15YBd37hH4tHMyyP6ZiC6BQj - jMN8HIiMxfG452/ipYIKuJd02MCH/3b+2n9uDo16aYHaQ336Au+rDT9MYQKP1i+ZqdzG+TS2WwB7 - s5jJPeeoSqU2cmE43AJ8futrPgyn4Q5wah/w7o8A+mS3AEE+aLCymURdmMUvoamvGjnvn8/9PIsB - 4BbFRB3e9iAIzCpCg5MvOGffqbrVWdkBLpA2bNOPQZd/forVmcQIlVIlx3vOw10PEzlJpmjLmaKD - XFNgkrzB7AzDJvOoN49n7O7zTS/PEYI4PC++1DN6Mwkf6Q577W3gZ7U5Qxebrw7KhXbBu75pNoaX - EzT4SY6d/lQP4x7P8OCawSydeyPinrm0AXVlZSyTDNGdHxTwnIuEqCExGm48HkRohCXrS+e+jf70 - GHQ7LiHm1/TVTS7KAB6kW4t9/7V3fCKPDoY/UcDx7/ttKC8PNQzN250YrrfktEmXAgFEMmJ4zj2i - wYWV4aT9anzuuJkuU9l18Gl7GVG2BDREUy93aBxvoS8c4OAMibdABJ/sAysvqOT/+Movwy+st8Zj - 2GCRKhJznR1/qj9DtKj5o4L7+sWFfFAA+2qcH5AL40L86HkFXdW2G4T8CLHqiTUgMSeZkITTEWtq - rjV888UtuLBHB8tP5Der8B0gHOumxNbLOzkrYiGEe7zhk+GcmzVzFx892nLxv1cuHSjbjSM8jfdh - Zhe/V/vMfy1ofms2UYGc0XXIrPi/eqoKebrrtQDd3jkmXn95qGPERBsCuQNnMVK/zYrzl4x2PkD+ - /B3K2FkqoSzI8P2+KGBrbpMBo6Bw/vGx7d2MJVBn3sKPB+fRNf85HfDd72Gm8XvvGPeTGWi9l2im - WMvynY/J8A9vim9uOvzKGAXa/UaCZ6fKSVicWBi8zRSH68WJlok+Weh+mTeW76ZMae2uGtqUByBn - O7PyyTkWdzj72oPYTl05PFdrP6kdPzHe17+zHW+lBKWMWbBlvaOmezquKO18ZgYn+KE0vAchusfW - rkfGItr2M3loEAcLeynzc7bxmM1gf15i7/4DvauOC7zy3u99mOuBCxPMSNX5/N7xi9/72u96lXQK - tu9LTdf8OJt/fGk+vBZuWNPQFaViAQ8ss8dMHWXhmQD8DT3slVSgdDgNKZA3ZsHG3HPNYt/uBdzn - h6gfvnHGxfoY8BGVEsFRVYDleX4t6G88kyu7DrvfdId3PriSHKSvaAVObaKjd7jNsH6/o2W4cQws - C1nFYXMKG7Y7HEzYyTcGyw/loE5P/8RDZjkOPk3xCWx9o1XwT58mVZiAf/7woW6TmfvT1/JL21AE - vAuOTu8yoo8sSFHqXCas8TZStxE4IXzJ5zPBT/YUEbHQ0+PvKyUYRxUEQ36oFJQX8x3j43yl058f - hqrvhZjLS3W4uJA6uM8ncYyxidbr+DAhlgLV364dAqv12GpUTA/P5yq7H3473we/Ed+Ic18twH3y - Owvn/oL89osasNxWWP49H5bz+JZT0a0lSJFtkrMdqg5tmcpGPxB/yIlnHNrt+h5O5qHBnrWcowWk - eAZ7vBH8BN9hOqq6BPVeEclpO3fO8BhLBfw9j3981tGK817559fyZsw39PEbS+jzJzAvl6fV0Dyc - RhAJcY9vvZrnm9JdO0lA7psEJhKbNfZSEyy//Qz6rt8J1tkfHNjExDqb8NHMBctbWphQJLg4rpQk - nshANXCu5C/fLHY3V1D523HM5g3l+zejAeoAnmimU0fTdXzYYMlJjv+N94XLEjDHDNz1fTnMbMP7 - 8P1Ji3/8ai3lQIKLCh1y3orAoWm2xFBJIhmfe+nprGnEF1KfylesRB81Wj95yEpKeE/9Eb9nh5jW - YYZr53jY1UmVt2mUBsJlaiPsF6s20C4HHfA+kUnMkefoPz6BZd7EWlKfVGorxwKsMpuQ5JlvYJtM - NoA+r4KZ4beDM0p2ssGr0wxYFoex2c5p7sIh0UfsomvRFPlV6oD3gAEJxGEcyG0mFdz1yVzovDFM - /IA16XYSNiJrRky5YfQh6I7XapZUYQPbOY186B2dhXjf5hot4YmB0LSGkZx4QR+WhjgybO4Xjuz5 - W+WWB2PAy9n2iXUDWz62yRj/5UMcYkooqeR1RuPz7GO36dlmteGhhpafeL6AFXngJs3boPe5mP71 - fNXzLV6dDqS2EO/60BjmYwQ2SMJLRbQWSnuvWkmE06B9cel3oUqzbx/80wd6ssYN3f0l6M9E9Y8q - v29Ie5uspKCv4EtIV9Qte1k+BG1az1Ii69EyJNr9n950rw4ZOpxIlbSCT4FPXVYNnf4ZYliTesbu - 7g9soLTeEHygNX+0F1TnXU9APycesY/3mNJb3kvSjg/EfHvlQKeHF4g7P/2XPyfrIVUg3Luaqp6o - UJaZCwnyH53FhpOM+47fND1+xXbCqmV+8lHqO/Ov/kKU84UBc/zqTVgd3Q7bMyTN7of7EH8Djzw/ - da8usR25UI0+b6x76qROP+8EoX5te7/mDyFYtucWoL0eNpOoKujy5+fy1Ubn76kfAM0EZ/l7P/Ff - xB92/TkCoV+u2MAHtVnu5mmEHVeK2O6ZT7Pz7zsa/DgnuvoTVfJ6MvMfHs+HX2gMnH6EMZzfho3t - HB7znS/6cGECET+48Qteu78AOAUjn4z+ndJj527w9c0ZbLfu5oxXYzH+5Sv58uybOfcEH17Kh+4f - zuicC3WpmxAfnjzxpfc2LLwqFtCz6xO2tInQdf/8Pz9shiNooi17nVwkwM2ZpYKifLGsvoLlJtYk - HJpmWFn88YF7qp9EY881WMz9Ji8QwoiclCx2Bh2nG9Qv88kXdnxejLUeYdJ24V99K6fl14r/8AO7 - k9IPq/WQauhVzJmc4MeL5hYVC1hUxpnpQXg0S8Ld3v/0zuKxRf7nR8FbpfnYvSs0+jdeazwyPje/ - zPwXnhcWojHERM5jIV+6pejAXg/DpUm1nKWrH0PpnlnklJT3Zp0vzAzv8qTg0lrnaPeT7nD4DBE2 - jQ6COWfiH8xQsOGzeGEcKj4YBsCT1eMT3jqwSuV3gTv+zMLOL4l3RC70z+yH3EP/Qiny2OovP/pV - QxRnvCbhG/VmORPnZhTN6p71OxKj34+c+jIAVHR/ItjjZWZ/80T/9BAaz9vtz59vWBMsNSwSM8G7 - v6xOr69kwr3hyO7XMtEsvcYZ1htkdn9SUYkpDi3Y66nY/75hPuNZLqBW7VfCpYdVXWThFiNpETD5 - 8+t2fCogb6/GDBSJgKWXfgVY8kjxxfXpOdzOJ0GioS+2zUxzNq6KNDiIvYV18TANpEuDCkk2VxMX - BmM0Os2FRd7RWsgjaJ45HXERg93vwVi3Smcml7SC2Y9csXK62nQ9HupR+osv049+zvaprBhsrN3O - KD63ez1AnhED256ozOZFNMG/CjRLVM+DSRAghz5JofE5qnjHc3ULPL2GZVEUJF2nbJj+9Pn6HVl8 - y6oP+O71TXBexYKc7yPMp/AUbP/8GWupf2r3il4mEuaG+IdbGEQr1W8pZBYw+MteD11dPeL/8JWY - UEubKfmaxd/8zDQCyNmuDGzBsjkvXzreWbDXg+7wIF1bX9j9761a1OVPj+EAvo1obX9cgtR63HZ9 - 3A9LNw8a7GeJYse9D+rCPGQW7vWvWZo5Kx+XW6lAQd16oqaJ6Yzuam/QxofNL/ogcYTvY3JhJCT9 - Xp+vnOVtjwzoqccRZcNcPj4dTfx/dhQc//eOgkgQFXJv5Ys6AYRjyF0g7/PxkTiUTZ41NPGnx47x - +EbLGN0S6PY/Bevf9RttV4PlkVgK9syJ0wnwIw94ILwak5wv9daswvi4w5p2V6IF4Tnib81PgR5F - F+wFgqaukurJ8JLKR4Kvv+9+xoGvQNBoEw6+gUYnVU1SyPqei9MmGob1V11sVGu8SAxPLppNGVaI - msuo49KrvsPKbM8KxFB74QeSHoB6T/8O0zY8Er/SQUSOBlejqEtE7LYHEo3j0WSkhr/eyekc8HTR - 5HcJVWX0fPYxffamj/0i9VqU7w7PSV0a2m4Iz5I3b/cG0D67gR8MCj8g/nkKB467Tiz8pJ8ep4eB - ddbtUfIgEiRlFlDcN+tLrn5Ie8PC58J+patiPHzgBl6H9eEkRctTK0LoJYxOHJnIETskiYmMszsQ - 6wmJs0XhoqGYLVNfQLHV8Pd08yV0vlszNa4bmGumShDPMhs5TVXtCD/4btESRSZRK7Gli1fFENKv - esTOm5VVll/jAkUmnee4HQ7D5PRahRp5eGFM33nOncvURzCNOKysv1czbkjo0PtRT3OhSHhg3fOm - wHCsMfF0/aCu5oIqmJj+iUQr8Af+aVxSqPd7xSux7rkgs32NRH5zsNk8DbBqjZ2Co+QjYuml5XRj - dIvh8qIz8YaXHrGK+Shh3x/iff2dc/YnSzKk/FclWqPy6pavDxMum/YhYfTU1LFw9RDBPs6wd/fY - gW6fyxvs80EejHF05tOvreFIkEuCMLab5fuzU6iSKSWP/ts45LA+WGht0gM7mApgk85KigwovknQ - Ma7DnoHkwml6G8Rrug0skq6HaFaQhX394DQ86T0Xrlh4ELvv7s2mPfkRgvfdI84jeqvbhEsesmWl - 4md9/Dlsry48bI0hI/LYXgchzUcbYk5GJMzlymHj9qnBGNcOPlW6SpeJV2zEHH8puWnnON8asd73 - YGqGf5gV3Cz2aqfgpoYIn6xcyakkCxJyg8OV2FfrPdDvOd5vTZL3HRSSERFnOHWoY+wBn76Tp/LK - vGzIzW4OcR/plfKHCz9C9FRCrLrmGSzXb10hMXnGxFgvt2YJ8t8G2EnpiWauQ7QdhCpGlVYfsWWz - 2cC+haNyNM5Miu274Az0cq1lZPCyic03dxvYRHUTSOS3SjRJ91WO2W4VMKF1wKnduIPA3WqIgMe0 - Pp8cxmFqzcRGlP+of/ko7xJjv9MhFc7+Vnb9sDU3NYZPJrUIfuM72Pb5RkHcnrH8usRAKPpbCMJh - q4nrvvpo+X6dFro2+8E2xbG68GtcQpc8JHLOct1hX69TgR7X/EEUQ9MBq3anAo6hH/v8nn94lrFS - aHfvhChOuw5LfrVm2Fxmfe7729RsiyMa8M54J5+v4ynalFlcoHualBlA8ByoIQ0dZI5dSiybPTak - TpgSWh4MiCrTr0Ml+SDBn1WVODkNOSWx8WWg4k4FcTa1cfjhsIRIKGzdX9SbHLF5aEvw8Znj/Y4N - 3Vlmf7Kh1fxsXDRGAQbvadzhRXir+LqwJF/Px5WBhxbmWNvcfBAQumioP3pfkvHbQMnNMBV4OdkP - fDoHCSBBnLzhhdd6bBolQ/uk6w34bvrHfFCKCGxDfjdgH7Gfmf6UQl3eK72jZXBNIrutOqxMLsso - vnYA28wSOEIewAT9Du7Nn7nTdaBk2s9Ykzkn54PvUF7w6R1dg0nwf9PURbQYEwPW71QhgT+eVA6J - DxsMETeRgD1fhpXNmwJJl/sFe3rdRNt7/BaQn7Uridqtd6bsGMmoH4oZe9LPBivDlQlsKn/wozGr - 6Za7DASO8TP2+f4A7sesIxxoKhCZz375JizhBt5XW8CKKMWNAI8Gi4SF5tg5lKeIc0YngZtX3vyj - Hnpg+f6UOyyXU4ODMP4N49a8EtRxJ5MY3VnJ+Vs1+ADpX5EogzA29MXkBaxWHvrwkXJ0Na/RBgUx - exNd+moO5ykbROPJWWaJeceAXawNorssHkjMNnVOhyL4oRUdvX3PqAJ4qKQuZPVzj88ZtijNSSyi - zCtdotaMlgvB7XEHjUU1rJ/NK90+VNxveccF0RBTDYJy9kWY5VifubC/AA6BiEE7vhKlqF2HDbd7 - DLMcbjihN06l5i0QEefwBi6hZDqcXjkthJcxIKE4H/ONiVEFP0JuYM9tc3W5Tp2J3IOq4XPEOhG3 - PRIWjQpz8lFpfJ05ed42wFQeg81x/jmbbT81+DswGk64umoEVC4VWjwzxc9ZIQ2ZothFi/Nj5sXO - U2fTnswMxkxbsHpIRjAdLaUTjLM/kNTsf/mYGI6J6lF2fOhefUcQHDID/VVvRLeiVyS8MhTAOyc4 - GO/rm3+MPwaaT5v6IBp/+TLd9q5H16kgt6hb1FWVny2U0ED2Mw842tdjiRapzGcRrRewpIU0QtEq - TP+AhdChWsWFkvcpBpyl1UudosuxQtGlLGYp3B6U2n5RgIaUiJzUYlO7V2n/pJF5bvi08eGw/fEt - z2t+/rF39ls+L5uLnrwSkaeWayqVI8VGp+TCk+zLvZplvHcpsjbxQZ5vLNExSBuIbOvkYtsrvGip - j2MKR+ax4VOPM2cNGHNENvetZ3GUPtF32m81s/LJIjt/yke1O5Xo4a2RfxTNYtj8Zx6A/oi/M1Ve - vrrm020D18MrIslbYZstvU8tKE8HivElY5y1f+oj2r+P2NOxabaCvBZEv6cjfuZuSDf37RWQq56F - zxVakK9XRSglqDjGTKNUGpaXUonoLBKP+HfwofQw32T4Hi4ttnpni9bp2scwd8mX7OPVsBzFPCDJ - vBETfZLhb32gW5aNJDkJN4dfzhMLdz709/wqDVnljVwhBeS6r38h3iu+yo+62BCKPb6y7wy+uUmw - y/pbMzrqd4E8DkXsORp2tjubQ2j9POKzz++ZLli2ZGA+pQr7zfEAZnSnNgKxoO58C+SLMD9+sE2Y - ALsH4udjuN0TePsVgX/d+TUL5dz4+36iXLK22czkHks/pvhhH997ujXibwQTZDOfj26N2s9hXcMd - T4muK2lEdbmP4bVP30QbTJVyBvcd4c8OHSzf+CRf/Vdew23wgpne3EM+GWJbAWdUTWL1jUnp8jbs - fUebTnS1GvPRZ1AtWNEtmrmmYqJ/65UYOSCO0dfD9oePeWIqJFSng7pcXXOBXrEi7Llbkm/0JAf/ - 8M0mh5NKvh3lAdcJ4cwUl6RZ/QPU4FKzIbFvuFaXPJVryCfWFVv7eiZ3MUsgozJPonYx5/zFN3CF - O/Crj/3N5/dISrDzRWxbXTesVcW+ITaLL1Gzmw1oPGYt/NMLsW696PZZ1hk6cXr4b/wCdE6AGfx8 - otr3ascnpYWhe9CxXxcv0BZb10rT2NREHu9StMrk84bvd2aTOzDbhjjuS4Onb3wnOAuDYfX04wbZ - MYR/8ZSPNh5kGObP4Y/v5mtEAwni8ywRl4NZw1H5NP/Lv1L1q4bNV9cKqjNmZrrn7+UQO7z0oE9v - pofEBcvVlTd4OnUvcn8b+xnJ4WBCcrY6fN75IvE10YAGbl9YtnEBuFTEb2A8bndisaLVcF3t1uCP - Pz0F7h1t47UoYXUfOn/UuoSuL7nr9jMT7Cw+B8XhDny/QL+zFvz3+5dyWAN4dnIbW6v2BvQmKyl8 - nrQzOXnqQLdDYjIQCuyBnJV1P5Nj8woUhEGYs3AaVVJ4XI2s+6Eg7u8rgrVHcwCfcnwnj9e8NMtL - 6ST41cJo//9mmNHhEqN20g74ZmSTQ/l4/Md3iGznqbqUdiZCTi0CUuS8BfbxYqGrFARHV/KKll99 - uaM/fRKhgETLwzj/kFMfP/hk4bOzFVvVQvNW/4jW4DVazEt5h1759slZe9p02fMxRKNa+hw/r810 - wln3pzd9AMFhWANgSbDs8sxnW0GincyJGmwqJp2ZXa/OniEm8HeyO+wPraCuTYBNsOcrX0yChpJ7 - Jm7wYm7tzJMmiNajpfwgfbkncjnVmE4MlyRA6CUG+9OqDFx2zBX4PUJ3rra1ApuqxQzw1TrHugts - KlyutQKuYW0Snztdm3VtoxDu+Eey8BVQKgdOAo7qeiPyt6icFWpBCcXP9MX+7fxSlzPHvpHnvX5/ - /FjdZs4s9o00AbaPSq/28HT5If9+FwiuqDts6zfj4a3rD/vrsfm5b71EYZOOJOpiTl2PrlVAZqm5 - GWiNrpKTp1Xwd4AavrBpOVT601OQaI45VlKpbviRpyz80yvW+d0O+3j/AEfI7AtdSiKKyqVGUOAP - BAvcO184KZUAo+63BJ/AGi3tYiqQuUwp0T+C7vD624SQWcPah5+LmdMBiQq8np5voqSSMnCqWt7h - 5mYUe3rSOQt4r8Ffvpxfp3lQl13fwPI/AAAA//+kXcm2sjyzviAG0knCkB6kSRAQcQaIKKhIFyBX - fxb7/Yb/7Axde4nspFJPU0lqURuiXJaMUmclPhyCWSZIu2r6QvDygdduOGArvure+HUGDYr84uH8 - lX0H+scf//BOg6/Kmzq9YeBGnTNWAJHoBphAlAz04ohdD5m33aTbR3rIfYkDFjZ0iqciAjdpw4iR - CBwofcRQFvR7hg7HZmiW98x+oBBrL2K3i0kpZqQcPHA7kog89h1bjFyDfT6xJTIzWDb50PH32XDx - 7jfoxLlmEnxeXxxiXqVKlyl5beB8esX4L//P6BVZ8oOLPlh9eWosjMKWy3fr5KI0e4rNFrKHHE4c - CrECmkOz1oe7C/hP6c/147rFGwu0Vn7aAUNs6zbpE3ytmlzFm0GwZdzj34H2EHAdF+E0yKhOnyVr - /NNzf/x+YXK1kkcV3Int+y+Psve6lW+mkZLwbz7OwimXvM0T0YJqkwruKCt/fGLvsoSa/hgoGtz8 - gs6XsEliwvF6LU/QGOdP4Av0V8ZqKSsv+4qdn1UP6/OlKMAAvIjGSL948/l46qAQLxg754MEqBDt - XUp2fmR0/KBPi7vW4ORXPJIXgffGdgUZqF/tD310ORlexoOfgQfaCJ+90y8eeSGywDUHFkbKuR02 - /SXXoHPKDePXNNNtq+45HPPWxenR7b0litcFildmJn7Rz8MkPacWYviz5mV7mw33558p/pj881P4 - xN9KOTK+e5cM763PXNrmsnl6r3iPL31pli+E9nK5EmXHzyUsXgu89lWIWkA5jzLZJsmlXpoYfcLP - QFGJWyiPq/fPr9vEKYYwHe0f0q/+Iaa6kyfSnz+DvK0u6LXdu8C8WBurJDcKbjWoKFeL3hDnTA/N - uHTFS3LlQ4b9G7SHJWMiQ3bgccTGWLHDVxzi8d/7u6wMijFoig1iNg6J13UtYL3TlP/xa3zRx90P - 5NIUgv6w7f7D0FTf56EH9fFh/un1Zi3XlybfTCvF1isJip1f1PKON/ieB8lAwH6CY/c3Zvn31T1O - vrEt2P1BEl/9R8F1Vr+Bb/3cdn3Wetv5+orgjh/ofWeiZlLI1P7p8RlcEwoWdaQ9MMxbRHTuWtJ1 - ujxT8KfPre3ANFMZn0qgSNqVeOfN0Vddr7J//unOz+IlHssZrFxzJfhmccUSZgOEkJmKXe+99n6K - Yw6xYq27P5Z6o37qRHkxltd8uC5Gs+vZGT6uiMeBer/851/86ae0V42Bnratg3IzdBiV9zOl9+lX - wygYN5LteL/I0v2/9fwX37NV+C+Yu8oLn5krGkh70Q058mWTGIk16tv3KfT//J00m2KwIUWagSn8 - nqjY/bWp5ZZN3vkHYptibCbv59fwot5bcgq/aFjLUOvkPd+i56nQYr76TAmchpX757cSzbu5sO79 - DZ/gzRzm4zdNIXaqL9EEPyi4ZcxEeGHoB/G9ajQrz914SLgaY7//ZnTrfs4MzdN3Jaf0wjUTsz1e - 8NbfM5ItaTws/GUbwXaxnjP7GR4N/fu9IRYmoqrz4O3v10MyfRHRr/4jHh20dwX7siy+v19cvPhj - hsD7y0GCP8+4WS/7HYvPuTiTkx7LzSS6jAbw7NTYn8UnmN7n/COV2pwRpQCGLhzmqwZ1z9Kx7Ssf - 0OXhoQTOte6xVeeeR1Bpt3965w/vYirLNwvgT30ld9N8eJsS6S3k1lrBZv5qY7b0zRCU3+tEvHjs - Y6r/jiOgnXHH2fP2K9b0NVTwdNyO88q2N7D76wykIXCxZzRvb7h8Cga8pNeKwGfWinWO+hdcHVn9 - 0xve7t98QFP7A1Yui0hnfLv34PLcCmIF/pXOTym1wGayCGfFhy3mAa4l/BphvJ8IGZo/PQcOeLVJ - uPO3TUiO+z6mt42Yg2IOm3O7OfDwvqvkNtw9b4Na6MNpfL5IsK1ZQdYuzGWRyRIkPoaXTkV8ZEB5 - a1kERoN6Y0PnBYaL8CHaacTxjJRtlH6eJ8ztD6nNuvtJkGfhRnb+0bAtK/lQX7QQ7+8PNtFjP6BR - C0SccXb15Tud/D98J9pFDfXZvlgivK7JhB3VmeNVV64fuL2EnJhJp+ns9ukcCXafEaOqwfHWXzEP - Eyvr5oWx1IYbyaEHAEQ/dAy8uuCk5/sD2eQCifnSlWL+89Nn9xthFZoX2jW3sJL//Oqdf4C51vMW - qmQM8eN4DeMlMKgv8bN1IXb9KOny9X48OJmfHB3aItWX5SRB+I1fHyTufuxffeKf/4UU81fM8jGe - 5edDHIimTw99zek9g/rZpzh4vy7F7i86oGVHFWvnYChWqW0zWHoWwgbbvGK6fH0G+irRiFtXZrFq - p0SBRdt1JNz15nLgBgQ/1u+GDVtvvVXxcA7j26736uodzwxfSjD0wA2r0Q3G84vpUvDHj26rYdDK - Q88UpuAKicIHRJ/+/L978lv+6gUx25ktgg4S4D/9u5Xkt4BfP6nYzd4RncLymUCYnTkcVNZX/wTv - cO/6jML5MDpBzJZT20Mh3jCi4NV5dHtFG9zrIWhSz3mxrX3WwS6VM6IS9PMGd+QUWIaPM7aX85Nu - P6blZc6zbmj96TLt1nc5wyifGOKPm7GfuPRrkH21DxKf73agPRw/sPxeJrzjS7xhidPgv/zwqOKY - 9ochh7XvaXivR3lrE9quLPy8865HejozfCJB2x3uiINPa2DfwcUHq/L1CML5ia5rU5YgJvjPH37r - uz+SAqr2wn/1tOEodZDYXjev3sVo3m9ULODPn749K+Atr0Jn4fpdKqxzVwjofekSePQlaQbHxzke - 3r7V/80nEujR08fpPECgu2lKjB96Nmu+pK30x/eFzk+8+aq5PTz6XoCObE318cVPLThKvjwze71u - 3v1boPLtRP7441xXMAG3gtmwLoc43mD5ecENIQMJu/5bH2bOwq0ce2I/Tr7HPowkhNoCILbBifHW - znot8uE6O0Q39Nwb7WupwSF55zi5T+9mSdth/IsXJP7V79JXU8JIih3sepJaCBNLW1i66ROx7hAM - whTec/AyP2/0eTmbtx2ELoGPCymJZjOON//F29BKZxStwb2ggfJm5Y7bOGLT46AvryzQYGTuNRC3 - EL0//P/D491vUJq1exm1fNxaFuMZ9XSpgnAEez1yPlC4AlLEwIF5eIqQ6J9juvK3xZKdLLxifffH - ttU5RiCY+Ode32D1KUbSCNfQuWAjsXydbxKjlvf1M0ue9CxoxLotPAWoIX/++Kbvu+hG9XjH6gLD - glewvx33ejFq9vhbikgTZSstGXxKirhYtA+vyKHeNKg6FUcwOucqg7OXHEj4PCd7/YJA0AaYR69C - qfV/fPGP3+75xRuBFc5QeEUc0Qy3GciuJ2BkvDE+rWGtc/Xh4sLcaRyiTs7Q0FcsdIBUKSDuq9Xo - OojQAspvqrHJp0Cf//jHLIALOaGOKbqv92Oln/iQsNEU/jDrdrHBTjEgAtwwDr9iemxA0B8ZOtrZ - EFMqs7XcYs3GwTcs47n7qCKM/CCbCRa2f3pNqnXqE6x1RN/9xFHi9CrE5p2JhuWQ6Cz8Fi5BUhUf - weKgxwe2QcBjd31OXpOMtxbs9Ryc9NBp5jddXnJ8LktyszOv+PPT4c1kdXzn+Y9O16edgE/V7neO - Wmqz8GwcybTjXYKVNI2Xw1XrZW59KST4FV/AvUeYgnqY/d1/WoZV83NWKvxpv0OTV4Y1p5fs/7Oj - QPrfOwrSsO2Jod5/zaL9llr++sUNm/2vGZbjbeDB6W6yxCx/B50uSxjJm/NwUZskazMy4Ipkf4FH - cnnfvt7Ps7gafAJokzwIzpRNHtoCn0o3YTxiRLkjVkfZf8ovfKoeeNgMZlxgfgVg3sTsCQiLghG+ - nsYBHTkriNdKDFzQn882jjSX9bal2maYL5IwS2nQep307jN45iKMteapgeU9VjNMrBPEWvn8Dstl - OKWw8S2dOGnfxpSUN1dmXrKBI85BBTfavwpSRpyRuK5tPLePQoPOqVuwGkEybD9Z5+HBgsHMZsa3 - WJfLfYa0OgrY428eWL1e3mBxlwzi93ZdsNKpH6H+TfJ/f2eHD47g1pUqyc59pI8noUYyWIwrKZvv - Md5kLZplFosIhwUCOgV4i2SitSxJrkYC6KuVFDk/ioAk9r0u9s/a8Zn3Z+I3wjkWOrepZEfrOWJv - FBazIHYM4OJrjDhf+3is/Rgs2an6F0GqfgerdXYZKF/rFnvLb9Jpern5cGlUCw1q0Q2bkHQjTI5O - ia98nHvC13pXsjJXOfa/V+ItX+csyq7wHPBp+yT6wuhXHkbfiRKFXh7N1Ex7b4rPMSaPjpy9NbAW - KL/J4Ua0x7kHPB/2s/wsuxzjHgtg+cI4lJ9azxPfCrOY2ioPIe1AOU/pmzYL1cEHvkbTx/d+zDxW - PH0j+B2zkJjtz6ernMg5SBgXIRofdMD/TKOSR208zlx76oe/8YLmY7FJjPFvWBj7wkLINS2xFsbR - Bd5SWnm1NUyK2yvwprwPRfncRgSjVtr7uC3l8u/72e/MFsvpUC973zYDcfilD2tgiYwMKjPF1bf/ - 6ax0eYayGGNEHNTzA9FrvZaluLsSRNcHnR6jpslvIt9w5ubVwIKgnqHsNAExbPk1cAZnb7C34xfx - jzMLlrlXZtk0t4boX34p5iXdXGj6S0WStI0G4sgwhbPwJsQWm59OXs6WwDiYzPld31g6y+mZl9Gc - ZaRsbEHfQmT2wLS3cW5+vF2Q2uFFOfpNEBfc7RtTR2ZTWe5qgyR98dD5q047Wfz5NXEiaW469rBA - WT9dRoKe7qJPPf585NPDlvf4kun2PmTjX76Y2WVAHudrEgM99RniGE4kXtT3VsvbtXwSa2AuA8sK - Sy4L+lKSx/zAlHtkrgg1V8px9c47bx1pH8KrqAh4H/94DC6XXjbedEQbJ3bN+qj1SnaMnkHUOUhg - G36KIxeOFKGV6E+wUJ1+ZJH4AONUDAa+U1EJKADm33jG26m893Da98z5EhL01V6dXpo6V8aBieqY - PhO5hLdvVROrqzKP/bL5DGJlJqh27J++vKxuAwM/eeRkd/bAFuKqyUK6mdigw6/YiMV9oJBv13k9 - lx1dCmdDMlenT2L7l9pbR9wr0PhSbhaOzTSs0dJKMEgYDXvSSR1W82f0//LlbeVvYBlz34WK+ghm - wB1/A79aRw06XWdjB3ZVs7yViyTH5VxiL42Ozcy1cw4eR/TA1xP3AfRqhpYca7OIbfRWPQoF8QWk - S18TrXzaA29aHQuTyOuJmpRt8VNA1MuT4CY4SM21WOJDoEhcmkCsPc4uoOC68fCnsxWOtHzUN9Bf - XlLmawpRFLvYbzk/jyDZ3OfMmVoJ5l8QKH/rCTtRPhbb49dVMijMCZvmdvW6b3v7wMfH50la2bXO - HQc1l1ksIXSYiU2p2iJL0lLRIRVQabzx3ZjDJ+l0chmOtUfzqyVCHV0rHFwvARhzCD4QSZlFfLOu - 9NXL2U7+2eyy3wq+DGvQr0gWqW8SrVqdhg1+ySL5k4xxQU5ZwVEz1GDCuj2xxjnUl/eYjoDcWoIv - Ox6uvI5HeF/XAheWp1GavFMJdkDQ5tASxmKLXooPu7ewYEWxQdyv/RrJad8iEv9S0+PTg9xKYoUL - opQzBvP7EM7yBxRHbMvUbLj3e2sh64jxLMEiLRZ0jg344FBAnEntvX94rU8pR4Lksu0nJxokD/V0 - xFby9QZ2zA1HDnTmNdMfvyusJCvlhHEQPl+hCriMTzSwyFqP0a9XvO2k3CGAvmEQtW0Kj0WnvIav - t3neFVkJWAt8E3AX1xQ7VFUAlzFlCyW7++Fz36yUTkqlQEAsHjvDGhQ8l7wj+TvufXB5X282wkB4 - vB/WM350ZNUXTf3bE14GxIgSqVkP5ZrJyegh8m/9cbOXQ386YMTw56M3VaLpQmhap328X5TzEG/I - vREfsbUwnU7sk1DDft9B6JsKAER1UAbpeJzxAztXIHDSiYH5BhRyDS7tMOVMpsisJbnYd0JccH0x - uVDwl5qUePGpYJQOhGWd1OT6HlWPry7PFKIxwyT+fGLABWh9ySlpFXJVTCkm90GtQBKd+n38gD5l - eZLKfLO+8YmzpoIaiZJDUfIVnAhALYR5KXlYftMCP3Y83FqaO/K478C4VhBTCgAw4AW+a8S4eqiv - PLVe8PpQAVZ/zVQsaMo3CI9PHm3C3of8qfUL5H7Jm1w+t2H4BYyYyt2bW0jl0RmQ4mA6sr/JGokv - uG7+8FAWJ7SXhqIl3sfvBdA3v2MjT5x4W9Gxlf/4BqLrAUwGhxeg6dIDyWfuGNNf/3MhuJs8dq/3 - eqCOCRmoKPeJOPTZ6L87i11oDf6X+OWX0TfPuUHIf6kwf/Lvq/h5PbdAm/6q+Xgjl3gaHoMD0T0X - sV1BAiYmAxlcelXFKtFVwPrcVYTjY7ZmWn9kj/zQs4QihxBiS1Zt5uUDQrDzNVzxK4jX1oQiVMFR - J36gnBo+fPkbPKiwILkfTMXWqVYlm/GSExcMAFD3J+4V00rERtb+GnJvHFHe+SFJtdAEAjq8S7iw - ymdexf4wrPRyc6SAvcnYKux2WC1O9+GbgQs2w02JRwf/INzUO8bI121v6852C3+IHXC2r4/Fst8M - eDPMgt2zPHprjm5IYijTomP2EMGSGyyC3OOikID6jsctavWBgrm9iTZnsr6eQ4LgNDmEuG1ypuQS - 3NHRG1/Jfgb0W0yVYm7SabMqEsww1FeFRhZ4cH5ASrcOY+GLPv/lN6MvHt7C2utH+qLba6YRfnub - 9iH932diXFtBp42ybvKVV2aM6cGIRy1YeAjedkROzOdJN6zZFtjjkcTeIfXW1Sxb8LWLL8HtoYhX - gehQlkhvzFCYZUAlwtbQYvxwltwgLbZ+ckeJCiIl9skcm0U4E/YPX+aJLVs692/XhYUu1QjWAu9N - cflDYLuXkGD4kYc5spwX3J6lhUPx7XpsfDA1WKjiFVe4MfYuXjUjn6VIJTjIjh5hrcCFRzrU2Hz8 - pHjtr8SF4oB+RMlROlDN0FkY53OMGh+jYtkOXC31Wrwg+P4u8Wo+fQM8CJJ2Pr7G9PgQdn79aonf - 2Fd988VsAXLwOmBvOgKwBM8EQV6mpzncLoW3XalUAv18dcjJ7XSPD3szAaVy+ZETz/u6kD9wCaMv - oTN3XC50rtSXD2/PypyB8HNiwuZ+CMd8Toh6hU+6tgFXAvGCr8QVPaagzpFPwLfOGuzHtdZMsVhL - 0NQ2CSumPTVLt2QuTC+fEv/x6SVuggRy+RUR5DS/mPIvJ4Lbu8xI8gOQbj/Z4+HpYLEY7fl4YQUx - hzpNHeI/r2KxRehkwOhHIBqm221Y3UrwwYm1vvNC39dhhlHMA3msU3Q+lx1Y6ANEcOl1FW1OrusU - FROC70kOyVXQ2WL0p2sqhmc+IV6u4Xhr9CKFTtfbs/Q0mPjtz3SBnH+54nScQ48vf28NQqGZEHcI - +3huhL2vuNAMRE193ZvNqn9JTHyYsE3jqlnr0hHBHh8k4QeD/o2HzAiQx0HE3cESmOULHutBIAE/ - vin9WZ0E5LD+oX196GNRHhMw9Z41C/Zl2nc4vRYoWb8T0V0sFOMnuWiw1C4b0dFhbcj3NTmAG9IZ - PfauN2s89gmEsHnMS4mmZtHuRwb88V0En51H+ZcSwfZaNyS07EinbrBAifkc0t1x8fSRLZbxbz4R - PC8NWKKvLYFK2bb5oKuqx99P/QLPv+iJ5OL9pjSZrhXc8QWfBH5pKE1RBM+nuEeCz2nFzNcDD+Ns - dgnuHkdvSpKug6wj7V2Wvq/4favyBO7xjjVeDDx6vB4ySJ6th+2j7hXbzjcl9ShJxBbjsz5OlevC - ibgi8fLXudkipFoyHoWe+N1VHTa9+hpw17/kzpYtmP/8gLJO6z9+GI8MeCBZU8WUKF9G17mxeTrg - umoQKw1y6HIQyh5IVdfiMlB+zao2ISMf4a9Fh7ODAC+MfQZHY9Lw/WHqjeBe9kMCNr8goj/1gi0S - cYGsL713vnwb6NRWEXCsnz2zK+iH9ebGSM5MzUQr06cFdU0xA6T8ZNgWm5MuaL6Rw1l3NazUlTmM - s6WUMO+OBbnVD6vZ4FzUf/iMjYSN6TSAnpXSqKXYDe/vYjneGlaWsu5E9NqS6DJuAQ+NH2WIV22/ - Zpw+7ggYcsj3/Hzwlo8Ri/Dm3E9/8a6vTE0ZeP5E4iz5wRRP1AwV2bOeGv7DuylJ6l5Om09MXCxf - PNozdShX5tYSK7uqMaWzzcD8DbZ//gmPXdzB9aRlM1uyz2bDGrbgfV5XrHHOXMzXB01h6PNPJMj0 - 3axCbETyKbSrf3qMzrDIJWY4OLN0KM7NwoCrD9794YukNlnpssXsCK3OZ4iVCmOznaWTKJ8Kc8CG - LWvNcku4FEp5F5F7ap6LNdiOC+C+SYmT2Uso/+dPMALDYx1MJaVd9frA6rxEJIukeVhsYVz+8HJm - H61BuwS4FfDM5wurA0Ux+2YfIXwRiyPGJeH1SRUyA9zMRz1zj1Om/z7H4whPvLEQr96Ugc+aYwLe - C5T++C4dvtZUSan6jWeZG9X4X/wEGGJcNfnZE/7wBGkFS3yxEuP5Lo+ulADnja0NGcNyOFx86Jz6 - BSvsZdPXs/Pp4Z2nAUaZe6fbXR4d6ODBww45e96a7I69frqO2Hyd4oGC4cjAJDlRvPtZxSoUPgsG - idxnsVs3r4duHMqvyO6IpvRTvEGm7MGez8hFWCq6sHhz5D3/IUZ4cs1m5O1LVrtjjprhY+l8tJ0S - +EXFi+hvK/D6/qSVcM9X2Nj9qCW4xb38lTIbuyOrAhb8ulw608jCF36R4k/7KBTpXclH7N20ntKS - aop8FsKMnJpD662WeuJhwzTfP7wt1hydffnjMhUxdj+RzHU8QtDbBjbi5ODNaSOLcMcLfBP4sFny - DCRg2twX0Zn7rK9//FKMA0TO6fgu9vGBEvplH/yYHkOx6duMIKKZh08wrekWbacUnkkEiS00fLMg - 9czI1uLneNfj+np1r4ucXtryn97e9Ugu/1T+gvH7IQ9b1Dsb/K65PrfHoS540e9ccN2UEuc969LZ - F8NNbp8vB6uXUaHbq7m3UKeJQzSrb71RPM4GUNz7GbtflsRbGrMLLFLpRNSvzurjp7x84PPUr9h2 - zE7fdr8C8vyKZkE1GfDv+SoPzuhtRiwl6RSJ8mk2E3x9Qq/g/GrrZfUoSsQw7m+vU28Uynd+DbDN - Uhov1mFKgajhGavfJo25c0h8CI5Wgf/4+hLHvg/P3pn+84Onh3Pa/dkjIHnX/ugG+cSCs+9aM9NK - JmUTqkryddYjbL6Pp73LRe3Ii6iIcxdLVF89Bkpgzw9EDfyQrvfR+gAn70Kse4dUn93kYsldJ9yw - sQK3me7QHsE+fsTmm81bGP3Bwuq8RfNSzoRuJnpm8r4+EDAHZVjvEM+wpMkJ6z/+G0+DN2rA6gOb - mGg7FYJWBjUUGRTNG3BMb8Mu7kGBxQCbh8UffkM8fiD/pjOxX+U0LLY3MJD1xTfBF/HnbWfNraGm - SulMa57zJh7YFiDXz4cEdvUsZpCmORDQ8iMPXVV1kh7PJSTah8W6PFG6fMO8+vs+Nux7HW/QjSMo - Tv6GlWKWi++c3B2YPD0V67/07a3WzauBmW46UQrmEgu7HgGsK5VEZ+QwXg6ktCDpWgvrTMB7q++C - Gjam4ZBAgFq8pQNfwvfz0MywtAuwOM3TkGNvhPO680NO1HUHAsGISAlQMUyfy1od7yw1sBvK32Gx - 7ImBieVBgqwmKqZsLkogq88IJ7Q4F6RzhxIEDkyIrbzLgRaetwA8CxR7RtF69Cf1ISwSUUFH9jPo - P7XIcvCnn7NCqsH4lF4u3PkJVrRvUszhFogQJRmL7ca3wRQwSwqr08bPS8Fw8VZM3/af//64ZB/Q - d6pV/tP3J/YzeJu83WopTHkL3TVkgK1XVQmS8DNg032t8YLut06qlGXDajqaxaJOwADOpa/Q8UF8 - fZHuPxby7GrOzMd9xXNDShc4Wsch+WL6lJ2kEwt+Jvsl3naKAbecru7f+5DQv6r6+ufP/Kt3nOQq - XsQTCaV3L3+J60+44Xe+CcXB/+1dk2y6Dt9mhnJR8zjQ0SletJ9YA65OnlhNSiNmD17Mg+WgUILT - zCvYwpEQLOc0/RvvZnlo3xREK8nQutAazAwTWvK10U0k/YzR2wx3yCCXpHT30wR9MfUvhJW/PIh/ - mIdmyvIyAR8HXvDVMldvNHXCgK2pMOr+/G1/eqRA8Lea+NJ8jNfDIr7ky/aFxN/1Dml8MYF/eB30 - Y6bPZv8zIM9ThNHTDb1pfSbhH5+YGX4t4rWZhBmyluiSsEDFf3zRPG9n4oayPfRZc0whUophrne9 - trqfwwKSxKPklD1EOj1CN4XIv2VYH9O6WetESYHKH89//JxujVCOsH9FX2Lw3mvY9PTvTg7Rwbkj - 3yi9mGUPzcdmE4+/DXTrT24Jdr9uZi9sFo+3hdPg+3O4YOf9rP7pFfnWVIjoYvCIaXq8lTB/Hzds - q5cUjF0SlpCjiUvUZ3MYNrcuemkSnIQo36oGSw7pB+7+Ctbv1iNe1UPYy3p8OWPb5vAfvrvwePgF - //TnUijHDj6qIJ85RpkAZXM/ggnr9Dh7P5lm+qs3dV/uSFx3ypot6pUN7niKE33qhzXMyAb95+FF - vHQDdKF0y2HafxD2TaUA28PsEKh/g0TsFlqA/NU7MltBOBK6b0wNRQ3hHSwHgr7uh1KWMWr5z2/R - P9b57/kLOLchIVF1torN4FsfWNegIuglzYBKB66H4hXXs7ieNY/eCyU5Xui3nBm74cFv90NAoMPX - zByf/rBu7ygCFvGP//zW6fcgM6iyJdjx9d6sy/kxg9fTOuzjf4iX06HbpD2eie8s60BeNVSg4wwh - Dh6mPqzXrdIk7p4IiN3zK9U63wAZuIMZ5K91WI+DmsG0/Fwxfh8eYKFgg/ItKud5Tcd3/Dd/YNdf - 2G7hh9LdLwTnIeoR6fEVUDLmEeRo6mLdJ2FD7NPhBXHPPdHxmJqFINlMBLW7pM8zahSds1eng74A - WXJj01jfDO3FAzNd9JlD268gBTEUeV9vRH3HXDzJC2dBukgiCdjSoMvWcCzc4wmfikNajPhyM6Dz - 7P1/fgv7rPoKWhZm0HZ/+t7K1ADCpdEt1E3PMV6Dbd1kGTfOPNhAHX6f+6ZB8DE2bAZa3/zLz48J - rX98ptlEv3ZkZazO5A+/N1mKjD+/dvpyVAC7XwLB17xVGEcdN1DS3kZoCejyVy9oCPZGA87w/cSP - QATxX3zIYzpqpPSUrZn+9O3f+paFstbJIoasXGVbsPPHJ92YfQfBS7ZGjMr8QrfhclKA4t/3Ew4f - z1tqt0n/9Oe8RuUUswnQKnnP90QNxljnlxmwcMefGb4FJ94I4p1/6z/Z+UvvJ+EL7n4TUU7Xd9PZ - XgNlzZHO2GOPpkevQdbDratUJBFDA+tVqj6Qu6fC7t8IOglxb0DOuwjYjSeXvkLLNIAT9xf8V0+d - luMdQnUEI3HDuxlztai0EPqWge1DYxTcIRFZ0NjWGd3uh6n4tz4vpuMitmCxvmbW3QcWRDZaDu93 - PNE15OU3B0dy0xyqTx9zSaC1oQYHlzfxSD5YCtzXH6JjWg/rysW5vOMZMY6DEu/1GQ0+r12Hcd7p - Bav8ZAO+WKMj9nt8evVUaQ74/rIvcdycGbq9nvP/2VEA/veOAvbyNeYFNl9AMumzyL9VgPtRiXux - XXj9Azb4/mFT9Du6+sYNwRYfpLnnp0uzRYfzS/YtXyDplu8BK14/0MkEiZgOxzargU4dHA4Fi1jl - 0sfru9Id2eeDFbFddALrqN1HKYlDAyvyxBZD5Z8SwArCCQe3q60Lq9gqUA/1DvvxAj36qcwWWp5P - ifb+7Hukvj8HNo+DgqhyUwt2wtSVneBWIZmvjIFav7wDiiG8CD4GcjMqJZkhauYS8VhnvMV+mzU8 - TFKPveT61NfDe+Yh719jdKG66tFgXSqZ524aVry7MnDsR7NkvyshvrJdMKxx18xQWKi7F4y7QmA/ - fg3enx5i+7g8BzqLXQ7P/sog1tLahhpXZZO3y7wRb++OukwD4WFvXXxs1+Y5Xt/LHEErUu7kctBJ - s38/kxUemiTc4sOw7Tf6wFAftJmCgNfpzW942f84DVZPTjl8fi8HwZ9xKnAw+q0nvBIxlycc+wTL - y1D05zOcYZ+zJap/hImXLA8t+R71LbHV861YwpPFwkZDPjoYYwn4/nWxZFWxHKxSQAp61YcaXi+J - ja/prQBk+9w3EDoxS3xhdLyVJXEnv0/qj+Rcc9KX8aVm8kXSYuK/2vfAS/CmyXkkSUgurCNYpwVn - UDTDnGQz3zWLlOkJ/H1uNfblnNcpSsMe+vlo44vBPj1em78uvFw3NNOXJTaTZu4KkROmWRwO6sBS - /H7JwJMxcceDDVj9rUowdM4sseHXaVYXhCy8e6xE8uBzalilJCMcraAiF6o/vcU8MRCMajvinJ6d - gmPmppa/uEtJdNPAsDKCbECmmI+zLD1EfTFPPCNnG5Ng27dsyj0vpQEv5U0hDijkYioXMYSM9hGw - eZOvHqm9xfo3349vnQz8LEcZ7PjsQ5JavHjckDQMPDmdQR5F/fGoa7SSDJebRez8qhdcnCot/D2+ - PHFus6WPRmn68DEdzujuPk2dvzR1CTkYmeR0HhKdqtdIk7HeO8Q/DI2+kefWwtx+jhgbdjqsceq0 - 8ja+Clxmidys58CJZE73r+R8Hu9UyKuOlQshXdDr5eJmdtonK9de2xJdWB26bNkLyb119YkSfpyY - jSaFh9VAa+KXkenxn7CsoBirGOePOIq3eqwWeLtxHvaPt9cgPDWawyknHdHY/BMvuVPNgEjPD05D - L4pnEb5C+eZbKS5+9VXfyGC48hRv93lFXErpfdlmGZeLS9ApVgeh0FVFRufmjXFRW56w3O8VvPlG - SorLMxg49GB7cDzOIQmu5icmjfZyYTy+IdYI39LVvqYslIT7ARepRSkB+5loOZFS4iex6/F++67g - pT9xxNH2W6VFmo1wHX86QdlJH3gGJr38CxCe4ZHpAM31r3OEEaXzoYI03sKp3BlJfSAnKr2Hdbur - i6z+fJd4+e85bPWYbjCN3XSWXzUaFhzpL/nx1SzE4iUq1uf3gKC9yvp8TNET8PebqIHL+6ljpykp - pVFw/cj7+sZX9xYUmxsVH+iv7QGf9QML/v3+7Vpv2AxZPIyOoL2g57xSbOQftljqMUnkjjUCcntA - 0ixF845k15WvRFO/xt6Xtu/Ez2PusTmlH7AWEmHAcRlKbMa9RhfuuTvMvmAS46P89LXoDBZ8cb/f - knhs9DXYXBHOPu9hJxe3YX0fDzysh2HD5rjWw9YPcw+ZY+qTbHV+MY8Kt4fSj7joK1QKZZuwieDV - 9w3ilUCL2e9Qf2TtczgSrzIRGGkmWLConzbOPnEO1ocUVPDMcRNB+K3pq7NlteycJTIfD5eJ/pIH - 0WA5ADRzw8+PWZ7CDNSgDnGOPAz4BzNp8C//WbfkCEb+eYvg03tX+Pyi/n6GeiqhRdYzzh5FHc/7 - fMiK1pxmuaRssbknTYPM9l2x3dQ9JVfpLMn6CTMEMQwCgokMCwolGoi+/RKwUjFMwf6+WPPvFmXV - d+yCLb+25HS2ArpsT7DAW/WQCfqdP95CnosjH7QSk9scDMX8G86b7ExXF5/a+uyxCa86slgaOsbZ - XqFb8E+UT/iLsfoFCuDc+urC93CesbG972B6VNkGT6twQXyh1IPwXDIfDs3hNlOyBYC7PBQJMpUe - YRs8kkKgapuBg1ZhnHVtpy9NOITwOpcnrCRfANb+IyEIOV2cpevx3tBXsu+kvzAIh7D50q4LnQXe - hUBDn/S+0RWongHJOUkJOolfOpbnhwahqTHYvSZCMV+aupIL5gxwFld3yp+dxpG1W2BgPWjKuPP5 - WpEDy8AkEaYVkO4OE6B5JcZ35Xz3eCJ/I9lxtpFkySfyVnP7LbLf8C5xAXcauP54T+Hi5gYpanih - JFp7FvjqxySK8w0KPjiZHbzU0pkoKLEHnjy3j9x494UkdTxTqvzqSN7i7DbT+vqm2+f20WAaOyk5 - T3vts25MBBf1GuLTF7jDlubDBrLrL8cXq4lBpwuTIj8DIPzjB9uDK0rIo/3yRRj+mulw2lz5L55M - 7aUU3JKkKTTv3xoHU7oM1KpVC/zh7aXEV0pf3+Ilr1hdiBV6W7FYQrFA7L5jkp28E2Vl6nSyc3ip - 8+Nbs80Stk4tVcrFxOaysfoarXX2t14wdnYHGwXnGt7DxMPugb/rW9VUFXTPq4oRfr+85ZozPnjK - o0oSt2Niol5zDco2IuSUs6BZHtxZkQ02D//4nE7D7lX/rfeZoW2uz1/7uoG1U8748jAHb4ki7IDt - bCg43eNxfDaPTtrjmUSXz1z8BHINj0rtlOjoyR9v+YWX/qhNc4Lt4cnEy/7//eERoo6sNZwQ958/ - /kKSq2t7P6suXjKSapNg5nIeWK9tFNmZLi5GXKjq44azTt7jk1ylyxcs36FrYdJcIuIVdPbGy+SX - ELyWI8b+cAWrUY8L2PPDXBd3ov+GLzbgsf6geU3Zlc6eYibwDgQW+8C5FAuVtRQWpw7jm5BudMwO - aQrRI/DmjZ8fxfo53mZ4hMoPiaViAVYT9q5Ll8+dBEHm6zyDBB6WLaPP1B0vxY4fC0yaa4QtU0qb - 7QgPrvQzvIKoA2SL5driBe75mNyzTaHCd3E/0JoqkZje8AWbPp8USNS7OB/N8eh1EHUvsOPBfAx6 - pWGTQzTLkumM2H2IWbNZLbDA3UYOCQzcDmT7XDYgfH82yY2KG2Z/EjSgKbZGzHZ7D4TclVautq87 - 3/bnL7M8sjDKtHY2sDd6q+Ced34oSsSO5HmgvNuOcqxnI2IuwouOYlZ+YNNWZ+y5tgi2/nU3AEeD - MwngKgIarT0PO88e/+E/G/FRBuJ3v+LgePEGWugnDT5rT97x4KWP+/8HPZcn+A9PhPFovf74NbH7 - 65mOrT1/gKplT9Qmx1xfYexYQP9sOj4dpETvjNPLAMqr5Ij++Vnx1jLuC8zPrCemefvGZP0oIvyL - 37KL4kHwH6CCj2MxoWMU5gV96EYv7fmAmOOqDGygoBpAJfPxjgeUvztYBDueIEhOUkHSdS6hBu4n - bMv+TOdPWJbw15o2Ue4Eg4n9aAY0iHQg2lf4/eF9Lc35V8Fqir1huzenD9znCztsyzfLipkFHF/S - F/uFu9DtMm6KbGA5Rr/1lzV0STwJ/vHBy3qVYpJduhf8dsIXsXPrFgv/PIcSb49PrP/pr5V1Fajw - jEkCoVu99bZ+OxgJTEj03Hx7e74ogXwsWWwn/cnrjULa4OPqdQiI4BAvW9YjKJ8aB1lYr7w1TpUP - AN4BE7UKHzq563cJFh7siCVOokdM5BtAaVeE47z3Cv77ulXw3FQWmifhAOaC46D8E9srMfxLRqfX - kfX/+An21EZoqG08I+iJlUaiX9vGoydYrjzgTMLWt32CTXvfPzC5tHfiXt7tsH3kNfo3P3j8lfG4 - 6xtoH/of9jqwgDWXYgsGD3TGvvZ5etT5nTL4hw94vuj67ClBCm51x82r0oJiIvdYg8+Ja8jpcf3F - y55/4H3YPliRHeSx5ZjNkLlaNtHaMozp97Mq8AXyF3Efoji8v8tdgfQrNTs+Xos1Sj/jPz6LsvkH - fqz49qG7ztMMhtXQu2Z8MOBSFgp2d33GnorXDG+cY2KMn56+cmo4y35PL8R9KiOYtk+cwCWubfy4 - sYeCVpdIhDveo3Y5t2C9rtEix+VrRpzDJcOkUj+Sjm+szNLhzIOJJKfqzy8g9gu0zQJM2YItCFmS - kWIG4y+8d7B5yApJn2Kh7/x/hDs/wqfwaTc7nmtMmDnRn96nS9Y8+3/8w7jfi5giUEnw99xmrOem - qfOM+YkAlysK8aMPGVaoPiDglyXEhVztXQ9/jQTnLPpif+HU4o//AK630TxdbodhiafLDCIp/CHx - Tm4DXT2M4FVofayEquatV6lNwFn1VfyofwHdajt8yUrx87C3XCudLvdLCQ+T2JPrfgJmguWtgyVj - mPhUPlOPMPEjA4+hE/GZ0/WB88B7lNdKQsThuaahX++QwiH1W5KdlkWfk4MSyX58GIl5ynNA30vB - gi9pNRyiYwD++Pkfv0D8XJbFT4j7FtxeMsKqyzbxv3yaXCV+ltlNphOnhqNMRBwgBjqgGeNc+sBE - cgC2hv1W96KSR3AKQp5cguwVb49xv2MDaQPa+NPRWwfNYeEpiHiioGNAV8MQLRm2sJ95cRL3O6f8 - UmqKFGF8Qe+GhitrwfP5jLHLMi86zhZTQlXLn2hmbl1DyN1p//wH7PanpJh49f2Bzlkk5LqlI9ie - 9juD3pN8kbClI12KPB7hx/p0WAu0Sd/Q+WiBOzrFJPnLR9+hbmW2NxJy+qZtvOuzGd4TRsberue2 - weoy8IxuDrmYTDCs78pzoKLtdz2fS12njdY7UHobGfZrkQHrlOSjeJ2rE7baGTUrCm4voIdqN1O1 - CagweCUvKTIIsd3DzGPzJsvhro/ISc/FeILluZcNL33ud9pcm2XndzCr6R2j0Ql0qv5kF/5IlWC1 - yWKd0sSuIS+QAttBmBQL9xRyiRuLL7YtWfG45uKyQFhWF3tievQ2FhMGtFiWZliLFaXeVrXQWuGJ - 3OX0oM+HHuX/8oW6mlBf+ffCyg92AzPzjAb9z1+A4TO8EL/lrZivQpr86TFixeq72Q699S+/IcB0 - x2Fzpr0vNJAA2tzFL2i6fiqoB72C74fv6P0UqMB/ekmL3KdOePFUw/5xR8SzLLPgb44RQQtzb5wH - ql6wflQu0O8qSE4at+mLZNa+bLBZiNU+UJsVA8+H7yGeMX48j8MPxLMPc+GREScXo2Zy64crXb9k - Joari/r2tR+b9PyIGU6GqSm2BY8JeFxPHTaurq1T83rvYYSkJ0Gfgxlvf37Y8TiGRAurvFgJ4R35 - ycsfbIVeVJA//PPw/YnkcXWLjX1mFuTK5IatcToNXC4VFhjvuo09uQr0dsNZD9/31xEHE+DpWh2X - FtqJj4hrVJeBRsGjBU+LGee/542XZpOk4X4iBFVF6/X35tSC92Zm2CnuIt2qECQQ5Z8bcavZ1+lh - fjMwlfRgvzNEGHp2P86F4ynFt5vpAO51hAgi5/YiwZ7PJurSWvbS2CMm7eyYN95+Av74+mnezg2P - 2tKHU99aODW8hq5p6vuwz146+dOHo3/SfVjN5pHcOwQbSj65C3y1NYna1t+YSK6G5NucFtgyPJ3S - Wd0UuY2cjehtdoypZuoLDLokIclybindPvcF0Jmb8Y6H3vZg3prsrHyBlS1+NAuahhTsfJD84T85 - B9oox6sdzLI3nBsW9hcfrm7GYP1j1N7i850GGSWqEOPeZ30yUVWDfL5e8P+RdiVdyvpO9wOxEAFJ - smSeJQwOuBNEFERkSIB8+vfQz2/5373LPn3aNknl1r23oEpFxtXfW1cVQukTWNTnuls9uZeZwFWv - ARmGpdHHOhoSCMK0o8ZdDX1eyk4tRN8UhexXHfO9wWwJ8vX5QD7x7cz+/Erw528HifrLZ67XOXiW - lZTemirWX4/l6MDukdRYmSaTrZ9b7KHc7TF2bqTVV+XjEPhwq9e2XzVb7otawT8+EZlzm8+5PTfI - 3M1X7NA8ZHweew7k02SgR/4o1n3DaW84B+ODWmVxBPzj7pUQ5sIX6++BA12QnGbwTVSOzJacgOke - cBHcicpEQ4VWqbC8Xic43kdCs0CLwIwyiwOIaBn5FPgKpk2vSDOBb+rI8Qx+o3YeAZWORxwzQNM+ - bE4hNC/9OWyxXuokG1EPa9Skmx8MwLa+EeZcCgjkY1JPH7/TQG0JHLXRcvaX72OR//hhKN3TMWfq - 9a4Afcj2f/zDn8PmtsqcAaK/nrz1fIqRBJ9JJRDeDhafur8yguCsGfQ4Ln3O2Am/ZV8qNByU6hWQ - wgYKaND3iM3L68fmg2WdgFZp5F+9gUmqK8Oz+bli3Y46fd2bc4SiV3ImLLF6//NX36jWZxFSF/f1 - xpcb6D28kNrp+wT4RzTLUP5YGdXMTkoX/6c1YCmlkJ62BsYMuhIH9McUktl/KLUwZ3sZLv2lJ6y7 - KKAb3+4dPodeCsWqF+v1s/VcOOsRR0PCbW8wHX4zoFn8IsK683w+zJUQvf1SoGZZNexPj29T5uww - Uro1XXQYtPBHixM1j5mW8yPiDNmPuxv9t74OVRqEt3dIPYu+60Wk1wRs9Q983Ooj/OYfyfoaPMNl - rs5g5ZhvABlIKk2mz5Wxc+doyI/7G93mSqbv2/5nwAoJP2zz3VST7k1O4Pq5nXHYuIm/+gIYwekz - DCEcpkmnz/N3hXNAHmR+izVYhT7K0KZ/qQG3Er+YZt4/P9XswhWse6wKIFvh6b/9jJ4RhJG5y8O9 - 8AxTdpVvEjxe/AeZd9wr/RXBpMlb/YrqrbFN8by7EeSO0MB5ByK2SOTgQT5kdyKCJ58ul2Dt4Mbv - sB0MoT477kRgIsIIJ76cAcIstUKJGoB//iU1IFbAiKMEO/jR56tWBAoIC2klf/i7pvVhBFzDQ6pO - PwLm2cou8M8vdbSTxvZq9fKQYrsA2zHT/D8/Brrq4RdOJifmcxq/FPR3H8DnWQ/r0ssyjPSfhm9C - 0KYrCnsOqrae0qB2BzaJ7ZEATmvEjY8/83WxaA8vV+bQP34z05fkAWdXqVT3xnM6thGRwOP2pdTT - FuD/8wcaodNwASO33hNp5eHpKgnUC33K2PH4CRAd14VqAnmmZER1D69FnND0UNYpO1+u8j/8wIYt - DP/2UxXgDuPqN7HZTWIHDjW6UWt06nRVlH0Jj303UQVNp5zVh+gtPw6vPNwR+ZeSys7e8CR7IFy0 - SNP3XKHc//xb6iSnJZ3tpM8gbLieOkRwhlXMPAcGAl7wX76e9Vy6QBxnKBTOUlDzP76SwfkrFoQH - 25T0z0EU4LcJ9xh3XQfW8yj/V0801g9iy5/f+RTNE763TsUWsTVHmNwviOwaM/fn9/7UI64KPKy/ - Xms6Ahz28Hw3vtheQeqLebnfpmIcVmxu/rE4aH4ChlTy6dm82el8sMIL2PQN/sPT73N+FWirr1FX - CNp84VvPAmUjnKn2UYV6HdHQwbQUbSLVRcqmqKsM9PK/JTZjrtBFnl4s+BdPzoafI2A3CTZUyKj9 - CPuUcSS2UAt8i4DErPLRzgEHpU9obfyaT1fObCM4n/kKG1FabeeDCohO0oX+4TvdFRqPLsVNxlv8 - +4sDeuPPb978YGXYj4fAgCFbeqrudb2einmO0Ka3cPplK1tls++glWgPGoL3q17DXOv+/NpwLwUO - YMHlJUHdPXIU3/jdf/Gdg90bu5fwxdjzALap4UpLj83x5xOFJBF0VbBNmVpynZ+t6IKaC2sID4Vb - LV4X5wQn/bAjHOGU9A/P4e5dPzDe6mtk8xski7KY4sdRqen3cHLQT5ZnrH/ZChbHAOSv/kdEWQ79 - tbCZBsHHTGhot7Y/ZvWr++PDoZQcrsM///Q96+dw3uqxYzMceOg2PqHuhXX6bLsZD4Tz8xLCUhXB - uvnNIOFAHs4/T/LnrT4Jj0f1jg0Yp+kcx3IEzYMKQ2mrHwxbvRnezsGN5g4a0zq8ZB00j1WCY9cp - 6pW+5AbC0lWwvQRKukhk8dCt6veb3jHy9fDySrjpkXAfc9BnaUccIH5OhOqYd1N2LysB8vv3TPXx - esqXVhtO/58nCuD/fqIgLgwOW5Ux1Wt/a9/wZEYyxUr+Sxf+Ayw4fgqFJsSm9RoXlx7mAnxiH3+E - ek73txJZi8FoeQjsYV+71xWymJ/p/X2VUmZKcQSr7lxjk33e9ToFcQsvD0PF+uN1ALMhsxH1LyEi - Mr9Y+Z7/RHf5l84DNm6upc/n39ZlQrR6bH7TwZ/167wi856UVF3zI5gToeShdXLGML+sx0E8Gy8Z - Uis+hvW7wcNyoDAElKwt1c/u5iC+eBnNo+Bj+7jNpb5Znw6gxgiog/Kpnu/M12BZeXm46xpbX77B - nMBV7yrqgDhIyQhGC+YgD8LOBteBSkYtw4f7LQhzoe+Lb/qs4Hk0Q3zheCcXYs/1IDnrRjg/jGVr - AmTK8BnXmFrmBaXreCw5oOy5gOJEVJm4/pIWSQlX0tNVxQOTXXdGnnRKaYa9Qz5LcqFB4S4rWL9E - U7p2adUiFo8mLXcZy0fqFrMUB/gXQu7zzoVP2GnoDfiOnpPBqlc+33NwLWo5lPcyTOfXzDcIRWpF - zXe0TycRkgLWGbhj6zKdc+FYaxwiNkzwI69TQIetxdU0KD7WhEcxzOtzKoDSGiJ1D6YxjOvzU0Ij - MEJ6CsRwEI48mqFoqg1NXvvMF73FS1D2o+J2vq2/1jmE0DrFV2rfWqIzJ3wrsKxSi6wsmHUGR4Og - 6HJ3tjmDVi7c+zsExi8esPrRBn394E8G5SPn0rAsgkHkH7qGJlpK1OeQ4K/qWGUwQ2tNy2U3D7T6 - xQ3KOPVAI/t2TbvOdyp4pfsffXYdHNgNJTx43R4qVsCqAj7bJQ16cqee5ka2A8u3VO6w6q419dic - +3SVe4IU15lx8HW4eouXCMmDBqhCqz4dI60tUOPKR6o+2C9fQhZq0G47Dqdq1wFxybau9Fxh0nS1 - 04HnVeWOjF86UE85tfkyHeAF8tcoIstH8/Vfc+sruRciRAs+f/3drwRyE3cjtSN6tcCklYMT6yOq - ZqQDc918NHSa5pTeX+E7JYupNXA8zBrV4PfBVp8mFfLPrxnHHI10/s4+BD3PCFJD4l41f308FNi/ - IMCmzDc5Nb41j+BF+dIw9xV9j64PC4rTPaFaMV/r/Y2PDFQbJ426npD7Ik9SD/nn5B7+lq1HgBi+ - FKQO7yv2nsbLF7P8kcBvpETYPtVSOpv+K4DHKQxw7CWRv2qRZcCXcHPw9VRL+VJ4nYBw0X9IdGaf - dPalT4Iej94Jlw0PBKqMI7xR94qPrhkNYj/qBH2KYR8Syf76QjK1K3T7/EaPLVH0ufOVN4ol+Y7t - FrU6y+5y+y++fBv/anLLKgctyW+iuL2bgN83RJPjKLpgYyQnxtvRb5atk6Li471kOVOILEAPgoH6 - 6Uv1hbk2IDwYT0SgFYhs7iPVQtv9pPZ854b1+K4iJCr0HfI7513PvuS1cPHUjqzg/fDn58BraMMn - fNM/ZFgNXXjDv/VIr+abCz9BEdAwkEcoHydX560dn6B17+9CGJzCnD1vlgDNUhTwlb/8/PX47hJ4 - qy80XC7Nd2BCxEqUrVcYTkV3GnjntUiIqkJFvRPsAd3wFClyEhK+yr5glH6+BL/dvMNHmJv5jCvL - k0Hh3HDaSzGYhX1aQAEmPDVl3siJezxxAHVDQxYv+uREQ1IFd+kQYVtVTumUiG6I7qepxsrv8ssX - 7yBfYFB/z9S9JSkTb6NG/uKDllzc6evljHvY3wKfhnbfsu3/laisnJzep3czkIt+4sGGh9jYOdqw - rZ+HJEhONJhCLxWMpYOQsWODVf8G8uVlPEM4hZZBDdkWa/ITrUAmjXTDcTanw744gAtMzsKLqiPW - 9LV4dKNMwT7Dpai1KTveTB4VMz/hB2pAyt4PT4OHAl2wri0cIMWjI7CUgPcvviZtEDTkr0+R4g1v - lk7175CSuaW3o1LkDGE8/v2MH508+t2CTA8qBtGp9lrew9xzs4S8Jv1i62PX+Xr93DPICZNLy9je - 5evu4Wh/+QmHs2Tm+6s6GZBx4EVEB190Jrw6CVlZSbCzxc9ScnEIvSb+YvPhnxgZbr4AmiEfqXna - 2+BfPjt8vjl1q9d5EJ+ZWqKbZrUhb7aaLx73lQO5d1Tgot5/03n3kQx0vrIAe69o8lfbXgg6fD45 - Vb3TnY3DC8ggRmcbly7f+Ux7Kw36ux+N2QWMF69sRhyxDRoGykmfw1DQoMrHNlbFsh5WYVRGZL7l - GhdT8mS893040C6VA47s6zgs6CrO6C//XDTd8uevjEaoX3qCjxN6AfHy9Tz463BGE+Le8/n2Pjeo - 2RUZzr7EycXfnTVQ3fE3mlnrqxaU6bPKI3e+Uzy8Yl841p8O6pdKp+c9O+TLg1glKvmPQx+zXW9z - Qxvr73yJMKRYX/Cq9Ag0wCUNnnVfqD3PgWMBWxxzk5mLO+1cyHJo8LjgH4E+DqwdUd/eOrKIpV6L - tIEjlGY9IlzVbV2ED9wF7tLqg91x0fJ9pxIDwP70w4oEJH+O01RCze6r09LlHX1txv6O2r6hNEut - GqxT+TUQWXY+9dj4qZm2PRFVK85A41I+1WTIXh78pYcL1kXPzWea4wbaoduES/yKGc2fUQlOLv2S - PWeDmuTAuaOjMbKwsqJXPs/3UQJlYZO/+58yb+th1Jv+k9r6wWFCWfvwH97frt4jJT+hrhCvWwdq - 4ZLVjC+qE/p26w4rTdyBVQx/CjynT4+GF+/sz+bjpEDTq3kivRo7X4/8foa70fthzeQWNre/TyPf - rB8XMgl7utDbYJSDZ5xQTwZ2uqf5AqEtC2fqva9STrW30yKtmCt6S1Q7FzJbHuHXvvvk9HlsPRpM - rUG8xoXUcaAG9lV1qGDwzBFphqEEy9/nheBeYCuqT/nCTkoEV/0gEEHqvznhgqSBf/k8qLhHTWlz - V2CrwgFfn6RJf+41sdDGH7G5pzoQHRQLSFRaEdvymwe0tAUC792MqTWk1J9dIwkhp2opNYJ9zWbB - qnsY7bQA2wbnDosO6xIcDcKo+XsE+Zpyp0B2XeVDGr0chpUD3l2+OFJPb7fI1ffQoj14tHUdSiAe - 81FJ77IcQItgby9YgGXjdAdhsmbUiCHWRaML39A0YREe+p/PZlZ2FtjyDenOCWXr9ZPcYTouFS2S - SvbZDUoOoGKk0GDjK8vGX2DDq0u4vvaST/c7p4FrJaKNjxb5nNpUA79n0YVwSnag+8s37bHrqDp4 - r3z8TdUKNj6LLU5It7+vEziP2zvlLVF8MSqtOzx/+xdWuemTU9NrBSgqRYCz1NKBiMJJAb56JNQP - Sz9d7PrVo7/8Hd0lk623HnUgTOZs0zPfoWu7KoDB93AlW36pa9G0WtDfQh+rpfRjf/cJzn6rUd0R - +3q60DX8x3//4m1xsmsJ3177xIY3TfmMXvdQvp/KI8XBVIHldf6eIInaKw2y9gNmVlYWTMg3InLh - B7XwZEuGWOusGHsfL53rtJDAwQi/OPCPGltqsZFB/u4fFLdlnlLpciFwot+aGql+zxfj6c8w+zhP - rPdSzBZ03c3AiN4Q/4unO/M3vh1bRHhIr5rZ45jB+lU/aZAUTT03+3sJD9n7R7d4ZOzqmR7c+D91 - 7mdzEBb+YUF2SR+h8JDUgZ++TweMB3kKRcs8gcWxVO4P7+iGv2yxmq8Gn/G9oZrJxYCZEuCg7HY2 - YYLZgWXv5Pd/+JvMKRjmkRkKpLXxo6e9dtVZU2MOqsnWs0cG35w5OBhhDm4Bjv/yufQMV7hWzTdc - 2Pugd4a8PcG0LCZ9rnMC5stDHOEOP6WQOYdzui4W5mB3kx40zw8Sm4LJsf74JPbDoqrnU28n0Dp5 - 48bnvXQ98mgFQt3P2Mudy/Cn3+RhQCy8z3sA1oWtmczzwZWI5a8GC/+JMvl5PIvUUbqqnqZOfcPF - nRNqB74ysBcI7uA4XcRQUpdLPQXELKAWGzU+zu4E5sDdl//w7lBeT+mcG3kIhedlIgjcZZ2VQlvJ - 44dewh3QvJwd2l8JfWHZpo4JwF9u+0cB5OQuhgeja+qF+EYF2fE9ET7V5ZRJl3KUDwU/UHO/kGF9 - fV8CvGqrFDZm+/bHS2DI//DVP0+TPtqxUaCT6WFyCg63fFU8xTvIbm//03PsfCkILG02UtfoaUrD - rPZg5lx16raDUP/29kzQps/pRTNnQP70GxXrC1UPncFmIhktuHxGC583vcFm+6GhRF321N74Cx8t - lwjabZX+05/TT6lGUFmQ4rN1wzrjp7lEOis8anYX1RekZYBw5aUfTonw9cvevmlw0x/0iJo8n+1d - 3IIbkdXwV952PjO+qgeevdbRo8+ZPl+02QxHB8jb5738f/s3Y8nAEVhV9oefsDOpFRLKjGFpnCQD - RmCF1B2Xd7oYz7YEHTl72MpJlc7zcL/AR8z52N27d599z0xB3Du3Q1kyUL2OxwuHMuesh1y/3urF - vd4t2N9OAhF3n35gL/k1QrvUDhgXJzkfD777Bm9v8jDmJTdnNeF5VE/WgnF7/7DpyMkyjKN6pH94 - yRRlGuG610+bfqt0Jq4HBZTS+sTHXhXzxZi5Fog3Kwr5YeDAF4z0Dlad+diqLCld8p8pgd1X+GJt - TvN6fR9OPfKocCDj9WXqs95bCaxyx8KevINs/dtvXnrfsL5oqT7LBX+Cbn+7UZ2Cb70c5ouE9uev - H8rJ+qvn305I4J9+PL+jc7oKCFT/9PK5u7x05uDvNqXQsXFsHnG96HAo4cl0MM0AVgdRITIPI3bC - tAhOJKdO+NZgL089LoLL4Z+fhDb+Tj1G5pR52t75t7+vjDhgOcylBJ/nHQwP604CKwe0DJqWbePg - 1IOc3tA2JeLVy6GwPOZ0Vj7mCJcy2JHlwdx8Lys/Ak3w/tIjNSafaJFlQWvsTWpbuucv73ZXgugo - E6xv/IRJhhvCi+wwrFjRK10euQQhOl3fWI8MddMvoSBv9w3juxPmc3uNLKTTaMWqrpN8ufGRBets - pdjZ8u8iPa0Zvef0Qo/3whkYhLID1iv3ptv3T+c/P6LS3loob/zvH/5Vfl5sfP2oCwctLoE1rjPh - uDQBU9yms7y0ooEDnVN9/kptAXqUhNgIRDJMwq1+g5ZZLk4XjemLIpnNP3362s5npcpIDp+i9sgb - jVw+v9W3BT14GLBWkQCINncNUAorj2o/48bmO5vGv/yAfZGc8n4xvQZ+pe4U7p5+o89KIgWHpTz3 - OHycX+m6v88tHD/ThXpPyweC3CwEbvkQ6+93A+bpe3Xkz8fH4R9+1gPKBTDKekaNZ/r1J3SR7/B6 - PX5wUK7LMFbh6YScK7CxmnTIX5r7Mfzji+Eg/BggvnrMDpUlGBQfhQvgh/elha8F5n/r99fNH5Tx - oVTD/Z5uFfZ0bOCDk2NqGPWYr1+NeZBa3jvc3dRaX1+dUcFirxhYDYo4J3dozpADroAdX3zrf/cd - ac7HpcGaeoBBdBJgt77fFL9uMpuI9+LRln/wWU10sN/uL4SkH2jYk0an9mQbqHGlI1kHoNf7nW++ - oZdXIo7jepva6E085EpMsSNdjvrG7wsYR7kaskXp8vkWHwtoWqZNoxMxwFJyt/CwtIiSXTBVbHZe - i4w2/YAv0pjoyzMiM6wa/UVWX7Xr/c369NB2m4DeC/fFiKFzbwBVMcLBGis+S+KTh57rkmH71ob+ - Otx04Z++So6+A/bSMYXo8VgZDeTflS2/hAvgbr6oRNx9z/nSHu8cPLwcgnHMBzo9fFsBpCOrCLuE - 72Hr2C1BZ7RKfFRoPaxthd4gOq469vO9npJdebxDnXo2xcXpns8PN1/BcQoCupEDsCArgMBOThCH - vLuw9bwGPbTGzqSnz5P5yxO/7rAYhzM1riqtmfYeEpD62YgxWR/1uPkj8DV1GTlMspTOYnYpYWdO - FsXT71vP+Ch1B2NhJrY7rQXrB08ZaJnh0vs309P9H3+6WXVK3cx36vUqUglcw5OHrS1/zmqjnCCL - UU6DrJtr8j4UPdTvcA47KRMB0/jSgF9/V4frvRlq/mP1/eHv+6fx8TpMkR4J8BPtJBxwHy3nOV2u - QArfHtX+9DEO84sc1EWPz7/HmE61hFuZoPeDLNL2DiZIijf4za2Ng/gW/oeXS7s3iLTp53XTe+DP - H7Q3Pvgrd5cWprVk4dtf/nPQjQfizYiwvzQspVcpiWCTdGjr6aQw0dPuBURL+iPLx9gzJrJ8w9tr - T9Xg3g7LZ3ic4JYv8eavpsQrvbtsitcIq9nKpQuIF/6wXuEbq6V8GuaNv8D7dP1S7zj9fNaaxwbu - 8PUY0r/zV+1Wgxmaa6rWyEvFUtB5aFp4JUiIDV8oY8ZD/LJTqjy0r86CRh7/8D3MCOp9YolB8I8f - aH/3jfvZMtz8VequiOh0p0YG1OJj+E+vri4MVmiaXIEt7+qk//yJv7//44dCHkSt/OCkeMuX9rCs - q9cBRc4OOORi5+++rRB1WYjtdhcBppDMgZ/DM8aecln0mbqnGXq24VHLTb5gyTunAs/jVcQGQ5d0 - 1n/1NtVrLrCJNOCzf3ztV74I1zS1/8fX0VfqT9Tb4nFFYDLgEM6XrcfBCbB++Ckwjm5quFyHFRB8 - iUY4aXc7nJ37u2aoegpw45904z/5NF4OGTjPeUwtI4ZgMtXGQnAVdGzl6xmwrT4AjOgeU6tgL31W - 91GJbvexx8GufzMK8msEj8p9waGxJOk0mK8EzH6j0YeyhPnSURD8+X1YOT51XTxIAgfc3tFpsSNS - Ov+IX8Cb9UqxWRhuPYPptcIcJC/s0lGtSe9cMvRwLxbh9UrIp02PgGEYHzTwj2+wJM7WprNbdxQD - 6wlWLthHIPjOI/nzn+m7tLNDEwYY28l1TGccphe0+U8hrDhUd5eHSP7OJ9wdkAvEP/2ii7KIVRPL - OVsyr4TRpWL40UmvdNz8eIgaKwhF/dCxTU/c0Z9fdP7GSs48LSnRPPI+/cvf44+0Htz8A/J5R/v8 - z9+RhxCoNMTcz2fpu4n+8afk+VVT0TyUPbB3sYaP0vPO1uG3RMhue46qH6VKCVU0DSZq9aSP2Zfq - SToKHciC953MUHwPjFu+EH4c7ITz5scPG/7+5bvwys6PrcdEYMhxYXHh+2ccwCo9Fwd2d9XB5svt - /QXULgd1LVSxuvmt9JE6MrxR/0qEy+DVvP5TpH/50Z3kLGVqjHgwae8VuyOb9OkvnstcyHCwpj1b - ZOU3Ssw9X6h79VA+G/JNgX96bYsHf6vfZOgv/1k0btLhxOAd4uxU42vgVzWTzlCD7PjLcMDnar7/ - JXklB0/n+6cHh2WOTAv88Q/zJK7DWuf3BFh4dwrphvezmJWFPGB9pEchbvRFuCm8nP2KFw2ehwIM - cHgrqFa8gTB08urx9WxKlPr3kcAgqYc/PQDbmFeIGBy3rvf4m6HNz8JH9I5qwVePdxAHxx829KJi - y7esLfDHF+zTU2N8e11XKArxRDVQJfnYc5IMnetaYPU6oXplh0cHt0ak+CikhK270szQln+oCQ4N - oKVAKrjV58LlOqGBGpd0hBt/wKZ1bfLl+eJkedPz4eFg43xp4VTAxxGU2N38JDaEjYI2PKdu/1X9 - +RYpBsrLh0k3vNdXJZchXICWh/MTtelsEXXrmffa4WN0SnIaNJECesFJqOkXBmAv/yBD8RYAIkSv - Xy0EiqKhrT5A6sgK0kUYLic4T+YrbDNRqOmGN+AvXp5P3/Bnmtst9Inq0svHDf31z0/hzIeCo32n - sMV46iuw32EcNu3bYdNLv/GH2O5jiq3vXh//6ssOT+p/+8smrSjA63e64Oh3cdM1UBQFMjccqLnp - z/XXzAQE1i/E6pRJ/swZj1C+T8HmnQUnf8/9sAzX8YaxaZe03vAlg8LzmWE93FXgH/627Pqk+lGu - coYDIYIu18ybH3hiSws6A/Zys8OYhxybSg7IUJrViIb2uNTjnz/w0Q8Wtn3HG3jN9k/w4Cw7esxr - tsnyXQkO+4tJ3a0ex9wVd/+fJwrQ/36iYFed7jSYlne9NJdwhMfMgEQehR8jKd9wkCn2RK0DitJ+ - /B5LuCvaPFxE2OqMU289yuMypsdgF/gLP/4kkHoKpWEfE7aaReXA6rFLQyj+1JovQ7eE3R7mWJnh - lJNr62YQ//iR2NPR90WdwA7EF3ckl2q3G7pU8ip4mJ8Mmw6g+ZKmUYtmMHnUV9/2IGiy3qBD33fU - dfevnB4N1sJFM0HIp4mWLlqJWsi7SY6DddJ0PvMvK2pF+MOmJgsD0863HpaPEw1hKq46e3wWGR6y - nUBYkPyGRTgHAphPx5BGvmDUzNp4k6RWKpHf+9ifqXcIYcUf+q13hw6EAUs8fN1mHsfVlPs8dFMN - xS1NqO1OZBj0ZnvHLzH29PiIUDpt+wVraHghU79NulTxeod20Cr0DLW5Hk6CXaFsPac05s5Svmbq - ykNL24/kW0YJ4722u6MmEwca3l9zPbm7TpO7p2Zg5dm+AZ8JWYmGK/HpsaB9Op7dSECnmiDsOaPC - eG/xK3idfW3bn7c/K31QwdFZIpz3izuIfvO5Q++mmdgTPjhfb+F4gkVUeNgKPjyY/9Y3uMeFHlfz - VLMHCXu4NKeURv39Nex3t30Bpau00DxXh1xQp7uF+irAOCey7u8TTTtBEDslzYcE1gt7zhnaPp+6 - z32mC1JgJIjKvYnTyn/lPKpoDymkMelD9mSsv0kN3NZLxB8p/b0QSBY8s6ig6cVzhvHtuQpkXvKm - hbfe/PmcAgh/PDzRKOdgTuq7YyCjj3p6M+swn0y9qyACYMbqz/kO6/LJM/giRkazoCH+vFMQD7/n - eKbe9fph9DSMd0TlzsSnlJ1T0WDx9vzCKaAp1K/pegW4g7lyNsn8CrC/VHfsASs+Wfj+wB9/31xC - Ai+VjmgYVJL/F2/wWUgh1XliDisKuhbYHQOEjd5ze2c8c4D7qlx6N2I+3+6Xh4SiXsID+wg5HcX5 - guJ2SnCQHs1hjs6thvgqXKm+fw0DSR7ZCew9YGHbuwKdaf1TgsfZeeLndFdT4WWcLVQ+LpRqo1PV - omrdZogEo8WPR4TyaW8FELZShYlgRrXeOQ8iwx/PnaipRZ7OvCuQoKPEEtVzy/H5cd2tEJXtD2sC - +wzLXSsDKK1qhc1VvQLhB08eeq9XgdrKE+r0k7872BdlhG/GQQX7NXw7YD34F6wLfuYvO5xcULB4 - LdmDw4WtTXtoYbjgBnsZLw3soOsjUrnMp047lTkT6VdDLVpYOL8C6u+l7lWA4ZWewu2+Mrad39al - rg7voO/SdcCzgLj6NuELZ7lsiffZDFXntv9bn89H6bOTvfc3xMYvuaV79XQvoT4daqwlV3fYh9Ek - w1HjLJqNHzTM92JSQCo9NGpWSKn5nbIXULqP+pDjE7ueP2rNQ6upSmqx3Nh+jwTIjqWMMRrWeuQt - aUUCCWp8deSuJmbRebCnfUf1AF78vf1DGpTudU0Va/Fr3uySErmNB7A6n3Zsfn6bEo6Utvj6aK2c - Jbr6RhmsHHxygZCv0S56I98uM2ptXS1EQ/EglGGc0ssc9oDV6C2g4inV2Exeeb5yt8SAi2YD7GBZ - TZdGdUr4NjWK9Yqz8/XyGjuoMC+meCX3nIjrK4DfUNpRxReaYR2L9wkpZWxR/H2/dcInuQUva3LG - wZv3cn5fpSuiOPPoLboedR5IAYGfUFCp+Y5vAyHmMYHP50sh0HOCWgSnmEO0lW2aP1EPiM51JzjO - AsP+q77qzLWmDmzrCW+nqq0XR4IS3PCbavA95Es/7XoowfBMDdwDNve7AwFhF6g4pVUCeOr0AvzJ - WCLgyS/prHwFD1T56YVjQtJhiy8FpcDmscE8KV3WSKoOjgQUGqraCBYJfUeIsXPFwY3GKVk+6R19 - 2zukITV4MKOL8Qbq7aXSrOAkMCY/rYNjX2g4G42+Xrm5HaE3vzVqDs/AX+PLFEDCJdwWz1hfdysy - YIPGPU0DVgzsqH1CtO03WdQjN6zqoI/Qy3sRG9zy0Fc9bTu05StsAmsG6zc9JDDdCxE+aqeWDaOW - vqFX7jE1F4nL2e23nuDOER5EUG13EP/wxRyuFLu0gGC5G00Du7Io8XMVU7aECR8hte+PIVPPcb5q - MObQL7j6W76pQAfhr4CZGoX4Pgruhp9NhowRFISp5yWd7yXL0KMOVFqsjTPQFAMN/qp+Dq+i2fvz - w76c4IZnOBrEk74/Hz4GWn4fEev+MdrmIHMjLFpBptpXt3MRZ1GAxPzV4+e7fQ9ier848PLIPXpu - 63FgO71T0MvFIfaD4wjYpxbvcFVtngZr09XLXz6RONEm8C8+zymDsKddR7URWAOv9MYbiWMvUG/H - XmD0Fv8NT7zghjv9EOiLAdEF5qf+h71rOKbd5c14xFfBim/b/s2FaXMwlp8RDnflbmC31TaQ4tUO - YW1+YOwrFgpcw6dK0FA7bDJDv4eOr6XY/U3XfOyedQvPexBig1yTnN2+NYTv8T3Q5wT4dNrwCcFa - PlO3zMxamMp5RN8gOlLj4Mf6mo+jAc8sKaj/uqOa3h6OAF/uMcRWKVXpfIjnANIzPlMjPLpp16y1 - BO3D9YX1i+fU6wlEFhJ4nWBnJFd/CdbWAlY0V+Rwx4H/Dw+3fEjmDZ/2p67koW7dvtg4md2wysK+ - gobMR/R8YSSdC3mcoWbn5C9/1fPS9g1knuBgo5ynYTUZnOFPPkpU7T+yPoUJjOABBOH2jmWmL3fZ - zWT9JKnYdmSn3pt69YY4oxXZlSdaz3zaJ0BDd4PqglYOc5k1Lfpb/1/8CPfHGMDU0yg+0lFL99HM - K6jRlRe9Hy/HXEwTNUPN92TSIBVXnyUKc6BmrDCcZ5Yydns4PNjd7jpW7/ucjVNfK/AekluoXVNX - H7Z4BzveyHDKtUb9lx+BHMIA3x/WMMw0PXJwyw9Yc5N5mLvn0ILzNiJgIUdl4Ln7KwEbP6VuExls - 7tFwAbfvqm/8zkuXgOcL4ArLRAvPGQf6O+c83L1RQLHUHobFHvUMZDtHDhf9YKai4N7fkPS1QrFw - qcBy1y7hP353hNYxZ+7mCINGLqifq34qJI/o8scnsSeL73SG8FVA7iXZVBt2FhOyvRpBMk0ZLaSP - mvNOqq/w+awVbP+MpZ6SYCqgHYsf6rqjDVjJLzMyk9MRW3Ems7Ea1RDqQ7KQ/fH4zue3LXfwkCEB - +1yvpkykVIOZUbRYc7rGZ+1jUWASznwoD7LnM3oQErC0OxN7Tv3NF4Pv2n94U9xMAwjcLbGAOHM5 - 1UDr1zPDxwr0jDvi68+I60UxkwbuZkmhxfdQ58zlIgFW+0eE/QNRAZn9OYNyMvqh0B9XfTZe39PB - xfFMnfGD6v4bvyXoRndE9u/4VhPf/6zQNxIFu9ybDCu6+iO8J2WG/ZhJjABSzbBn2Zdu8TDwDcKa - zCQfE+7ee/o+aiMJdB6pMDb2PmDRxyXgFGCFasx/6vPvYDVQmPotZ348f/3sDyWQ29KlyqhMYPkK - BQ/9gEJsX8lX3/RRA6z+3OELf21yVkV1ANVJ+IRo37zqpUibAjSX4EBvYWenfCWMF9A73kjVn2PX - gvnVE3nDf8Kxp5oLvur18La9E+abg+qL9MBtFV/XxYolf3y2hxUHs/WahrwLLvlsqagCPrmTcEWB - CBZ+fMmIedGbhlYnAdLQ8ALDq7Wn9wTe8tWS4grm6WvryfGTaiYfiQAf4UnAFi+J+aKe7gVM93yE - /+JNdLmIB4e+66i/LwgY1rtRoB2rVpp5nMrmIL6NsNp1Zsib8Y+xVx+G//An5h+HdE6K2PsX3zi9 - XtPOY7GMKltD1K/mWF/EaxoCSwYh9qt58Vdxl5A/vYZd78LnDGdZAI0+6UMYKT7Yh5a2yhDrHj3C - +QAmOpot3OflSJ2d+q5X3Y8ltO0vDrp9rc8FZB5MauOGbfTdAyb9qh6qU7KjViTabMnaZoXyzwLU - z4crm40XvcjgECghgrgFq9HwMgRAWP/hK+uc9wkuv69IxlOfpSsxzQgQXTVocL+h/wMAAP//pF3J - tqo6EP0gBgICCUM6EemCoIgzOhEUkSYB8vVv4Zne2Ru6zr02SaV2U6GKrm97t4J1b9rEPbiTQzsw - r5CMzuAL58pr6D4JE7CzwRe5l9M7mvnXXMngXWpbvhWceeNn0qPqPHSs72O26UEFZkC/k2PjrhmN - 0tKG9Lk+iCuLaUQGGrXycBsdcm+Y87BciQrBNBoTMSKIabvjnBz0Naci+3M0nCU1xlb2bwbnd9nT - 1Nll8bBUCqqBLJPrsvVqqT24PCCDzls+48T9M5Yt4ZqirQowzBX/ukBLEBUU93umGXl4sOGlGWVk - XAR/2OMqC0BfRxny+61njFJkilQWwtWHd7Jk9OZbDPz4tztxzkoIOrn6dNBn2gUd78yOLvcy2G78 - 7lKki/3BmeWaUUDhjAZJL8NOX458W4MokE3004v0KlwlSLmqQIEpHZzFDLtEfrXrA7fszYhYpXdr - eLjc78SxjCijhnUb4Y8Pe+uBHTb9c4F5y0r+7H5tMGRAeYE8bGJkHR8smK7iZMDi3CDk0htueu9z - s2FqNC9fmD3Dmb+i/4LEGAjxzccjWpy7vk1FdAcUyu4N7Mt1SKDDIhGDjQ8svnW2Za6+6xu/3eJH - 4wW444mNXBxemzlfE+2337644RE9dm/2L96EdiqjaWD7FRpfYiC7m4IIC4k8Q+1uVph5FLM+Gk9y - +cN3k5njaOOTLTw9uJioh8cyjOY+vEjC8pDQ4fmZ9MUMQgXiiSTIIiCg2/53cFY1HtNNH65PcRHk - 8CEoW/4QM4oiWsL6e4nQ+fJuIvpQm4t8JXVBjie91sdzaq9StbIl8n7n5wISAz4X9oYMUbsNFJXx - C277g07uQXJm7cAxPz+E6D99f27KEci+qiO7bEqHPRqOBO+MTZH9WeaGelKQwnFJ7z5bmk9nXb+C - Db8nmyJrx1oDcZWSh5teRej0SCLaAWEGR+SuyFi/72yRzGcAZ33ofNKVKp3oQ0hhfVAIsjmg0VkV - jVTcatH+/POn8FWw5E0/bP6LOsw75pPAtHVjEpekpfPrvSZ/+61v+masHyiE36qb/TM9VfoCClkA - v3hhNn1CzfaRSytfv5B1M+/DsrvLOQzUyxd5G17QMzOOkmuWZxTe5GuzrmwWAmO88sjc9DOPJ+EF - 3grwkckgPaPTOUsB6EwWKXlAhgVdtU4Oz7JHfBZe9PUTLQF8Id5C3q1fdKKonPLjC/7CXLeK0Mu6 - gNHyesyYj12ET8OthZtfSDRZZyL8yCQLdGVZInPepmYIMsE//ocUq1qiJcDvHpofJ8Bze7Z0/HoN - PvzlL+Vd1g6+GydX3vwJ4u/KxzDD41ZBVnwJWS2/Bwu62j0sX5GJpWXrqj8hT4M//nL1PC3jdecu - AfTlR+QdFzEa/R6OcBVHSA7Q6Z2JFbcKFTYA8uPkpi/dcbDBB9LRFx9c4nQqfgawPrRX5JmFEk0i - F0I5ufUMctT608yf4urD7HLUseTTHV02fiDn4TNGzpfRB37XnRl5y1/ksfGB2SpaQY6e1YicK1yj - 1cd2CH78+KzGic6+1kGA9jjr6PbZCdGsWe4FNsuNTFw7ts6aYymHaPYK8rijeCBkcleAVGpjOd47 - OtehvSQ//IxFh6P7bdYvzC1Yp3sRN5t+mRG5l5DhugO5FYVLJ/zd+3Afh6Yvpmh0cLJ7pfLnzcXI - vR8MSuqnWP78AOL6YB3WI8LuH7/MNF1qVjbnXZgMCSTqd2Wd5fg4S7L27Ux0kHIjo5MpBOBB2Tex - NfY5/OEVBr3rM4/21Pz8S2Cib+SzQuI48+ZHA8+4MOSM955O276vwaV+L8ScD0s23t6aC2XebMnB - 8+poAVG4wvLULkR97bAzRxy0wcY/SDGkKFrnOKrhSz6hP395WNEzho2hdRhuePvnN3jq6CI/WB19 - vVqnHkohdpCVPVu997EdgM97HxOtXi4RH9/UWi5t60as53HNZi+qTPg42cGGt27GZadT/NtPvLaS - B8afX5J0s02Mu9o5cxs0I8wUYdjmSH8iXmKJJfl38iHekJLo++AtBpa2fUPaCcq//GSB86szSXzt - PfDLL7ADaLf5W9+G8BHXgfOeL4k3KWCgYXKcgfk2DKIVjvV3/qBx3Zk+I6mevve0tys++MeNGMwi - 60v/riWw+cE/vwAsMuA6kMr2iJw3Z+uLGVYpPOgcxZIXT9HyUEYbkOsKfIZhqT5FUfD65X+ChEM7 - zI93bEAxFnqkWH4Z0WM3scAjWw+jaw106qRaCKviPvn7vd8Mq36VFQijmJCNDzvLKbxBGD3rkajO - QR6If34bMNZZjZiB8aT7x96yYHrtZnTIB29gzzc2gdt5I6hu64Y2s3gBe3nWSFxdI2eWk1QA+gQa - YgsXTp+7sTChdy1tvDiHoll/9YHpiBq08V06+z3EsDYeJ6SiqtfnkL5nMB2sGzE5dQZzED16+Mgv - HbLXnKMT//gwUFgKCSmcr2Qcedal7FK04kWsw4zC5szKT3qTkXl9XiL2VDsd4G+hh2W9e4AlXpIY - joyroGtyT5t1v0s3//nd+AI5Gz/+6sNxMlmiDW5F5+fhFcoAsCsp1gPb9NZlGzqpIhUdi2Kk6152 - t5420hH5qtNm4+77tWDg28HmJxQNNtL7ChdFIT88jqaDwwVwT/UPXgI5B+Sn58y3afh7KH+zMbhi - Df7wWauPR7omnBrKjKdB/xu9WkCcPOmgpUTCT1/oL9eoXMin5ZvoTPsa5u8sstJdCY4IFc9Twy5t - 38J73O9x4VmHhluzqIPJkEK82ytehoMTxXDY+UfkKEQd5gu6ufI8nF5EO8FCn/d0TiBgihexly8B - VRDdOnhxPYWcNv4618e1E10zP/uviF6zqYQoBgq1zqgsaTPgdZtzjpKThH/5bf7VXxZFI+TPDy+X - 0YVWsC/91fdnZyGNwMPhRG/I0VzWIcwJp+LGhzDPzHz0q7fAEB7Bnx7dK/szL2/n05+HPasvZPRe - oHCwgRR3NbK9GmxTZx77mNiXYed872WiQKeIauSedlRfpUclCeInD8iJGk00ZxMIoJcSjNfC6bKl - eK0YarOyJyUTVfpvfWHJsiNCwsFs8M9fPLHjEx279O0s33jQ4DDkJ2SS0NGXd2DFsHya2JdOHqVT - m4ustNUDfPElLdkiGaEExHuT+2uSaL96SQ/cbOKIVowg2viyAM9CapBfvaK9iOoo01KpNv5T01Up - UxceuwUgPdc+dN7qPWDWv91fvXIZ+cWS3+81+dUfB+ofTxBu649OsqDp/OdcS/KwJhW6T7s+Wruq - XuGmb3zB1LRs7be69qX+LMhxwH1Yjo+7BMVFv/tvqM0Dfe1EX3rvbhVelHFofv64VGXxk9gFOujr - 8nnOMDgLiJxMLwVYiEkCn3nWEm3jSzQ7DCsU7jt545P7jBjWYwQ78Qox058xmLb8CNnHNgXLffn6 - /p31PYxTf0U6l4TOuuEnVBeNwb/zuYbvyYQi8P0/vFmVMvTl9+5aIRs8Mf3zjzd8R5u/Gy2Mp0P5 - s68t8uNHU5UXFbx/OYRcIf+AtatFS+wta0SH3+/Nn1cb/upNgHl+wDj1gwL1nULQmZ4UnVvf/Cx3 - XMoRv7ojSp3UDmD3ir5YSqLDsIpFWkGuHAyfViMbTYt9SCATzADdwvXYzNVX4rfjVqNjCFSH3fTU - X/3u5+dv9Qnm568QJQ9Qs9U3c9hnQo+Zqv5Gv/rQX73jkNzToS5vRQq3+hzJyPR1fufjV39Fce+F - DrXrmwLujEWJzx2mhuLou/7q0eSnL2av1F35+vz0eDzo0TBX35UF3yK/obvYIn1adr37558qad9E - f3w7SfwXHjf9+PPzpHgNrsj4cObAWtd0w1ezQqeGWYbJwudZXiSiI/++N5x5vuYxdI55QjKz/Pz8 - EyhHL2IgtPH/fXYYZkjG00AcymsDy3zCVcb9UyE/f+z70KQaxriKkRKiGPDx7VTB23c++88gP1Hc - eqYN+8dB2/zxT0aPpT3+nxsFHPvvKwWZCkL/402ZPu2qBYPD7eD5+/vqR3u5etjwA6Mz0WMyN/PV - ESQwfZQPOhidQzlRTmwZ4tomnt8fMgIe5Qggrmx03KssnY/XQwK9mNeR3SSyTi/Zu5JqrjWR9U42 - f246V3LEnBtymsFzoI8gsaBscggZ7f3iTNaBZWHcvM7ojKHgUP8m2DB27kdSgroAsyCPAuT3mBL1 - LfJgaa9olTrjfkVHNA4DeZwNXwb8GWAmRteGkDvCMPL4DB1HsGaUiB9JFl1wwWK2gogOZi3Jxjoe - iXOfv2DdPd0eDKvpkcvJnppt0HEMWWa5IDMJUdbbrRLKQAp2eL74hrNQpxXgvjIYFD4vBuBfOh/L - vF50xB7uuKGXoUglJirfRIXGSFfTiAI5Z7a2jdd50Wf32M9gTp5nEoTudqnq7Sqycnmq5CqqR8Bm - Oy2EvvMIkBt6x2Yu55CXMRglct+pL2dCyZqAuyLx+KJZ2cC+2byFxwj2JHRPirOMe9WGjbo/IVus - NLoXi9qFYdH4CFmfOpr5DbLDe4JQ2Kd8trBDpMnpc3CQ7dudPrdGIMjS4fJG6gg6sHwulSkvFlsi - NZt18Nap08pvW+6IO5als1fUUYD3g8oRW6rDYd9oX1tud0T1l+3/z+3FWoFzEiuy3Q7OVmZWcpkz - QYLh7qlGPHUOqzzWrwzddod44GN3sOEbBBzJfTfWuX3x6ODcvW7IXQt/+H0emDS2JgHObZ2/+48O - 9nKvkDIPOwffsTPD+JE6xO3vLuB/64+PBSF5HNwAtTi7B8EMRCweP8dhz9qiAk8JtMmWiSPyCBJb - kmt4Q+Y5kLNVlAdTJjdeQ3bkfSO+IMkLmqQqSHwLS30xtjbDsB5snwLlq4/CJGsw1i82etzIZViJ - UEky6BWBBN+7BfbrSWhh3r++JFd0PVpPh86AfvS5+M0FPyP6PCctrK9PhdxaXtWX7ztJ5ecz4jA9 - DTLt2czWoH0vE+LDmuikfXG83JxWBwvdfR6mD0eglLzaCblC9dTX6ZgksIl1H+kEmJS75dACO8ES - yLXhzhEnyDseEiTtkEKy07AkhVXBz5E7IEM1B7BchuYFZ+PmYn4qLs48CeUF7vODSHQ0lQP33S5V - HoiCUFGxXzAH96iSERJzpAnPftirC2TgIdMdoiotbuZS4VnImfiGig4AQMtgx0IoLR7yI//q8G/W - TyG5sZpPR8ls2GS619D+fu/IyVlpmHHCv2SD50x0rDk0sK+ITWWjHlSkCnqW7X/vd8hUh6he/4ym - 46uq4MzuU2TYbhGtJIErnEqhQRemPjkrO7wh1Lz7HdOci7K9+UpjcGTdBRlt3FBWC4NSfghuhu7X - WWqmpLBqCP1QJ+mSq87+1aixnKq+jqUt/23r1cpACnf+V323YO14FEiAtxVkPM5qw3WcFQJPY3fI - ry8WJVz2jeVbpxQoFx9Ksx7fnwoqQar5gFdmwJmGEssfHRx97iNG+v5Rsab8ez8nXcVmKsiCoVzu - QnTpsqs+e53GwASCBVltugMrFrZBwdZ8JeE90B2W9nSUt/NEkjWvwayo0Tam5UPQ0R+lAXOu6crx - p0Iot09vgMOeMcB8SUL0mOQUrPnjcoGOpr6IG/g3Z2V2wgXKGjgT505TZ+HymyuHauCSyx0pdO24 - zIfPp8niZcsffOw2thy1p4rcIpJR/hS7GvyKFsa3714d2Nt0sGXtnJTEMI5utA++l0o0pMUgj160 - nblaslAySV0gR1SXaIWPLX4JPJAw8J6UimUZwNtDuCO12XNgEYqXBqmtAjwFoxlx++LWw4vf9Eh1 - uirjvf2iQbZ/I5KSVNG/nuCt4BAyPtLVT+7gy6Dl0HIvLMqzwKIsB+ZETK+JRVLwXJ1Fa9AFiNZ6 - JX596ej45YsS7jNJIHa2DUol96sAxKueEMs8dg1NmRDKo52dkbPsHtF8OjwF+fFCN2J0yQssJHmy - 8st+pP6+5Z8OrdcXDwlrOST83K+Ab6jHQOaWNrip9xeHbw1mhmxdhThRjU+0UlCwkDKRiZcRWGDB - gtrKPt1n/u4t3nX6VKtRsuZFJcevdKZfYcokaYsXctRflsMSMV7l4STqW75vwBKPowJ2yWH1vxQ+ - 6aA+z4r8/pizLz45D+wXEYZwOGENHS/E0xfJt2oYqXOKkuQ8OcTZ65VcveoXFrgqav7y+f2uiCTf - 8u26iN8Y9hxmiHWyvs7v82CtPiG6LUCP9vuiYOGUMm/kyFoN1m/8qcH5fTJIUa4dHYoH7eSmNS7o - Lutvhy83Se8N6PR3PrkjZ+Tyc7I4FL6S68DtXYrhFs+kHIuMssoy8GD1HoO/vhJumCUsl2LctGe/ - 1YyTw375a/njJ+QiVF1EGGWXwvT+PBJHawx9veZmD+OocdB2YyKj++kwylyDnsgwbDislyxtofr1 - LqjsE3ug+S5KYEF9gPTLsjSUmaMEjGYQEiP0MF39TrUhq4UOst83D+zZLGeAfuB7dHInMfskcrqN - msM2uWzng7e4ZpWZrKmJdvNrnZL71gQj0fUt3qzmly9BCxadnL4iakpFvTPiXOUXFAFdjJbqqQXQ - G7yTP/C7ORqJGM8QpvEB+Wnw0b8s4BkYdAuHEq5ostU8oAuwrIT31/ZmOrxMoAn7bw+Jez0LEc3R - LpXM2zvDQuAN2bJ3wQhhnZ9IvpTEWW5u4MqfXLX994evAW1fHPtbH6I/OSNj+RG+oBMrHTIP1p1O - S1peYH+uRaRkIbtFfa3Ax1H0kWbbKBpFeQnlB7TuyNhXe33xhdACK9dz5JDQx0B/+ZWGzo4Yw/2w - tbEDLvBpnyLbPPHNyiivHHLAasj99LWG5XRdDPk9aBg3T+6V0Qs4d/LBny3MHKy1GUN7NOBFCztf - YJ8XB3Ou7wIiGCfyw/vlbNsQ8I/mi6zhpjTsIt18OITqEZm2AxysaWkKI8l6+RGnJs3CBHIJd2ie - iKseqDOPlhmC5Wu8STZBos8xtCDcziPxxac/4OmYpKDVE5EYYbDT5+56cgGV7CPe+V/dWehg9vBA - 3SuyxOdB39fLvMrmbn0hq4y2EvSlM+HR1T9+uxZvh254Bz/QCEgxAZfuN/4KT2/kIe2VXJuV35ow - 7CqFI+j4WfQlLRUoezfVIOFcbQ1PHvoKj8nxi9RBOEYrm/HGHz4cMyoP89AuUH6b/BevhyN26MU5 - tfDgrxZRpAY6q+BFm8VkMvj2lRZafFggSJWV5b5w84dhKoiI4eLOOQbL7pHRx9l1wa5CvJ+bh5ez - zuKFgZ+b4KB4SGqw3Jl8BcADM9Fcd87Icq9KODJcgS644Oikro4FoZbpxOxu9bBKfpbDFrQa8q/e - mw7DzWThem8mDL6gaOY+PnVw3ykKKYKxjWhGbhY8G5JMDjvdavYma/ug4aMr8mboZUvT6Ba87iyD - mF0aAsoNZx9ebUEk5w1vVj7XShnW5Ym4xTXVN31US6kXGOigv+2Mfg6lATifTcmpZKcMh9KbgSYd - G1K+k3szvC9eBeIPCYiDgT/MMZQViCLhiS7gaTXTm4IcejGro3Mn3TKOZvEMAyue8O5GLs1qGlkA - YP21SQyqNlruvoFBTGnoi8JOj9hrnvO//ORz5hc4K+1FCZr7fY1QNpsO/73SXK7VGCDH+rZ0ujOX - FZZZYiD3eKSAlHPDAKWrDxhur+mmPwDfVJhY010daN9qvYyPD0Ju2xWD5ea5ATyy2YpZ5n2P1kND - Nbk/3BekfO8dGD+vxZAdPiAoq3mQ0eWbxPDO2Soxx+yVrXEeKbJTGz0JXvFnWCCSlR8/98WvSAZc - a7IEFSvfkahgV0q1VY3lBIoLstesalahYBj4uDEXouHsQ9dquZewKZgAs9zjA2hTs5sDxYz+D0/p - 14wruHrFgJkxdQa+/11Gm0oN8+rh1GzxzkBbHB/ktunrhQUMhLR1dIxfd0knjOLEsFIuD2SWl9lZ - Q2liwI9PH2Qj0RdRDmzoeMKLRGgqmxn4zx6M5Tv29073BVRZFElOqo6gM1CHbB1i+qe/cMHtcLM+ - 66KDwjh4xGwuT30tg1EC6ykeMfu4nGm/fV+x3U2qz9PcaJYff1TgaKM0cE86d5e7EVbz8kGmafXg - x7cglx0KvOT0HX2v46MHHLAb4qxQcbj8oaYyGpUXOXVS8OPTDJCWDpMHo2Fn3XtmB7Z496OUrtnS - HcYQDGfW9HcPymd4N8P6D790ST01XLVgF9yCY4ZUb1qG+VYUASTOqqBIPkgRLnZsLffXr4AOs2w6 - 3E+fbHoS6TvDBuvG5+Q7Z6k/P8Khqz12kNUCBwXXgNLpt77pVG0lntDL5uC7L+GigJyoJXtpKLGG - Gb5DYUDHgiubGRJZgvHw9bG4/b7lOt46+Ao/JUG92DvTU4tb+NHFIzL48pj95TfuoWd//sHyZj+V - 7FHLxZVtPaP1oXCa3JwlhH54N7cXZQWdkV19Nj3PzWQdrBlK53fniynNwPLl2BiWqJCR1wnOsIT2 - XoHVq3qhQjZmSoL7q4cptw+ILVY1na7jo5PQg6nJiZfraBnijoEj0+W//DDw/NimYI94njiD5OuL - d1sY8DIvGVKWKqWz6H19KR4Gf/MDLH09vD4mPMk2ImZ7VRvWE/DWhMowyX1nsBE9Sy4PBZaefUk1 - r9lg87oJK6MocXv2Jn21udn6+SdIWYq+oXpU9PDVtrUvcY8log+lCqXNP0HFBEa6nO8SC/ks7ZHy - ij8NFYveh+HUXvyl4q8D/1wPlbx9Hoau04LZNutY8m/bIHCSc9G8U6QOGphoxH6njD58D3UOTT2L - 0elGHL2/QeDCqTG//u6+XIfRenMjpO1JR4d8UQBXKMUoCl3lE6Q0VTNrYZDDaXBaX9z4AZ/hwJY3 - fY7M5zVoluVeh7BTgpjYSQQc3NADA9+NvSJ9kK4RZp3UhjC9HAgS9GIYU3xmAPDEmXjn4Q361H9p - kjB+PV9Izp5Db7Jpw8Ngnn1GqrCOo8x3wWVdeUyhKQGChU8uP47YI4473nSaI+cCncOuJsd5d9Hp - 8VLnsjjCFJ1k/a3jjkchPM4hRWiSJTofjW8JPw3j4bm+mANbVj0E/dRKyJYeWsazGWP88jE67g58 - Q1lwMsAvH9yIWEeU3I8YlHqoIqS/Kjpfs2qWT2fd8nXr6+uYG9YLkKlbIoWvBrC+o/Ulx58a4V41 - uexlvrgARq1ToeN12UpO02H8xReym+sIuqYWfHjLmMwXN72xPtdDDfFn4v/8g/WcerP045MHSTlm - y1Pta9i05gUdvd6mPO7GHh4DZSQH5ZNGz+P7sl0pNXRk02KOyOlAFZnb+290rFglmt1jvcJt/ZE6 - SVbG7tQWw8BICVFlEw6rETErjNQ1RdrzdtVHCaspVIJEI96xo9koledKLvVAJTn7QMO3CLyX5Nmr - 6nMJ3TV44CsFGnaxXRmFib6mjKIAu/jc/tb3I/k4gV3ySZHHM1hfN78R3uZrjfk2WX74OsucNt9R - bh4Mh3f5uZUFtg3+9NpqmxdLfoXvEv/wm681lZehRD1kbPqbzXf8BfIo7tBPf65+x7kwycvv3/mh - 454okGuUijyyuXXIHsov6ReveXo+RcvRYFNZe9PXxu8+EfEtK/idH3Js9rtojUeG+fPPfny2d3mh - hSzTRr7r2WbG/fgtbto9smhWZ9N0e6bwoa+IqAtjOzxJ4AwpczbJ8cESp+mu6QV+WP+Cmef1lC2Q - XFb5Lt93m/7TwIyFHoPJXCsMjPfBWT8XoECjnxhknVHm0PEWueBiZh/knEkSzRb3buFFCzqS0DJs - Nv8ilrKrFBMVQ0HHc7cokGVeEfHlutLX3/o+oH0nzrLbZbNU3mtxHusr8bLF+vl1Jtj8Y1Q82KRZ - Y4h5qTxmCn5c8TuiHdfa0C7SGO9qrotm5bxdyVJBiE4zcwYLo5wrkC74TPyrd6C8yDxsKO+8O0Kr - PNBer6UW7CqP3/g3N6zHN6l+fg5R4FvWp2h4+HC5Hp5E+eaiQwsyVJz4Nkp/dU6Ycuqq22CH1on4 - JHPovKb7EjzyY4SQ1zfDMh3FGpgUN0SvWR3M+8LFf+fP7dI8W20zt0D6fXkbvxc3fvJmpA2fMN9c - ns4KHvoMNz294YsW8QfDl6RHtT2SxT4vOnU7NIJZoAkyymuYjUvqJNDMmjs6Gd9bs7ofZQTi85j6 - z0kWmu371/C98ynukH2ig6aKAZSBmRK9F94Djuw6gKl6N4hrHl461cPnS3oa8jaW7QIiUjxAD2PH - NYmiHIhDQ1u14E64ieQkqZGz4R8Emz+GDzVVh30fp6t0iCUXs/MjpvufXn7xtPG38wYoRO32yKCz - YCZyXnTRNVBBvbYoubgOdmajYXmw+WnIcB3fwc/nt4UmCmPMJOe4GaePlIANL5B3xry+Cl6m/e2v - 79qvZuGgE0tzEgdY2PT05gek0vb3v/Wdj6xYgYPN2ig5I+Bs/pD057frwYTAXFM0g+a+c5GhHZyI - y3aFD0xCSswerXGgtE/Wn5+A7p0065vfOYMNXzGzFCOYX5Fygcdxezp9y88ktFVbPp90SMxbWDrd - rz7AkOnjc/e5iqjdZi7kb/mI+bU46H+vvZ3v+btkjZ2/+P6tT7ovn5TyUK3gdk2NnISdni3j5x5C - Sxh1lLP1g67jPjdhETKsLw5Cpf/p38XiS59ufAhzoPZ/+Qj9/KH5Fz/Sux2JUUTasIc7XhJmJfN9 - sWSnaPPfV7D5R3iO/JDOGz+B3WvIieU7fTaZ0eyDwhRWfyQ51qfqyVyg0b52PrMULuVbw8a/74/3 - Xt/T5eYmPnyt/YsoOO+dlRvWGF7WmUfGLZid9bl6FRjb6o7CNAwpllEVytNH+/iL1z+zIXYZU6Rn - hsEz+wTZFEqZAg/Uv25jclwwBZLfw3LXnpBvW82wgocz72/Qr3/+FqWQpAzspwWgg9bagHtdUAz5 - psbIPB77qCcnQ4B5nL6wHBB+oEgILkB1gUOMKTM3/9dmwDySGB2erKbTpTdSuL32aUrXaLnBKpC3 - fObLV3IcKPDXVRa584NkFTc6G97N0Lx9MgxxXujrhqfSp9IQcnEuO8t0+6bAml8KKsUnbvA3JhXY - 8BfD+jo407mPV+A7RfDjT8OiU/0Ffvh7dAbJmfbFo4fnF9SJiXwYzeWcsgAfQ7ztb93MUXZJQeOJ - 9o+PUQKI//rpB4Q4ZozoWQxW2F/zPTk96AhW1kkt8To4ig+bmwSopk0XqJ3fD2SzhdrwotyY8jxO - MUpgfWg4XwhtWf4cYuQI2gKmcc/54vOqrchj9Dnb9LQGt/Pgi61AnK0JDoZJkHS4iXCgzzdXjMEu - YihB8XzV581Ph3k9fPDAydWwereE/dP77pRO0Xaea1iih0z0+6IN/GM+KzLUfA0Z9slzqLaeLrD9 - vBgULrkV8cH9juHm/6BjTrdLd9vYH60oH/7687d/+uKTsSfisIzqfCLp7MvlJzeRPZU7OmeP0oLr - /Tkh/3k9RSw/KpW86UlM/QHT4REElnyNFBlpayk4OGNYAyL2+t1K1FG2RMPNh7bcF8hkXnuH3Mba - levnW0MF1FS97fmok6/DSSGqOzzpjL5OAozwDdBhyxfL1HkxMJ1Lgo7b1FNqGtiVnvfTgnRvRNna - hKsN0cvufvlwmPt2esFQDV2y+aXNouukhVs+I6hc2mZJ/bvx02/kep+ViJ1PkQmH06ih24NFDjVZ - PoRve9cR03fHYeEcGsgG3x1QIDVQ7z5sxcDF3RX+/rt/Nstq4xLW95LBAE37aL0MfCVv+tsXd+pL - X4KTVsF5rK7o8eY7ulycff7zYzFBw0rXz6sXhE93dNFB+UgZ3vgXlGvmhtS3GG8DCA41+PFFgxbm - X3zC23GOUZ5HfUa7t+3Dp+juyeP0XR26ez5esFeD9a9+vBzZIJEv8YCxRItg4x/nWkad0RLrnQTO - /DzT6ldP9d8Vpw0b3ltylyR3Ygo1H/3wHprNUJCNz0d/+eD/XCng/n2lQL3vDuRwF6tNomkY3Bfe - JgoxDjorGN8Q6k4UEqtOEp3uA4eB7V6/+GvP6tFevJutfI5mTIyRiE6nDa0FtKMQ+WnjqnS/TM4M - MiT1CHnopnO5mlwgqHILabDE2ShAZ4bpWS4wzJvJGS/vZwW/SWpiZkUgIpaXv+A9f5hIRcM0zJ+s - W2FSJm9yTqV5WLmHNMNnxetEfbhXsDjYl8DFmVp0yhMyzIp37+HlltjExtmL0jF8mpBDFUGPRZ/o - xCxWK7+BYfs4UFt9febsKg9aWCJdmemw+G+6QsZ9n0jUTy6ds2tXwl2EOB/W+cNZBBVL8LheIuQE - YDesySwy4DlNX/TQlIvD4pwr5RO+qCTfn5uIWp/jCttWUJEiLmFEkRzl0O2SM9IeV0LXsZZNcf92 - GVJwTeXQYh1cWTvMkOSjwWX0sXtCUOT6iMx7wEYzF8y1bPoSJhbkS6c1jh93eypa8llF9IY9tGJN - nrzIJs4OvrLFkboSMvH5i9zioFHue5R5Ke9nw5flNwtwf2Uu4KmKFKHDduu6jCQb8lfdRF7aGNF6 - sxVFfjr5DlOPj8B8fj98eBh7g+gu+uizVyVYVlPmSKygzAGfifAFX70QkuNlnwz8hR1WuVZ2sQ9x - YWVUKYoOvh9hhLljgTK2LAcDVu0BYqaLT9F+7upStt4kRK48Ohn3Tk4+BFolkbS04mgdyu3JGAsy - /mJec8DG+GXDy3zsiM2Qki77Jr1A8XG4kvsWD/i0VwSo3jhMrN1DHfixlg3ITuGBxHV70Jfqdh9h - ss4fpAYPC3DKPCowcB3FE6/ZArB/8l1wO+cpUfWj7uy5752RHZAf0JW9tc3+dSYBfJyUgmT2bOms - JQeVvO2nv9fkwlkuxMLQbQMJJetdzXj9m/bQLUZCLi1vApYWIwOUnR0Qv8SRjlF6MiFrK3d0DDFH - lwm0NSyPXEOSa21li43WVPaRBjHnqpKDl2Zs4a4UEjyPpzxadtxTknfCSyDX/rEDL29pcxhkJwZp - md4PpCzOF/myGD16KKeYsjKkIQRaLRFPZYJm/0pdDEErAKTG5nX4jvuDC6+fl4bK2O6az2Lutd/3 - I4G4rNEMTp8ZNnXUYAmddMDiXC4hyes3MvZj3NBdnVXQbvgEY+1bZRzH2oLkxEeNOOsFRyuv6TlA - 3qFAyfLJnIU9XViYHiOAjGupZnvnoJYy590TpNWKFe2LdfDhuL6/SC10ms1iuwhyrx5fePIKw+EJ - W9hwOEe5L2/naT93fSlt8eCfvTAd2ugkY/jOHQmZjoCbeaqWVj7mO4TUUz3o5H5xE9g9JYyX5zUZ - 9keLhtC6tDIydSNqOGOUfGBoQMHLIXiDNYB3DDNv2bqK4GPGNo+0hdy5P+JV2ff6WjoXLOsCKvGX - lZts4TzeAunUKcQS2G+0QifZ+mxB2V+zd5XN0pD5spO4d5RW57tDteDpQu3ZUn/v5/Owb65NKqOH - zyKLlEnEGqncQsIeMTGdrtRXed0mdX8/NjqjwRv69DYwUKXDG3k7vM+WLf/BZ/65EOdacBldzJ3y - l18vyQic2Ui5Vn6c287ffWQvmwQVC5ChZo0M15qb5VYvOajcLEdaJ7fOoptKAK3mA/CsRAEgcX6r - 4O5TNlhcQxvwy2nr4yxIBrmdjyedBI+XLQsjOxA92sXZYoozIztkeZJc6B6Uj8WDIVWwVDF34Oth - eXNzLY/HlSX+XuejJVeDWHiYoklyd71ES+q7K9z2H/kmODS8mkeStIsvPrH54j7UadaZwHpPoT8i - 55PNu1HDsqAqHLlWF6vhGm3SwLvd50i3zVe2TxKlll+9FJLHM+R0cs+fPKTXPkGq4krZBF8qK8vl - AJD3DpZmfa+MBeMM6iQVk3qY31vf1VN6jPxlip9/+CMbQqgT/yvHDp3YBQPPal7kEMKaLulnB+FV - 1ql/uR2wvnyx/YK66FdkW+9hMUbJhezzXZPj2z46SyZILHh7FiT3lVWG/W0KUzkLNQ2zj1uUsQu+ - VpAgMuK9y+mU35vjDDe8I4fSeYNlN7klDDKHwTR4jtmUHGzrt7+4F63VoU+8JPA6iKX/4Wt34NKB - NeW7urzRYT6o2Xz4wAsMn3tEjPAcOR04kRmmCmf54FpcMzZAlS1DVs7x2mVztDDRPYQ9oxJ0xllC - R8S8Xbl+eRqyKsQ1y/f9tmScXQdyo/uLTtfbIslfqZ+Ja4qaw4W7JZCn3ZNF13AMo72w5i949OAZ - 3fMEDTPXfl6wurtXEgru19n4zCjD++mN8g2v98ukzzD63N5ky9fDL1/JXSWO6F4u9bA02lsB9t3i - SbmiLOJxbPXwjEuEf/HPQZlTgOHmLrH8tz1wJ2ZXQvCiL2KPoRZh9SXGMHhzFeaze0zHgkLmd/7R - rRKegOygP0LVYmd0cGmV0ScWU/gJJhbdbxozLDWjdzK2UYyXrjYpi16SAmu7rn0GPwa66u+yhqfR - 7XF7YZCz5y+WCV/Pm4lO+jPOZitCHfRfqUIi3lUinnYHSd7wBEtpYoK+o1YOX4cGEdSc1og6JezE - oyQUZONnzvq1di20SFCiu/z06Hy+qLn83mWt3xwzBywfhlqQVXO0dYmIwXAw7gzUr5BF0YDqgd6O - Xg/l77VAG390WPnhMPCTRgqGRkX0FT6POeRbJyPWtHeG+Tk7FjyY0Y5Yhq0BvnnvEniut6e2gPkG - a0eVXH7QfYgX7T1l64PXZngzZwEpCtc245EFBpy5sEN2tqMDHgQfAtMXfl0Ocn3pvs9Q/uHPgTRD - tFhVDcG5XkbiVKOQTQrb2TJzCwZyWRrWocFBYMT1RKFPHQdEa3jIE/heK4Xc79PeWczo5crr+0Mx - 5SAB64OpXFmv+hjZsak26/b9wY3FJnL4NhrGWlYF2PDVmRwZdgGrcy1ycMG7EDmHETbUos9YtofQ - Q2oX8hlltU6DvHg/Em3L/5NwaLS/8zmj1XBmWdjbkL2rN5IQ3NG5VOgMe6ItxNLNvTPlTQXF+Eiu - 5CgMJBr76hPALX/h3P5uT1X4NwwLfNJRudsv0dxPCi//8pnzEApneYRCCht6F4jJDDewdMURw6/w - vJNCfl/oijxSQzHpa3R69Swda/kkiIf6yBNb7o90nQ+BIX+cUCOhJ9vZvsTEAIdTmqBTtvWu2vBL - 3jt1SSwViWCV0TLKk3e2kXYaDs5etZwZdMF6J7/8uxw5lv3xHdwevDha3J26gsshoMhJnwqd2R3X - wkGSgT9f5Wyg/LvgISq9lWj11rf39LJrmDXWDV2OrwPgGJvycNIJQ468EtO1/oIaWs0boPuDvzd0 - zwcjXF3hSu5YeQ9rFn1YKN6+lb+fmNqhN9QY8l6VQ186a7xO+0dRSUX0qInz3iZ/8u+CBQ3NBAy9 - i62z3tKWQJBlBanmfh22/VVgLlKNKE+XGbCpBy44DV5HMvebZmt/l0rYvx9vcuykuFl3QSyBUk1n - 3/OKl76oIYth35YfYr2eKf2CR1X/9AcJFzREM2SvPOBX5kJMW12ySenMF2TmnYMUkOz0h5B8E0iG - pkE+ExgDd/WuAURr/sS8rS7RooqnHNyL3CIZ0qZobYsxBFy95uRYxa7+47vQtrStL6rxcmZtwDb0 - +HxF3ns9ZtzUB7PsPHofneBO0Md+snhYF7OPLE1VnPVuv33oGMxE/JPRZetxd1Hg2LwGnxnNBNBE - OttyLYMnyVkhyJY+EUbYfElCHONAAPnh27bfv/0Ha7k8c3kBq4KuT3DN9l0cSrCCuUoU7jE5y+V8 - TuS+zT/kLPaAvh+hkMAOvD2EuCvVl0c4pzKoSoucY5Nr5t2BY+Tf+bDekarzTD6XML1nIVHawHbw - /HBCEDP+hJsNL6l8vcwwbhoX+URVB16c4hFaJCzx7h4oGfvV0hWkWf31ZeW2OXjuw4bU2j+IukcR - INJRYCG3LOkfvx5tWcawgy1CzrQmw2yJlwSOYRmT7e/NMoBTDH2aMtscmK5Zg9hl4P4TX5FyHvhs - hmzBQ+KkAfKYoz1Q8e6/4DW6XghCXa+vsegZUr9/QWLNih+twpKy0nt3b8nxILQ6ORJFgS7hTWJU - jv/3/iDjEx0VOTNGS8sXI+zAx0P2nV+c9RJGNrBERsHCUVqdt1X1EN5PKCWeVrXZyorKKnv5HJKb - 7nkN3u1UU16+3ZfEQ6o43JsTKhgqo4R3zWA5a7dd6VvY2CGmoDwGasOBkV23TclRk2V9LigL4VR3 - Prq4iepsv5cF9PWNUW5/l+abbE9tfCvmjOVfPJ7PyIDb7/3plWFcLnUM2WYUfeYSDdk85kkgzaEG - kS+XZbRwrC3BU9RXWFhPAcD5pNg/P4AovXJvMA7dGrz38oLU4v3VaX3WzF+8+vMs37IlKg/sz98g - N2DU2cqJEwPEJjbw8sjbbH4KVQuJuje2fMhm8+WOIExIJfmkjZWGZy6R9sN/5J23W/bh4ZL+/r3/ - Fo68PhnmlAPhFTyR0rzPwxcrSJBMGs74mW2T6xdzpwl88Qm2fBMO5PzySmjogkaKkbz1xX+DGaTn - XUF0x8mimfk8U3njnwjF7yNgZ/2TQ6LxJvEdr6dznYoh3Pg3UsUegO/V2PM/fYf0MPk20y8es6Tk - sCxGpNn8iAowfX0jmhMulNqwYUBHVR1prjnpnSzsLdi2kuq/6pfasNZNn+VTZlxR+ZV5fXZRwcOT - xTA+kT9JtL6fXQoV1dPR+ZGbEVctrgAfX2dGCCpOw85f6AqdWPB4rRUr4w3+nMhFVNQ+H78zMNpm - 5EOejB90Pw91tOLQrWDIGYB4aRSB0dFuBjT78e1v+00X5vVR4JY/MeydxqEhZ13gjU4GUjZ8mdFR - G6EsFSvxX4ah80fwECCIvggvzukGuLXueahfGZZYXz1ocH2sJbjfSQ/M54U2tIW2D4FTrS/kKNcq - msc8CH+f5xOTRXrXf40RIrPriW1eOzAowIDAS3uAVCnXnEXypx4a0+uJfBFjSr6lcIFl2BzwDnW2 - Q91D28mJ5OdYmK5XujzMmIVrYGkkW/mXTu16nuVP4nz9WKi5aDWOxIfFwzqQg0PYZsWhUcPrGcn+ - gDQvY+PLzIDpe1BR6t/kgcr3RIAyq+2Qf+5CsFpuyEqP72lGOeOr+hwVhgG5habohJQvpZv/B0PL - Jj4juqI+jfdCAKyt3ZH/vA8DLdbGla9Y4fzX4xZFq1NIAvS5+opcoIZ0tQPW+n0/P2Kvjb7wqooh - LUxvw6/XT2/Z0nc12y1/dHovowWL77VWiJ6VJzDX6RLKP/2L5meic2Vnh/DMqwnRW+fm0Oh21uQt - vn3ICnO0FLdjIl9zoULa3Z0yPAgmA+Pm6aLjfDQAtxq0hv56h1u+NB02uZY2CPSWR+aTZcAEuUcL - LtRV0YZv0YwqTpCl23gg1wOvDXPcmiN8HjQX96+mjOaXbWGpX+wTft+PUkSrgq8g6984pB6CAyWs - VinyblYwOo0nK/vzd0DhZ3gR+wwsD58NfvkUxX13B2wBw1Re25YjLpe2zlSq8p+f6u/vJ5nO6y5J - 4eP86tBtDY4R+zgUBtz8X6Q+8jaa5YcDwbeC561rxmdYvs4CIdbnhhREZv4j7Uq6leWZ7Q9yIJ2k - GCIgvQQFEWeAioBIm9D8+rs4zzv8ZnfoOusoJJXau3alqvquaNd8qz8rqDz0izr/PionHQctw+EP - SStR26SBu74IZHEYo2SiJb9K7S0YqeLqZ3Uy362LhPgneZt/QVN2qSKAIb3gk/GkwXwcfiKoKr9V - KctmykilrEkn/bL/pz8vDircP7wlu/vMpuuG99KGX9jIhePajf21QNHRL6h+fNZoOlh2BW5olZ71 - GO/O0gveDm346n3fPiDyVHgfona/p+rbe6RLNsomRBY30NNJy4IlG00ThPgrUSvW7a0K8mb/+UN6 - 9DQZcWbtyYi9SSV1L9qhp/0UxyB0NMQKAiGg0i1cQIYj79GR25czfTQeHJnm56HpeVHXVE05tPEL - rN7Uwun8V5eg2eWnf+dxbtr2Cn1VmtTZJ145XUZo+Oa9RtjBypiug+004LpVQt+BiNOZPnJP4ij5 - UXmwIKWu1U3IUgrHOwRXqnLaiADdmUGnFyKRctzw6vDUXhVWHzcjZelFmZBe2Ck9tWZZTkUk2fBU - 7md8hBuTDuedqYh/8S5mv2rPJsyjEN/FIFHFYX79pJWpDK9dhAivHZt1IRRxaOWmkaad0qrkw1FA - C09tbAnjFa3j3Y7hrGgzfjBSGYynhtOQcFRYrzOALSdbTz2wTwebupZSrePPiBuItj76Njd2zjya - pgmGnmf06Fj3dXGeiwDmy7b+1lNd+B2+/uEvNtuvnk7+PE0gfpIv1cYLQat3HWOUPB5X6ng5388D - f3bRcx/EZF7Gl8qy0IRwSc4fb+Qa3lk2vg41g6T/4ucd/42h8t2Z3ql6cGaGfirYzoPH3e+Kuu5B - J/CzzB5r95PnLH96+Lx4DHam8VhysddGEK7eESvlaR/MReW/QM3SH/mBxPSLZ+ke4sfV9NCm369i - Z2Xo0AsevqT20WG0MlVA5oeUxtUnQQNT2zFE3f6IjaqZg2XTv+BZ/XjvcmamlIzn3oNPZH7wfcyG - YNtfE8ZOV6lC9ab/80eoHiOGevF3KifuduEkpVFrei7bqvw9/WsFG5/FtpHs0QjHgwui+rxjO4n1 - 9buefZBGddyR4rCy6C8egeB3+9LHmzuUa3OWssOfPzxV9Xm7UmwTUNbBxunteQuIs10ZuF3OEj2e - r0k5vV6lDqQxK6zU13O5VvKjAB1xIsbZS1Q3PU2TzF2QbfkHw+H/9rO5Y9fbaYuqcophKyjpyh+1 - +tuoLrTnCZTmT6UydyxWajNegbZ4yKt5kjjLBEsluQMdPYZ2x01/WRRIrvD2YAi/qO7A0dFn3sXU - VJsBTZAUHWqgwvg8vZmelCRjUF4bgDUioLIl5jeS7udt1Rd6Lqdl78cHiseBGrbtpMP2WXLrq4j/ - rQcum+vffmD1c8+cv/hC3PR1sotVcZ3Od3SF667Z5hbwp56DD36BV8UyDq9rs67+ERi+lx2DHL5u - t8WbuQz9N7dpMHdd2W96E+J36Int/YUp11NhXWF7X4zv3WudnpDEcJSvNeGaOdv0xsWDuNUN+g6z - b1rHXhvCxTJcqixcvFXhNwPa8Y+dx0rOseeZLPCgophgy+WNoMn4g4ZwfrOxvAsaZ52rOkKZr5f0 - T2+Yxjiz0Vt+BR4IWxcNwZNfUgRGRKQwOa5MeTgtaHf43Kh9q/p1CSY7Ez97Vsb2pFzQsNk/Iq+X - hq29mZTznm1FiCxmIMuO/6SD7wwybMGrN8ez57Bqug8hqTQGq3wJ5cxclquUGBeE3zzRVXbTg+Be - VBT/xdvUvC0KfHViYXMqKmd+lK8ONv+I7dO6/vkfG9LCuXkfnb+WiyurNRyD/EovXd8GPS4bH3qT - XggxGR5Rk44uMA/1TtB2/vmW+SV/n6lF5FPPLMuO+Ttf3qH4XNUheLoaPO3DHb/R61Yy/APZILAx - hz3BUJypPJwX5MTegzS3ognIZ39KQHSPH+8wTqxKnsr+CruTFW5dCr7qOnoDgOdb120/THXLT2bS - KSlGaqy3VzD96Y2OBiP5XQmL5vglhWjLL2Ira2RnwrvRg+nxmrGm5Emw8VtBqmnm4FA+nMuhrcpY - 6okW0njjv8uf3vinX2353JSYqpSgnfuzPLF0P2jsuEZByW664ehuXMpJhVZGyvSdNz341i/H6hDC - N7NEenJXOeD5dm+D+ySUOpfxtG7rFwNVGJ2+LrqkLpPAZYj+XAMnvReVQyVRTdziVeoEVemstcwN - 0qnUBHzniqEctvws7IMz6zFdHQVLoZLlL79CtfRXrhNcT66UdYvmHdRZX6dWSSbki5qH7/W8rpPv - DMpB3bfBnz6tbvqDAPXubWHt4fnoz/8jdJCv2NrHjsOzOeQo+3iCN/H6A62JuAvhZe1ErD2nul9e - c/sCl7Dapt/m6RIOXviXryDcX37qUV9kqVa7Gz0vwq+f8t9IYItfqbWd9/lP37p63wK7jDD9wztJ - f1Q+mdk4Ktf2eFQAmdJI1efPLdstXy7+f64UcP/7SkH5qUV6to5/ErYQistU6djgG6XkGTYmUMtJ - STVfkVWK/dEDtrghqpiwD2a1v9jQHtMfOfCvMJhZasewTLVOOmdP1Ul89iFcrrcUWzTg1ClpoELW - 2pypoddnZ2YeayUJdhhSlemLdD00cQU732zo+XZXU7o3563x7hDj67E89YyRSbZIbySmuqhpKfvt - vyZ4i+zT26t/rlPbdlc4lZ8Oa/B6pu3oLFeQzpFDne+pLRcpmgsp+66yJ91K3M96+nlJLqkX7MbO - s+wvxbSTRBWZWKPApNPdNAu05wuZBupVUedvEPhov7thj66q45Bt7iTyFsUnh2hJ0/nmigDG6XvD - j6p994z47CPI6s9ML7GQlMsVXvnBPKtfIu4O3LqKs+fDwIkUn5/FsZ9Vtdfhcqk6Gh3ZY8rRwJyk - XZ+v9H46nXrGfCzbKA3cknk3FuUyfNdCGjPhRlMOxn5sYjGBk6DVNAAtc7hb2y+wFKcGnwoOnOFq - /gooZdvH5qsUguUeWhn4/r71uOrhlm06pjmyh9/eEyVXdZiLAiLsorNOhil3nfXIFLm0/R1bVbvv - 11dbLf/2x5aX4zq9SEAkXc0W6hvz1WFM+ylAXjchPrVh3bPb+0m39633vv3ecWZ/cQEW5+6TXWv5 - 6RLtxAoECTfYOuu3kmGul1qi2eeH73yj9NykVjVUz2ZH76xlB0tWRD4oyveFj/2ndLjb5SLC2pYC - 4cXXtycvaxIk9X1LqT/tQ2eoL6UA56ThicRhs1x5aRGkYm4X+ixOcTDfZT2EUI4D7D8y2+Fxfowl - Tyfw9/7qHBS3K3oVL50aVgPpZM/CS8o/4Q9fXse25CXdauA0DAl9d4K7snr6yaTwwkhY17eQaI7X - BATndMLh51A5zFsfu3/2m+3kU88uCdZR9ZgRvZz5Q0qf4W0Hho0UbHp7OWDXIeFgLFyVBl5QpqPx - yXTgXLfC3hiScrQqtQNMtJCQ048JmgzJkaR7jkb2yr4OllvbT+BdDZPUZ2Xr7cGPFSw36HGgmyeV - 72Ebfc60h62kMlJ5zW12IGlOSiCPUrR+IlERv1iesJOLTjqd2s8iCbxl02f8uJaLcrpmsJuYD42H - JOuX34K6f+8bpae3SurxKEuG064Y4zFNuTHIrshJp4i+mVgvWVojgvz+q+K3+5Yd9qztJ6QTzcWP - 7XxNx0rpgDqahM3i7qrs5f0l0udRNluj2Xc6H5tPJX2Ct43lwt47q6mUoqSebZlMvfFBLHNsB6gy - 4Uzd/fgIZvN1USQ2CzJsfo/Kuvi6aUO8xjZOYzqq873bZ+An9sO7cUzucN9946P8eooxHgld189D - 0kDjCEOq2if9kj7yWuoUuaFPbtmns7M/67AKcoTxK9JUhh8DBYb1OGBVfZG0edRnWUhJRL0mikV1 - dkvBhk3+wec9LZzFe30LaVtPHNZZsk6hc9fR9n00/V5uiF1DcweM9ZRJK8d5yfm6bEvW2p2p1upz - uYzRPYJb4FF89yS+XJScJiD4yYpN5iuiKYtuITj6q6XaTVyc5ZnFJig8F1BNlG79jLXqKs2tWGNn - 0ju0VvY5hu15sXFLC3VSFMMDmk4cxuzBc5jcurno4L54ar8drxyVSAnFDGkj9WzAPXksJwB24h7U - Yme5/2rxLEoxYc/YWAIj5RNzItIQuRwNJf+zck+mkIXOAYsa1T5x1r158KB9CxqNv8diZftJWKBi - HhH1E2nulyYPE8Tg8oVVp3VLfjLVAv0MZsUysS7OnK26Cfg6WDg4f3ZoLR9tDeMu3FP1KOkrXxl2 - BAErGzgxpdxhNTlXpC1wpOpteDrL9y56EBq4wPhLpZUk2mWSGtU08EvqHLVfUcQhtRRiGgXCpedo - pDJQ5GcTh7u5DdbP4u1gLIChyejtnRmHZgbN7V5Qc6Y8mjf/C4YvfejROXLBktpuDJ1p6FT99FRd - nngvwyPUVIrZ8bN2sTb6oM2pQY+LCGh+dOVOajP1iE9fq0kn/xaaYC7XlGqqQMvl6SIAhi1PHqfx - U7/O+TOB3iSGt08KP+Xf9B5DUQc19tj+4bCCSBt4JOaHyrpv9zx9fjnp1xQDYeYLRbVySjK0+Xts - +LqOlmfmm5JcxRyWlSxCDK98REndX0usqUOZEqGcO2T7TxU/Q8VU18QUBsk6kJ7cD3m48spXD6Uk - zQN6KzhQx2CeX9Li3HyCeuSmzIeYLoyZeMPX3tqvC5VmQdpN3AdrnaaknESdGOrrb0dN5y6gZb5N - oXQ67VR8nX9dyv75x8inL3rVhRz94Yfk3A8BfhwPpsNbk1aL+Byn9OJGl5ULQZVBr8weK5+nuJV1 - QAdZXc5UCzTssM/TZQfa92pTObuOzmJGEYfat6hRvPmvYd9IOsraRsV3X9fX6bfXKsksZwmbSlui - 9Zj5zWF7Pxx4gZqu9vMbShKRNSrvGXNl6pAArC9roPbGF6YmDF4gcPFjw/PM4XaDHEm5XWN8NgYn - nQNDDqXXQfKoz7Pcul77upPiw6uhttFo5fxQJAG+Jlypu+yrYF4SQ4MuaxTyovvVWQNJTNDf+96l - 7YrNSp8C/PEjAyIe1cP504Be2T32lO9JXS4/TIDP3z1WP+8CTcYx96RfsJ883pP4foEh5YDVphBb - xffjDDu/d+HA9AcyYfDTVZx1H0bz/iDSRI7OFLEwbLeU180f/NJ1zY+CNOcj503dTUrXsPE12EV7 - ngjXI+0HhCgD1n62PEFpVUQO4fOFYlPjsMI8z8E4fLIabMe5eesw+MFSxCcCk8R96N/z0y/TK9Lv - ebhQpXmlKTPSY4zuJwjoKTF/6vJzTpX08lqR3h+7GM1W5TRwGWlN5dDwtnqbcwPp19oT9NTvfd/h - x1YV/hLx3/4tXtq94J7JMykfYdX37/spB9KlGtZfh2Vdsnfqbb1ibXw7prkz/WqRAAjyi8rf3RU1 - p+NKULL4Pfb29xdal1LbwXivGvoyn3wwVS+/ELf1pRteqlPlMaFEWOVNleFKnTkSgwb0eHrj8y9Z - +1mb1Qmua3PD9wiskhFZyYM0E070GmUxGoT7RGCwuY6a3hmhZXX1BX7ka9PX0rbrco4XUTLmPvH4 - 37VWR9GaYtF6yIu3fC5nNOy2Rvrm7nGnzwqhdMKS4kKG+BeJdj/kkLA8mOBdwju9pl8D8ZqMGTDT - QvWWHlXpnPt7D2DHjtRAa46m6rKP//wTWZleCf74Otj+W8X4dr45g1OEV/goSu6h96Psl4vHchAl - 3R47T53vp8Pp8QJH+LoYT9UV8bFrXJEeL2+Klb0eTKV1HKBvExn/4cnynVwN7fh+ovqanPtFomoC - t6p/EMFWnv20/4oyOkhMi9Unj4KZhBQAa7inevUYymE0glBKG/9CdctD6nI6Q/cPr60r1vqJuT4q - cA/emXxfvYSmiuviw6UW79SoQzadCow5WLTiSC1qWCvzIbILtJdPVPHRHIxJ7BKUyMKB3kj7Qf/w - vQQ3pH7TWOV81vYLqq/fHZF8L0zX9GNXEC45h+/b+R0mJi8g9dIfPoYf35keKGXg0yw8dhI/LJfi - 1wr/7P/hfMd11WSDA8GOQno8xEbAMGOdo+X3uHnUsbWeeUUWA36CbG/O+aGfjvt3BRG+rp4Y33oU - B89diJg2Nqme8mU5WPyuFs1awPQyn1tnZo0sQrr6Wjxg+KicijTfSZt/oA/DU4N2AjuHp/46UFtQ - GWelii9Kr6cde9JduztE2HsVPI1zh29DdEOc+V1l5M9tQf/wb34l+SQFJ21Pk180oH6LX6ASnww2 - j/w+WJflY0sbn6WXLFfU2frpRMrCKCIi/fQq+bOn4xEP1GPfLlpV8Waj1yO4YSO+nBzuekgzdFn8 - Er+39ZjV/mGL39QZsT1xdb+0Z8lGm30QsR/5lJ7PUoce3nKjp2zXOcPE9xXohyzG3sbX++390LV6 - 6FST/COazxq/IK49JhRflGhdRv/igbxfj/RI7vV25dDyRHk/H7Ftv379sn+0OsRrYnuzfN+j9TlQ - BtHfYaX6h97WEWuVDx/C37wh3c/qtFxHHfaLGxCIJcVpLCNhxINDdGrx10ZdOT9x0fXcEXw8DanT - 9f4wQA7DQpD5mLZRxqMJfXIoqNpyY7rmoZ3BbWQsarBWl67MlykQzDuZelLnOPNzlBVpNfk9tQxP - TbmhmDL0Z7+WXA1oBcslGyG8e5NpwjqQ83knQUFmD41ZqHINFWrQtXOJnXTeZmTeZwLa8b3Hmx4Q - MC5f6tJqsnuP70zL4f7xTd/M8aO5GA7p7EWX0q+z3/4/c6iVsBP87rqCZS810ZrVkisqZgtYEyW2 - p26eiXDkz1eP8+62Qxtc5Wjjg/jkBIv6D+/u4zPFqm6enOm0Eyq0F/yZPr+HQR057eIDhRfFf+tD - tvOKNr0Fm2N8TpnNX0q7RLM8iVv2wWrt80XCa6IQ0Y8eaJrd5R9+YCMNwg1vDfIPz7pz2JVUKVR/ - u3J6ou7HzIPp5zUMXA6nhQyxpKhTbt08KCOXeOtarOoaRFr4T1/wlzztm6fK6dK60xmscPDtF5VO - mqTaKtm6Cg7BGllvgrb18YQt/hwrZIUQDUa7CSA1+mc/wYxYrOlkKYe6ZReU5e+ACKe3vvLn54UD - 62tRbA5JVo5beQ70zORSc/L8gBmNNAQ/OdhY7zEOpn3D6iDe7ou3qtfCmdhfHkOSM0ccbfbLgqQO - 4E/CjC9/+seadjtknH436m36AUsgkqX8Bin9i09np91dQT2bMn5otFdHkytE1F5POWEnu+0Jo8sd - 2vCM7Ld4dJajJ4PO2O+JZB1rNGerZ0KoZzPZ778BWi5cL0BEYSDrrIrrekj5DEjbBdg+VGnPysjk - UDBbGvUC47ySE9sR2J6PoC1+mk9EJnAqyw5jOfe283X14BI/Dvh04GjaQbZvkHPRNQ+Sl9U3DRwL - SC71gs1tdO98vviitPkDvOlv6bjxETFdu6e3F32hJ7v3z5UOJcbkUENf/uk7qF4DnjpsWquzeRgB - Lrr7ojpDW3UJvC1p6Dg3egxkM1jb291Gd3ctKJYE2WGnMMyg1t9HjO/DOeU+t8iGzzPu8fUNS7Ce - blGHWJtZ8OuKjiV/fj4YSEZKyN6xq220vOpDXB0Gqkv62o9P8ybDpvf9i7+W/byA9GcPviHt0o2v - VeKnUXSStRwbTFfzlwPzWkZv04eCMRLTBp5ccqR4098mv+t2cH2svfcbdoM6hc5bRwLv2Pi04ev6 - 45P6j+/iVBm7cv6LF6Ph1OItnnLI+0pqeK3ChM1EPpbzSU8aCe7Rl4zG0KdUvB0ikB9KR7g+Rf2i - nJIX1HaoUUv4qT2PhfQKomrf8TFww5J23bhDkVgb1JLsJF1AG7eSqWqhymFp+qkzag5dwNOovpyu - wXTISYyMb/6kp7qjW6Pgwoe9bnvYtvJondhfE4MphAcyGfOizky260SnDN5Ueei0H73dXEnf/J1i - Cz+OPcP+mgTUV9XR17mu0zF/+qHUs4VEtbLm11kS5Qb6BBXYkit35eTnngFJjTusRYKyclPKZRB8 - JwErn9OxZ/74deFNTxpcrDoY/ceqgXvY7ajRs7Bu8YO+3bK+/Ok5warvwYc0E09UTuZTwF3hVUC5 - qhXVs0Qsu5cYdui6Xy+kZee8n+ORKlBn5Rsbb8NY/+nJ5qUqaGK/jJ5buL0AfPdwyS9rcD/ux0xG - eeNwJD/YSzopLXuVEnBdbz8XZb86ShxD/WHPVH9U936VjSPzp1eS9Dd56kSLcPnTb7Er9HYwcbHr - ioh/PGnmL+VKPw9JRynz8DzuU1r9xHZlhqBZMWHS9FBSho0HGAP63fRXpWc57XKF40mjpEsYTZ2T - WBv+/Cu2JbdU55U+RTjzz9Eb7lsXJK/Gxd9nrKzmvI4h3ilo48P4ef3k6TRSK0HIucfUlZRwZY1q - G1wjm+ZmP2bfDA+xhuUtuBgXI+kX7RkzYm5XmAbVZ3Eoc+462NaDPorv0fmzd/S7awpV2mxQWUUS - YjQZDMLH34iD4fxVOag/Wobf8iCmK0p7gItwP9Kjzdrq2oq2DcEFA/6LpyfdIBEc/QxR2ZgXZ9UV - PoGzTyOPOWTEmV/PnoFQTgJqNRdD/cM3BLERUc2KrWAd78hDijN5+MKortoOB/ISo+818Vh0j9DG - v3Vkf5eJfOZzq67oRRXITqxA5qqXg59rOjJ60ftKzVII+lXfMz786fNW1b7LYeFjDfgqJPhN8T1o - Nr0A+TTTcZLntjNEy9z949O31/tS0ooIMVDeUQhi09pZit9HgFGqtsGzvFeyGx6AfG5ehPwas+eU - /Jeg/LZLqeo882Dd+AD8xetxz5/66e993z6tvdD13PTzHE0FCvQNsGneLLS8vmcGdiA9sfZWj+p0 - hKyATQ/HenOWA3a+XBK0+b+NL6s9e9X8BaKH6FHrL7/wh1/SIfZxglcFbfHHDlhtCTc9Le97t7wD - TPyiYiUT1YAZHksN99SX/76vnAvhsgibfeDXhk9r130B9rrpbXhEnHq+TRG0dnWnGkJ1MJ70pPuL - jygezk1KT9e0AmfIMH7uEQmW42jmIETvizd8zDwdbs+Ckfb3StjilUs6IcfV4ddenjSKiiaYEr8b - QK8OGXaXY9Av3MfWxb/ned+FRzk3clMAuRl3sp+qZZ2hmjmYS878pzcSX5fNP70MW/n1pv7TdzY8 - p1YwuZt+41YgccHOay6sGjA/L+cAe5ZLjWctB8xcWD6ixlnc+Oo5HfbnxobHcANPXAW2X5F61f70 - JK86NGKw/p2nYD6w9HSRzJX2N6cBbeoiaokhn66ZV0ag1TKiRyqcS2rtmwWO03YF93Dq+8kfa0WK - nMdEzSP/Dpapv3ZA7cj15t9IUxqQyIU/vvGnXy+bfYH4Kgrs7sdDumrVwgG5ne70yBVVQP/41MZv - sSNcLIcxqSn+6SdbPicOJq/bvRAIygvLtBP6LnsHLkivif0PXztuJ6LH6ffFrrvzVf69W2t4iEyC - H7HBrZNUKplkHoyOSNdx6Nfn8OPAPJw6moQfwSFBu/dRet1V1P3tVGcoXHcSleFleGspd+lau7BD - 97pxcTIqyzq+Ha1G8l72sbzlU7hNL4R9fGuJeLLcgMafSIeMDh9PeH8sdeqHCyeR19X4D6++Taeh - bxIDNSv8Srf80oC+qTVS9/vuEPUbXkM8O8fksFgHdfmxu+Hwe9o5NU/vGs0efcaHB808rJaynTIe - bnP4FZnnwTXog9mjt0Qq8MfDyZa/4lLbTcRNb/GCg+KiycWSfMiNt4T/9N85ZwtPsvartfGFTz9J - u3cMf/rk+CyOJVfelAYY9nOiz+volouj/0y0jziDzFbuocXy/UHa8htU0R5myYeNr0sNDlTq+kuJ - 5loSBBjpaaJKXbfq+rvSCmBorvil6e7KHUezACnkQ6zKe86Z9ufc/Ps9j62ce7mU22CmUt+/yWzs - f+osKbsEIiedsLq7m+o/vjo+Wx0bVuarPEavEGweJ/RfvBMRe4A6XQjZbm/3U314ANiUXPDJzT7p - pBwur3/5vuPmvyebQTm4BpPieDtvK5nOGgwj3ZEdksPgn34j3Ib8T79J//RGlAw7Cf/5s2EujlfY - 9Fb8hlJbNzyJkdRZR3yK8n2/vuk7/uNX9GyqkcpnXh/96Vn0Eil8OblMI0ObHY/0ojlBueyMWwir - oETYtc1RXWtrFg+bHkRdoe/S5TbUjPRnj9HtmKM5f8YRzKqNvUa2nU3/+IjSpn8SIYoTtbjTKJZa - u75j01ae5brZG3wtquJtv9Z+ww8kOMaJ/uWDlvqUAKzF0G7xZ6v2gvqtYDUNz5sZ1XW4lyUI4rVK - dew46bufxGcZAht5O0/c9IkBmUdF0h8fnz5NlXPm8zAycOz1G+Evq1iuB7nLwfCmE71f1qTf9t+W - PIF/Uzl+HVLyh0/97cti2TQzNB/VXQVb/E7+9Jqpo6EI8ztwqOX9nuoi1Aw5/H+uFPD/+0pBge4H - ql8VJpg/WtyJP4/tSKg/rWBFJ+KBXj5Neqb3UZ0/7vcqeXzAegif2HJaPpiDpGMU6p2UV7pcznYD - /KjNVNunesCjSTdRfHQdnPS3e8n91DZDcqgE1H0fLul69GRNKtd8wB62nHTV9lkGx1jE3lSbpTOX - sZDDePxG+M2B4Mz5+RzBw8kMGp1LxWEKhpGlybseqSsd8TZlzeTg6MU+fkr6DpG1NRfwH9yX3B35 - Eqz5K1Ak7jxw2H2Vc9Acvx8PXmwnkX1d1uXyXD47SeSimhQjJekSs4oPXMGx9PU+2gF5mrYCbs6s - WJeDAo2l6m+zk9ucIMdg0bRwxgSxcLnilH0HPVeePkRaNPZEo/aelyNDNQ+uAvPE7u6GyyUK3jJ0 - BX1j6x63Pf2rUvpehR+9DWmJFoHeTOnUnh36eH0Qmr/sKKN7fLjjMyn25cQogS5NL1OmiRRVzkCS - NEH3Y+0Rwilpv5W02VIYooLMypNx5vB9iWAMFwcbcnxZuYq2Fcj9LcNqMvdoPMtejEIeIuzcxlvK - twW1QYNFxWc+GMplbeVJug0Q4Niuzogt46mQbtrnTeLs8g6GZgmIxCvVSt+HOna4ZS8zEv/0Fk/4 - fN8O/16RIgWrnhDGMtp02Ucw/e3Xn71sVbWBC6esOGLjUfklNx4tGybPP+L396z3XHx9CdCi5k59 - yQqD+XUSGHD1iKFy0d8QU73QDpi1Qli+zlFPEsY24XQRFRpADD1hA5OIj+l1ouehH9Xl63Ku1Hzy - jL6xJwbL62kBtKVRYPzj9ZQ5dOKytZdGVB0ZKSXCQzIh+nk+dbxKddgjiJGErohiVZveJQML9iFy - hwtNGE0rOV6SK0l5Cq63/2kPdboZuQ3D8LzjREt+KSdcmgKefXmkenuXe04NnATYphLo27iKaMFl - NwGIzBtbB+a3bg1SCGzrTW8y1YN17bcq0YN0wR7unutyb6IdPPJax0fOmNOlG49XqXgJM1HnS1eu - /ecnQ3uWSsKIzcOZX8k0SZox6Th1YGts+w0Xadz7Fr3ZRRywzdsVAXPzjE9nW3AoYWsGtvXwZsfb - UkAHpgPjzG6N5b94nd5O5oLYMz/qlIvicDeny8T2vC+3/ZzK9SdQF4YPG5O+J5+eOfVsDT5aCXUV - Tw4WOdwGKYijha8/w+s5VsobaPUmwX7Glf3kNTcb2o8cY285tMHs54cC2BEEag/mSZ2lXh0kWbND - 0s/yMWW1h85Jpfw9eCQwHIe1Dg9BlL7ek/57nseO7uDonBKsfyAol8GSONj8E8bP5VCuzJPkIGX9 - j2LtZKZcunY6+HVJMb7vjYA1DwcATOsGq7a2T9cxr0VwA3VHTQacnn15W5WQsejYwhKUq0R1GbRf - oVEtl0yVtsXPhE/YsOT7lbl1iOZckUQhnbCCLxQtGYo66VSyDr7dLydnkfdqjrrx9qKn8/7bsw// - TLZGdwY90vel5JigWaD/Fhdvyhk1YD9EqKD+dQVOL16p1jDCDjgpY3BYXH5ourzyEGbMG/QEt9Jh - xO46SGNiOvQC44Smz5vRJe3wPGNzO+/Lj+M0oM4T42t6psHsfQ6dSKzFxHiIYsQVXpSgXeImWO1a - Gw26tzXmHvYpxaNVO0tDjrHUO8qV2tddnS7ecH9Jdy+NPSlbiTMXj7gG0YGGRqTPA66/t9tM5Uin - TlQoaDLOuSjWi1/Qy7ReSsYoTUFIP7NFQ/TU+0m4iQyc5k7GuqeFJWuIiQKTfHM96YCGYNKjZwWn - w8n24H2Y03kIJ0U6TxH1Zs64BOywnxQorG7B2hg/EOPZTQ5TfrJp1BzlfgiejQffc/PDwWo+1UWs - 5ViCa9pjE1WOuvK7rVGwzL8ofgRGyjlfe4eeaa9gmSZKOR3kKyeJUdXQ+6DTfumV4xWINZk0/mhD - OWooMWGQFd9bc7Uvl1a1YkBjOlLbGnQ0qYM0AG/sVq95Se+gNbZbpc3rXlNr34rO8ngrnvTUU9UT - aXDfGpVKMST2TiUSurgBR/pWA8FqRXo05hXNpqI3qA3OJT3Xp7Hf9rMBbbE17LW/Fq3zkGj/8FwP - nSPiBMgLCfVRiU/To+zXfE0AdrhK8FsU7+sCYu5LS/VTsXMMVcSdrv3WGK6OsEy+N3W+NrUGh8Ht - 8PWzknUNBdRI5K0YRHK+3sqqmifAI690GjbaNiiDDDb0uX2h+gfWfnLzvJLaqHjgZ5meSyZYTRc+ - D4HBj1FogmniDQF+vPmigTvsnY2fMBBltY+TZap6LrE6F9zzuqPv99bw/6sImfRmfRFfHzwN2pzG - DfrzJ3/nhe8eSwaC1YsefwUf8Ut0Vf7wiBpaNPczo1VXINXVoNZLbtNuNwAH+3TNqZMH4br+SnqF - dtl/sBH6E1pSyzb/8MoTyaIh/s8f/1a2wQmW9Z61j3ouNZbxo6rND+XMPTRTGmsaUryup7XP3siD - n8d32PlNR8QK46CALvx0jE9pk87dS5ukY1lg+u6VeF3b4mdL8rpcqPzOy2BBSA6l7TwRYbJ2wXy1 - 50xaCbf38uzIqSOdtZeYuq2NM5OT1ekcPF248a8rIdm96+fN3lAz2Cm2er8p6aCKCTACIHy8m3m6 - xNJLBHPEsidY3hmxpuJ14Fwinhz8qVPpHj18mPe/kyf5POm/71M8gWQ8GmorlwdaXOVdwe1QZlie - SFH+zCb0JUW42lh1HbfnpoWt4OQ2Cna8qlQn/23GMN1+DkEgyv1iq2+Cdkwde91gnhx6RqCgazC8 - 8dYITuX2h9yGcb6H1JtLK5gyFxJpex8v0pabwzbR5EPpFcRbmpSUU56HpuQZH55eHBr0C+k/mrTx - J7Lenq4zWXw+SRcyfLATCMVKJvPZiU9nVrEpiE7Q4s+lPgguQz3Wbb/9hpcNdKwQ4vshIusKML+k - KZ5kHAfHN5pui6xLYlQ33rz5301oiKAu4pKIflj3a5mJHJjXUaHX7fkWtmkGCKv5Q807M6rDYTVi - cD4eRzGV43JJrM5DpL5fyI4hKZofy0OG29m94YtbHFXmFLEdJLdapbZIqqBr4k8i6TFrUms8pc5y - KYoOpP1WBbNc+3LuZN+W9mR3w0bm+um6Q3OI+tMSeMz5ZKnTxTJDcM/zjqZb4z3Wuns1WtvX3tu3 - jp6SW/vW4HAhW+PhTeUS2ssgDV/To4oTTM6Kv4EoBmqUEaE+vNC0l5YMrq/o5aXaO0oJO0kRLCHV - 8BktO0Qu8j2Er2hQcruhr7N+D78IDV/bw3LklWjuet+G29t5YefmKoirtiqiC7p0m70d1oG1cYfm - 5Lk1qn2O64JiSYZS/h3oeeX2KUF+k0A35aE3x1meLrMhVUDXTsFmK7vqwNyRBpda7an36e2A9VvP - hJ+75PRk9qeV29bzjz/RI7HmfviwmSbW+E4IZa5COi0jMsFyYUf9WOXSOa2+NfygeFHcOnrAL/3m - 3w3lSV7vAlaqt1mCOn+KaNrFn35tqFj8+37XKGR1i18AdiGTkMNLtlJmn2INNv6HH1lnBdMFwt1/ - /CrAuJ8uryaE+uxX2Hy0WzxxXzX03jrbpP6DLZf6w9kwXt43slOSXbmqt3DrCrH42H6dhHRZs2eG - 8u7KY1k58P1yxrYA59NuxielEnrq/DITzr/54C3DwwsWsrIEkrN6pu7XmZ3lk7bLH355vBZd+m7q - 8p3k9DuOBqspOeTxVrZ4ID/Sl0pewXTP/g8AAP//pF3JtrI8s74gBtJJkiGdiIAJAiLOABEBFekC - 5OrPYr/f8J+doWtvpUlST1NJlaojQ5edCayxFjKzy0t4O2kJ+cN/wfgoAQh97UOd+Stl1G8ADzVF - SOhjqnb9oI2I/5t/5PCQmu3UFMXwHiwXer9cYL18HZNDm14gOofGcC5eeQC/3Lel+kMgxvw9ghls - zzOxOUfunJ75EhZ+uSMJrsZ6m0+tEt/iy6YPdSC539yBr6fPY7Q4z+w3rEMHh2W8UTsuRndV7g8T - pMqgYepXSkhHI4ihOSFMCR6PQGQ/e1agWlRU45dLuL3vAl6yeqC6cfPrWSc/B2bLzybmOux79jOV - CgYn80nsSeCyxfisgeJ9MNvW2ydcd7h1wBa/6Dl7TsZSHGbxj89QK2WvcD0cbhy4eTGm2mNW3eU1 - zR9IbhojqiTx/Q8MLg+Ti+VgUG2n6LJLPMNtvWK+4JV+dXxDhZEO79Roy0e/POVDDD+3taaOq3/Y - p0lfHSIHs6PP7mVlq6ffPv/i/6GL4n4NpKpRvHlYib6MkzFaimKhv/WH4NsL+aBQffjyjjsM0rLq - 54YxBYS+8SH6fMOGsB8NDk3915+k2SSZ+Hd/5/dAyVNa3vV4ru4TvN6miDjOeZ+tVnqT4eNiGMSc - haMx3Jqo/dMn1CiNvmeJFxbQto86PX0eWTa3ORiU6l4tZIsPIePVOwfLRpaoczSP7rqHdg6sgtjU - bMCXjdXdb0AcGRmeEuWRrXyG0n3yYOF2v5O7LJmZICNYT3iVw7Fef26hQ/j9dXiopcUYN36qSGu0 - TDLtejBu/OA/vRINfDZ9pNgGWzwjdlCes/lPf36Z1BJ9W2+txz0w1OQVU1XT38ZaWacVdL0fbX5C - BmZpO+XLNcOdXDp3AeuTFOWf3qLHD0/YEhcXDA1zF5FzWE/1z6uWGb52+oqlfbxZpNNzgrjSRHI6 - XB/uKsOyBGGbpzQyVGis/e0VwPqnjpPYjWU9+081Qdll79CzWOyMWT6REmqTg4lxi4qanQIYQOjH - r2nnV2lG99nkg2qaZ3Lf2cda0s+lijZ+Rx5g5dg6xZr1L56bSrt3lxgeeJTqGZ7mSGmMNYXxCrnB - rYn6LI1wPnnlDDa+Su2zN/aUOh8R7ou7QNXOqsD41eYImYF/oKp6vvX/9MIf/+P48y9jnGmpsOne - jHqn21pPPKcOSFROHCHScugFrus7+NBck2rZN6j/ve/meuXJ0VWX8G8+g1KxRWLzW8qf03MF7KLi - Rk73MzTaXbDmsIvVK7EsoGfLI/N5xEViSv74Stst2Qeo5fggmGNtPxMoqFCR7zO1XpnmzsOBlSgt - TZ3ip9Zl9HrOGuhfwpn+8ak58iMewSMYMK331n9+V3bA6haPL8Zs3q4TvEzTi1rCGmSifb/NUDEy - RuxQ24F10/NgORCbHMzxY7A6X0VoVJ1NQjfZGWyJVxPuovxGzrE7hUv0fcM/PJ32tz10B+aSGYwW - ionOtDOQCj40kfy7y5Q8gcXY4Qdz6GmmQE7JcKqZpsIBHlfJIId6iBlDl30Oj+3NpPbVGUM6iBMH - 007U8bhdj73WVYHOzVLI33iuioEseLdPl3/+xirDtoKyhMcp0QIczvCndDBQ644Y69epV3O+wT+/ - YDsl6mbN5aTGMC0tfeO3aiYSuRogve4wNaKj54pHaDjw/ag+5LD6sbtklswBOXL3WBl+Ut2cEbLh - 63LdUexxCCxPKg9waXbWxLVrHnZYu+VQ340RRuUyspUjtgczAtUtxQ+M6ePFNvR8yFMrkDQmzJaZ - Q4ncEdWV3divz6MmowLoiBxT2c/47X7R5l9teLFk3RZP//QNtWC6blUkWgyPyeNA8vR9qUWoQ/jP - j0wDzgolXr1AmCqThgX/+85WKVAb9KeX1D7XwZJbvgz//KE4GqLwz29CUzZeyCXJ1XA+7VDyL96r - h9ct3PiyhbyPx+jloLyyRTscVeDGg0St9Ve6c7tmE/xGx44Y3OvEptCrPrDKvoDaBsSuELPFQ5t/ - MM2VY4QbnvmA66z7tPFNV1Q744O28Zm+O24Kh5PUrmCL71T7nFd31SKjRIfi6+JV1/x+Yly7wt0M - nhjqNGBreqo8WJ/siQb9YQpH/j7gf/pbMdNjOOi6wIOTx3HTzy26cEnsi6P4njZT/bon/ey5bQc3 - v5WS8+3LfmXqT9DzOZ4Q22iNtcq0CXJ7mExw87eEY6PosBOUaFqOvpY1IbPxP36KOWb3mx+3wvgW - XWhifbDB/xbWwclMbeKe/TpcwOCK8Pu7/ogm08Wd3uavgXNYadS8NFlIExGk0PyWJr2ETtnP/kVQ - ISHTbyouS28IbmzlcP/69NQom8JY//SQfj1vXYEHESxn1UqgvIjjxEb+EU5tyemQCqNHnHf5zuho - pDEkivmdlMP0dZctnkHzoR/IGVy8jMcBsuGOeDeKjYkLlzlrCmCMwZG6aVnVy7m6DGDDfxIN0jeb - LuozBo7I7TFQgpIxmbt3AAR7Su0THtlMHLuAoByaf/4cpc7Eg02/0E2/bOtthjDPXYvaUHa3LVN7 - CN6NNBNHrmO2Rp5Tgh3vXYkqnHkwGMrJAq5c7/7up1/yTJahhXYW9aaH3y/GJfXh5gf96VEmiccp - //P3iepEZs/zJZkAibjfJMaCVq9JUCjK33gVxrkHm5+kQppd8QRuYlWz10OBYONP1BSie7ZYCR7+ - +C7R7msZMnpbMUpEz974qFmLxTtuYCftigkW9SWbY7KVjL9XC+YS5RHOYBd04Ju3TxLYvzmbX0Ju - we9LeVIjaot+FVu7hf1RemyFzg8Gfz22Drgl4EbVy0NkY9aMH/jr14SQ+Lc1wvypM8xgeMRCXjds - y69EymWrimlpv4oNm1+NvpJT0AM71P0C4p6HygW323gP4RzapY+Gl5Rg4SjL4Vi9Ru/Pb5zk34vr - /+Vj9kUm0I1vhev6K3noWrw8zYlcA1Z+aAdE2eKJyav3evUUXYHDrvOoluRluP75lUOXnicJcxeX - TWOKwQXzFclUtTEWu7lDGD5gRo1+5wBh87OBrHsz8SxPNcTs5DhQYymmRLkfQnHQXh60Hzdt2np/ - ZMPlEnH7zQ8helSTfj7sVYiuz1NBNL9UmfCSDhjOwvU08e5yMuaQqR7k4n1DMTn12WBXpQi7QCox - ct8To+iy5CC7uSei6Y/IYNbWePd9OK7T3rGdcPbabQu/rrmUPNZ7P19OagQjRSs3/jZmS5kmE4Tf - viPeV5gB/dNbNWf3G9+f67q7rwUMHfYh7sPWs3/5pTF1XGpt/Iqt/XaqfkzexOKLoF+WeUiA8Uht - aoC94677T5nDFqopucvFl62Hw5MDS3eziLoLtJrfM5LA5zsFuPcyATD5d5kgPO4HGpW20s9DlpWw - PaoPqgv9yAZnd42gk2+NLEwNZcvnOXDA1FOLkKTYg0FXXg7sxluB+RK17izGCoR6rbqYS+4OmHsr - +0C/yd+TzMO+//zxxWe6Amo1Rsn+/P0//4Aej/qlp8WJ2fteeqZ4O/hcM2MHy315cPb47thduEqB - /fnL30wC+4juNF9VCJ9qgAi+LL27Fg8Nolm4nab1xfA/fY78y2Umyeu9M1b7flvhZ//tMfesIPi+ - 9zSGpeKIW6O3qztXz1yHyJkK4nK+2vNjyvJ//r9mZSGo9lDNIffM7/RPb8woVBrwx6dVudPdRfsG - ETIiIZzW7xHXPHHUAjFu4CYBl7I7PfOfDJURLPgKr4axQl+NEN2rOkkOPjak6zn8oM2PI0dZnQDL - BOBDTLmeEip8jOV5HlPY2ecSi+O1DAejeVl/+EccZTLDOVpbG2z+InGurRVKZ8Cr6C+fmnFLaCxZ - 7kMUcGZO/+Llet53PJx4xyJmerUzYX/roaLe05BY5no1hqZgEGIB9//4Er2LYYT28p6fwOMXgUW5 - GTLkdlFCyeX67WnTfBMAO67c8lWI/V5b1eu3obbkXgtZPSnTQwV/8fGYe3O23pwuggn6BXR7/4bw - U2UMdyf+Rn23M2sJHrAN/vwB21VGtrjnvQj8/dQQnRrY+OfPxpJF6IHbVaA7XmoPHdurSW6Pag5H - X7xXkGum+zRiMrEZl2qFbkvsbX56aqzf6ZWjP/8Sfp4z28ZfhZ1bxiQ7nmKDGR1swOcujVs+wwqF - iF8imJz3ETG84emu7yr2lLJRJOK8qkMvaXE0KJ1NSmK7yhmw7q7kcPPnyBa/63nDe/Qh14nGWcTA - xCyUQ9LwLT0Y94/BXJib8FKyYeJjOTO69FRh1Oyk9V9+cmDucYW9/nhQ/cUwEKaj2cBemf3/8vPz - 4/qBH/M7UdWDTbhKh2vw/2p8IP/vLQUcrWeqG37H5gtRIYrb6ELcnRgaa1CEHGQh308vJVSZwJdG - hR7Rtuv7Irts7R9Wiva5eKT425Vg0rStdbbmjMTjiR7yQnIv4dW918S6nHJDmK5GAq9SntGjsrdd - 8WhnAzgf7IAYU966SxM8VXBDOp3QGtZgkug5ADidRZJVA+3n8LcV9lYaTL3h+QULOtAIVuHuSJ0Q - juE86mqArFmbiPXMXxmrjIOOBLE4E+PpJbXUcckHWXJ0puk+wj19tK8Y8e/uS056m4fN23nryLOw - jIXrvQZCNage5N0HoM/3pNf99n34wnFFzDfiGFO1K4boqHc4BKehX/OXHcHHTa+IDj+NK8ULtiBs - NZWG15flsgDLE/w+0RsvzxqGv/PnmwPxcboRa0iO9aLugQILb4xpXMprz3r9pKKbgx/0wXZKNpvR - LQLRYaD0oIQaE/XDIUavp9/SfPCtTIRTHcBVs35Tx83Pnv/oLEB38ztT4+tG/eiZmoUM5bvfxqcK - 5yDYR/BLjCdxtfXSi7/ru4N1xCNiPp4ArMpXr6C8/nKqfa422DrXllCdko6cleUDGD6WHNr+nxr0 - J9WsAhmGwvki0TwJcMaHRZgjr/Yt8rgnGuBJ9/xAnd8fyMlKRLBIdSVD+Smc6N/fZ0IuEN35V0mM - 6+tjCJoWTbDNYU3y4+fcS9qyb4HvlRXNfqg21oMf5/B5/npYvvsgW6fzRYEk64aJn/0mbCwh8WH7 - FA70biUxmLnulcDudhWp6ptnxsLgZ6LLGNs0pL9bTcPCxcALIpUkArgBER/bAZ6M3wdzR7RmX3j4 - 8vB7PhqTbDKYzbXUWeh5uQvEnbymlirjrEIr83c0nPLWmPV918JHwnHk6PisnjU0qIDQR0TSu313 - +fRR5hClUkDdQ+UZq0+0HEm5udDA8B02f62+Awr9nOh5MrdecwdZgdLJIzTZrr8g5eBAKO+sbd1+ - AXVN7QNCTb2Qx9/4CP3D+XveSVmuQc2Gwz4BPR800yS+nsbUn9YSTejtk8s2H9lrsCeEUiGgj8e3 - DvnaMANIy3tNtMuvzUawDikA14CbdkpquOJ88ivkXXFFvbp+9cuDzziQm35JifOU3AXfXKikWjOR - p5LWxtqdmYzQSPmpZvfAFZLRw1Axnwk1s6tuLKFw44D7udjk+vpqmbD7lD40T9+amCNUGN1nZQf1 - Wt9PsNVMJi5JrSNc/CZivwsZ0KfEePTpPQkvJ/edjdv8QWpeFVST5isQ4hezwMNWZWqkhe+O38DS - 0df2DyR93JR6WVocwK7OOZIbN89gY45aeIXhnZKgCF2+v18rIC80JiduOTB+iVYbSqlzJQcTmkB0 - VJ+Dd74uqSU0zJ1pzisAmJFMz1hU2FrjSYHa4SAQNYzf7hIEywcaoUKpRiwU0vStcSjhxJ54y9nP - mClcdASCJCeJJTdbr0Y2Q+gYA7XwrsokpWMOqn3uQP/im6AJa4V8r6ow4jE01iDuPFipzpM8T8Gx - l86G/IG+01gkbVrszqeMWtCEmUAJJpdeAlNfwlI4InqGw85l55tZoNpQJHIKD1k2GyhTlef57ZH7 - +ddl89DsOliVFiGekC9gZo3Xwe8du9Td2U6/dmcgw14k6gR+yHAFEjoN3I/rmWLy+Gas4N0CWrMx - bb0o5X6uDS+A2/yi9lW7M/5+ly0I305BXLH79stwjVLoqG1DT/QVh3z3iGUgyv6JBi4iGQ23xja/ - a63gWD3HBu/aOkamphjEaRO7Xku8k//e9ySSsQPrPitTNHmbUIHXNBQEGuuw7eGZ5Mo9A/xdfcqy - wpKVZlgl7jpd3Rbw7hMQ79Ycalbv3Aaa7fdM7ME/ZKVSXzqYqZU97V9fPeMdWKoIKqAiZO3sejGE - X/Xf8+/rxfiLx1C7eIhGb1Sw9eNEFRw/uo95SzYMPn+fPKjCAtPjeRn6GbtbSixP9b/5ktEl6X1w - J/NCDzPhtnqwFw6N3E/E4lcxM8k97iHc7hfLSXAOxQPSS7QXMx7PKMdgNYTXCtuSebh8NlW/nLNz - rPSHq4PrR6m7f/iH8HlsqQu+Sz+HC42h7js3LDiJAHpPVT3UiJ8fMWVShpNfPSKoCcZ7Kvu1dHn/ - U2B4aPORxH4W1iufOwno+LtJsg9YjDVVjwlazEOP15e4q+cz6SBkwob7cKNkThZ/4IICdWLYD/p1 - vIQBqF+KS65rfQxFLzs30DhILtG9Xnap8rzoENpH/x9eCS+2QDS7VUTu3PIGQtHMBfw6+EWLgCsz - EWqSh+LOH0mRy1G/qF2Swpgee6oOmsb4M6kgOojlhZx3T5LNbtjEcJd9WizeHoeMzwYFwqvZnab1 - F0f175LWEcDu4lGbn+yQ1exVoNfWevc8mXrGi8pOhqxZF2K7x0O/YPcn7utVvJA0+QWuyNfQRrTM - amqFcAhXVhoz4kArU+d2VsFvKfMKjoBF/+L9GqZpA8xwJiR6Iw4MS17L6PsSVppkjdmvY/N1kNh7 - gKrNy2Oz1OcJhI42YFA8sMviBZvw7V1HTFO4UeRRDkAalDx5Fg9i/J5tyaNLbOymbuNLQ/ZKeDju - RZmo5lUK2WGvJSAS2ucWr7ddzFpewCh7MqJNhzqbCblzUDunEVXD+GDQYvf+KJWJHtR65lq2okp2 - QHe9p9RMjA6sb2uw4a+pG+Jk4BROJ1iWaMOHf+PPD82uhV4dWH/zw2D5jmsgTbuCeEkwZes1PX1g - JNca0Ydks8ybeQItVnb0pGUDY/SUrPDTRleaz9Mvm2gTO8jjPQ+veYr7f3gf6fyZnAt+ZUt3Zi0q - 13NG46gTXIqmoITF8ytPijFRwO4/I4IH9/6k5GB8DFYecQJGe6cTdShtMCviWILLDkfEfLK3y2je - tMrf53P/ksKl2kUWUKp8IBHyumxZIiWF1QoX4opu2a/cp6xQFHcC3omu1ouaJ1mQ6fKb5sodsMUv - hkFZKyjQ/FXc2d/6go+bWtHbMwPuaqsvDvLR9NosPh/wRSN78Nl/SnLY0ZXN4Ovo8K5RTPXS+bkL - OZYFeti6TI+3fOcO8UsRYf1eDOp+znY94zCM0ZDuJqLOfp39oqBt4MMyc5rhZ2xMwnOd0SXWdvTy - EzUgOc8jhil/V/GyRiabv9zCI0P+PWgkT8dMCPHs/cUHetY6mrE3p3y2cpIOJZfZ6Zc/vNj4HDla - 5d7ocDXF8DYZB2KF2ADLnDc2pOqTTcrvLbuzOl1KOGZSQ2zzwMByGSUM38eKEnKnVs/Tq+uA18sW - KHE4zv0qHbNhFLcCyaTEN5go7nwoouORnkdBBaIqKCsYjq6Fm9k3sykeHzkUpdiYUHV12VLt8m38 - ioGq2VUzVv1wjiD35f0JkvepFv3qGu0t/8jhWmpZP/3h8U/vk2mf1UW24a8JPNPPaSDfqp6dq+kD - jePypWdlsRjvmaoIXjucEKc5fY2xkM0YzjSCNDC4MPyS4o3htv5p+o7FelkbUwGbHqH6Np95S/B9 - VDqNQ5Lw3W615uIJ/sWjP71EF39fwt30cMg5OE4hc81TA1SYY3rFXylcFCV29t3nVlLzeHMM6ePk - K5TLxSdpm9i9WPAGBlmVRuTIpZoreKZmIn3V6y2+vfsxTk8RPO2GB8kfRM7WnvNjqMf7hRqbXlrC - +MXBoEYGNX1zYmwtTR2leHJptM8p6J8S4KEik5m6Ny/9j58NPyOYaIAUYzx/aA5/1dsmgUssIIiJ - OsP7+jbpoWvcTNhY2WZh7f/Wg0GPauWhHSp4QixfqOdr4RTw5w+Q3u7lH95qGPF8d8FMzExjKngX - w9S6DxMahZItu9VJYHYMK7wm7tldjejGg6iZ7uT0DBOwlsZjBu1CA/zqjSVbT9sWvG09U3xEQUZt - eU6RZwY5te7fp7uqwjqjeB/cMLfxcXbYn1Iw2kifWDEuPZPrNAVGQkdqAOlqLHzpVpD+WpvqvP0y - ZlnkKsU5rxo5Z6acLXM+ODBropkc6lACTDucG8Cuy5GeuOXNmIn0GZ5TEE+o4IO/50mBNbkvap8v - u5D6aS0q7dYYxEL1lmbDngzBh5hEbecpZGO7pRhZshLcSHO/8MllRvTxUqf5TYRs9WPmoRh4jB5A - uWRrUGQcPJ6CkFr8re6HKA0spL+sBz2avN4L/qfIlR4Y3DTqpzhbBL/V4U94dARPRm60G59EYI28 - ScllVk/DYe+A9zd/4l0v5+7qkT5XHplQkgtfcPUSBVuVMOnywW1bOkBSxKsPO61ZyVW/79nwx3ed - w6MiqZfxPbvDm/dP3xyA1mXMMvsGstNvh9m3Az29varPH/+lboqHer4QG/7p2y1+Boy34aIj0SMX - vDTaru+uv9GEe1fWaLYTmbGAp18CdbeNB/5KWRcVDgf23BASNVrFbDCFl4+89mjiBqKWrYzdOigm - 8Z2q7ynPFg6hEuaN5xN3VUZjoofSge/h8sBKtL/VbQrjXBHk9DeJ6vAwGDxQHi48ehFPdNJwnpqp - AzzfXnBnzS/Q8uxpK0e6e1CyEyOXCYkWIObDE0mvCdfPYn6S4QPRgbpa2NXz9Q23zbedSTT24sP5 - y+156BwzjqgZbxurfJN1+HEvR8yK8VL3GbQwTJ/thf75NRO351MoysGJ4PbrGv2bJTnMr/jzT5+w - pTkkaNMbBBvkxCZzKRPF5102oc/hk61rHqbgUp2OJDwvbs1rXWLDGSbOVi5zCVevkmJF+OY1PX+X - HMxrLybo9FxHanSAGEve7kXIpD6c1rYdjLkcEgjfQmlQgz+moBvvZ1V2WCFOe/kB67fhUw/wYjPS - 81T/slV+/mbIXgohbpc77lqCHgJTedypNb4lY+4ehQw/p7gn3g9HmWjLs4NMqZGoyv24cHi27Qd6 - riYSN8VeP97fabHXA4sRkmUPY+7vj0r5h2+H8NRPkvJNlP3lZ9GT/Mj7Ba1ZArd4NO1TQQDLpleB - 871O5FDxM6BhGvDQ+zjtJGzxbiEk9ZD8kEca/OKon69LEe3dY1hQtb18w/l83Hvwz08zzHdpLMrX - CWD3KivqJL/VaN/SxYJa6N6pHo4nIC5Jv6Ukt8YY1TD3bD/x1V4ropQ8gd33LV8aAdRn60jiph0N - VhlnHe6Os0qOyr411nI+8X/3j7taOWSroyYQvt7aSOw//yKTHxHE+7Wkp+Lth6PpjTyY54tB3E0f - LCmMB7i8dxJxX0/VEOaTH/z9HtURY/W4+QUwrJQH5pDpGMKTdyBEex6S551++rVmL4zOimCR6719 - h8zYBynCEm8S82apNR+NIwe390W842esNz3eoAvnY/rHj5huCxx8y+kb//G9Pz4G+tbNqSUaijvH - r5WHnhHH5BDcLuD3HO4bXmQD+dMf87XQc/S5pWTaPV2pXxUlTv+uR7VD1rEtfVHCP39CbS/HULLN - oIE/MgvEfXaoHpP7HKEhOXjkpFRmKHwlNYKxlR+IV16ccO6ubxv96amzYweZcEB6gC7CjtKjts79 - yr5CiTY+gxsSWwYfv1YRoA9MybMa/Fok7sVEkmv35GwOWijhYwv/8WPS3wV33a16i8RjEtKQS1Vj - 5r9IV05Lp0x8u/PZGo6fAkHetjf9srrz7V170KiUOzXF9MFmkV5XKGTXjBrxdK2Xa+FMsN8fK7z0 - lZwtlVTF8LBPGDnEHxYOUZpakKBKxnL4tntxOasy+uW8QZ82U+vlusSNcifrgrln3wBGmzhFqhHu - p+TuZ+FqLm0CMz1vqN1cftkKulVG23zDTNevxgTEqw6se1RP5UtlrBWSSwkSVUhoYfaZ+3g77wDu - XrcRF40012M0Th7c/AF6eEgftgwnxQfb+FDDfKsGXZpzCg7ceaGash7B7N2iAUTotsP19WUZTFkH - Bd79Scbzw7+HLBKOOXgLlUFOhw6HbOM3ykPkAqIf1cP2mYnQC2KVHrfGm/ODD6c/vMYwY0ejDYJ9 - DJUmszEvnHHGjqFoQuNLb5u+8cD0xlcFvlYL0L/3ufzjP9RW6U3M3oakPO8qtIsNz86BVVOfaNM/ - vmxo5tEVjl7Ow148q9S6Pd7ZnL9PGIxgich52rZgZ69EBNZADpP9ZJa7pvzoKf6UTMSoHoO7stKd - 4X6cz5O08SnRdZkFS5LZlCipYaw6ykrl2uYLCW1e6+di+HGgX1KdEDzJ9UQHosDNT6Wng/sN//gJ - 1Gtuh9fxHbtrJVUNvLbFQr38RcF0i20P0mTSJ87sgTFqWj7AiA0GSaJqBXSl3xIWv7Uh5o0/uWOn - Xyr4ehsjVTvvGf6L7+hgYWpYZeLO6cxHIFyUI8WyYNfSCZYzep8eLgYWzXrxBNsKKHPlU63RnvUf - foMtHtJQnx/93EqqBXdOV2Fkg4qNfD92f/7LxPHH0mXcp5xhHyQJyeH4Dte9+FHhk3vqWD5fniEz - lrL9w5tJzJ3OXfr7Y4Uy4h/TbB8ubHXCQVTk3bon2/31Ys8lMdzmEzVEpTd+nnky4a95NXg5pxYT - 7u+gANvzY+5Y9FlfB88S8FLJyFnShmy6plqjbNefpFv+dOdW7wJYLeqVFkJE6239dwid9t6011uY - DbbZ8VvpbpVk7+lVz4p+HJAE9RfeH7op/Pd8nmRN9Pjdc8b8F2+KdFZoeJ+PNf/RgQ/jLhjJeRRK - sNYggPvRdEwsnLZturvTrYDx3r/RaONDc4OnFO78+5d6oqOEw1++4g//M4uCem6dSP3LH0ztQL1M - gGK0/vnFGHR5Z8wV3iVKHcivaU4qny0nM7Ag6llCD6nAg4WQwFPmxgXE9FcpY2v0ktF41D+T8hbQ - xvdUDto1FekfPqzGKKtKYGoh7i/zqRe3/Nj+Nli/aTGhAfpLEWHYRMODZK+n6s5BWluI9p+GEtF9 - 1X/jC86esFJy3Q1ut/3efvNL8drcnX7Rl73z5yeR48lo3GHtuRT8+f0m8rpw84NVuDe+FVH353Mm - xbFaoE1/UHt1HyH76an+pw9IRISzu57dyoT2wGX0qL41Y6mp3ChW5/9IpoVOzVZKS/CqD5fptdNO - oWAIrxKVKMmJe71sW24MqYIHu0LUmHLbnXAKG2i7FqGOl/H1JN9mFRbwZ1G8bI09SiwpUIgajajb - +14/kvqB3PnXTO/NL2TxYplw0/d4keYro0qtpTBjUTqxmOB6/YtfKR5cau5zytaKyjzY8IJu+jQb - ih3iwZY/3OavFw7os1eVmJwA9m2WhuwoqPrf+6fe3hvC9SD4M3pp5wOec+MHlh/3MtH+0lu4CscT - k97WkEJFPs8kKx7YkNQT5pRp6B0sMB2Hq9olHXyW2ZM4G3+eKjqLaI/nv3zU2K/3mef/9D9R+WcD - WjmTFcgbc0bzZ1Qa8266zHAtzZBaUXd1R4fwHurv7vrn5zHpNm6Npf1cxfIPs3AVk5MKbcAd8J8/ - 3TXSZatKY3skwZJqCEu0NbqGP51cZay481u6mKipVo06uRzWU3cvdPh4MIjnobTZP/14U3fy5od9 - 6iWf+wYCrYjJhhdMvP7eJqLJoNPoReJsmZuHDO8P8YoV9Sy5y3K2W/i+fkJCVL7pmXtcNn92kDb9 - EmdD+/jK8O3dRqLfHmYocasuI+WaFdQcYcrYqMkq3PABSwV2+yUbmAeZqhvE7X/3esMrGVSCEJLb - 6hn9spzVFm1+wgTn6ZSJ4/2got/1pVAbeW7IOzURIRmalV5vByX855+MIhdv8wOH0jvA1f7bORdy - vicv9s+vn76iR3U/W2v6F8+v8HIn9x0nZNP9Z1hwrs5PchDNMpyXFuv/8HTzB/qPEPntX/5oQnFM - wFrOGg+feSMSM3x/+7EwphLIUL7Rx59/ovt0gIf7w8C78+vkLtfY5/78nGmnhX2/5vAM//mTW77L - /cdvxdQXKL4BJ2R/+ZziKCc0/HZZ//vzx/h7/cS/056yeT7fE5hGD58er7Pdj+izBGhb33/5zuxf - vv7Hajzt9BK4s3N7D7Azn9HE/azAXcTEXpXz29RpeFhpPwp+qf6/thTs//eWAhfggOJ79Q5XL78m - 6HnYzeR893u2nu/qCsvOhMThjmtNp3Qu4f38K6YPiVRDvKn1B41VeqDacRgNarMg2B8+ojztGj0I - JUp2Ddx/7Cu5PfQLk7joClFc/g7Ejs+vnne3Uw0QGhCjF/BcFqTIgg8EBiy4p1e9BGuSwuA970l2 - HhxX+l0NHly9Wp7GVP+6s5u/RHDqTZdeA7/PWFQlFRzSWMPQ/u56hrslhVbrG0Q1OSfkRY6tCIK2 - oK744XpW2l4Do70gEfIYa7DMrtoh4bXXqR5wQrZ4x8SB62mSqDdeDy4zt0JDCEdPkmrtp15GocwR - 71t3PIeW5YrcJ1QhTe8KcaWgykTt4ilQ1rXT1B9wns3Nq21B8bnn02MACluu4D5AjVQHcnyPq/Ea - hTYHV3re06CMYpcF31BGt7vN00ILtl3Jj9gHRUiz6ReBpp6BZaVozD8x9Rx0CXv9JCkwnLbewmSu - MtFKngWUU66hGvdy3fke+w46jt2BWD9sGasmEwwjv+SoibQDkM4T1uGY73hCyFABNvhqgS7H/XGq - Lx+VCRdcDTBwTjkhL5Zl6zXfTnUfhRJH6/7E5virxMDxc0zjR8U2rthEEBe5RdwbUIHQGOaKjslZ - mMD01V3+2QYzDEJTpvFkJWydi1JF6dP6EaeYLwbv3x4faJzEgriFTzKpFrsIlqP3o3e33yoMvu8O - 3PXRnjjoessE4l8KmDZKQj3wKNnUpZUJ3ZhMeO++azYSY20RF6c1tVus1+KOvw2of74majwSB0jh - Hcfwld8uxLvPY79otJyRvcsncrTf336utGPzN15UXfohZOH77aB5aXkSnLIqlFRHXeG4spqexImG - 05ovATx8eJmQdNh6GcdzA2m46CRKzjYQU2TpsHbOBk1dFAH2YR6/n0la0Ow8dMZ8KvwPvApGi0UZ - R2DG796W9wM7U+udJf3aLzKEL5nJxFXjUy1o9YlTvLK5kkNoF8bkGGWHFF64TExo9ZpdvDkFuuQ8 - iJGMXT3NwzDApbNrcsknNRSDMozRDisBDc34xiR+qwJhr0ghx2di9EtjeKsyW9qNEOfKgWkJqQXR - S31RP5S1kIW3toCuPtUU6xD09P7rLfg8oJlcQKqFgnCACbw9U0yM73h3xWy/T2H52ZHpb73PBksC - +PabN7lKpp2J8cfWwYB0nTxVda7XZJZNoByGHz0OPGBbPKoQYGhPzYsn9gv9BjIStWdM3BM7uOLb - mid4KD2V3gUYueKOfw7w9jGOk6AdH+HKfTId2HEdErtaPqxX3c9WmEr4kMQNu5B5Q2kjJatu1Pbc - RyZ27WeFBye9TLxgl+yLi6BBaij/iDcd1YyHYqDA5XDa0cdNiwB7PbMCWqv6I+dU/xrb/I3hgFSd - HIXgVM98hk2YZhykGO64cCzWL1QE0H+xfM2sTPowU0SFin28dazLpioJZJQLwo86XZW5QtqqK4p+ - xZ3qZSQaq5XcCljWQkXw8dWE6wW+P7A1kpEUQ3Z3Ra+FGPa5WpN0rM+hZOVGimyVvvGsocSd/Tnz - 4CNqGLXNIMn6uPytyGoDAyvVL3YXeNvp4DCaAYm+51u2Jre1QDiL7iTVUw0Ihn1tUNq/fHoJPmbG - rtf9BEI8RNPv9TwxVgWw/ff89lrPrG+dbIWjc2EkjSXPlW7gEPzFbxqxJa+F54mT949FS6kTZToT - 06oroW3BHVGdNgn5JfBWaF13JT2dSOCy9f2coND7J2I+oyAUSS2L6G9+2vO2JSv+rhFSsakQN/lo - Ga/IpxaEUWVQUt8ubP6MYgPtULVJEaF8K2wpWmj2goWQ3hfZpBoqRvRhn0jAjqtBD5cwguvqbY1/ - SqdfPlqhw8zMBzwPeAZL9VhsZF5VQuKT1PS96LcK1BXfoXmVnQH/+gw6CMlh/bs+YE2amGCk/o1Y - 7iuohQvuBqhwOKHe67f2zHxZM+wMrqQqIxWbLvVWeHvvuTQgktsLBuAmSIfhQS6L6/SCy51luLu+ - XIJxiw3RSm45ugFRIE6dLdnSd3IC6rpG0yCqh0w8hbkJj4o5YChgx+V3yV1RVll40nP0dnuRfX8x - WC7E3vhAUE8dNnxY3lJAdFPc1/Ppsl/B7dSUtIA7LmPtUlhwwnxPrvIU18Ku3wd7HbcjeYoOdldq - 79St9/BECi/IQ/bW0hyaV53Q0/3TMKourgXvex+Qw8jvsjU9NQrUv+hLUtWcjVk61Qpsmp1NjPeF - gBHZbgNvlA3UlPOHK1XWlUemZzJyvd8EV/icoQi12OFobIfYlXC3JCj+KM+J00XTmJbwa6HDqmj0 - 2kKvXysXmtAOdZs4bBdvXovrwKeev6k2OUm28NOYw70ffWk4Iz2UuGA2EU0zBcvLItRL0/4wfD1z - juB3RDJmvvAMTH0cJuE3fcGixbWNQrf5Ev0SfTP2eds2yiCXUf3IWbUwSVaETnbiEPxoczBn8TFA - 79neE00Ukl4MjtcJHsbnTGw37DJWxIGNjB0u6V237WyWYmdC1RFO2/xawHw5djY8mkNH7EfUh40m - NjLa8JpYeacyXmgSH5zPKiAP50Fq8TTuGvgt9I6Qc7y4rBxfOpw9fyEu8ct6LnqagqKSLySlxxr8 - e17nEZfkbMRvsChrn4It3v/jW+MpWSOEE2+gxrFo2OK9WAeNx+2HeWrBbMX4yEP5sJ3i2/jh+jBf - JcoeyZGaZnvJ2PUUyH/xgz7N3mdzOxx5+LtMLsFppPZSu8QWvMcfhWpKaxnL/ssi2K9knobxejC6 - h/mqkOrPkEZ+moVLsX45FErYJKYf1UByrxcfPYu9S8+NUxur03UQyou7UBcgvd7wQoXqo8eU8B+p - Xy66IcOyzk1iXIYkW/XzHCA9KvJpBvaXrasfFIrf5yXVdHKp1ypJFbDFa2KM0DdmqfpVIH4ggzzk - 7zkU/ZNXQPqov1PTLNhd/uYrUOX0jw9vWwxCXXGBF9D89oprvrmeRPC4PKyt0cnTnbOY+FBZxobq - tllk7MNMHjYvIcPpw0t76ae0AZgOj4aYuTWyVQl+HWx6r6KupqgufwGuDwJ4X6iWPk/ZitrTCpse - V9McRA7jFVnr0MfzNJLY0suYOc1QYdlZkHqkvfQD5toZQMOmNCI0ZfP9tI/hNj9wtvHh5eRlJbzX - zzM9HFbUz/v9nKAPoR7+7emrn2N11tH8/vYTZ0wi+McH2yG2ibnxpTm4TiLkfyJHDF/vMrY40IPi - 7JUYpbyezSV5OKBijUsSX3z0M37XDuIETsLcvTpkrAr4DuSy7dHgmnKMbt//h//etAuNOdxHJWyB - nNOilsJ+VcazoywMnIjjhBZYncJ0lKa1BDzvWGv8vR8wOiGbKo8WPYO2qsIxRzxxHpzA5qXoG7CN - PzFsoPY8d/7xoHme7vSYvUWXncOqguO9+NEzvXi9SF98u9/pukqwlLsGL1E1gj+9vmIA3G84573s - Q25vNjRT41O/7k+3HMad7k38/ZDVS3KkA4Tc6k67YVzrSb6K/h8+kMt9nAzq+wddIWUwEyzIUS0E - 76VBTqlW5KZAqV6hJGBg2juLuEYzGSu1JRVkqZ/S5FhCtjyaOkAs2U7RHttzP/u3RwNOxNDJMR6N - bNODDXrfzg/MfN3JaC/vS7gaz8fEX7y4X18tjkCdA3P6W++0RbwCdlKqUyP/0J7ibp/CJUUjza+S - XQ9/eFLOVPiL5wY79KKIujM9EM+lQz1rhjuD7UgQSbquB3P0cHy4XleVaPcRu1Lqv3MUrL1HzV5t - wEjVpIGn3nK3xgg7Y9FHRYfzc4EU1wc5XEk9i/DYVQnekVXJpmN9rABKDodpOcUgmwvZ8uB2P0QN - IgfwHo58eNVZSLxL8GSDRZUVvo/9iVjco++Xpn15MOxtMMnRzzXYhO8T3APOoGcgLGDjsxZMpqND - nTq7hBP7vmLoc7ueeofQyMRDvP/Aq+eklNyVOJz1DpvgfLdMqmc/oV7K8GTBKbhKRL1WpP7jB/uQ - N28kvAxy9jf+qIM5ocEzr42ZO794ePjBN0kl1WZ8+lIxXNj+hJf5TsMlexB+v+EX1c1Zd9egzCLQ - NMgmx2cB3K4lqwpaeaVYwnrtrleB5ehKgiM5pkwBi+sMM6zYx8VITMSMTdupLD3Kc+pWgNZrclMK - 2P68jIYHBWezyLEZ2u/hRCPWv43lu3QVzPOKYi6Nyj9+bKHAcXN62lOtZtk5EaGdz+M//Br//h9a - P4WE6S2phfwryQrpjCs5Hu0esALlOTzU1CXWpp+WSs5bMLAWkKd/q7O1NUIMlzHwCf7IB7A+f4IF - OYgvxPxkuUHZ6VzAJ4klate1bnRVswwwm59fQroC1FPl8haqXCsj6rf2Myr/ri2Aw7Ol//Cx/5o5 - 2PQDObRwqJkR6qZSG7sfsWE/gDnvZx/B3w1My9P51cs+iyr0/XDWVCXZ4m7xCQP1psd4b+EdW7LH - UYTn37PC6/Iw3cWb0gKMz8nAffNGjIm9uSXKw/u005qvMZ3v9gqEt0opprVlsP7JZLjS8k3wt9Pc - 5Xz4pegKLjqJw/TWr9vzoVfQDFt8+dXLerooyPiEB+IN9Va4OZsTZIEFExM0jjsPC6zA9pnq32tr - jMnDn6DO6/O0V5sLW8T9o1IU7/aaxvpZ9avUGDyMwrbH3HDValbaZoPcd9KQcDHujI6HYwW734zp - /XuSwFrtHhg+r/aHXD0tqhkD9gAf0y3BH80zQ+nNg49Sx773D8//3f+HXkqqqX3m9joADjzpzky0 - vUlrNrPRB9f3I6Ln/d2u58J8W+C6VA8sS/hizPy99NAf/hmXjwqEqHF4uPkRWH5EWyOFhZqw3akn - 6gpTz9h5wqriPKKSeDHNMvEqgAJUxffzz39Ycr6Y4KYXMGBPnq0P81fJIovOpNDFxtj4cwAV7isS - 8xxearb5a+iNNJd618OY0c9bdZRgVxfE4bub+08/H5zkQuxhrwOxhvYHbvEJo6U0asE82BClU4to - cn892JTMs4VWIY6os/lVvyN2fLD5B+Q8GLaxbH4JkKcnpWTjU8tR6wuQ7fmJXuIhA6vVcD6sz9FM - MuXuGfOzTdd/fC+XujAb+K13+/N0eJD0WXmhuFPFD/AkcsbC/XZ1lwvuJuiwepzAaLj9fIlUCMRv - aJKN/4HVxckA+1yv6WH6KP14PvwSePymPV72YsfYFUIVXtDlRCxBnY21iRsH9Ov/cXUuvasqWRSf - 309xc6bkRESlqu4MAXlLoeAr6XQAEUSQdwGV9HfvFP+THvTYBDRU7Vrrtxfb4ziMK2rYNHlvOYj6 - LR0uvlzmgpgOATz13RqfotMn7z5Z1YCNJrnMP7x8alqZiyKh3w/Vcp7prnyG/l6QsdTPetQUxvWD - 7t/kPKz84gs67bq2UPwOEqx090e7vl7QGTDeRQ4JP7a0qOIZLnocI7Xwe4iiBDYKTH/Oz2Z1vNzh - 5jVSbJJv0TJ9K0B6mgFWFh5TfVYeQPv4SO7GZq+sl/UlCZ8GL35iRtgxQKdXkivcD1tlbF1NgGTE - 9cAHq49Nquv8QTeOe//UL0HPsgbR0wjIzUu6dhbTMljqCTEOwkBHJ6Qq8NZHDZsn8exvLM4K2FQC - Ddu90ubM/7tgQy66i4zdzl70Bgjb3COGEF/AWGrwDDj/LLivD9/n9N6eBHTVrzZWtK5ua7ZfQPyI - ZKKCT6OMkSF/AJDEkMh407bN4t+y9bnHtjyfKf2EnobGjehifXpBu7rN7xCJLVgPK6QeIgHV3wpu - P8QadltU+lOx2mqgU1MfH2/UszcFflmQ80yT8ZMkGha/1u3ECzYSrWzp6pkaiJ1H2PjWj3xqm/GO - 3icSDO/vxVDo6lkZongPG6JpwhxNqjbwQFC/Cv7hMdXl7sHl/Dygx5XOX1+r4FJPA/56aGkUXd7Q - rxSX7O/mrZ0ZDwcvvhOx5XK6TXOcyiiUnRs2+bOmrM0VrEC8tZxBqc6yPV0GURShOX2xhlr2VqbU - lvCdnSp3N518urEKpwMiUFuMmV/uo3po4PocDNiWpU078rwyQMXkE+xYaPL7OUchrKNkJIZJKJ2m - x+EqPl7cnkjRVPp85hgpBGwQtORvMxaUtiCwdlR3s68ytPPCxzZxq5EjFm17OsXfUDwJzcnlvE2h - jMnWdaHe7AQXBPt7283y4wqj8fllEmxqafhUPfg96HiYuX3tj7v+UQKmLwnjp3l1l4glEp3s8L54 - 3ZXZ9AMN8jXPufMlTCgdqrUDC384u9QAaT4fH8YIUSZngwD1B6WMt8G+Mxp8ANYKTOLKcnam2Lyw - skIeqNVO8dBVD2zshUdM6ZRPPEzzzRs7l03VzohPS8jnxYcc85ecj4NpxxDtkyPZT3bTjh8jl8Gy - XsyqpPn4MKcA3dX5NKDKC9t1t11rS70aAPakXJi9MAbji0IisXo0J9H2DtKxX5MD4wdddixD8G4a - guXvxbDX8TEIFz/lTi69Ut72bAkS4akM3OiWOb32xueHNzB9E83cyqtgtA9WRHI2xK9qjEqgu0/s - 8uXl047CbUqg+u08Er9CkA/7Zz6A8a2lZO/c+nz6CL0IGW8gVjYpfsd4DszngWLTYlMxorqsIO0F - ZRglv1HyejBjuNvVKQnQjvHl4mwhdn8sZ9oU9Rv1WAGu30cLr1Poic4d0vvqMEz7p+DPU+2poAqV - ghiPDIH2YoYieG7OPLFvZtF2J/1toLJIAeP1m4hExzu/8PChOwtXf476sIQPXSpJwOrHLO5aCM4s - EqO4hZvPN579sYjPedi80I3/43dPDRtzF3Ysgls/G7joLZXpydHcQhXGna4Mi9/76Qex3788/5Zy - KT/D0+c2YHtvqGDq4zePrs+VMuwc77Nc/wy12BXd3axgZZaELFj8LFEbt26nU2SmsKyayqUeX7Sj - Ep4bcaeV+wFY7Y2SpT4duy8mJtNvfWL3DQhl9+aO/az7I/USCdZAUYnbRTubXgOLg/7hcsRmfR8o - +z4CvD0snuDDs7MJMvvtst6wU8SSLeS5xUHZzqUBxN2djvV+3C77FWvl0aeMx43wDKOJOOHboANs - r3ewfh0lfIGZqvCNsBHF6Bnq7qooKzpeXb5De6I9iPGtd3md3NUENfmbJ/uT3NN54enGSwyJY3xf - +QCTVbmbMXcaNgiZdH7MFwg727bxgV2fZtuHBtPAd9mLXVq03qiHCjwE2x1Gq9r6UxjVHISaFzP+ - lNK5h7UMVe5mEJ0jhcKez7icf+TYgRCMORJFqDoaxY5U5cpoiA0vHrfVnSSTtKfCuphLKFjC050O - nkJpNV1VeFsXET7yQxXNgpkGP/0xx/iu8qmv9w3qhLHC3vzUc8Z/znBz3mY//qM/z16I+vf9gJ/H - JKNUuh8StNSf6FM8weyzCM+um47YLmBG59tRDuHnDlbENndxvug3+AK32d2Rb5H313egoo42gBjG - JrNnxFcldKesJPb11vhT42cpYvyVWJZfgrnn3O2yvrDLB4nCT0lbwvs3PuNYkIqIdJ4Rw5HLNaJO - F+pPq/5lQWdzPBK1a6jSdydxhpzvCdjdtW9lNLLCgZ2xT7DRvrl86j1HAhlIdcL0U0u9Wq4Q8994 - 73nnlnLnrQqX/aqOz7Ql4rcUoRwdAvZ8P4v+TyHjczjYxkiZdy8pRt+TdSeGgdiUTJAaiJfSA3YU - QW9ZP8yDRjGYA8IGoTO2gAtbjEJ8W2WpX4dyFyz6aSgimkQLX0Kc0r3JLVU+ykTTdEblO3IJqx8+ - ZTxLZLySBJqjU8F7WxoEu9DEmhrWf/a/b5dfokF9B8jST2X+A19UsQHUk6Xr4i+IWkZQYXzqDV8i - DMiL9Te7zpod5GeUd1eHp2MTeuk8GBeJjTFRPhFpu7ADjEcPl6cXKvPCw0suvhJbK9KoS4TqCsaK - 3N2M8fjNQ07HpV5hyxcedLytTAfG3UEhev/4tGN16q6QdMOTHF6lTenMXQK48EmdKnM+fqBjLPqf - HEVboTQN2nDpDwzcMFlgjTLTBTWbOoTl+AFG6yUkkCAduO3qlNBZaqz0h19fmy1v91tpkuCfSMFf - f//9LxYQ+FVWz6RgwYA+mfrf/4sK/N787sqwKJZgwa+hC9Pk1z9/Igi/6rYq6/7fffVJvh3LGiBx - u/6JG/zqqz4s/u+jv9gN//PXfwEAAP//AwD7GU8HugUCAA== + H4sIAAAAAAAAA6S7yY6zQNcmuK+r+PRvKclMJiJqx2zmwGBj3CvAGAPGmCmAKPW9t5xvqVst1ap7 + k1LaJCTEOc90gv/53/7zn//q86Ys5v/6H//5r3c9zf/133+fPbI5+6//8Z//47/95z//+c///Pv5 + /zqy7PLy8ag/1d/hf1/Wn0e5/df/+A/7f3/y/xz0P/7zX0//pgbC3XyDPZarHXwk6YX90LZi4fDx + axi61plk9t3XVhaDEi6xIWHteAy1bRe/NQrrsCSlXe351oE9gD2cZeI/5qu2F5XUQvYwQyyTm6vx + MHul0OweOT6hU9cM376Y4HrRkoWOhTLykTzp8Oi71+Wgeg2dGe0Vgf7dsdgRmYu7Dg+Ggcuhsklx + Gz1A4zqf/v6fQLw8vjm5MrCE574usLN5t3HtlTKArNgCYi/wqG09ezBh5lQYZ6c7Hde3JEsodJ3z + 8jI6XtuYppaQUGAd+/q7djexKELA9GxEMr0axykc4xLOr6gLtmFZxo3TziaaYk1dZslRcxYYIQ/i + /n3B5U0/uNSi7I6q7rwQ1XsdKP2cHR7KZ94mFqEu5S7fUYJApDoOeI+JN914qUggm0OuO2c2s5tb + MvLWbCO6NsYuEbpdhfNjeWK/eYoaPQt1jcb1ciVX5u4B0tXQlHSucbBcTebImZMgoXK+CcTwuiRf + b7JUg/NnFLFWblojRPVThmZ0vGIn1De6zed7CO88Y2PV7UuXF16Ng1DdXvCj6kKXOuGjhSkbnrH2 + DSJ3d+SwhbdFOS2tk9wobetDBk1JNEheHvJc4MUxhDbX5yT6ek0urJozIDvTCdYRYMDKrAr8Vz+X + MGndsRZND/rll1lQ2fHN/pXUAYFzL+LcZCpXeG+nHR7vbYb15SY2FBalDG7ZUyHO8nqPfHraFzRI + ekIii/AaeeW1Ba/nl0vS+Q3zvSOxhYy7mZNg7fV8v9xJ+O/78qG7+aQ1xwtULB1iVdXP+ebakY4U + r8rJ+dThfH47BiPx59eH6GYbaORTizsCyGtwfJRfsfB8ujIUOXslVvB4aFtvvnV0x+xGdGgv42rf + IxW5o+ziS0cNl3U+dYZ6luQkcD6OKxjeK0D3hWkWmmwh2BlBdY5/9adqrq1NxVGcwA51hiTf2Bop + N0QSGrhBIArURY1SX3KA9wod8lTiOqYPtY6QaXk+iZpMdmfuiSyQGHqBvbI9gVWUXiEy2P6EzzeH + a2inSiU8reeK2JTLGjYaUwuUK2CwS0Q138q8SlFNB4w9TS40+j2c63/XP3VD1HC0W0OUhZtI1LgP + AV8+7guiTZAE4Pf3rNZsF/R93meMb2uT8wEHa3ggekgsdpJj3g16COPW5nDiuSr44U0BD251wLet + kXPW5aQdGWedX9iOGhp/inwH3kwJYNerfXc1qrBAshk9Fq51VFeYzI5H5TBcsZKeq5yPqyEDx7dl + Yl0Zp2YjaVfDc6sjrLCV3vC+K5tIk+0MR238olthcyvs5+6+0O34yLlHalpA8M0HVowu0bir6S1w + pIqAcZUr4/psXxK8zhCT8ElbQLEw83A51DaxbbvX9md/4pEy0C9xmVM2dmt2Y2GBwsNC7FWIV97L + WnAY+g3bHtjADhirQ+3UGbjcXtSle2HwsC06aYFU2lx+Q2uGro/TGPAx8mLBC6MI8e/TjG1TTej0 + tooBuOXHxM9LDt3Vk98DVKSVxXllmq5A2D1ADExTYlQOzoXQYEKQH+SOPLhzRWfRWRL46Z5CcHx0 + 9bhnFRLh6PcFjvY1dNfv61LDXaw0nLVEbahWZgW4D41OrHviAEIaL5QcoHBEbyTH3Y5FCFFdbyMJ + RoLpVtp7+df/+PGcl3z7dk2GYuVpEefmqpStXl4CgP2NiHvLP2C/3asB/fCX6NPbijcHKAOaxXQn + t2/jN3sb7SmwssOOzbpv6Nyo4gJ3/fAJvszSx2t4/FjQaw5TsJ/5aty5t66i+F7OxAmipdlKUS/h + 1T/o2GC5ymWtq7BDf/na5HKxfLr2SuJBs3xy+CRctZzy6beHt+yh4EI+XTQWrkYEXjZ/WGi5NSON + V5LB0ehVbFNH1bjWb2o04RIQx/ho+Tx0lS61fhkTzIt1Mz/8VIavICxxEiMv36fYF8E9Tx9L86u/ + /azbPYyGC8BGkh7ziVivWirUdiZ3Ho5gQ9eoRrdEqRdqXepx7flKRtAIbKLPk6xxQCMibA/xJwD1 + YXFpKjAqNK7VlQRCzGtrggMPnI5OSRyafVz6PdwrWAlORP74UFCU4wLRSe2xfLXknDs6owyL46IH + KLFfzeoHvIw6sLXY7s+nnE/Gs4TG9NYGu/DdxomW2ALLp2rxXbvpYB0ePIQ4Le8/vFjpvnm69cc3 + JNV2MV5/fIrkd4oD4KxfsMkSXOEPX3AxWZ9GGAZTRpsUPbHNVM98Hcmrg7e6+JAcFbVGEl8XkVu+ + TZyANQHsmhwlaENakFsm8u5W5n2KfniJo95wR+EOwgic5ddEojq2YuGiRiYyhNuX2DHrjQII/B48 + 2uxG3Huu5Pzl/on+1d816nCz//HlH57dhuEd0/u3TpBSU4xVKnzo8Kdv5Aqu+Bl+93wFRspD9XxU + 8EMpV7At8y4j+vzhK5j8ZreDKZSs3TgEzRikDe2fcYBSpb1jb8RvQEHgD8A5eyeiTacsX0/w6MEv + 5VPypNsWb9Q8MsiJwZfYj65u9p/+QtNuscQ7j7TZBXrW0SJnKdEz+mz2qvdqGL1BsdDb8Gz2TL+z + sDOqbeHLTKIDmLIBNo8nCuAL3+nY++8Itavl4Yw37u6+exYPs9K8YtVB7+abPk/ikSNTRGTf8hth + uQARfimbYkvbxXw3TtEF9UdHIqri1s0ayPUFgYefBs3lIDcEHDYRvs7smwTWPRvX8+nQwvhVxNi+ + dXz+05/VP/yVV5VvlgUdZFB/sLN8GJmL1/izd3C6la8/PtBYhRta6H8qC8ubveS/eg/AYe9vJA0e + yN2NU3aBKRudsSXcDvE8NmqFhKup/fG9yz4sxULviD8SnZRrvgXG5sGtXOifnhqXv+d10Oo3NorU + GPezrvSAsYQTUU29dallDCs8MJ6A837b4hWEAQOL73Rc4H00c/6NFh4+ReXv+RmjUKyHDvSDGi/Q + lRew84mYwMtzGYmyV6O2H25WDX74vKBT6fzTB8fkgrUfvhKw/Okz/Xw4Eq9I0nxXliyDD1oxRG0y + WWOdz5DBw80cF/HavtyN1S4ZDFpgBX/Xm9jXKzsOZTWQazx/4i3yXQeWTJDj33o027UzE2laupno + dwXHq31q9X/64frTm1xyeZhikAXywvT8iW5Xtpz++J1o0ca4g6i8KvTDr2WfVh4s6sCyMOJXmcTM + vo3f1h8r+D4iY9n8dG/WtFp5GEqhRrSjrOTryoMaBvNqBsIwGPkajakDTXwLsKb5AiAjWAcYrI8v + fpzKwaWN6IjgVw9EyZ0+3qThlSCj2RqcLS+jmc/MvgB77jmS/fzGjoyrCKdckpc1Uog75uzVgs/r + pcdOoIsxxXbMwm2PDOI9H998bNl3AvuXfSVYaHKNdmaowqM4eTi9toorvOZUh4VNlkDsFIvOPz0F + yYPeiOaYEdiGrjKhZ5/vRBbsU8Ph8jBBmntrcPzph5UJrQRA6d1gU9EZOlfq4QJy3u3JaShgvm0c + jv70PcGTmIzr/ShcYPndNox5UR0p79xDuIZFjs/1AgA1hWsPP/g2BADnnLY7BdvDT+hhkreHT7Od + VMuBhdrNRJk/diO0tZDBJkngIiGBG/eNVCoC74AJxGeiu+yfXlO/Uod9ev7k2zHlJ+C7hhgwbiWC + r/vmrePiMiKRmRm4tGXnBOpndAzgJg3jaEgggNOofkjcNbLLfl9FBRiC4kV4NxKdgiiM0Cfer4HY + WDOgSbmzUp1/S3z/4TP386MwDWd5mQ6lkI8v0KzI0riOWJPUAHr62hDqTGZh8xMTjfpMz8DTo91J + im5jsy6TtaBvGk5EMy9fjU7d7EDPX0Qiz7e2WQ9MlsDNdeYAUY3Jl+YVmFK3+jo+sUGUc0A8TpA/ + VjfiPPpypI8DZo4+bm5//ZHTy9qaAL1jnqhiTWP68s8rnHJRxg/HLrTJiGQdktpT8d0BYr6u9MrA + VOnuRG7eQUOLVeigAD1MEhK/6FQc1wmuacFhK3zw41o/xhIE4jPA8ut2cCfrKqzwW0wu0axL3azz + Q7zAUXgmxEz5iq6n0yeDzxDYyyGupXw7M9ICp0b2sRxKQvzu01gFu5JNwd4ZkUZHsUyh/n4dsL2c + q3H96msJuh6XC6n9jS5NhBYw+kNBrI8lj+vfepVfuhE1IrU7K1+tRvfjOBJV1gfwVx9/fEL+/Nay + T2oBRyBxOIBZBfY9K2o0r7lP5Cn0KP95vETYro6HsewN4/IgDiNZn1TAz6/p0VWLtAwdsGEEexET + d33qfQjZt8z9/EMVb+3zXkKn3X1iXJ/OuL/3dZKa71HFdjSz4G+94KNNbwRvh5e7mkFdQbb/rMT0 + 9TbvN6VL4ZvJWqxL9lXb1PfMQJcjcSDq8mvcurS8ALdrJ3KPZpYuzQ5l4D/rGps/P7Nd2WSR2IfY + //nFnN7ya/jHn4vAHHm6e8drhvyYUYlfsF38p4fhPXo9iecfv4BuzzGFkIg5Lu0qyvcoilSIOifD + eBW/+a8fZfTVlw7bR66ja7mjDlqu4BLr+H6BXTv6Hqy6eCFG6sBmG9m1RKe7G+PT9XAZhVoMAmDp + k0O0TxFQikRmh3hSn9gVG7kRatCXMMJDj3HpH7T96D0HCAVRweYZvemGtKmFwDx5RM4mKd4dN1hA + tOwZlpk51+byK66QaVNKvNoCMXXXWES1ZaRYY/bt13/yAoXndiC+edvjDat5D35+CofUZikNDT4E + wKlGnEDh1dCnfzUhOyuY/Pk/NhzzAhYn1SNWr6g537xME1y3KsGXu8RoG/rIBfJvNSL+Vf3S/ZOd + esib7BPLATbylSqjDl1cPrHx0Bh3X0jXw0see/jEyFy+ebehACuUzYXcL6jZzFpZoSFcv0v98WzA + /eVLD5kzibowXU4GAKD0bJ842L3XAYzrdhngT89hzTOnePOFfgdvPnWCxIg+dAFT1sNPvhKs3B3i + /vKaCthfP8EGqM6UTubCQ8OvCFYuZ79Z87G/gDrVG4zpdo7pcqEi+un35XMzp3gl/WhBMRFrcvnp + u60yzy0i7bHFJ/k7xsRnKuafX5QlcI6FeCUpcD5PEnA20PPty9IdWoe0wMHCv1zKFk4N0FP28Z/+ + mU73awIPxAxxLjbyuIYPV4ciIy9L3yqk2bm41OGqS+Qv38rHP758gk+OT2vRj5uvJhAx9JUtPFrD + mLq17EFObl84S3V93HOZDeErCXWi7muorZ11voDRGNQA/OqR5/iNkSwrNohxXJSRX/FrAiPVhKVo + rQug62XtoFMlCzY6x2rYVvICqLtLGIw/f7C9cyqhZyVd/GN7ZhvqqraITmtcYfWRmWDKj6wKezF+ + YXVaE7CVtlT++b9lo58a8EQ5J5B6uo2TMpPAxjbRArc6lILt4bzor54npNFlJFiJ1ZiOjpeCGNpZ + IPp72+zWrhVQK9qSGDM0tM0Ibw7gZ2b86xe3V05hi94DX2JtuNpgc3I3gdsxN4kjMVmzdYMeItMB + BCuF5rj8110HRDKv+OVJg0uK9dDCcdoDrI2B2NCOHVT4CNkzPjPRqeFgKurQEUppmY/a0GyaMV1g + v1nVwvgRdIm8nuS/+iY3ZdVcWtZVC6F3dYj/O/6XpzlILEWIS/Nzi0nOPiw4X4TXsrZlGLN4LHc4 + PQuThO93r/3yxQhoMakCNkqGsWvbKkHGS1fw5arAhpy+NgMdnarESfV23P17vKLf8cR9+nq8x1Wd + olzQlIVxPoM2tZIeIGloqgB+lAKQTJAW8MtviZn1Z3cz1kcB39oUYcVOD4A2oipCRRsfWJXRcVwn + 6bZAOT045C/vXI2C8cDauIjY5+7hbvnTDmFyokyw2klDd+9DShg7iUls6tTuGideL/3xkxU8kDZf + TW+CD4sfcWBXUbziYF/gEjNlwDL2h676bk/Hc3G6BbRoLhpxarcGN/VZYPn97l367s49jKGbEdNx + 7ZgFCtPBg/PtiKm6yUiUF71A77Fo2HJGmq8DmUT4p7+VVBPi5Ye3cMOdR+wra7o//a0DLm1N7IKi + b1i+lGvIXrWBKAo7xdODzy0JTLfDH76PgsLcMsjR8E6uA0fpjK5ZDVPfOuLnsWGbKbPwCn95PDG4 + Kh25LW0CcPTtK3H1NRy3zeRC2B7OH3Jqh0nbzPJTgz+9kmfmnZJf/g0k5tRhP7Ff42ouPQv/rh9c + owD85Q9HiWGcoP/lgayqURlWghWRf3qNgWf5T38Rtz4ELoVFIsPMNNeFPY1v+nVzS5UMhcFY/+WD + nE6B+q/eJLgisP76CRbb9CSnKTiMM7OBEMpm+Fj+6o2iIluAZ0zl8qd3hEKdWzhD9oz9XNVcHjBW + C427npPk83rH1GFIC7+HVCSYmKa7VjhJoXXLJyK/35b2y4sC+K3CiGg//75j3YPwl88EAhvs8cqV + Lg/T2dLx7W6+6fZ2fEayvKVdphEbQOCdcwR/9UH0Y9jls+h0yT/8AlHd5b88voP8FZkYJ193XH/r + Ca9q2uLLVn7/1atYEWsisp00YO4GPYIuN8f4SQ6nZvvka/eXbwYHcjiNa3Qfgj+/jWULTxoxbW1A + jbry5GmvQj7a682DG+LfWBGjJSc/PSIduOsR40hQ6BzUj/DPL2FjhONIeRMsf36SyFcqgtGfgAos + TeiIs2XyWJeP84K22Imxc+NBvlwfSgWprrfEslvQEP6KM7gr6YRPzaFq1gzdO1Dz1w3LR/vl/vK9 + CYp7EZDiqyT55l90EQaZJ+Ng7duYTullh7VXC0S7iVZDdSbcYX+0JBJUPKcR1fvw0JIYhNXDt823 + 1m8qJO0vkwQafMfzzbRTMN2K1/LW1G++GeHTAYlvKkSLRQ7Q3NQs6AnNHgw3Ps+3MlVZ8PF6C5/D + p0Z3dzRUdPZZG7vW2uTzS2XVv/yC+DnQR+4gaxPK2iuDMTl8Rmrd0gXurXHH7lf8uht//hYAbL32 + u3+5YfVg5mH29mp899TmD68CCJ8gxIFbpXS75GEAcKsaRD7aP7/p33fQZGv+l6/nO7XGEPzltWXH + LzGd03MhcSCiy3pgI7o6p2pF6DtfiV3ML3efksqCOpNaJCpirNGXf1+hj183ovz4j6YCL/+dP9ii + 88XdX3eRlZw+ibH78F1tck7VDn55+iI8t9s4XNxEhF+X+yyj/9WBwIpL93d/RHcfZFxkuOhAG4kR + AE1Y6C/Pa8FvPom1Wc7prshyCv+e1ym+qM0+ZLYMVPuYY9m1WI38/DVQuSIip9MFuTRmhBVuW/5a + UPMU3fVL1eLPTyw7U08NZU6nAN6+7x6Xyb1raMwcdtg/3gE2Z2PPSeBtGfyrbz2zTu7SKbYD9SPz + XdjlJo47/1pK+Je/+pBjY/qHz7t38Iihqd/4+/hCHZZP8xvs7GqP9CCCAibpUBM9sS4xyS4JD993 + JBH9paiu8NMHMA7fBBsmG7vEoccC/vgIqx/PprxXbAk0eqwGzbfo4+kW9SU8nIwqOP78xuZ9wwyN + a3IlRulcwXgSsgTmXrLggHu96ZYdVBGxUWLhnz9rBFs1PJT203vZn95N225snKIzNGv8p9/Hv/kZ + FCQFK8FzyClnHv71bxA276UhN5C3f/yE7+izNr+8O4Wmti/Ed8OYUm2VU7TKz5DgXcSg/+Vn8Mr6 + YlBHpNYmFGo9LOergH3L5hoaXbSLND+mJz6Jwdvd7eUtQUe+NeQETrPGfvHSQZmt+YUP+UWj/gRk + 6H9qi+BVtONdLP0WBEF/wffZ6QFhC6cCf/m+Fhwu+Xp2zyxKWi/Aaa/UMQFP2sFeFU84MDk5nh1g + D/BspwMxBWZ2Z/bcrujhR85vXqXltLFFEdZPv/3hix5v8/kcQXK+lsQ4VmO8BJ/WgXiSn9hxKh3w + MQoKwCiLifHJMHLub76gD6waTA2OtS9/oAXi69TFuf3dXdqacYJOQeGSrOErQI9Xa4W/fsb4khfa + n96DKLC/AcPFEPytBxyByGHLOjbu9JYsSToctxQ7nOfkHPhoK7rIrUF0JxHoQh4oA3/5nEGWa06z + zlvhf/3tCvg///v/hx0F3P9+R4F+9RRsMYtGuUaeErg2whMHH1XXBMfHJRDy8UH8BwtHGn7UFYZj + fVh6ZWu0TVPsBe3O5ULK2JJdbvPlDqHmeyFGL/oNGymqCI/jiVuGkVE0DjJHBnAgCYjiI33c3+8W + IiegM7Hd5gYEl19CWH2XR5BYhDaEA58KPrQtxE89XgB9jk4mhvx7ItrOjGDLhcGDh6vHE6zIm0sx + GiUA2gASq6tyd7k7lwlqtn4kRWAH4+ZEVYbUj/vByrgqI1V5i4d1KEbkoRajtmSPLIN1qVs4KcoP + WNpbVYLxuXgLKjltnEyYL/DtJz0xmpcJNn7FARxy60tCY9VdDvGPCzixqMfRakUuK1Ezg1dzIcTV + XJXyV9EsYbdNF1K8kzAWLg++h67cWFh/Nwdtj569BAtQTSSK2+9IY/a2otpOZnLS+jFfbqUtwSWe + LBx601PbFP3toOxSr8Str91I7Otkwuihv4jnhdeRld6KhALBvRBf8jmNjucmhKviB1hhkBYLnLtd + YDePQlAH6Q7GipF19EYCwXKuTyOtn2qC9O5zwEHS+Q19lxGLLq1ZBpQBM9iJfRZhWoc44LoDG7+n + c1yjhxxZJPiQLhfcx9lD5vuakkzru5F7PQcTPSaNBp1F6Lg+7EcBiVaFAa2QonEHxilgKl8Qlk/X + NN4BEgL0WDeMHwvicvpwrADKNzkMtrCptN0LeQue9PJF1GquR+HhyAEaBWYlanieXDp/LiIkWh2S + i/L65hQxkQdnfRWIe6ytmEB+1mHehQ4JWefUbHYqrDC9/XbUMNN3XN/1K0SM5NjEJMebSy76qz2+ + 0/xKDFv5jDTg+B09TW3DJ9a8UeG7vmRkncOe5PtDjJfAjyaUHUOX+OwFukt/nyTYRW8XFyS7u+z+ + CTOUONqBGEnzAOwlgTVs8s0k2QWSfGVds4OBdyixJWUHbQ/4rYKCv37ItRfnceK+BQ+Z7KKQcj+Y + GpeeFx5yhW8Q3ER1M/LaZUGpZpsk+6Zvum62Y0FrKUuiea9hHO3J8BCyug82hfEb0yX+LPBahjEJ + yRhRQR3WEJqX4Y7NoJ/GtRixBelHyLD9tU4x/zhHCWJv35o4lYc1XrHGFtI70xI1XauReyOLR7v2 + IMS1sQvY8/E6wXtR6PhKv+koaPPkAbZWQux/U0Vjk2mxABckGCdnMOQ0OJ8taKf9BZc2tHM+rgse + KZS94WsgyQ233K0B3sQtxaZF4pF379EOr+3njeXHYLn8V6AOMtRAXiT5+nX54gMKGPV2QLD0bOPV + 3FwHyoeQYqzHC6WJtpso3y4CVo1laVb+1FjwW0EWG3f7nvP1NsuS/gZycCRL3bAWaAOUvabPIt4Q + Gvf1VmZQuF48Ei1YBJt5J5EkdJr79zwaKralBD/wYy2R42va9t7WEO7CJV7uR5TH2y3TyqO+opk4 + xaKMe2d+AnTaigrn0GooRUwWQNMJR+ySaXaF/XbMoNtvIzYyR465Nq5V9Hk8DouQcL5LQfPJ4KfG + OY6ApGtc0SAV6tKQY23er+4aP88O+r6+NPi23wgIRrl6aMidL8HJ5dhMhPcyGLBXlxgnLmym3/pA + P+GNZU8cw11GQRuAsJ1EHMQxpt/xbU1QSxAh1g2hpuvEYYDSNR4XMW9ll3WKpYCOG76xmyOR7gw6 + LSiUizhY6uWZb43cJqjSQ41cufpMWRGnIXwO1CN2s8njHt7ojt6ysxO1d1dtFx5tjarb5pJc+P7m + aMVrgq8Bt/jEv7R8jy7pBWpLEwfgPtbxfhNKCLEoLQsjv2vwww8HHlL1QE4XfAar/XZN4ISygjPR + jF3OdbQdzt1kk8wEeszRWvJgJd0LLGuCQ9e5ilZEd9/C59vF1fjBEUX4r94U6ZGvmot3SMaV4sD5 + us2GZWFAKPCOJBav0chLZizCoCuuxBlQ5s5OVKWodT8BDjRRzgXFG2RocK+QWMI3BjM+26l0dnoL + +5/nB2xZoKUIEmMlWcb1+RbHPg+66ONiFRoXd5M3ksInnEqSf80NzJoXhei7iya+HcQv2I1sW4Gy + yQEOe+kE9oGUFXi8p5qcQl11BctnICzi0MYaE4wjz7PGgNA97ogSWWy8rIwdgTZMBqyl5dTsB168 + oMRRDv/6kePdV4dUhrhBBVkXrE9jV+FtL074Foiuy0lsKkKF8reFOWpYYwvzW6Ex0UqiQoPVtg88 + J3/8hC1LBmBbm9eEdvRt8VUbKspbDBHhxIsKvkCtHOn93ixgJkJDcH3OxzX57h4a90uJL/im5/zt + m5XQh9Hz158pnS/bRUevJZJx3hDXFWquKYGZHQbiQkujLCQDA/snvhMXcp1L4SOV4deaQnKGN8vd + lae+oEF7G6TURDkmPBc6iAnHmGh38ez+r37N0LBIlUe0dyNPF+jWRYbTlGnBdj3aAXy17wj/9ED+ + j39FNXEJzq9ys0WGfYH2Kon4pAYdXWlJd/DBH3tB7XEatwPjlKCAeFzo6N3HTdFnCwqpcyU35aU3 + /G99UHrVU5L7SxXT7sp7yOJljTyKLNUod7PFP3wgSran4/7TO2iLx0/wGc9NQ29mJyMn2GZ8Et9e + vB1uzw78+htrk19RMjDvGsHvs8SKh/N857bzAiIsDsQ+pb27+w3l4V3Vb8QDt1zjYHrSYeu+A6wp + jO/uav4KEXzDhFzP40jXVo9/SZ/BYecpi+7awDcPb9YhJHr2ad31PR9ZOA7rMXjf2hZstW1BOEZV + go1fPVBjkFfIVcwreNDiSym60Ay2mkN/eOlrqx5aEEqDZi4C1iSwjcx1Ryozu+S8Tz99u+cJqIR3 + jOWreAUkztUJKZsaEO+4m4AF52KCSaDnJHATH6wpG4fAYyUaiCLngH127BS6mcQF8ajYdF/3dYL+ + 56UT7UgEbeEPpQd1S3Ww/N3vYOPmOEKaVnx+eBa67LedF2gK4fAjyxIsbHmR4a5PKlGvjxps99fa + oV/9ButHWRqCakGCuZ6IAZtYZJzp6SZCx43ei9hVubaFVrvCjC9UkinqmM+vy7mG/GglASHQpLz4 + Pg8wCt9D0FgkzddwvAfQSiRpIVzsj3tzzCzpMtwJybp9iNdXGJvoXWqfBVroRtf26KTgWkZx0BRf + +KuPWyf96p1c7/YxX2XbvcA8l4pl1YQBjFYpT5BR98dC45NB+/h5tyA4nHvsddo+zpsiyvBwDfh/ + entlX2QCISrOC+27Mt48OnSgaZKRuH4GmlEd1gj5xOzxae2HnJyNu/mnh3C+rYm78JnYweML5vge + 9Sfw0ycdbA0IiWXAnW7iKw9gZFQI3/zSbGi4xwks7u+MhKdrmtPMYCp4+DJngm8L4/ZtxlpQb3QB + G1EaaHz2iFL0+eoyeRzuI92UPAiPc3HJsbK8PDpJb0WEqDyK2PslbGsGrRSiEojLnquC1rmfZwiu + C4rIaTw349YMmgNtRV+J6n5Of/qmh2/p8sE/Ph6n+0OyADWwjf3WG+LltRxN+PMnxGzg1SWgIdnx + H16RyXd37npIIXfPILY9EoBdeXoTvMUJgx0U2YCdq2yV3ogjxNN3S9tLabMQIwKeqHH7bXZ5eETw + /qk3Evzpy8GUShDdCkz8w90F/JlXVYCDRSR/67et1imF6eoaWC6QATbNiyKofuwPcZ5y6s7b1gWQ + 28bqh89gpAcOddBwr1lA7+4CdpblHDgZXEeKgF8BzRIrhPpvQq2XewxW4zQlcIzqhPzp821tvhMc + BbjiB3fVXJ5264CWpD4HQHncm6XuLgVy9j4i4dZO2savJw/0kdbgk/Jqm3WX5xoGdX78+dF23F31 + OCD2cWaXg7jl2lbf/BI6+xARLei3eP5UBxU6yTXCeJ93d4WkZsA70nV8J4s68txpF//8yY8/a3cb + 76sF5Z3CZTx7Mx0vxxTCdvGfwabOLd1qlxVhlGCItV//bbaaDFIbC3twnPK3NnCnXYI0Ng6LyGMc + bycB1bCz8IMEZUOapdHrFR5fTI5P3uM5rj8/AdfvcwuY7a2MHF3UFXb6dA14qbiMCyyMCiiKZ5Lo + 4CuUw0NZwtfLdH47KPFffWbwrksV1mvj3NC4iyP46OsRWynTUsLOjYx+ei+AmRmO9GGcVBgfpZ4E + 2/s1bpYDIhA0vUcsRZfB/uAEBoIWAKI3jNPQiWw1+vPLBf+0XWoESwGfnHAkJ/Qoczq1PQP25ixg + 7a8euO2+oB+/L0eb0Ro+B/0AGcmycSZNS77a970ChFVu+OHS87ik13eE2ClFAciRCLbiulZIe90e + OKgKC8zSV07Qz28TmV9rsNYxlsGvnoIDwe1IJSe7gK8ijEQrvkW+J8lll6pKI8EEbrm7HwOxlpKm + 5rF1HT8aPZedA3W/LxbqPJRxTyvEgg1ZD3IzJjanqD5I4Od3sQG6rNlXRongYzVDLEN2BLss88Uf + 32NZ0qqGmy1eQvfT9A0Q21d027rrAFEEr9hPoTNu8W8HCeTHK/4972b+6UkYr770808v95dHeNBd + chSsklaN++yhBBbQH4l1M9xm2vYeQo6xbiS6Pmq6rs8xgtIkYGycuHXcZosRAX1VNnac+0ZHxRtU + WE1VF7BxfdFWz5cKAM8BwDZRqnizHBqhojlYPz2f0j2LbB4QNBlElls/FnzvxsBVbCWsBulOp/51 + XGFWIJcofR9TeqvlC/oq3Bi0/CRQyr2DDKwN9yS6/821ja78BF9FsmDzDIZ4G0ypgKdCNbD24qhG + 8xQGEDXjhQTXo5sLV6iLwFFZh3hHlIzrhrYaSMre4OfGVRplqN2Dt1CXwZEe95gGxXf6t77ik2C6 + b9zUQ1G9uDhfXQUIEYQpnB53Byt3qRvXba8gVO/hhl3lcWw2IOgs/PlXcrrn1sjZD5GBexML2D9d + Hu7IuccEnhy6L/svn/j5Zwc0icXiUAL7SNg6KlGniB7xedWIqVbHPfzec4xdtZTH1dw0B8JN0/70 + H9ji2ODR7PtRAHv2Qee0xwx4qvUXe2sXalt67li0s7WDjUyoG+pd2Ba+L6JPrre2pfv9oOvodz9B + VSCDUpL2EnTXW4iVu6/HbLXrO1jnyl/QL+9bfsr9+MsLsMa1n/zPf8GkWubg2h0uORWSLAWzcLfw + ZVBpsz+4A4RqALRlZYI13kUgrWAd/nYcJ9jdrr1QAjRfVHzLZQi2ub17aOK+CzHH5ZN/zx2VYYdN + FcsLregkbDYEVeQcibscHEqy6ZsC8MooNuV9a6bCfNUwvrr+Eueb4/J0V4J/+d3P3+c7aGsHPjTz + jO1n5GnsdAhrOMEqDtgQ82NvlP7/8gMeCtmY/PIiZNSqhb2XqAKOm/MIZuqnDCS9SgF1x8cCfSsH + y4GXMWCVcC3RT59iv79J7oaUN4ScWBlYKcYz7co2laEXRXXQMqXjruF49qD9vcZ/+VhMQV+1CDMv + GevPZ+JuuDhDUA6Rga1J7On+KGoRddtyCZpDv7prWFkDBONakTsY22YWNB2inz/HaXquxxXtpQRZ + k2kWVGSiNglZxSKJ2V8Ep35E6QhUExJyBvgPj7koPItwuq0itu48T+d7UsmQHMdvMP/uZzF7JoT3 + aEvI4+/3xzm7wKHzkwBBc4n/8B+9FKTgu45gs/354wzSeOHzKKQc/tQ1+vEtcQ24aGSgFwh+enLh + WA4327PxaxizUYI9/mn//Pt3gWHGyuSWWQNYp3TuoSMemuCrHuNx+/EZitrBJAEVUnd/FIMEN/t8 + xArCkkt0+QslyTmiAMpxPO7WO2OB+Fnf2HfpNtLD8FbhA4UmTkoNutNhASXsjPxC7OcjB9vPX0O7 + PLzJ6dGl+fZ6DrqkaeUHu0SA9McPCcR3s/uX59HryiYAcW1HTs+L0vBX8TdBwEyM7fL9pXtpcQu8 + s1NPzPlTNWuoLwlsJAkvP/5wlzk1JPh26if29L13tzLELDDPbEjutSbE6/5JM5hHeCHKW+jHETFR + AG9GaQX058cpO4/yv+dVODcYL7m5RVBfD/MyjdAdeZpXOvzhIVZUuW4E0hwLcI7EiXjLnNA/fgC/ + /BvHrGC4fCXZg3SI0pncP3jRyM1cVMh1LcWp+uW0af+kKbTz4kGK3/m561HxYOjlfPAw/CSftSxZ + 4X6q3WWW/KtGv9dggl59eBGtwbfxjZSZAdflEGHLu1TjenpcIfT5wcdWelabzTuvEvzwDL9IJ8rH + m8SGErgNUh28Ug/Ff3ksnGclI3KzrGAm4STDXrm0y6qcSfPLc03wKC2Era4C2v6yzADmdzPGquNr + 7v7ciwr4L2knhrRYzeAZcwt+em4Rx+kMdvbbdlB+3F4BTHpN47+vSP7Tp9hATwpoZvAV0N9HmcQn + odNoEx9XeF5pvVDBBuP488vgwhQuVpgv01D/I0Uw40sVa8Pl1FBUCyK8z66G9a7tNPKXV2/x94O1 + 8mY0AsWXHal6kwTZBeKcfQ63AR794EAM1prz5QW5Fh6+8IzvQz0C0qCwQ0JUaxin/g6IOcEJKHxf + 4cRTt3hny0IGP/7+zW+KcW2PagYV4frEyZq6lFo+z0CN18VAOJkpHQ6qxcBhFPpgd6R3ToxSDKDd + NQ6xx+xBdwfoBYD2mGAzey/jIK51AF6D32Lts3juP/zX1rLDuHVYsP3lP798jxQX6Q7W9KsugFOs + O7kHNs0X27yaCLgwxfdroOW7xXxE4FREJsasoZjei+cAxaFdsIr3W7wGxoMHRVjI2LtdjXxjs2sL + HasoSNoG7birKIPwp8eJ8cuH2cC48hC0HiSJp57jBQAthPtgFcQ6dBwltwd2pEfpIOwwAuOO2Stk + 0d88BPzmNet58S0gNL66cJkj5/yDEyD8jpcXUR2/caeXodZwbiR5gS9XbrZPdZD/5Wnnuh3o0q5c + jdiyOuFyjzS6vqNbDXP9Ii4rR3LAReFdhEEzeFj55Q/bAF48LFSNx66/yDl7wvfyT18HQIIe3T8t + KqErvyycLJca7PmamvC2lydsXM6neJOVLYAP831fUHCf3e15gxDsKXaIctSHfL1H3xbW+MtgPxKV + hm0z6MC0PgR/60W39yaG//BD3LcXoHfN6URYphspQuK4K38aLbBkyp3YQ+2ClShXVfrlF9j58ePC + 40qFb6EqsX7vHu76Oz/ov59TwN9OL3fp5kiXfvkvcb4NN+6dBiI43XYx+ByjpSHV5RWhwp3agHLt + J97/nveP/4M1uzkxeY5qBk9XuwrEn7/46dESaDQigVhfx5gSZFYQK41K9EGl43YnnA5TUhjYS/rG + 3fzRh/AgCKdFpGXr7tr3vUq3eRpxUQmA/vEJ+OX32AlEM2eT8tvDpnz/3ghCtbtB+s2gkH8fy1aM + G9g+lSBD4xFNf3oWlDg0e7hllUdi5TzQGRd3CBLW5xaxDfRx0WOvh4rvfpfDNxmbOYmSBP7yTPJv + XgE/iQ71lNgLVUccL9tTq9DnkryxTY9RLHRXJgBqYUoBa86VuxxCv/ybl/7W/xOvlsnyUPkW3+WX + x45EZPvhb76FS9URtDXR8AX4Kv0G4g/P96mqK5RP73xJDKaP14jbQ/TnN4VvI+X7CVAI528dBaJ/ + ZMH+soIANLpfL/EtujZL0JEV7mzl4GsB3JHu8CnDcjYD8ssbfhtWFhaOxuVJ/vLepZQ2R/osS0SC + PWro+OQjKIpzJuBTunTxFhoiDz+jaGPTFZR87V/HHR6JdSbmOeg1/vaNyr/5WHBYgkezClnPwnug + ScTNw+TnV/MQ/uHv7Z73429e4cCnJyYkv491vtK48dA5cEOstfnSDNNIzeNvnryw83WLv7kwBND4 + DBk5ncwUdD88+te/kbEEDTmXi3Os9Ej76Us9Zo9gVMFvvkFOC9m03r5LNXwVlwXbOoL//DT4nQ/j + a3EaBQ58anhOKwZbvlL//D8U4fy0WnytAjsXfnmHGK5RTpxXF48bEDwWAvyssBZOUrwqn3MHcRI+ + lh8/ubsthjW8mhMhJaqbcWvF0/AP/+WXdR1ZXziHyJMaI6jOcgOmH/7C+8G8/ulX+ud//v/sKOD/ + 9zsKmMX+EHnYPvFGr7oHm74jwfEqic1mNV4J19SdidoVH3eqgpaByfsSECurr9pOZjxAub+clsP0 + 2ME+YlLCqxS3BLd10HA9SHcAimtOsApCTTizngljWh2I5X9mbT2Ve4sQ/3un0TxYgM/sLw+ZyJEC + cM+3cbIfzQDqu+fj55k/gP17qAcgXw4h8fldGqcHUzlQscZ1EUnM5/ODdXnIhRkfoEwZ3Dmx9Qzm + wSsjZ5y+wMSGjAOP3JtijGICtna9qcgfweX3DqxN2XqyE/jbEhvwN8EGs2KCAHRYe5NgleWGL08a + IxUPAIOvrgtgfduvDj0bXSNBjZ2RHW96D2PBq3EE/SnfYeMt8AFHk+jxudZWJUYqjAtXJOYyI7oS + GumgqrczLlzRo5Qtrh5sNWiQjCdtvmpKliKRwYTYfffJv3K3hYjPywLjE6C/4x8B9AquJHYoXcBW + RlRFXt9URHHrG+CCw3VBy+t0X4709Wm2YZBFmEVsgR1yXOjq5TaEkbWdyGmR+fzvezRzaUb0VtVG + bhjjAd21tcMRjXRtBsEmot4uNuKrV2HcN/ueADWfOSzfDdiskZAHcEoOMNjpDbvsrA8y5Kz0RhLm + /nJZawE1Epjqhe+u9BpptG8XxHlZF3xmMMbv5OimEIyThm140ykPXxuDDkc/wGr5UoGwzd8QTsHh + QTQwSM30mgsdyOulI4mhvHM+LusEnY8nGqjP7jzO7jOUUe54T3I+Sla8eHuog5PGKMRHc+7uEdOn + EFijSNzmrGlCbbEWbK1Yxto6kJxqcC2Qa1sKSY4NzcnRagYY0yBeGLu55Cw8pibS1DXE0fNlNgJO + PhNsP4czUbL43OxuXEEUCaxMlOgh5jStygTqX7bFyd7vgKNvw0G6au0kuQlfwG/HMEHqaD7IWTi4 + I31/iAkHEMk4ee9XytlyLwHH1I8kn05Vvqiub8JlXWeSGGYYryplJHBVIxsHm4HjdTLYHcrhcCWB + 3bDxOl+5CVn7ZBH3Uol0858xi6rn7512VV+17Y32El269kTSNk00/v8i7UqaleWV8A9yIZMkWSLI + IFMQEHUHiAiKyJAA+fVf4XmXd3eXVJ1STLr7GTrpI9eWBJ/Jff6Lh4XdkgO8HC+pPxufrbagqbTR + Plc+9I6Dbb10fiAh52jvKZ6vTi9QuwzR5s3dfXApOcB+66O/fRHvk6jKuNNXnIB1UQwyhobOeCkk + MbTnHOMbvLxYbzhdBVC6CNhP4yYjlnEkqAOBgq/ex9M4Q3EKWMSqh32gOECspQ2Ea/zi+33P91Ov + Txt0JONC1VtjO9z5Nb3g88u12AMjiybvO9moYx/HZ4+dxxbnBTuYag+OCIXIRyRr1zv1etX5T3YI + wVwHZxtOl/LsI26JNO547zvZjKOOOlb36Gcw+RUUL05GlZOiZjOL5hzUbahho19QNsSNE4NZfqXU + 3yhiNqz5D2PtCcnGqFvA3KQ04M0sjoQ/fveAd3EoQ5z2GfaJ7YMx2WkpmldRxi/npOeeuXIFh/QB + fbSMSiS0EyzA3do0BF5I41D0mg20PuNT4/Nsyh/zWu9eLUGN+HFGzdgq4PkVWh8pge4IkHktWNTX + jmZxeWXTWn9Ruvh7gtAItLnc95YcWkVGYllqtWngvioEr4uMVY8HYJrqeANHRF/UdHHlUP98s2Fx + PVvUjr28ZwWIOViqU0wLpd5n8+4ZV4iT1hOEptCyr09sFdLXw/PFh97U4jw+A3ifvgk9rvVrzV8D + uaWf0AIoDhPYrTCgA4UnxT98CLCUwL6OcmxuZitbHhdXgvZ5vZOmMjf6YuJxoHabPT6u9Wemn1pF + l5tKqG/ULevFzAgh2WcWqcPNG4jL+DZQroOCesNSg3m47hRYwyDEmaQeam4wzRIJWZ7j635o2Xz+ + qjl0zo+M7Hx5dMZ7JdmykDEL64Kj9EOOJwN9jNuXXmK7yebAxxNoBEOhXgm7mmnunKPjxkip9YlM + Zz7oQwCJd5Ww7xT7nuS35iWHL+vui/5t2zOc0AFi8u3obb99O1M17BMkYhtilQstjVXm84oen0NI + H9lwipZXFAcIkeLmt01UZ8vjLNvwWKRHnA2mkgmqox9Q3QYa9Vq4Ayyeuys0FGnnN7AuAP/br+0O + +36ZKM2K3/ILltVKuauqYay+VDGycBzh6zciQASNoqKBXFSCHEfPxG0MIFzrL75xufLDlxalPudi + 82bbGleim4uu2ymhmf0eGH04dwEufvOl+DTHYFl2+dqBJCGOZzWpxYdz5tBSfQR8GMw7YM17/0JW + dt7TdN4l/Uwu3eGXrzgindnzJ/ANIcr0iqbfTRit8RKjxtGSXz3IWNFHEnomjk59r/hGXFF0B5iP + 4Ys6nav14mFjKtCZhJk6j+zm8PnhqKKJlowG87wANuxTGZ6fMKVnl0gZiyroghGNL1+4L029HNpv + Dtf6i3P2QmD6tAFBH/VAcDR1NGI3eih/z9TROjcSto8gQFnhEqzxb8uZWAlCWAoFt9abbT+P0iIj + I36tM5m4vh9EZA2w1j2JPl73up42reWjnI806n/sOuoVHFmInA45jVxry2Znvy3A5i3c/Y2gtA7N + Yb0gX0Y2dTVk1VTBmfXbj9UxdrSleg0WXPmaL9V35NCvbiYIxMoJBzc979nLSAvoZ+GOOuNJdqj8 + CRfonC1KHb2LNdbw653/TthQ4yp6gB/F0kKwv52o/n7sarYzA+mHT7/1yObz1/5bL3rz5G+2cO0h + hL35Sck0zNSZTpdTArptiKljl/uVL+wgDJ5Xk5qc4IDF+IQl1NKF+FzlnthSvsoY5BO06Ll+zGA5 + bYGNWm8e6CP9VL1w2usb6G3XE4BoBA4BcVHCYHd908sslNkSj0EJf+upB68qW4QEXgGMxocvxnjO + Jq+3ZfA5TSqOOUnp2buJE/CIaEZQASuw2FqrwJf7Ab94dxZTsAjCy9nH+zzaZWxeJ8Y8nDTw4f1b + Aep+2ASRv1hkV018v8Z3AwuRjD6XumrP7kPTweSMGnocn6U2KbrPQS3Sd9T1JK5e7qZi/63H8dNo + 0ZyYcweJl0rUzG2+XtIUlTI/mSbeH+7PftXgMiiNpaauhQBgfGbn8C3uTRr0QqJNnntpYN2+KN2v + eLhMXWcBIO3vv3isWf+8Qph84zvNt2fXmUHpvSCI1RPhQ/JgwzO3rrIxBD5VOmHJWD5UHLLPk0eK + nV70I/KqDdjMvEO1o7eNehRPFuKDg00maWDR+Hh+fdixt0OP9uERdaYZF0hrWO7v/K3kzPhx6eRg + phPGWLg69Me3CjYUOD+xY893kCagQvjmz1uZMvZsZR/eLdj88avJz/QJSIW/UC8zroxc092wY8cu + oPvCb2raqV8Ons7GB+tdukRsKsABfsZCox5sh2zclfsJdS42yXJrbO3HrwEmfeeLX2XpJ3xtg7/9 + MVb+N0v7sAX3dvtb7wws+6+UwinjA6q+cy3iMz6cYHV6XqkTvbegm+T+AH/1wDIGtx5XfQX3V+VK + s941M1H4Sh1c+fqKr8+MtrXcwpN3sLAKLptoXIxCgeF0dPAhO50yLgvPL9gei5maPdBq0ZLDF7xL + sUNPpe9HTDwuDdpN0KW3ajrXHLqFCnw9NgvhCNIA99jUG2gGp4zq+PvNFr7ZlTIZ9SNZdH6dAWVt + B9mPois1U7x2HFO+ghvDcmkAPodMyNrrBpTFvMcGbc1sUpkgQwsnET0G2wdY2PFuwUqSCnoPDR1M + hf+00cpvyWaxN86cngMJBfZ5wGedXYBQc6MB1c9hPbFebeu5ePkDVFw40/juEm2KEzWFB/Ve4P3t + KrFlKO4dNLhgpJFpDTXx1JuBiquSY8v56NE0vT6DHBjKTEONPwC2SQwCV3xe9WoLJjfbb2AjHBSc + Xq1TT0LM2RD0RCO8GNCM6n3bwIt+cbBTJF22vOqzCy3xTKm66qlf/IBV3/3yP5qi60eWP4WeYTVu + jGy52NICj5ubQd3y60fsvO+v8CKRrS+XGs/o4vUuEB7zBftbcOi5KdyH8DByDK/xk3FuHg/gcr98 + sSUfHfDjY4CcjJyq3hQwTr77BdSPJe/vhLzV5jtfNCArfELNl75jLDzoB4BJssHWym/6l/hykRfJ + gr+F/t7he2s6QLvRBX+2719nRsWmg/rsven+Fo1g/OUbeych9W57I6NFavl/8XkTnpE2ivOtA+ze + PSj252/GPpo0wehSnnBSindn7kDeIKcVwh9/jqZ3ikKoCdYBn8pjnfU6eJbgjeML1s+vxhmNWulQ + PQUVPU5Pp//Tb6fz4YNDe9J/+lZGm8LuqFVejdVP6Dq4GDvOhyf27dndSVV4ddOK2qg7ACG3Qhml + idBj91c/xhQ30CjfNnaa5FbPzcO04W7ffPxd3tfaIHnHAeiSnFLTvz3q+b7MBiS3W7PiGY6m03e7 + gK9+nAh3zIJeEN/VC532hyv+6TdhzQ/0/qj2iudOPYb9y4YSL73xQX1n2pRjyYCylOA1f+doiYou + BgKzMVU0e5/N8kaSwFpfseZtKock+Xri+rvvyepnsDlY77Sfi09FvdB4s5Grl/T3e7F/aLN+bjyQ + A7EQAqwr0lYbrlrdQDvVLR81cHHo+IwXeB0Mht2D9Ky/IRQFVFbshFe8YFN9LzZ/9VTv00Rb9dgG + uocyxq50Ltny5L4h2L7rnnrV/hbxEXgfUCTWPuFGVGq/+g1TWRT9+kM/DvP1wAcrHmJvH1iMy8L7 + C9auNOL9cqDa/Fg4GV05PaT4AC5APOkPARwJXYiUVxCQ++Vo/PworPtfvRaOhl4BuDU4svv2iTZy + DCRAvBwzfyZH2Snzx6wg7HcjtqLq27MitVz4Lf0U2zwte7r6FVAyasUfS2jXYtFnEuSkUSMo3lc9 + E49yA5U2Mf3dbar6qUQn/1ev/emifMFsPXcDxMLljp1Tpmbz6k+hVhISf/dp6mjMjKaED5YNv3qd + 0ftAOhgkGsEHxNp+4YWlQKdhueHjq18iQntOll9i98amWTycac13ZNs3Dh9vk1pz9703QFnqANXL + B8+mG2uuCEb0QQ/FCTKWue0G/PijUyR2xBPzaUFeoZU/j4c+Y2Z3auG+VETfW/k7N0Wxim6uOfnv + y1eq//wFLS1UH8aM14YjEWPYfh+EzNyW1uMWvSc4dDGjrqFmWfvYCkR0lUrH+ABEMEdgPMDbo/hQ + 3y88ZzqZwRXm3ivCpnKzGFPozYVG3OTYH2zhH37Gm9eb4mS+9ktX3AR44hYJ290mcfjV/4ImiA84 + bTSUsRTJBHZXzGMjERtnEraNCypJLrB+IF/neziPPhxDrfYFw+CcUVxeV8T4L8DOYn7An5/106uK + Y0/9gjS/lc3ttqcKqp6OuJCtADsGRN9jC3XG3+fVXDj7m+R2yibCiy8o1PMHe29RyzgPOBygL+tJ + //Jh9U/gii/Y9r13z6QvLGSVZldsFnrFiCU+AnjTltWQ1YuettGOwNcDLjTz3lJG3aQ9wPMOSjio + gO9M7FFW0D0eAVWXsIzmxmP5n790O8tS336lcwGlp5Tgn1/zp2cXNfDwWXRe2RCZuSsfbdL88hXQ + y/bYQpx8XXp6+qHT1SxMgLa5+3R/un7rCdq1gFa9jw+iutGm9pq94Bx5MVaDKY8EK7G73/vR9BgO + gPhLJMkh4DC2H1YOJnwtwz/+a2q3FxirMg1hvotCanr4DRa7wVeYveUnxsE8O+wh24c//YQtYQAz + Qs8NzO6SSu2TZTjzzajIz/8lu1cfZot4frZQvVxlut/wT4eM2WQj+RglePUv69YDjgAP6qOgNvaO + GZvubQI2J8GnZmw3Eek3GYEoM6tf/tXsEpyvckT5jCpvwe85exwa2D3kjtwj41jPa/zAVU9gRYlB + NOEbU8GWkyKqz8GHUQEcErQxbJcItP1E/dP2ZfhVyiMuiK4xMu+uCbwOB0av/pCx2WJeCq/KdaHG + +vdsGz19KGZOh4+k8QFLnmMAr8HBoMXXdhzCtW6wO24OKT1Xae388Bs+Oyde46+O+EgOE/DTd070 + foBZVMdU7uWtj9W0GcGynQUCt886p06SGZrw1Hn15+///EpGrewT/umNfXlcb2xsyitEAnv5Cx/2 + oL/dJQ6ufhTZjHqpsb6qB7g7hzY1Vv9g8cJUEb8Kx2Nj5dssVjernh9Cn4E37ofvxRLgpHGLPzUA + RYwfChsuxtvCZoznaH4+RwWs/ixVth/WE9OivhxOdxFrP/4mCkIAhNW71R67kRFBLwmwsssee+Py + qdd4gTDWarjihci+P/x+PNIH1ZHx1IittSqweWZT63NdtLkMBQE4J7skQDT7nr2aawUnh4tosi0o + m/PDXkGA2/tUX/Nn1YsV2KASY4WuMyFTYawghdbWlx5XFax6zEJI0w/Y0elDW46vSUCXk+at+HBk + 4s7quz9+YT7sUy8s9kcGPz3vGYHbTz88XvUJtp+bWlv9OxU+nGtAZmH7ActTRwqMCynGlyiWoj5H + Qvnrp1DPDKbou/WaCfKvww1fm6iO5t18ziGnnzEpHQx64sZiBciw3MlWilxt0stjBftqM/3prcnY + TB3kh4OIk7l+OUPphS58mOme8MmXA/MJPANE3TnFTljOGuUzu4BiwQX0vuL3vPZnAOoKm3qeUTnL + 2O8MyMeZvvLXVz0AgF5w5R9//GQR310D73l7xAmGer36lwrcW9+J8NnLq6eBBxPQofwl0upnzRbT + r2gQLk+fvOJ7NKfN0ED2RTt67s6fqF35LlCsTYV1l0jRV1YcAg5zeSEiVWStXaIHB+3GFFZ+fWbL + jz/Mpt/4EKUbMMubSYLsCOHaL0miQZ/sHFY6n/jztC2jP/x6mTD+8c2o35mBjFzoadQ/tKAemwe2 + /95HjXovEyMOS2BSHExsgR4yoVVQAW+15eDkBvN+ar80BJqjp9jYFK7WX5S8gGJ0dLGmWM+MxQuy + f3zQh8/vos2b8cWBFX/I6k87i27VV/h5Tlsa383aGQYTl2BYLqE/h1cv4jDAnXzL8iv+1Sc23csY + /fpnjHu/solNnCuvfjG9bteZMfvvdAX5+bX89TPG3T4poDL06lqfT85033tEJtwEsSePuF42TzTJ + JkgOWJ+ClzZKIUnkuJGZL54x7yz3ayYAWYoxNp/2LWOpBwjY2FZGtobw1haJu05w9aOJQMY7G7Iq + qeDjMnZkMylKz1EtOkC3fZbYlVMWrfwT/vH3/c2vwGTngQRoaYfYxiGXLQepu8JZblKqPTm7Xm42 + bKA0SgY+//iMsZFaWYvMHTZ386ufVb3NoarsOaxeGjUT++d1A1f/yJ+kj5Ut1C4DpD/91t+temYi + /PYF3bxaqDZROWq9r2RBaA4zAaJa9uNkDhCqUdpTxcGgnvzdzoDeehFg7151wNvBlwNr/lDXlSY2 + W895QD//BPNRWc8trEuobo2B/voJZPD2G3iNsz1WsP6umaK8NnDoVBM7zYnUw6LsUqDE7Qsnidho + Ywi3HPzmpYDt18avhbGfD2j0z1tq2Pujw/Zlw8FSMxVqRvE1m0exteALtBzWT9+Ts/R+TqBoC3u8 + P12P9c//gqXMKNb4jjn9Jbhf4YnLXWr+8mnlW2jhNyM1+LbIlu3jGkBE8hu1/AGA2d2eJHCUD46/ + k54yI9q1rNATCSI+1GbXz8T8WiDbvQ6/flItBI85RL/+6dqP1iZNfVvQfdUn6qexkS1uLJYwxZaE + Lz+/4dePLklxptpzd64HaNccOqvBESflsjjD6mfIk/gMsRc5cU/KNzBgSh2ejKsfPCgMrP6xuP/5 + Oc7I8cYBhi5LyBg41/rX/4XJsXOpaRZbjdzbePr1t/wtH5X9pKmjBVa/j9QNR7LZxakMw9Ye/K0N + HtESPk0Ozql0xEdf9hxuen0IXPs7dI3nbD7LhQWnTAywclU8xt8PLgepZE30sC/d1c/PQ2hpcU0j + +GY13Rje8ve+VdbnPdtJVQcM6d1ScwBmTbdaGaKCDj4NKqHWll0cDuD/OFEg/u8TBcLuY/nTlu3q + WfGbGIaBuvg7Zeo1dvGIDV98NFDDU6aemLe9gZo7iAk431W2fIywQm/j7VN9u9CMxdtoAwU9T2is + Z000m0K4gfrNnn1u1I+10D8UGYY+xWTTbP1oqlpOQa93QYhEmgDwU14mMNtXFKtjE4KZeNUBpulH + wHYUD2DJji2Bv+9bb8U7TNJsDhanKKeadfHq+Z2INpRH84Z1df44vblRLKgVukGv3X1gk/3ibIR9 + WPmi4H6dye7UEJnxPqXm+LZqcWcOAlRvmxg7ljtnswjODZhvtKO+VQLGvhQXsrwd7nQfHq1sjreL + Ck016ahtXBlY4ObkImXa29gi4Jhx92C3wHmICc31t1qLjhsm8LJpRqod9He9MP0eg43y7vGdvJue + 5ZO0wHTUJKrqu60zbHGaI+rzexqJw9VZrvzaEbovKemIbtZcXywCQp5r06J4qRnvl9cOetEoUF28 + 1Bk/F3OCLsf64y/R46v1J+ISKAUA48Mm6urf+iKS1h7WIKcDwUrfEBrFW8dGH5GeZU8jRd7HcLFi + aZojfhotR/AaG9TnRKXnL6djApTSdwkCR6Fm9TqF0K1ci6bfLOnF9PEskQoEgzps9wL8zrupaHe4 + zxhnN8GZFMLHaL+XITXbhdWLEfAc1NM88pfFiyJen6cNyluOx3c1FbKlHkQIPrHgUdxOWTYYrrfI + TK8+ZGoeb4d3oz6FZQFtwsl7tReGIp/WHxTTOzns6lFgQg6t666g5oYd6+H4IAo0vOJNtWBDtLmd + bt2uoRqH9XfLZ1PNfwPoHVqbPgx9X08bvUvAcoI6zTeWn4nmxrKRrQpffLiYGhN7afuC9414o/uH + /oyYf3++kDjGA1Ywh0BrZa4KFW854rh0984OpVsVzmMb0ABzd8DDrLZRnG98mkzaWlFUx4COFSD8 + mOmBCVbZ+rCeLZmm9q5k0w2dCgSYGFC/Erpoaq17Lv/iyTOkECxDXcnQ05KW2rl3rierDC2k3D+m + /3z472hh+jlGe74t8UPfjRoTJVLB7/xq6aN0+0j8fK0XTC7hB6/70/+tR7hEC3bc55HxOzNZ0PYL + 3zQ5dfua27NHDK00ValtuNtsGsedASO9tfBBkW/Z/IA9B5XtSfRZNz0czn5BCzReZdBDdmDR/Klf + V+gMyhNHhdY7c97nDYxiymG3DWBEVMlMf/mK7fxma4L0rgTUdsKMtW7aOrNBGIdOeb6Gl48AC/le + gBu+nYkYtrfs7/s26gH7ck7UmkNK7kPkHBOsTYdnxCJFsaEU+jNZcu0WTXd7W0LMwgt1w8Jxlqo9 + b+Awn89YxfZUT6oyLb/6SDYnM8+mxZoqxKXzjjom4fqZvV8xPHqbF7a67z775oM1QFu4Of7uU/DO + YCaVgt43N6SufuDXGQC2D3eHx+xPd5/1v3oH7lTJ8OMhLjWph+0G1o/iSFWhcgAvn5gKWzjUvvw+ + +jW3OQg+qGfJJbK/5aIphWMCndSm+KzOpjaFQUGghCeCdbWttU7TWwGeK+9JNSm6Aj7i7wvo3nJO + lRUPRvx4VShG5xxjW52dwe7sADTT5YLNTZjXrBDrBdof+46d4HPPuIrYNvSzVKEaPbkOC56PHFTy + NvLV6HHUluxYDlBi5xM1Lx8VTOdXbaCDQCi2KlUB05VfEuSWUrPWz28k3ie3lbftV6PKdRK11299 + D8JA6dmQHU38Lm4DYSsl9J6PXD+dHG6Ap1F9YKyPUj+IV1r+6i12N5YfTZPAG/Kz/nrYe99vDmsy + 6kPhklhUeX8f/TDvbykktw3CWEjembi/BR3aGdWbGueJ14jL8hhyzuDhy+WjMvFQxS06zk8TXwT3 + qM3b18eGdlzf6B59Lg4rlnMLajfg8V1UlnqOt7IKecxt6Rk/+7rX6VEGIc6fNDuf/IypKSrhvtZy + n3ysJWs9wUnlTkoK/02ME1t23QRhextOWDHfTTaZAZ3giz8NNAvYDCaheC4oMSwTp9t2ry1dvN65 + 4jpG90k4RNPwUiCSXeKQ4RUNgF38NITTLs5xmle+Iw5aJsGMDyLiqToCDF65A5JnVfnVs0zwlX2H + 7gP6UMW8zew7GPZG7tO9jzN4Pzuzm5Ql2u/jAUec986EvcQqVHAR8RXylvqpy78cLHhNwcd+ujtT + lz859IkPACtNstcE4cq/ULicFqrKXMSa4vwUUKEuCvUiRAGD5w2EWZ0+8flaXyNe1FoJxcNeXuvp + 05nIR+Aguu8tmnjnr8PcaM7/8Cbpg42zmFlo7MIHT2kQZ0XPOjEcUKgsB6zcTgeHr6NjALMazvRx + yZuaO/n6AK/cFNPf7xM0dC4hX51U6jcQgdkETwOxA7zQUzq1YFGok8KxuWb0NtVLNkXnQYBukCT+ + BLpzvfQPRUJQnix8/cItYJsHNWC6PQz4kuEbY4XcSsi/vmWqvDeStrx4zUVTzDfrJTqx7lqbq2A6 + Mptss7fdT3G5N5B6ASX+4dmUH9MWUiZbNNcPfP9yyCtE7hxx1FvxjxD6UpCQNALVg1hhApWVAK7m + E91XAoz67HvqkP4d92RrX771JC+2gvyhLHFc9xFj925TyvHgQlIHG+K8Xhxvo3pqOnwsqtyZJcuW + YfbcIWrOxO2XxTgW8AHchmpS8o0W5zu4UEROR+DmbgAufuQQanOQYYdzPGdSROWFjs/hiIvT453N + O++mQKP46OS9/TqZeDwwF3qHzva3G/QGlHX5FfI4pFTpcq6e7rZYwvApvbAWfM8189Mhh4E09ATq + N19brtIphTcJGBSPegSmSUAG2snBkUY3+ePwVSAFULtXAj2s8bQErjqh922qaCCOhiMoi1WCd384 + 0NuHef0U3acDZB/vgu3Lcszm9JHl4LtYEk6/xccZdEPsoDaHGVbtgXMmqzhaULfWqb6L7/QDH+sV + 6sTJx5mWuz0nXmkFX5o6YNtnW8DKrS1B/SZr1JTPniP2ktjA6ms+yaOdQNTyJ1hB76xdybItXowJ + m3JCTLszaii50pPtsQnBGo/Y3stiNibaB4Ly3rXUYGJRzzGEMqj0C6JKkzwddt6PChA+jkF1PCoO + PyXEALqlnGhaika9GP4gQBxwZ2qkaeOw29kLAPXFPbX37w1bLiOyYL5DZ3rqN0cggjg9QL5WY/Lw + 45szE5NyoDVNj/qo2DvcdUEurK7PE3X6o5KxcpMs8DvfGupPt4PGlvp7hYCXD2SyNE37i68+1Xyy + q5/vvoGbk4/OnPD2xdJhDjMnssD2yhA2OFfMxqeRq/CX//EmsnsxlMoNnLO9S1rt1GjswZEOctnT + wfc3v5743d0aQKw+ox6O1tvSFBmQQA/5y3IzAb0EfQB3u0rEzvlEIobXmTxZeNjS8LL+94R3srVg + LpPPymei6Me3wOM6vejx0x170btm+Q+/Cfrx/afRHWRb7T8EJh/sLB+n7KCPvoo/JFOk8deQuNBB + iUaNem/0v3gGlEkW4R2lqJfza7bh7nLgaXI6cv1SvloDnobIW9ezzCYhDya0fh4+vM66RuDOMXb1 + bMt//HCeEnKA+fdlYq23LI3vOFyB/FJHVDWasp9/fPT3fFSysObPqnOAe/5R+Nv9dHT4x7aFwIyX + gSR95PfLS1JiFCVL68PNvWFrPlYAfouGHpPcqln6XCowDwmhzvmuArEOex/eqZrhQ9IIbLLK1P7l + E00m/AF/9Xutj/T8TMZsaQO7g6+ogdRykzqb7sE8oXJqAY555+6IBheoaIpPCZk//JvNVTAFaNTg + jQbic67Zp81zODVS6nOv81ubOC+t4Fs+TjTdzyyizqkt0NaYT9SxFAiGwEwJ1FzYrCfUIq3DZrnA + m3Tk/OH1eGbLbTuV4CDme5xQmTqU46YOxmNV+JPpoWwUwb2ByY586V5J5YwtFQp20t44UT2XAjD2 + MJxg2zca9s95zOZ3Pl8hfno1/umbpSzeAjji0KCO23lsWscAwEtu9VgBW6KNtWcq8GSvU8jDr5kJ + RYwGaQuEC/b7k5Cxn/49n/Q9dsOi1was7wc5ewJEj0kQayyWPQHSU2FgzR0MjYJTDnd9upRUYS9V + 47UH34BvkFv4roI6G9M8idGc5tAX+vbjzG2vlXBnlG+sr/vDJD0S4GEv9ES8GDyg5saywGljb6nl + rqMIPyUNIX+yKhrRu9KzL38cQF3YH6pejS9gNEwtQEbrhK+BWWTjO9nayI6HDBvrnTpOISgBpirJ + WHlKh5pJeibImbJ5/D2Lo/6SkeZuVgm3D4CwGMccNkXbrPrG08iPv/zwSLG02pmD4bbAVyh2vvyr + t03JJ+D8YAXRSWZnQnm7EEiZJVDvzVcOi7fZBqqAM3AaWVI0z097fZ+kI9LK71c8OcBJUuWV/4na + PJ0eG3lKYhuHK/+dp7yM5cfVj33ocbIz+agq0fa7eWMzV7HG22YVouQSfLByv1x6Si9tAPrUD8jc + RtU6eUlrgBn7OV7jk7HzcQpgOR16X1rX92/9Vn/GBxQzNkEJqdC488xXnIoHg0ODFK7+Bw3IPDqj + HEuWjB/Vgt3XY5+J/cFSwKr3ffWKR0Y77txAtuMyrEdbS1u+52CCJdEEn8ejov30D/q69RP//JO/ + 9RRJ55P6nNs1V/W6Cu23AFZ9XLPpDfNAnjd+SfUrdRl/1Nc7NA+FYe32JjWT1IKA0nlzhI+2lsNd + x88B1vfs/G9/DdZLUHYHB6dPpauHHZ1V9ONrqz78F38rflJz9XdYO3YNKJ31RHrtVGw+NY8SRNon + pqbfHwF1o10Bb5d9TPWrv2Vk17kc5Dmbwytfzqab+HCh6PouAcG2iehR7VzYD12I99NN0FhAJA7m + ev/0KyN1nTn/Og28bC1Ej/Ux7+es5gt4iIPR3638aMrMYwvTO3T9S4hm1imLVUH3WQj46JW477Pv + rYV//H3lE9Nvv/LOumBLUpp+eW9YguQM7gj7+UEekl5w/x8AAAD//ySda9dyQBSGf1AfEjHbxxxy + ZkhP9C0VEinMOPz6d433J1jGvu77WtaeaJDWvpR9w4/WyqRvFEKi9hvPB5KHwM4ztftGXQQR73XZ + ze4R9apdqE3RMkpy8xDPZCiLbzURjHSgk3AmUeWe0XJ9pIVUjD+EbZZ3dmoWN7JX3vn/fWp34m0J + rfM3pkehmtW9mYKRnxPK+LLQnu0ovbmFg1UpR9lwnEaQd2EWYudsqi7/IqEnh8L2Sg2LWB1JeStF + ZvxwqB+3Qjwurl3AbslewZrf2vPN4CB53H3qNl219BzuXrA/bTQcdLOW8Sl/SOHhlDV2pF2/9gte + dj7WA6dluSDyPPW9yN4nxkVZoZ6MjgF0vr6x+p0/MT02fCszvmG/dCeXMp+FsgP2A0FpejQeTwcV + auunUs0c7tnu3hhPuOjfCjsZ3aP2fAt4eFZ2QDh7IBnjsf5/nvuJlGeLsG8KpL95+f98YDx6Ik5m + a5bY80/jtQqg8QsD+zhf4kmv3R7an5lT8x5UHbFzzljzJJHI0eyWHecVkCqHEadgO930/SU3+FSi + SI2/pa5mEDVd1t9mR/HQHBCFFAzUFMUVh2oDyxzI3h1+zbPHlirKWn8QrDe6JsEFm7FtZFy9jVJZ + bNOERoeHs7Qrz7PKz6nKk0O8K7WnBJY5bnDcbHWN+Y9CvmUoDeaBXhahKb9PQCeroMlQt1UXSyIg + dHKKQCb6tRv0X8TLzM8F0vfjulNpXx2wfXxiPLARTdyHBev50u3yimh8OFhyFk6PYL6/jWxnEMRD + poYKXn0DzUVuRoWXGIHw/tJucsxfCF5ea+TB+mybX+UZlHgm2LYTt5suwf4CrK/SzPsNaPrS+oUG + 4YWoygt6PPmZ+vrvD44mrqoRdgLbybp/0Sg/KtkOss4B5q+p715wPK1+R718Nux7B20GdDdQqB3/ + 6OH8ibVxi29POKJmIVw/Thptf8NdguTN4cgX2B/9G/uHVj4zH7IISVzc5GlbqNTV7n1F17y04RKM + dcUYln5xlQKizUWhpnJLs0WroxnpcZVR22a3RoVey8EfhgKzvBTvGL9BNaYD4Ybjt6Oi892Az4sO + vt2J2nFv+XADdCIj1fb5EM9/H8eB27YFnOS8FNNosnn48fEvuFRK081lI+pglJ6D7ei7dI3hfnpQ + aiMki1dM1dw6UADjHXWZjxuySr7vWT/BGrRRPGOFFGsew8e02mfTO+lOgOKnSlIz+Kv4pKUqalPY + Yr26ZPH8ng0dHk5VU6v8y7O1L6PVPxq6jyra1jnz6fOArZRs0IfxAJn84441c/SWZa7nFIkJZ9LI + ZzvxxFfSSp8KidQWndMynvMziNjPN/Q4j+rCZYqZIkrlkhpPVXan07jMUJDFon79ENf8xIGp/Twy + 9fqjG6aM80CjsCd/4blYFq2+zkD6dIuDG7tVemuTEOK/3AgE5ZbGw6D5PDzfz/E/XwWWH9e8Tp3y + 4HS8ld43Uv07zxRLTojGm4JeYP20TYCWIcym27ts5N3SvAm36x13cj0vhOofAAAA//+kXUu3sjAS + /EEs5CVJlrxFQIKCiDtARFBEHgmQXz+H+81ydrO+niuY7uqq6iQ95x22XlrMFtlzVKAcrwLVzjxl + U8XxPMxV+MQe2MnReIhGBdzcy55QxQ0Z5WlfwwE+wr96ZbBinld0fS4ltfSCbHqShPC35C32v1xs + zKaVzXAjWwF/nIL/1ktyzKZAvuOBLXpalvDmhnv62PoD0wCzGQrsXge/5rp4U/b+tVA/1BfsRo6c + 01g/u2A2qE1d3R4Ys1qxh81J33a8g280RSDUoU2Vb7B71orXrY5cweOMPxS/d2r+Ty+1i/mj6uMm + NUvPgx6mQvympZl10ZJehxi0T1/Eh9uljyabMPGffv/za9f42ajoT48c8pxEa1x3LpwM7h5IG19Y + V1srEHjtyq2+rYCMbafC24B+9MBdYDNrvFFCyZV7fDffSbO0ryhD7Xy9Bet2YnIatIpDLw0+qOdf + hZzdgksIjWJ5kznsjUFcwOTChkYHHIyh6s2/y34EoTF8SKi3BZsV6iswffvmXz7mC71qAfq+B4/I + 0jCxRbYWWdn8z61fFw4L8QUIXyL/oqlXoWHiJ68Af34cbEbfkPI2ruFfvyrI8I+xW1SlaP4WPVUf + zegxxQ94MFYGo6fX7TOMb15w4NwqGTVCofeWXvJ7UGpFifGmB1cLp1CJd1kYgFq7sKUY4hbGnlkE + 6KFP3iJxl/HPb8JuNaze0ivHFcg10wI5LhJATsIngZk7y5s/VbH1+XAgfMxyQID/OoJVoRcIo73f + k3oNG8CMRl0heswZGSvtzZgDPBU2z+JIH1v9Xh+e1YK2qu8Yc90pZ1w9+n/9hS0fMFv21mkFu9Rk + +PowP9FCb1kAs6LvsfVb7jl5Pu8ciLo+C+R4wfly3JUc5BptIt3ruosa4xFUf/3JAJj4xTZ+oKLx + NK80m97K8Fq7VwHPk/qkFhbf3sJPRoH21smg985po82f3fQ+r9N4w+OV23EmqPzKoWr7/BgjFHYy + dO79jJ3w+Y3I8DorwJ4jkbw2vFnKlY2Ka7oe9o9DYmz834VJ9z5iU2hs4w8vwEfxZnzQsm0HYghj + eGj7Egdm5kTSX39KO1OFBt+4BWzJSwf+ynuET+n88ZaD3EDowEHHB23V8skPrheQ/Nzt91yWaN34 + 2p8/iouNn/3pW2jBxKLWD02gO591Hm39WOoZ98Jb1jYs0NTCAdszPoAlcUQTpk25YlNdhGgZjT33 + j0+YgdeDv34QWCZTDfiOvRrhDy83vUHN40SiVcyVEX51LqfaUVPYeFvCGOJQvP7Ts3MXVgStz31I + zSd5R78DeJlo80twcjReHjuaIIC+f6fYFKrrsI5lscLjixxJY1qfYdOrIVQLQcB2dq69ma6RDYXw + HmKfe7SAjvZd/etvU7eoidf+6U251ij5x2fC3zZ1evNv/vrZcxF0KxxQUP/Lt5E7gBiGnZOT78Yv + 12QML2i6mnv63HMwX4L61/3zh7X9a5tSL3cQqmV8p+6yZ15vRyuHtvWl+nu3RuslfK9AqCM9QC/v + 7M3TUJlwvr5lihOwHybHUC8oDSVCdtWrYUuEfur/c0eB/L93FOz0Z0OPH91m83q49lCU7m2wsxXZ + oOyXuVDgSpXq6i30OvJYRJSHyYj1MlK9+SPZK+KmyKTBIqqetLsXG6JHEz2mJmGsphaEx+fJCGaW + 3xpB21WBkvacSl5tvmOty51D9NQ6k1pXYgIBu1oHvx/vRLhJDaKlZlYBJZ2+8PErPL1VX08tdGL+ + QBOkFWDKJ2eGrcriQCJzM5DzzU5A4bs77KaiMqyjf1WAMt0N6h9ukzFbrqQjftiXOIhMzhuwGm+3 + 8PgJtcZCiVZYkgs8XLuRYj0vPDY+Oh1SMxPpkVyDiP3AuUe7s/PBDoiejF7opECaJG0g6JcGMPf3 + 88FBEVx8zdPakwZDJbCE0ofiha+iRd+vK0qeghxMmP9FrEDMgY05M6x61DUW3UYEHmJ8pf65sptZ + TgUf6WVX0Osut3LBv7oQ3pUmD6qz+IiEW//pIX/cEap1FsoJn/5aOAeyF8xncevwKUqPhC/vEapv + c9TDqOQVSNUvvh8efiQcrRHCa7VKhNdjY1hzK+DBXbpM+DhIn1yAdndB49v/bTuaH2A5D2KKforx + xLgtt7nVYChhlRGd8Hv2Zat46kJQsHNAk1tceOKx2UMY42Gghs3unniWchvZRtAEHNO0XOz0KYbL + TVio9UWc181WYULplTaBEjUXJu7pQ4f2x4nw83c1czFzYQhTM/HIrtaOzSyVdQfnUXvQLL6bQKjK + qEW8TVVsmKoKeOxrGdjimT5ujunNcWhWgHEDozp/6o3lvFNDdOTzmlqvpxBR6YIgFOKHibMtftgc + 2yPMUZtQ53VPPL4owgDeELlSz5jrYb333xLd8vmDb6cdz2bifiE8w2Cm5u7xMVjibxU6821a3hQK + 1uDqr7CncYKvqT8BUUmkC2xjJ6dxdspy3jldXNT91Ik+568Mlls/dUpJSYRddqyiuTWbC/ycyYXm + R8ONFhgNDmCllxFZefIRg0fOh4cUZDio9CRa6lZv0aNrLeomWg4ev/deVLj7HhFOePY5fS+HCqlN + T7DmTW4kAJYkKJ2dJ/Xt5tWIIZ5lpB5nNxA+zq5ZXPVsovAmStS63qgxI31tEb1/YprQNmDSuW5U + NCvkSfYP4nsCyVcTuIf1Fwznbe4XumXd3/tiw9nmvp41x4ai971QJ7WDRnrVnglLMTni835/8KRI + KmR4VX4ZvpMryamdGcE//HGnp2FIay4Q9IsFjarG1wBLJ9UO0o24xsfppQP+rLY1+tlhip2cpoNk + mtIKA1C7wfK7vNmKhXONkuLrkkUwhGgy4syFhbSLgvGo9c1SfKMYJe/+RgPh6eaCdglbtETeSHiQ + c2z2f0AFTTs2WH8evIHH5Z7AMs7u9PBTzmA56VkHzrtnGfBLPDDWymINY7N0qTYejIF5Z6+AX8wR + omDFaabwXXEwBB8O+2odDNLd4bcdCvYBl5Ma5FPxmhT49vYaDdB3HvhEVi9onX4axp8+Yrwt2z38 + 2NkNa+OhGUaYpwksnrWNt3jJZypJLfyJ64IN0ZW8pa3LUZHX/IqPTXr8e783uk6VQ8+oXvIx8KgI + qY6egXiR2nxWv04H526b8/m7mGz9i9/iWdlYRe+zx0MhsSFXvdh2RYY2zIvqBFCE1kD/8IQpghlC + b3TqoM+Hvcf67pcgfnf5YK2IfTBZxdGFZxvsqUNrHEmD4RD4C04etS5726AFAi4Mzq+AhmFgR9Jp + 6GfwehgrNbOTEk0fAetKK9oe1oTMM5ZDIztwmG9HsublK6Lc+eMjuRFHbHzfXzCQ9aygLR+oe8j9 + RpIuiNu/8ZFiXySDJ3yEg/6vnnlDERpzxYwOkizf45MxNsZaPFsHtbf7EftXVEQzIGoP71I40YPn + ih6zR1DDt/vo8cM87g3WHD8Jsu3nmdrgtsuXzs0qcL6pF6pBYrHPFl/K0taMfJ6aHy23OTLBfmln + uuVzPutBL8PTZ1Sw132XYSl/hQxlTYb0fsWht1ydeTuzJb6xQWR9kKzn04Sf1R8I60UYLdLvM6Nq + bO6EzbXqbfkwA9AcQAClWhym8Dz3kHwmnnptW+b8MnIhnDr7SHbzNwX8NjILbr8vdcMbNyxXR5Zh + /PoUOM3AyRAc75Ki1aNnrD69wWORa10QHvWG4rNxHphp7mbwOm9zPF/fOBr45j2iIuM1HGQ0aMQz + ciqkmd6BcMt2N/8K3RKu0VqS3dN3gajApUDJPSlwiEDLeDlFPrwU0xFfQ/M7jI1g+WjMEoti/vLL + WZ6EELWFFeBkLlQgXc98CO8NaOl9jPOcUP7e/eEzfnD8MqwnZUqBLz8w1U29akTlyGdg/+x31Po4 + z0Fw1bsNf6w2tlssa2/NXP6Ctt+XRh9/Z5A3O1zg+xk6tLSftbEuvzBBvvmh2DA4JV91U4BA7MMY + XwZ8BuLHvgf7Tvok+PwJuYEF7D6jTCwcGvbObBAKqAl/lQsJmwZgvJfLXAPrw8nYuZ4xm8351sM2 + GySinN+tN57VtkJSYnf0lqGRfZYhtZEcdCd6PqsXYwlEaUQwqAN6cJO+mb/LKiNFHjkaaL8wZ57p + vEE+SxZ2qo87rMkrLdCenDqyfMJyWDW3ScGzdh+B1Gy3SAeiRJBxmsoARs5jmLF/zCAMqgCb8cfI + VxuI2y7wz5fqC9UMCb0fFXzcgYHdRAOAZQY2oRP4Z2qHIouWJspCyBvFBT8P54nR8Bq8IcAJwwFk + lseHrHlDcWr0ABwz1VtiEKcwKC9PqtvaFK3v+7GCjdxF9C8f1z18KkANSvwvv8QyHkUQIu1K9V/4 + MYbP8rMRDK/tdp44y8V7/y3g++BDIsxl1TDLb2eULOxH//BNyHZ7EwSr9qWnw3XKJ2DbRBErtmDz + TMp848c8LHA+4dMD3/LfH56yTB7xX74P73McQ+4Tn3E2CJ+GasJ2a3SiNdjOPM3jGT9doKoRLtjv + ojafs++5BrfToaE4xK23OTwXJGhBQj03GJr5rKmmop/3Hg7w+mvW8y2I4W1GJtX0rAbMea0BfD20 + lWx8CjC9caFyc/KS2gflFa335qJDRT3esVtWEpjHjrlwIc+WSFv9YsR/joC3oh+1z33JFgSsBL60 + ScZ22YmArsEqwp20ZoTbvp+ZH78G7Qet9DJaBmDLN3yDjb9Qvc3tSOrU6Q1ZEnwJ3fCAF81tKsIs + WIT7TvZAuWWBoHCUM9lL3RXMA6neSPw8RFKj6tyw9JVdYDout2DpFQDIPfwReKzfHvlMvxeYka60 + 8PsTLtgpoJpT91iU4GOnN/z89BGQUs2q/uKBiCl3b2inTi20CjPG9zg3m3URcx86KIrooeAq7723 + TQUk4vtAT5N4H5bhLldQkvUUqxv+kMUoHQgbMlE8rYqxLJ4XQ+QAj+qha7MldZVSEWUeUcsCgSd2 + +icGjdxH1B3jF2D7U2/Cs1QP1J6LCizvaXnDP76mmWYV8a8qj7fr0UsCqKVEk6c0b1i9Tk/yvfaf + fBZgcYHirLjUh9oFrEsSlAB/45I+nl/VE3cq7OBtTXN8mzPNWI3LJQN59M2wvadOLtE7dED09Z/Y + CMpjIxHLvcgb/lKjM94Go89Xi+zz4v/LHyEbaaBs+U2taFqG9UlNV/Hb5ok1C7+GcXcbC7jhA7Zg + 24K1sLoUZO863W4lLxjjk5cI9lDuaYk4O+dfUVj+4Qu2Pf/K5riGIiQvg1JziT1ANNSV4JlXX5re + Qjh8TLIvYR/rBVVvhsnWELYQni8nHp83PiWoH0eBG18jfXx/MwYhCOGm1+jzZr6b8ZHU8z89cQ79 + tpnJ3LvwFtH7f/WZunoril/fgoS/+N3MHLLsPzyjZfDtomXh1Axs+pCAo3QFv20SKcgaSwv2VnHP + l0m7zNDArkCGRySCRTgsOrwajU9EeFryaenFGmzxRppjdwPs3KUlFD9PEath0Eazou5VYN1STK24 + MQbemhcfhK8pJ9W7vLD1RyEHg3WbOnLf1Q31TKeF1QPO2LgtZ2+JIiUA8s5psYWyNWf2Xkz/4pUM + l2Rhi+JBFwiDucf+GNbReJ44F1aHGARN6Hw9Riz9otAkbsny+vL5pD3zEgQiHTf+LDfk9zA7tL1f + sFt3r2Fu30kBYbvLA/RXP7d4A4HOfajaO6FHd/c4UNLZfVIvEyZAQvq20WmabfoMPk4zmfm3Bej2 + PtEr7YJmEWImQ/aqany4CO3w464jQfdHNGN8OJ+2sbyiA/Uz8LB20yxjfShWCcWofwZr+tOZpFzP + 9j+98/f9/NgxBxr714oz4fuLlmy3t+FNGI4BuPnNsGDpHoLYTxF2Fn8ElDf21d40pYk6hBhAWIbQ + hsff4RugDc/Xy3vb0pkPVQCn3Gg2vpPBR9JfyW7Dl+lB9RjGJJ7o40NYtPqR4UOIvuHGzxkYNAFc + QNJgFasjImA50TpEslK88FFj1Jjbd1n+4SE19dhoJKPfc6CSpJgGz8AdpHvwgvB0c874MQ9pxOY4 + GAHD7YKt0Dw0sxK9YmSD2aE20go2qjZQoN3lGsX3emrY++130J1jTB9DOg/d/KlENB3vB6xt6706 + xuQD7ULnQIqfpjGyb5/BV1fY+MofXDDEt9cIf+d3hD1OPhtzK1UJMiSS4796QwZLLeGmF4l4kexI + qGVFAZ3o7YLdJ+KMxST7AgK3I9Ro73bDE5dCGEbuGsBz1TZLf9FqOH+vKT1lSxDNf/xTlPIWuwx5 + TNBtNEKXkyUcnu/fZrbTvITvMc+o1bHZmz1aFUj+HjJ60uIsWtXZVGF2Umr850fNiSt3cHe3Unqi + mwP5pksCNz4eyORGvGFWVBntrbnA2H7o+b961TjGC5tc+Bjme3zolR2zr0HvhkO0rg9UwC1+8S2P + 9UG0taEH6VEP6YZnoAOZuEKOyco/PbbpS+df/cQ302xE097VIBdeLra2+F+tOIfwoeQFxs9GHVbD + HyF0UlvA2n5/MOZFVQPUPcgaNJufMpMejlAlXEe4t9wZXVmeZzR15pF6Vnpnq8vdQ/jSqEytsheb + mX4OIaqYh6kZNw9jHIJIRF9/VKkVmt9mzQZNRfLXyqh+QU9vkY/KW7HUOcOZser5+ufHPKbQxfru + ZQ7LfS16cJ+y46bPg4idhTwG8rzjCPDHuPmHfySSH0SytqkB46NSIa+8K5xizvH4P75aQuFDjfJc + 5eMff5JkNcXJg/ci1hg7GZqK+8YnK1GbOdyfVTR0Z0iNp+WBrd6UsKnVkh6ZV3mSdBE4JbOEBONP + VHpLfucUaLjljDWcxE0XCZOjmJuRCTn9w5a2ni9o9aYzjnqxiP70Itr0Ijbd4gfWwDkqYItnuuWn + 98cPgO7oX8KIXA9/fsAfP8Mmj0SPJc+UwEhXNXy6o5rN54lzYNO9FKKc9sLAqsMwK5HTPPDBqlI2 + 0g++AO1WB9h6ChJbXt4Qgr/ndaReaGb27VM4dBGkpzGoh5Ggjw4VXt9TN/If3voLtRndvmaFrz9u + ydfkFZbwkXRXesuOr2iV64uD0GxkhLvZ72j2RUGB8jU08D36XBqBhk8fJnHD4UBeOEbIQdfh6J7G + gOWFtuE538HCkc/06txv3vIIhBZS+ZIQeNTcZtkv8Ypi+XTG97Z/sOXFVTFql/OEdS5GxiyaXgLt + 6WDTLZ4bshyN937jr9iPHDQMWqLaSLCUHB+k8RpRRT8EsFvBmfoG0YHobDukFe8RUX20Nge8QiYM + j2EQyGHOeXP6rGv0/Ny9QHhqY96JkpqBb9ncqNfERyAgVeFhJx53QWV8GzCb4VjCcyf8sLk6t3yt + 37q43Urv/Ps+Jsmzi0QnflNn07O/JbV9uPnjGH8Hm837CK+A5vpAvWD6DvQbXRU4Xi57+leveulL + dPBFwR17mVZH6xzsdbjxoz993Sz45tdwi18iN9nRWNH+9AbfPPzhIl5zb/5A3ldMxXnTy8OWm8V3 + HBNs+UbW+AsbEu/j/p+f4z/O28zQ2DP39b6UqQutNSLe0HGwV4fr9j41YKAgFbR2Uk7E+LVNoCtJ + CKK9sR2Izl5saqqHC7TdLsN4dA1PULh9AK7XElJ99yzzaUntAP7h4fO6N/L589B0aB47788P8eYx + n0N4yrIdNj7+05t1RyiUCPExDozeiJbs+Y4VY8yqoLq/JkBNc7fC4NwEGF/3Td5+WCXKf/7mH578 + 5Qeob41D/+J/iUGRgl8XOFhbFpXN7ndfgJYWVxopP+atO2KGUMw8QKTvnhvGMEpE+MdXTHMdm/Ul + AgceH8uI9QGf2atu3TcQiiqkOQOjR0x7V/3Dz/tHtwF5W7tO2d++jDpVEDM+IwSCQJxGIu2TFayL + GAXQHgZKDXy5Giz8cvI/f9sdBGuY69OgwruGROqlomaIi1G6sAR6QP/4GMXTGP/jn1HSUkb/+glc + MmBsvBqeLXvu2cOEcudgXpg6CLWFRCg8Zy549pU1LPMDdIBfmzjgYWcPpFWHFeLT9UWPYwyi8bso + MtQd9Yvjr3eJZiX6xRDexSP1/T5mzH7OPbxmnhZwxX00FuGwVxXA5ULApbPGlm394Rb/ZN749Zzx + cYaU3r1SnE0EdD4cYgWnvwKbm1/dLU+QwiMsCVYjrRzYszpWsJjVivSJBtikDDT5W29qgTlm81H5 + rYpapSot5aUEbG53qqx/Lpd/fjDphD4Fd8Ct1CSizsT7XCgQcHcB4+I2RpMzWO99o9oEHzb9Q76B + 48P2VH+oKpNdTq723oHiSf1hVc1ps9ghuUD/mJ5ouh86tog08uE/vU3yqZmCYoFw88uCcdNPc9TV + IbI9LyHjri/Yao57AtU0YeS9xANYqyLn4eZnU20E2Bt5/TiDl10lePOf2bxvzx2chkTCGiQftvVL + MnT4vgtqHDuJTSFHCEyekkxYe7cHXoBFCF3QH7GaXff5+s0NG46XcI9jVKzec4m7C9jiO/jp36xZ + eblY4VZfsQ+1FYxnTbXRmy++VOXPv4ZQ8LUhb09qIMvVYeAJ+qjwePAkii/BChikcgojXdewr02U + /fNni4x2BEyPJlo/9nmbg3LxiQwRylcF7gv43s0vmv/x5aa6usAts5Jq6VAP82//k0Hfd2dq4eA6 + dFXrrPCnPZRg581HsN6cdfzn5/jNxfX++PY/f9o5HX8Dc/i+hmbM2Vt/7mRMz2R8g17gfDLvmgdj + xL+NkJO8jsi3sBjWwXIKeL+YGGsXj0XzzTICONqQCyRDx+A3jBUP46OL6emBpZwdC38GfDD7+Gx8 + TE/880eOxv645UsezSDjVhhqJx2Hh5AYC76Z9V8/Ah96gvJN7/RQW9J14xOct1o8doGP9z9sitzP + W+/oNsP+dnaJrAmEjY1w8uGQFB9adJ8zW5TyXUDf70HwLTjVo9NtfSPg9oTizinYKutWhnZXsadO + N4VguewzHkzBwSdwMic2C78Gop4mCcZbv0vUUFXCHL2Trb8jRqNzyhz4K+QT/avfkxmMBKrayFGd + KHo0DfuBgGd/CLG7IzCnWjen0De/FJ+uh8WYzcc3Rm1xCKh3841h7hksoHA8Homw8en15igjaGtq + Bmt6OXnisz6GIFmWH7aGnZkzOzP8v/fH2v1JvHG5zBXiw8+bOrM2NOQ9LDy6P84zTc/tM2dKncN/ + /dE/v2yyxa6ATTkk+OAmbsM2faH85Zfq0d5bPvkxBPLObYlw2beGBPRqRcUv66lmGyeDpbz7Bq/0 + NpE+8pE3Fkc7hkF3NLA3PYxolodPDdnIFzS+pflALu96hmbq8zj1VwbeL7VzQR+rBbU0C+Z0+/// + /Bm9Wn7GICyagzb/P+C0Xxj98We4+WGbnim9WbWZAjc/nR7Nc2r8e5+j2uX/8md+47EFxomWAVdL + PFiNS5bBLX4CeBQSYw0LNsPO4DHOzm/bWNKbkKD3g19oXE2/Yf3mngnTi8Jj6yEOxqqGIQ+nhZsI + C8rjMH0hp0PxpP+oVQ1HMN0e/QpTM/aCN48ST2BP5MP5bffUO2aVt5AOcuCvPlmBwef0nr/5/2dH + wf5/7yiQZFOnYR+GDZV9msLxHQsBNLdz5byLa4hS9MMasb/RvHBSAvNtzpl1PH4bxiemiLw19wm6 + dhqQMtkTwVUDDnWet7WZJR5l8H5Ir9QdlIPBXx+KDvn2GmIj9w02e96kwp6Ze+qyXQvWl2JXgGPx + hOPkZDUUdWK8dUt8nPRwGJZTd3bRVe5l6q7PIlrfygKRt0ALR9fPd5gn+CwALeIXfnyOD8BKQjJo + A3FPT24BDKrja40KUZEx/h6pQZJ32iuvZMqoLioiW/v1XcL04TvBWv8+wwwex1HxwC6jhvnWjPUu + 2CvCJ+ITUCKF9f7F6+Hv6p6pTdllEOryxEPv8/rh27rnvVWiJQHSbTXImqJfw0Yc9uj68YtAGdyF + zdYBBYC7f7Y5qViJ1lUaA4g+mUXxvlcjIb2JDtoxOFAt+NF8lvzZRIJqJwHSw2PDL0hXlFFKXLK7 + P5g3tXKVIPhaV3o6NbUntrPZoiL0HGr9Hm2zmOgNoRDt9th4y6oh9uu7QM6EEQlxvxvoq4kr5CiH + CnsXlufS4+kEKINYwA62X9Ho7b4dCmaxJ/E04oHnU42Dp3HF1Dv5O2M9Ph4VlNNMo+dWDgZRPpxT + GN9GQJ8JznJpEH41Upraw5roHTwWt30ITKVFVL1i1xsgPoRQtyih+PCxIul1nEp4oN8Y+7f7IRcG + R1Fh+aIG1fKPaCz5ihx41rdbiZPGMGh7ul4Q2zkptqjHD+xJNBls60GL50cGY1QmNfQu1one7b0b + rcnqppALtTuNQFUDkgVI3uZ6PbC/20tgm/aQonZy3vSZtr4n7oniQ0HkbWp/yQpmKH8CVD+WI/a1 + zmuk9vQIYXrAJT1lbdYsjdWOcEiyE7UV/DYWReFE6F9CE98DrvcEoZtX6BfRnQb+cB0EI/FdSGcT + 0VR6Vp44fncmZNeLhwP1aRormHUXHe9cSu/1I/bW33slULw5VrB7mjhahTGLQbeICOuFp+es078K + 6sXmSk/z9T3Me8yXsKLVViMci43meO5QzJUDNl3lZPw9D6L7waPuo7wygUPJCK1Te8E2nA7DIop1 + hfbNLaYH4XZrlnHORPA4JT96Quch2u4Ji9Eet/J2ZvM+8Pyy1/dhGqRYC0MPMPldq4g44QGffOM2 + CKJZJHA+VgY1+jYwpNE6zOC6t3Y4zk1/ELl0hejYiG0gZuvokctRdNFnh3Ssl+8PGK6B4aIl+zrB + Pnd+Azt7TQiPYerSo1RmA8tGu0ZVYdvYRWsMpPnw7cF9aWuqv/RfNOc0byH/iz/4dPzExnrav0s4 + CXeFHpFheYJRawV6CuxBbW20AO8v5xRKWnIJZu1QNNJld0xhG4U3evAPC1jS5Ej+4p98SDw160mS + dfhq3iiA8DdFzIvkGT51TSerFz1zVgHQwTJO71QrjX0zDS4pYZyNIbXu0ddbxJIq8JTEJb7lr5yN + cPwq8GtqD+pPuPGEbj9fkLdwViA4F7WR9r6rwC8fxFgzsOWtywO58BhmLo7W9Tl0a9qWULrNBj5v + eLKthw4DKcyxaTb5IO25s4k2PKJpkIzGWK43DsrQLbDpujdAhUZ8w32i9tjPvqox4d/Phoa/PMha + XWKPZX1mw2z1KwJ7pzBYp7ISbXhK3ellDHNxVVX0WwuAT9E59PjqXiRo5aos+Or5dVinb/aGh5QU + 1K4lj4lzaGSour/kgGanLlpn07bhzo51mrlUMwRlOtkgVZeJZiA+5ysNWIE2PMaqHzXRqrWHCsIy + vtLHJft5k8saFfm794T9u+SC1TW5DIZDzwe3dqqblR85Hnz7xN7W+wOENNFG+P4UEnXFR5+zT6r3 + ALtEwv4+jxuRH0UeUR3kGJ/PWiMUbZ7A6VXfAukhn4bloeolDL73Bqci7cF0eL8SFL8+R6qOXz0X + QDVcgPc8SFT/VmMzwx4UMLsmKIBnXdjOrDcE2rLw3vDD9IRA1GWU4GYmwteOgSS7K0QUFxyNI1p7 + y34Ie3RRtQCHxUMHPHNTH3qf5oeDiR7ZWvx4GT2ywKcm15q51LgoA+MEDGwryZXN3lF+w/tBKuiJ + 06pBUBSOh+PpaxIuuJy3jn7DIeRUNdV31ANiyrIYuqW64tC8CtEaPEP5X76dr5LjSZbp9VDWYEiz + L9x7y7h1lAM+srEZT7mxHoXUQe/dzcQ207yIb882j65aqQXw27RgUulhBSr347BFwQ/MpY9NGKmB + hZ/Lp2qEFz9X//A+ZxJtpvLE+8j9ApVIDyfN2eUbrKA7dDP2+fc0jOGpSyVZIAMNT26f02vgOeiw + K/xA4cXAE7UW10CI6pVqDnhF4pQ/NkcbePjY1xEQ66fCwcns+UDZ4mFu2leLqsQqaKhkszFjHbfw + QQ50q9c42uKxRFhS7oRLbueBNYkywlGK3YCzTxdvVWdeUZZvMeDI/1VsKu/7Csm5+CCLf3mwWX3A + AnTnmqPq+8dHQ/JVAsWuc4a1h38ZmLR4ItDF2xgwf74MM850H73sS0SLEJjGfM4vLqLiT6R35fNq + GB+nKSqibc4zEBRGGWkgqqDgY7VZTwY7jtsppvrOsCM/7t782jkjWrndi4ir+47a0xOlUEpPLj0N + Fc0no9ZKNErLOWBvXAyMmEMILBm3ZMbNia1pfiMgKe4RDYs332z8oAZ/z+9NFefNofAZkWo+1g0f + moY182tG38Njjy+wjYyFfKYCVsmhCPbjMcwXDiVEKebngeylUhlmzahkRPbGiR6E8MPW83xQYbZu + cyljYY2Ww/sXQ4oOX+pewKUR8nYnAgOvK3UtnAxseZUE8b9lpKn1unn/+NvGP/7e31jP5PJGp+PG + KUtyBtIJnN/Q5D0f6weoA8Fcvj3IvIJiU8YrIyw6zLBn9h57UMP5PFYAwp2x8AFS2IExtHUMKewr + bKzrbph2jeGi8IqNDX/BMFOKehhnJMQaQUFOx4ebwfXcycHz6GtAaMdBh3fu61P1srTNvLOUSun3 + VY+PN+PHmJ5nPCAanwQwBG/jl3NrCa+vVaXqRU4jxpRfCMH3/aFWMBuM/0i3ETqz7WHjYCb5GsZD + DQfpGBH293zHk9gBOZUcqi++w1jL2m3KmGVRnX7GnB725XbKi17I+v1y0b94bW0JUO8k1AOj8nHr + aG764snvjJVm8gxZPSHsPOYkZ3Iyh1DO+cc//JxY3tRAW6MLEetD0rAL801oTfKZ6oVXR/PPVGuo + nq/X7fOvhi77ewLran3SoFJ4QKbv5Q2kIIHB19+m+vgizcCteRrY8eRuYDA331BJuo7+4T87gXsL + u8B84SR6vJpFwBqB4mnkqJPucTRH5rcEaqgE1Pleq2FGZt3CdWisf/z4432PgTKoeUPtolKiOZat + N7T4xaWXIGuj6dwvKkw+fEZPxiEc5uf7SCBXtJCIZ/GTE+MzqBCmt4Hq9c8a1t9N5eDptyr0pCj3 + hkfluYeJ3thEBNvUjftJK+DjO3AEOqKZs0QYOEW8fX0C4e+UL3988lU5L1r4HgGzet45sCtfHT6u + 32iYYku2IS2SFw6sRwHE4rF7g4uCM2o6r2Mj9utYghuUjzTy9Hc0PxJYQkPc9UF3ahPGRpx2ELxc + nvAR1T1e/e1n+CAWxRtfz1d4XEL486iLNS9+g0V3LilElmnT03QY2JyDVIEQdDvq7JExCHr94WBJ + 6ETy332MyCe51sgFt4KqOpG3W+mDEI7qO6OXOz83s2Z0CvzDNwydBozB+orR9v9wOZ+2K43fvgs3 + PUSt5Zcaa4fuPFyMMaSF4h3Bagc5D0W+oPh5T17Rwl3P2b/8PieEGvNvL7UoZ+ftzH1qgwWMVQsb + cOnp8TAvETNELoF7/R3Q4JS7jH1St4el4D2D+aItEZn1ewflgFMCrnJ3AzOEowJno7kHQP8B9ruY + nQNTe70RXt513kgPcgI/RfDFp9iRomUVdiboyqYL5B97G+Tykv92ubcE5F0YrXjSe1jgUaXPje8T + W09qkFk6hw/tpA98qA02THLoE/qrKsDm6M2BR7Tm+O95+TVZdeCedYdagXRtFp00F4iJ6tGStCGb + nwsowe/6SakV3qp8DvywhFFsdRi/8pfBjJ/5Rt/Hvqf6yixjfiJ5VvIOhtg0ix8bTuDcoo0fUfsy + +TmzxLv4D3/M3BybH/l8SrSLupFGrObZKm5nOjQiCmS36T3KFXEFI9W38CW29aEWqoeODns1x+q7 + rhspkw0e2i9uxAbi2pwe5T0BqcqmAECNRmvWzjUSpmxHDU9/58t1ShXglvqK/V5eolnyZRvmRyul + ZnuzPNHfNgRlZ+UVMC1x8n9/V13QUPVd64P0t94bfmN7bDpvVZxXDHvRDkhfBoOxusVeh/txX9OD + z6VsIezpw796bR8i3Zi/+tzCt/XdYY1OxjB1k8LBjzN7+LkW32FRFJFHxvzaY1ytj4EmQsNBO/BD + 7G3+whJfy1AJvUSg/m5/A2zDO2VBSoG3+GdkPecJWGIdB0JE4LC0FwZRJd7zQC6roWGPiu/hpUlq + ah8Xq1keqluC01MeafqHv3v19Abpch+wv+HFH35IYRC72PUfNCJDmir/+M5+rTQ2C7t6BZf9GuFT + vN38U8kXG4HDpcWaA7RI2Pgu2hvaNbi+nnKz7jKaQZvU+K/eNaw9PS7ghVSDTJyzRssNXt7oY58Q + VQdpZBte6iiqapP6l7qKeu2dm2C8PS74eX8wY+7K2ERfVz/gICVNtPzxj69pPKiZ8y/AzrfqjZ6f + ONn0fsrmfvglijE3+4CTcosJOnyoEO4OOXXjGhvdPlC3HXUDR667a2yMmtRUCBzCltDREo0firUC + 2WSXYCMm1TBfgjkGxLqsQcPqGJCzcxxhc6gwxralgNmynRXWnOVQozAGYwQPbQRDlMkBgi/Ro73u + pWDje0HVrJOXOomoALQLL7jc738R5WvdBQfRsDH+7t//XZ/vQV2xLTwJW+YWZfDzM11crHbvzepv + meFs14RufwfTqT+9YcNNNuE3/0ygJzuG30i+Ur0nVsS/A71Agj3grd58mhGczQwV02PBf3i5JAdH + hTF4JNQ6B998ltR1hs+rfgv6qRNytvd1BXU9NPHGP4Z1qx8wK/ceflSeZbCNT8LgZAZBWbm7hsnv + XlVc0/lQt+aqnJ1vXQtTVB2wlpdmLqKdwaP9CGoabJ8fudHLlEiRUozX4jAsX/vioCe9DtiTmTh8 + ziUbETQBplt+gGlIhhWecY7pqQvfgN+Lp+TPv8MJ3323+mFfYJPnK7bBqWAP1NAeaM7Bon7Llmat + 97WOnp8kwYcPOuUbflTowZsZDqEcDXQ0ogQu33IgChoMT9r4A1AX/0SvJH/m4rfpV3BotOXP3/HY + /Kwv8Pc8tkG7QxdjXJbTG5rTJdr0Me+t/sXoAftMF2pFpGi2enkBf/r8IAZcQzc/ARyVy40aWuJE + y/nCpdDt5Su1ez+JmHgrVpD/8hv1X76Qr7oHIPTyX44LIa7BDM5+BgUmLvSI3ASM2naHW2R0L7J7 + 8mYjjruFwNHURXzQ82sj/fEzBaUpjsWXOczFUR/hq/p22G/ZuZkdsq8g1ApGb6Kke0s0oQz+hDLE + Fv72jHJFUUMC1RrnG9+lNxyZSMksk7qaMhrLxo9hrPIGvW/8Yz0NCgFu+dgHsetKYLrTeUVePuQB + 8tnISLcUFVy4a0Pd9xgMs3a+dGhfK6eA7HU9kt7+KYbS9SRQ1xUvgNjZ3YXbJtV//GPzixOoiNyX + qvl0yvkcpDKcEf0E8v1nNuvJ+on/8tXf8GHJF4fAYnouFEMsNJPD4xpa5JrSx51GwzKv6/jH14mC + 9GfDVP/uwq3eUMwrg7fhVwu/7jOg6pN/GlMzSC1s7ZTH1wQKEcsf8gWM/AKpYxhRM588tUafX3Om + jp1yBpnNwAabnsbHPq89okIlUDa/jJ7kzIwktz7o8OddDHww12/eWx1NQQPCHhuF4XmkeEjvv3ij + G15Ey1j/bJDa842Wc/z0liWL3n98AZtc+47E7+1TgMnDE9XkX98wTzl2wJbTB74B8vP+6j8MXHtP + kKLcB6axhYM+M1z8l1+/4x1w4PtNlgBcFT2fa1+p4dFGRqCgodl+j6z993yO/Ngb40VEPRiqS05t + jd0akviJDnrRDPDj+OG9TT8W8LKfI3oS/KFhSF1U0JT3Ay2HNDXYTnc4sOFZwO0qa1ib6O7A9G1p + NAG25zH9GzpwUO/Nn77JSfkLM3RO+STgI1obf/wLfFpTCJaTzrypMgIe7jL8ofbdw4wG9Vr86WnS + 5rUWLfKAXChE1Uov328Z/fN7628Q4sN0uYH1KJktgB8c0GPAucZMyNH/q+/UG1bMyHVtZVgr3YiN + +kWitXhILbQC405VftQN6VmljvKTlRE7IY8bFrg7EeKl6Ah6TFojpvmTgH5f98Fu31e59DhYLQy9 + BdLTJGke+fPTx9vzggOzvbJhjdQSFZH7wIFn3r1JFPsKcjs5xMlRC6Ol/DahAsvkSrWuLRh70bsI + WCneg6Xpr2wJRFeGt1D/Bms73/I1/VQtEMTtTuFS/Hl085/QafZHeujNp7HlfwrbdmTYnbprvv1e + DrhqhYb94zTkm79cwOYrBlgdv3W0cHTk4EQajf75kf/qgxbDjsZil+Qs8kEAZ+N1x1rTvL1/fMH3 + +Muf/8amRoIKzDp2x8H1C6OplbsESK/ujHM1TKNnor0SqO0iSA33Qo3p3rACJfg1Y6y8DpE0/N4B + DD0G6eHhpNHac78ZpMai49NnHxnT+/GK4eaPYLV41OyztKGMuJ0SEm4+nSLxTfgeBlN2CsDO7bz1 + 29QrlK8SC+jWz5gbNR2htFopdY1Xl/fsaZnwWElnrI/XF5txYCporJT7Hz9rBjkdCRz4I/eX37n0 + aooKTLn9CcTeeg9rO/stBLdpwmXlPpv56F5tGDWwwqcHH0WsU0H51//AWz/Km9Wz5P7Dk+CU94zs + a16B02tXBtJDswdxeQgOiKqdR02zOG79rbEAwSTF2OvqT8QS7ZeA96eUqPHGxXbHpTvC+2r8iLD8 + ZKO6jWAEYeqnNI4n4C2nIuL/+dFa10KwGksXw/6yKgQW1yDq9Z3YQnOasoDdOM+gqQhkkH7thOp8 + 9mq2/tms3H4KT7a7LsHEC1n752cEu3PKojGWT29wN+8qmacPMMbfXnr/9QPp4a7sGvr9+jF4yuuK + DfeCjfmvn5MFpRkISjl57BlnPFTjuKfmEPieIFvvEN6UG8Ab3npzdlhnxIuBQ3F7vwO66WfYxSjD + yXH5NDP/ASP82BgF+/rBe39+Moxf3+PW/9Jy6WBFb8gd3SpgynwaJDd+XICS9F3wmpLVW2HTxfDe + eTl1vdbxiGfeZbD58cG5KB75WoQWjza9Q40bNxjscn/oMJIySIMhlT3yp4eOd5hSIyZqwzY9hHRa + sM2v7tkqPecKdPEuI6xQVm+qe8+BSoMuwe4YRc0yc7OOjkp4w6esVYZ/6yv27Qv/+YfUfigjvNyL + GOO09Q3pr9+3vS9Z+ew1bPj9ht9T2fzzR2bxa3RACF8PbB+1MBfjN3L3ytRUwdkBWs4ekS4jr6s4 + 7GxzA9bET1S0+c3B+bRXPGqIXAzNI9zRYkliNhoKlcE1AGvQSc/KmMeKQWjgecV+93qCSd2HPWRr + K9CN3+ckWfUMCvYPY22JK0PIV8GFf36U036GaJWu3w5YIADUAJXOFu5Y2ODTWNWfn9b8q8cHHF3p + Kd5x+c89ZY7yTIGCTx/d94iDhxXWhgwD4VAPXndAeAWnAtwChvdDtHpyXKEzvRywf+IfBjUETYbB + 43X90y85uXLvQEEfyf+HP8vxxHVK3nEh/usHrzs14mE01STYtfc9+OcPR6efiH3lkg/V7vl7g80/ + xnE6HI3JBHONBgxzek6v3sDebij/69eENWiNv34G0Ib0ju2/erXpd1RmoktPfJFEG1/q0dY/o8a5 + +gJ+44MgyTmfelEzD/OCXFn56++c/kPalWwtCyPRB2IhkyRZMgkISBAUdQeICA7IkEDy9H34/l72 + rpeeo6hJDffeSqoEQx/Y4SFd/58TBdr/PlFQJ95A/a7+tcyZ9Rrd/MsNH8JLO3D5MWjA4BKnh7nd + WPOBzglqluAQEUdbVkVPiVAQj1ua6PoH/Jzm3AH7M3r0tN0fuXLN2AxV0xvxSjO4fHeNEQ1k12Aj + KXAx6/naZW7HIdmeoyYY58NhhGcXbiIVfg4tP6dTDs5Pw8U3FIoBP75NBruPuSWi1j6HQb/nJ+h1 + PcZufLEKTs+EwUF5I2xcqy9gcrvP4dRlFt2R7ytd7NPPRxObbJzc7KgQW2e7VnzKX7R9PFo+3faB + Cakwzni3OBSw66OV4eK9IrI5nL8Bu88TgZk0qThKowAss3OQIdD8HdV3YV3IhteP0A/LHDsNC4CS + sk0C4SAaNN6+jymRn3GE3F18oYV/2LbM8BqCpscY4QplwOIX1iToctc5vR37c7BMZ01HsiIC+vBR + XfC9FAhbCUZH6lJ+TKXmYVUoNHOJYvcLAY03ewecvSKJ5svmDcT3CBz0JnlDvU14H2Z/7DV4EsoX + 3l33k7XI/T6G63pEP23qBqbuuhFuw7LEl9s5D2RBOOdIJ0mx7hct2GZriCjJpx8OsmfK2fFy0WCQ + GIwaqKstQquHCMbultIy38aAwblWUcnxjTr00IN1fQhi4/WG/ZekgHkzWTGqDo5Md1V3TdmdZSqM + lctCqHvj6RLsQQN36zz5y8W+BqJ+/0bQcNSYunQMW0ZzVIEhTXC0DJYFpMy2K8TnTiVbKPQDV/Xc + hN7j5dLrbP/Asvm9Z7il4EXxxnO5Mj7nF/p9ZEwLHh8CGpx0FTknk+C983sD1tzgDJ3U82g2FGIx + v3/xur+6G6mmbwfz4ngCkk7bDJfQ+qXy7vCM0ekwRDRqPLmYgj2v0aYtr9TvktqaKpaYSH78bvho + nqtBnAqdwHuhHGhYvZpBvu5dDaaC+6Q+VkWwfh9BJmcttW7tHJApYj7syrqilwylxXSXYA4fmkTp + niS/diqGJob8es/IaJ9EPvntIqNSFa80c3wlnUP1E4Hylwykm7gLCHc/KpJ2C8SZ+/pazCKvDLm2 + aNNSPj8sOTR5h+6GWtNI/Ey8r341REa/DHSPdjSdrlH2QR8zFaj7VhBnSajO4HB5bonUSwegvHgv + wGH6YXxb38+Le1OjSfcaGpTsDBRT0HMEpVNJy+8Jc9HUNBUOfp/jR210Af9kfgy3b6jg9NaLnPrF + rkff8ksi7Sx27fJn/83DROsYLg0sR1p76EzJIfqLJ3P1SD8I3j0NYyYeBnmnCiV4vdoddZrt3C7R + 6dDD/PTzsXefFGv+BqqpGbEsYNzbdcoE4X6FMslq6o23a6B8tZwADBIxIrfrz+Lv2fuAhG0Damaj + OyiSsphINRIHm1f0GxYgvBt4kLKcqPDRcYZdFqG/5632ECzvl69D9f0VybaYpmLePk8CvNpsRbwH + Y+BTcOoRx9IT32b1BhblCH1YHdo9WZD8G6TtvDXhY/PysGGeq3ZJNjsZKbF5x57cbzn1VJKBWmMP + fNWiD1hQrjsoYZWK8f1nFMucqx9gbM0HtWLNHZRf4YkwJumPmtLYgK7MWI+EKzlhrzeWgi9yKWqv + oETYWAp/mGuDrVM1ugqnozemjLVZru2ZoNPDyyjS+Vg+RyA+tScBGb0XUyyPKgy90sWBcR8LNnZq + hdTwOWLj6cbF71zePvApQZke13gisv6Y/9tPdVorcn5x6LU/f378xYc/+98bsU1vxK4D7peyCGdv + qLApBlFB+j34wJnWDrX5obL4+/bqUJbEMz2c3RnMl96IEJJfO+qfRa+VmlrsNI8bMS45uhbiI9dN + uNuvFYW5j9P5HH1GUCgviivcC3yO348OTsa9wPnHMzk3B0eGTNJEkrt4LHiZ6x683twZY/DS+A8V + S4KOshjRuM53gXgXplJ7ykpJvfvjMJAknBk6XNotDk/5rpUJN1/QlWFKpNMlG/iGcw/erp8DDaS8 + L/7la1OMZOovexbQ58gj5OwWDZu6GwyK5r88dNx93gTmg5vKPO9KFB1ghG/i2QwUdEw18HGrdS6j + rQe8+k0isApoUz0fcyDF3K/h73mIKW5ICSTb+L6AYpwzbNJCB9IvGTsYp+oPF3HMLJaqBwjLuFew + Bz+HQTw+pQRdP9oRGxhanF/EotxmopTg9OAt1tLckxjdrq8DNVNPa2etNK5IewYRdaWuTpdfDCpo + mptDNPNGBXQvSz5EtrbHSfZuuPJzMhuloaJi+y52KZEG5QT3r2RL9ycTgNX+T/C3Nwg+asEFKM/B + NyF5FTqNd+k7GPe2aqMYOj72QYoDJe4mH17GV03vwxhy+VNcIRR0u6a3588IRM95JvCNIKZF9kyB + IpdGg8xjaNBHeQfWdC6PH3C67H80CCvQjncoJoicjx9sDMepYDyvK6ifZgNX+skYlG0XyvB9zgp8 + 678KYNWQe+jv+efFwZwp+8CG9/JYR+xxjq1Zc7Me8tsZYl8yp4Lvec7gtdmrkfbB7sCPb39e70i9 + 198/gqHeeTkqDTTTeENJQbT0HCKh+Zk0K9O65dNhJyKZME6YHs0p+XiXHPB1ionVfrx0KaP9Cx13 + fkK9AG8GuuN0BoEbVZFQCFuLMXXvw7IwFBwqeT3wlK53CqTbSCP1+kq7jG18eGN2R3dTIVhsPv9U + mJOvQiYLvorf7OxEGBzfDyJVz7Slv2oI4eHuq9jUo7kYn5/gBM3ibWDjxcxA0kwXwuPEHLLd5mgg + dD3hBdPoEIlaa/z7PNCy+YDvtgbS5RNAFQ7y0ab+/rZv5eYGGfTW+wtpO00Bazdyjga/y6mrP2Cw + +I3XQT73KsZs6ji1m6uKnqNK6DE57ICi7N6vv/9DNGvYFExvfrrWRRPCQVC/hiUz0xheo5HiQ/LU + W2INewgXE2HsuC83mMl4ecGt8BpwfgaHgt+E9wdQgcw42AxjMK94VKvKvo20a64CXlqv6O//UxsC + r5Dkc9VAfPPfNHrVyOI/DycQ7E+URo1xbMlTGpMtHJMT9T/4O9CfkzlaDJs79dMltrj1Mh0gT+qB + XotznCp5IzvwN2c9jXBfgSVejpnGPktOZPB8BwzeaaZZ0b6lrvBRrNnvF4I8vSTYvk9WS5tfLEPZ + +SZ0L54bi9fMYaCFi0yz5J0V7F2PNbi/Lx092FqR8r1kQZT2kUMUZ0aAvetXDbdv+0jk9f2cMa3U + /DOUqF5dxpbV2kaEeDm5ZPh8Xy15330frvksYqkhAXLsbxX4zTOiYYxQQe67awNVI3Zw1dl+IF+e + ZxN6y3jBCUD2wC7KLKAC9QbV42Ib0C9CDhT8R42t7q6185+9xqn2o+ZzygAjIp8hMfIgem5RVPBr + fva0NZ5H23M7p/P1CG1QEEGjuMRLy77jV4YnoXpR/Xe8WPP7dx3Bxc43eK/swbDcfDGCuxRfyf1l + FMVCNL8EGKxTBy3TCuTb7l3/N35shtCSPeNR/sMHmzLLUgqHJITLMbII0o57i9BbGMNHJpxoMC5P + znn+PgFfbS/U1Bah4Gt8BGUcvnDEXDMl1a8W4A7kW+zdH1PLT93Vh/bFL7Abv0O+0Cc6QVlNIxqu + eHY+UDWBf/j14X4hn0MpkOHKNzCW0m0wb3bXCtof4lHs1mrAP6ebDduW0mgyf7dizpjigXsufMm2 + ABmge8kSwJ37+8j9+h1YMrNIoKIDK5pRbFkz7VC09mCK6UMKxWJymnOvvsMkpUGeY2tWQZH88/+N + OhvpsPOtGbqP3wWntzYOxFCWTKh5mzECUt6nZEGnERk9H+j6/wu64cDXxHSYMN6rFV/xOwSdVV7+ + 8rHFD3LnI2eyJbyLTlXA/VtZwdoCCjXD4s3Zp7gKoNnVbaRI9G2R7W/r/eFJIoifCcw7oxlh20h7 + ao+SMpBHujMh9rcLtQSw8FEI7yE4X5xbdF3j6Yhe/Qmq7+BJVPiZWhaUWwEov1rBjnTpAk67OoOo + urY0z8zEYkk4z9rEgwvFn2TPya/RRygrMoiY77eAD6hzgHQy57/1KaT1TC0cUtL88UHOLi8l/8tf + 2L27c8vRSUjg23W/kaq5ZjDurEKDaz6kf/tLNsq1gzutSbGflk/+kph2gqu9Y/sODgG7vDZXeLDC + AAcHNSiWZcSVBu++RrHhHdtxcTX/Xz52lvex5Z/T0UG7dBioQzZGwaJIhnDlvzQ/JC8w/ukBxbmq + 8e71Gi26xjcUffWMetNoWeJ6ZwQkOoPYM48e55kc9uCPz5aG9EvZat8oMX5NhBI5AnJo+CV81FsT + p+3Dav/layWu5mgaKqsQ3eY6w74xPzjwD7eBx32VAbc7hkT9/vphAcDy0d5I7OgvPs1leo1BqcpX + HN2ue0uMbqcMrvEEB3m4G0YlrUs47IyCnuTeSZfmEZTwvT3I2LPnUzqVWJu1XXNieGft3sXc+qmI + cj/eU+OkaXxJNgcZlqK7oYeH/7Omw5jPYNhZBQ0v0SbgX2ipUFcPe3y6LJjP8lU0//z5jz+k4zeY + deTpWwPvoeC3021X96iT/JTudsN5YOZOP6GNL7fU805GumimK8D9+cvwftBMICK8ecGdJ1+ITDbP + dAkwdv74PQ7i/VQQ/WPl8DJ+6gjk4btl9GYniIS4+sfHWAaKTItw6hIYVUfOPONSAhYF70iszGXd + L7uD6KsKFG/w2M737U1FmodGbGPDbLkWnjNI8jKhD8M7DkxxbyoAnlqu/O/ExanwRljvGxkHGb2n + 7GskPWTWKaFVt56gutByhvtXvCXLijc7Yvg5mPJng705iFolMPAJGi6TaVjoUktC1OkgOH4fhDmP + xPpt9P38l79pFFJ9kK/lvgSJPkNs84NgfewTMbWyD45EiRwjlaDSzdDrOoyPCj8GyjW/+5DNqUT1 + UlYtoh1HU2PW/Mbmmn9m2kkhXAZ/xsGKl//hOd1pD3jVZ1p+PsIQBscgxEG3CQp+S69XqIbtiJ0r + TQc+R70J9+c3wyu+KuZPAue1E0pFxO1+AT+34jH6y7eW/pnS2arhBxjuLNP73D4s9r6bHvqLj2Jw + l9o1/zYo3h2a6JNuHEu6tvsTpNmmoX6584d+OzQn+KeHGM/oHDD7aPVo5VPYgmcDKO7P67Ubbnb4 + 7jhG26/6l7YXflvs/oqeLxVLdDTAU0adTnoVPCp/Mlx/31++HVi/3onc56yieJMt6UQA72C/V2zs + V2xTjO/TBOHUzRk+BVnM1/gfA//cNNS6JMRaWw9E8NagiGYrXuH8fJu17v364PReDsVclFEEo03n + 4/CU1ny5tvsM/tZbE9YDyO2cuU8B4eecY2fSHpy32ndEpeuVOKfObVj5SI5OYXbG+xVvsqDwGOxK + JyD1K60Lef/+amDVL/BDFXxOVaFm6Dma3oqH9ZbPKXr904+CC2iHCauVDRz5HWMs7WjLmps4w8fm + 41Fj+okW3SjnBo47ecF6FX85O/SkhGmAEiLygxD8e/4Vf89RI7QiJw5vVGSWxgknwjkoxANPevS0 + Y43uVz3vd3pwiITcOGC9pjz9p6f+9hbBO6XKUlG/0xDe+afEXvRuLe6QMoTyby9Se65/KQXufobw + +wQ0WW9EsfN1nbpQCDZhYbHj8pMZGiIvJcVGaHmcHuTaQ7LjbUi9fh+L6WSCbMR3GqXnuOX0/GFA + guERr00jUio/zw4SW5xj66f4KZFjVwRtV3nUdB4sYIKxEeFJMI9EWhzKmXBarmj2cBApUqcXnFWY + wDV+4nC7Tq14+IUAInx0qX287QvZnO81XPknQUm3K7iGN+QP/2L7tfOLXv/CDyTCZaKYidOwlMdB + gC84fuiOkF/Ae8OvoS/4Gdl0i1TQJrskoHt/PnQ3L8+BnMqsAl+u9vRa6KZFTGep//g/NgeF8/ky + aDn8sx9nk9cpT/ZpAq23yrANRWsYvgjZsAetjt28ewes+BQvEH0+FnUe+jlVxqf6Ao/ZLKkj6HHL + NX/0/+knev6Wg1Ufrf/0HxpddDNlZeSU0Na+LVFVUIAlVQ37Tz8mzN0+uazsLRumxiuhD/DKwShG + T20beK6NAyP7DvP7NAmQ3y6Qmu9PElAJFFeQT9MRn6/xEfx7fZHCM7UYKYsFPYoOwOrB8V77tIBX + rzyGKx+PflDo25+jeDn448+V0DwLAlniwK4UFrxDXTqMVYMgFJuT+Mc3i6kM4xymL18ksrWV0qXx + vjUkLZxIkYfvYfDUzwm6X3n7T0/m5mb70qh7k6IiqO2Bv5aFwTrxhz+9Kp0z9wf/5dtgm+6GGZiB + /Y+/Srt7aC1+uxWhtl1MwlY9YepI6YN1f6KNYYRcdF97CP7swd6FKRDh8HXgyi9pQgudz2w0X396 + MD2t+tJi3R+29rWeX+p9Z5xKXy9vID13P+qt+tVy+bQEvokoYaOi+5bfhesLrHoDjm5HOxVXvRKc + 65dIzdWfZS/zI/hxzQvVoV3y+Xpxe3DKaBbxqKnB9LVnH1mfyy6SGzaANY2veiXjGKdAsVY+suKp + sqbBQR3SMbqVJ5B58xknibYEq14v/8PjRBPWHkXGowLn2n/SYK1PzP7Pa9CfPeCun1sqhN4Jrvov + 9lTxYq31BhuqLxphB9BomEzpFcL83M4E0HeRcla5BJ5e0Kd3WysKNmn49OePq75ogqE9/DKIrvxF + poT6ATteHiowuMKpoyDVGtf8DTXvecMRleuU1zs9Bys/wJ4u3DlTaThC03S+NNwOzbAIblTDtf6E + c7y5tezPv/3QdOlBdEdrub60Gqjl7kbU8Xa1KEp3Dry/wBkbz7IaZv3+DZG4VBH9ywdsr/7Kf/nW + 8K6XgETPuYbK47Wn+919M8z0G5qayq9nasanZ8Caq/WByU+ycHDTHynbKHGPyn5/xJbax9aa3yOo + PffRP/65HPrfC+7D3WXVyyfA6C1MoMe8Hse2K/C1HkYgTtGWhrF8bZfppMtw1fPx46b0gJ8umP2r + F3g3EfDZ85IKHmU5WvlmMbDi6ZnALIFG9+ezAyjYxS/EJD3C+Qd/20XujRgq7LWhLtS/FsuQXaMf + 3ukrPkkCtn9TFfzpH9WjcQJ2J2INsH+v6CGRCZjnw47AeIcbsjlGZjHjzRlu35QWZGNgufjdRSsE + maa+yOpPgIWGWYEduG6pW25dixwvDw008hxiX+nu6fzwNj1g92RDA9XdpFzJr5lWCYyt/GEZptMD + QGgdaIwPK37n6RI52lofiOQ1vjIBjiG4RMuGyFm1DPOpPZawqfwL9gL8GJbb3tLR1wwJQQt9p7w9 + BgQYvKixqesfvuL/EwBH4RX9+u/lL54lcFuae4y7Pm6nkD8auBuPj0hqwl2hkKVK4K/ZyeSJOt2S + /vSjP/+9MDtNWfduHSCfRIdsSfIbyAuedLTWK6mZGhKnhL4dKCFHoUbV2XzJZ0mEjwyesBvyrKCS + stXhPs8CbM+3tafVOjWnuRVCJPzVH//W448/9y4e06XrF4bGrkhJa18tMMxRY8KuhAs2w6Zv5z++ + 2e/z5Q/PtEud6h76qyfu8Hdvzeq2sVEnEv2g7YkC2MovwarP4aBkEpiP5W+dWpyfqc96pyUvWOpQ + hMcnLugbpNwhpxCdCtWk1fnD2vGPLwKpGIl2CGprwgddRSlPImzdoydfnkr8gfKOjPgv3/HmdxUB + hvucHp5FEMy5mGbQNPoTYc51ShXGWPWnH1F//00tSbsOKpR/gUi4/fBaRtTMg++T6uGbOfdtP3Zz + BQ3a2DSi6G39BslSUd5mx394fNX7engqNDPiVDOHxdxGH5gNmbJOfZT5hCPN/lfvtQ5Y4k3e2TNY + 9TVsiZuqIH9694qn6WGhu1TJwrqDr9y3sX1M7EHJlU4E2iWqo1T/TAUrXk0Oi7N+iPhbwBYbKArB + qmdHQii/0z89Dcm7caSJmHCLrHwNGm7WYqOSSTF9Dh8bLtat+bP3YlHFNEdd2VSrXq6nyza/O1Dl + Yod3BbAKBaUH++81NWlRgzrVWQi0Ou7W+pMekJhO/9fUA/C/TxR01cUniiR9Ac1vHxE1VbvFxnG5 + FwtFJxNUe2nA+qJ26bJP9j402DclY/LMrGUrLA3KQlGhl0Avre6qKQQO4aDS8GmI1rLr9x1s4UWM + Fov9OCvOloeW81mOhETdA37Ie1G7WVcbm+VDCH7kto1Bz3mIjf3ZtWSfnmwohOCNw5HBYk7puYQR + rDkNqICCOfj+PChu6C6SY9kIpPTEHSRflxUxNHbAXj0IAf7h9Q6RI/DpPmw+0BqyV6SaRyFYSLEb + 4XkTdRhboG4X9VsReDfxO4qj3iiY1NY5On9+FrbfRAeiOiYOuso2xMeujYI5AJxANCl2xJulK+T4 + Ho6giwnExpY9B5YMXgWf2ZZHUr99pfwdxzK65D2jQehrFvuAhww/5RRiJxCOfGFb4kA9iktannra + Mu98vaL4HO9oXkybYl1/D8rLxSbS7itxfvlwGU0K/GJXcRKrfTRdBF/2Nsdm/HsFCou8HFlxEVHX + fL3BTxrCHo7vmx9R+kacRWHtoMvdbGnIzreCx5Y8Q7WsnEjd7O6BiGPJQbdv5OJgnTLKiVaUMEo7 + F2dReA+m9HfogR5iRqP71QXzfmxr9EqeP3r7aR5fFPo8IVdkZ2o27XsQU7I30XYUtpFErlvA8PKI + oZPBfH1/x/metSd4sJYGWxtZ4gtldQO1p+rh9IFqIOPlksDhknhEkWuJ02d3y2C2bb9EJIMxyNd8 + 1yC/nhJqniwXKL934kOy2Yr08HvuW3bS4g5KZ1WjN6bsW/GqbUbYpMeSZrH8DGYmVyJQpnHEabN4 + hVJWVo2iZ5zR0i0A4OP14MEboiZhw1u1li7PBCQ0LF17XritghD0oJ3fdtTtxU1B4kKNYRbKCrYs + MwOj1dcZlJRziE+X9DRI6seM4WUWv/SRKycg+VKrwTAKdzSG108xH4yXhtK3saN+dbEK8VjNInxm + gNNoD/YWFcSzDY+58oweYbJLpU85lxC2jUP3s3ey2BUnJjrrvkcdM2utuXw2M3xcfh+894NLwfxX + 90Im1nJ8MnuULq9DlyBjtC/01Bl3Lh4rVUTkl2+j9jJEFqXr3PPfwX7R4L7Zc7Y3kwTtEiukeHS8 + VnT3OoO/9lvTHZd3gYSWsYE7ScL4uFXSdP7VZIaBs3WwDoVmkLV3+4ELaHtqDvUnXXoeRUBvbl+c + gzLm03lqTmjjfDJ8v+OMz6B7+ch+ZyXZLOSSLrfQZOhvvTDDBhBTYuhIj74tdhrfKURE7gmM5fFC + Lz09DOK6nuB+dRK6N/YvThZmyFBxpQ2OnOc7ZXi5xPDwMDY4zR9SS5RnpEI1d840dDM/EBt4juDn + uMjUP+fNMB/0awl9HG+oDd9WIb0ikSBm5FeywM8vWMClFrX5TilBAmYtn/Wwh4/mhWggbN7DAiJj + Rp/xuqPGaW1CMO1cEz43/pHA0Y0KTrS0QvaFHKJl1pJhaVucwOP9kBApNptAJL/OB9dwZ2NrgmLK + m+zbozV+4OwlHAB78KGBr3u5wUmwiIB/+rKBYhVzvJufaTH6u0SGTSKsislOBOw7v07our+G9Crk + 61QLck5Q5u3O1N1cbbD+v3HbWc6ED9z+DAuaYwdOmVLi3XVjcgY2NIaV+t3RnRJ3fJaWUwmeV+FO + lKlqU9YUgw6dWxbgqP0wsGgTlqFCLI6NWarBQo6kh+z7CWnyRr9UHEjfwKOZwmg4HHWu4B83YdBf + TapDwWzl6a43yEiVLXUGdg5IJVxMeOQ3F99/n6LgZ3tq4GXZE6pfvqa1UNbVSKwSTjYO7axh2mET + 6pdgT4QfDVNl1sMOPG5jjJNWxEB+X5ADV//BuvfZgsnKtxVkxvTAd1AEFtOSqYTO7ZfgU7nU1uSG + VxOZV+4STZDFgaOYZRBbFsW6Jv0sGr4MDaVfiqjd3CKgNIHoQ/xpBmou3rlYtl7cg6GRJqy3gtMq + qZdWgFSPhvpFd2jn8hqMkJUb+OcvBXMcPUTzG0b0YlynYkzOR4agbvnYcD7HQtonhocUtbNwcC1H + ziv9pqLNPo3wQfB1IN0OlwjKn9uEXeP+CIhVeQRWMj5F22ZfD7LjeCEUb+2RcHF3AKJu1hqsFSXB + 7utzKsSsFnUwv4UIJ9u8s+bfGcTQ/XoODiobDDw2+wx2X6wQVj4qi+tePYKx0iL8eCNqDa3hdbDq + oRxRXWctB2qgwyaBZxqy+NuOMRI0WBQNwiED0kBaN64QVZ4AP+j7zsWsT220edxNHIwPl//cMNaR + mdmYprBkBW0C6IH+Hsf4uuYzGWy+CVImMtKHh9Ji1rf7GW1G5lMLn/aD1MiHHGqRY9NsCK+cGEA7 + ARMmFvXG+jCI5Hmu4bJnx3/5Ra6Q+UFf+p5pwVNqzWdnztCgjjlhazxj3f0TQbh4Z1qu/sy05F3B + naRgfGCVXywTCWTQL7cCx6TNil4WDzoShItCo0+upazbFx30IG0ieXC/FnG5aSJwTGd8kA56ID58 + mUDJ37Q4Ys4MFjeMTfBATUrXynb75/9ovk+U6jvGinmtekFcvE80V7t9q+heN6LpyThJ5a1kLeo3 + G7Uy3dvY2WDOWevGJeq7hvzDE1xpjREe5xFj65berZlchAoeWL2ecBCbYHE1EgMpDU1a7XOhpcug + mVAQzHkdeQBabn8NG63rh53nD/B5IE39F3+I8MnzlAbh1wEjGxOc68tQsE2FR+BvvwLG9H0H9NQ8 + PC3JVIumEZmKv/3W2mvYR9pV/BRs3Y9t9EwybO1kIV0yrI4Q74o60s652SpBkPfQim2XVrWCirdz + CRq0O4476ryux0EBqqWje774GHuq0Y71oL5QpO1NeleN78DeWdfBdzOdaaBvSDChZayh+xMFbDrR + BSyKVooAwisjz/YzWX0lPHSYnJqELLk1W7QAkgc16yHhgzieB9a8TQeWYozxg514O2HDieBdeB8I + MOwHWPply+Dn27XRVs0dICVLnMDedUpqfYLQkqJKkeGhNHWiZE5WzE7niDDeFhj739uZMy2fHXDS + 0pziXBHB/IypuDauvNBsivVWmSztA49vplL3VnTFvIE3HYL09yRbu9OKfgGdBn7b8kCE/KWn0l++ + TQI44vB3vbaLWg4RoCRzqZ7Y72DK1zm0V7p16el9kIspzdwG7DqsU+d2eA9Tla1TdSr3Tq6P4xbM + 1gBnuD3ZB5Kszf0ZOB5NFNxtjZrKkQxLwl4jgtcXjdB9XntksbKHUi0fsRu32xUfjSooxXdGw1DY + BouQahoU9c2ITWfvBNJXT2OwqDLDencOCv59/EzonQJEDZq0LU1eag93DiM4eARmKr2A3EDjGBjU + Dpowpb8P+fzlg2hk51vKZO/Sgyv96DgK96f0V7yYDvxtrNAVb6SsefsOwJ96oMH4+PKpEWcIFVfZ + YD9s0kEZhyCBufOlEazUfOAq/2RafbIwXc8YFTI3SQ3KuAzXfHziEppjGz7Kwos2iwcC0o/CFebS + eY+D/ToJxT2MJcz8+zp31DwPNDab01+8XLse9gEXu9DWkG8Z2DbfwcBb5df84WeMrVy25ltKdeBf + 5Dd23+HcLqNh6kiG72dEj6cLZ14daPAP/1YJAi354zOPy/CJmLLeYVjz0baJXy+Mf4kRKMDoPVhc + 5R3V73gJ5jtzr7CtWUyjD3gBZp0FGwDyUrAZkzMYKlljcGO3Y8T//PUu+hFcfPcahcJ4B/y5zDlo + fo+YGnDIOfUcJMDROf3ooRi3A13xNuDSFOGqZsEgfw77Dwxpf4m+h14P2CfKdPR9dsW/z4+1/LKh + 93zssHNLlJRfk2cC9Uw26f16eKVkjdeoKGqEo65qgvmTox5uj2NJrfbyGpgLnw4YLrGHd+R64yQo + jBr+aq3DWFHmgf/hEyESMLZWvsIHYX+F/+Jv+bIsUtdTDtZ4QTZ40YZJSJkGPTg1VM+LX7vc+9aD + 8sf54EDfRIFYD+oHirvcpfopidMl/S4htNzmSfWTGg4/yiGEot6/MV7IpWAv6bPiAwSxLZc/sIpc + J/hG/UC0PQmtAQ+4Ah8GDGwNZG8pyq3pobi7ujj4QL9lVqUThIvvaX3+OIzuPT3B6ao6uPziTbCI + gjnDCDY8InfhFcwGbUbkbxMlEpzPJZj2Jew1TWeICEjZBpNCfxksdwqkBgrfKdf3yIf1+BLp9WYR + MF4OSIWLfDdonmY55xxWHfwRBWGMR4/3j242BUWOE2oqELZzuzzJn/6APVcsLB6E1IF33Iw4LG47 + S/l9Ph+QTdCk4amnw6zxRwdOmRfjXDWnlKU7O4Liq+pw1D6NQDaQw4CubUIyGPYGrHoAATS9LhH8 + 48NKvlnxn+et9mAGf/gYbPvYwMn7crD4bYibf/nCKZ2KL6UgjbC3x4HeNYlwamz2Lyj+Qh87Db4G + 46l8nED5O6k4WSxrkNb3ozWeUXOx2nbRe5rB1Z9oKRiUj394YvUPetBxESzaAK5gzX/46O2jgVXH + cwQd5EURW/HqsIf+FegaCrGu+23LVbAO7rBzRLbhRuBThucRlTFPIxa9YToxon2gKUCAD1VBi9lZ + JhU0TJfp8X5tVv6Ym3/2E8mGpA680LoRlrtGosHzdmh5qHgmAuI8EvEwKy3TyrDW3k0eYbz83u3c + IUuAr2EX4Z3KPxaldyGGqtHM0duGa29p7L1QtW9e+A//TmMgNbDvakLX/Vrx+7uGq34Tackw8sW5 + WDW8nvoe+3w3pnMDPAYq+XBae835w8w8/YVkuztRZ+5fKR8zlUD4iQQcooK3/LmoV2BeF5ee4seh + WPNXCC/vbRypmWS1S/HSdHjM6xxH+1wYuBJbL3UAToD3lRi1f/ETvPM9JUDfRJY8fqGpyUWAsa24 + FyApWy+H2CQdjURNTUfxsBCk3bIGh0WVcbbiO+j77X39/WG61B8UwX5xTlin+6Rd7oPygk2altid + 2nPArNOzXw3pgwP7pAcSlvMOwFY6YIMs24CD7aMC39sNEiiMd76YVtXB5uftaUJum3YqPlEFocBa + aucutNjW1EU0F6ZCECgGi/eeKMBPr59oJEpOK82ZdYKS92X0oM/vltUX5wRlrC0R2z62YEZGWiEr + YZsIPG+HgXHz08C29Q1cCt8x6ORPDeGKB3CUv+p0fDa3+m99qbP97gLlVdgZlMjywfc0tv7pZfAq + O5BGwFramfxqD/3hIctqjXQGLAj/8iV2m7sGfmxLbKi/+JX6I0wturQ01+pHOlLjLaope20OTPse + xAtOZbEtlvZazCAKbh2OcOVYs93cCZTNpKWH3t1xfnBHAg+/Dq94Oy+4/Mo8RKp7g/X35zzQGg4a + 5Pvz+59eyWxTEeClDa9Yz4v9IO9V4AO/dS1sLZlqvXZbtYHB3dFwEM5yunSj3kGwrSMaafdzwWRv + jUfHnBCJpF4w7idF0JA8LdQ84rr4HeZfDdLy/sCWlqp8+epFDPHOudFDK4TpjN3MhMc7TiLtulWD + X+mVIjSzW4ZXvQ2s+pMPG2X3oObO3BQTe6c1WvVU+sePRKMcX+BilwJ2D/TIxVoe7T88jI8rHmLv + Z+nBz5jvqPE5m+Bf/FffP42eNhVMOYq1DPzpLZYWfS0ixU2CJL8vcZiUdrrqTTr6i+9+z7cr/2jr + 9c7xiV4y49Wy6YRUUD+OIz74qTkwWdyZ6OqaBdY/yoOz+6vIwOfbt9QJtnUwerL5Qur8PRKg345c + Vq1zDP/yszPF9cA+4CJDiVSPCIXPiU9nIswgsNsz9l7iJVDckYXwD9/vU+9q0UKrCXxuvCPhstim + I2BBBGnm/qjrn6NAIbOYQ/Na6ngvHw+FxPNO/+PHpHsombXIES3Bn759+D1/6wkErsE4UU/0+qLv + 9Os/phCelE+D9cTeWfxxM3zU35MYhy78rPrvVYbvWr/j6Gy06aqf1/AP750U8xMsB01/oVd3zVZ8 + F3EZXXwPPgx/oPusAXyg6Xqj7hc/6SF8HoCSHLUGfoNqnWuPN0F3ne0Q9I/eIEo2JsPYMsGDXCtn + iutznUrzzyjhzpkJLY1DDGaNX3rwhKwm44pHKZnhVb015ZsG+m0B3e3z9kCz+x3wGR5+vCeKHcH5 + wW7RV9JuLYFP1MN+sU84nWcAlh3vRnibC0AUPpJ0OhOZgWDWBGrJ23OwFC9mwm2fGJF8scdgDivf + Bqu9YPNyD/4DAAD//6RdyZqCOBB+IA6yScKRXTaJAireABEBlTUB8vTzYc9xbnPsQ6skqfqXClXZ + uhc7LAUCPRNVepB6Va1JhHOmCHi38auRaRgffuyPtvlxvbc2HMbSI811dOCk+0CWKoXgph2OKAjF + jq6qbM3AlrQ+YPncAXN4ua/wOuwTpApdq9PAOp3kzQ/E3DN8Du/ouw/gF0pi8G7m7R3i7N78+Bzx + OyYGrHZerN/zk4P3ESM6sFUMNvwlZxY19TK6nQW4s/M3+6TmjgvHQJh8COZOhwgMML2nkMYhDNaq + FaKlMRwfkpeqEM+IS31R1j0Esnl+YsEFbiY8qzKQAf4If/xp03MG5I7aMbgMzRrNzcWvYLyHEdn0 + S8b2+0KRJilOiGPUbT030WzBFPNHgs5cFS3z7baCdCxyhNrRAMKGx/t58ceAM78XsDz6wQbP3FDJ + qdQ3/6AV/+KTaLG9r1/npFP+8Fe1HVxPcoETsPkJCGWPs0cjBsZgpqAJlk3/4t12o6Bm0gLTNK3B + 4vVzIuMdYIn9PN/B2jGtBbVXx5ID1Km3ID7swe950uJWR5R8FBGGsXAPpPId1MsZORDKZvTEu3St + 9dZWGFfCOjKJT3PFEyz+foKbn4qiwD7r80W+B/CGSIZZYWL19aNXJUytU4sOdAwieotkDH/+UIHq + GyC2+SplLbNF4he0pRu+JIBv8xtSbdKDRSe+ApaLQn58Z9j4kQKOxSgSy2hwNgu7JID18RwRJ+q0 + mhW5xZXd/VY9nARtWIYC9PDG5FzQuZ6QrYGuKjLP9F6wkLAe6FKlDNz8BrS9W1Wv512mwX2cxUTf + tz0dH+bxA9jVENCdvz69zR/BkItqhzjuQus5EloL1LWtElSzl3r86Tt/+k7EFSeQ0a2+B/tnu/FX + 2YnYLb/C9y0XiMWLJFpMlrNl8X2l5JePp5ejf6BNzIjck09dr4tpa9BZ2oXodc5nM3TXEp7AoiB7 + LKf69zzwtXskxGWWilLF4VyoZOJAvOwUeyvavyRpEs84oNqtpeS1iCl8lMwumDd/Vtj4NLQIZxFj + f1qi5amnOdyTa0+cDd/WXz7MR31GjtGm2fyp7fBXzwlgcfRrfi++MNj1pMRCIj0A3d2ErSv9h0XH + smkBXQZJgU1Yd8g8Jow+y5PNQ6xwMbp45kufn/FlhvWF3+N9t0sH+qzZXn4HjYtQma762JV4hVNs + N8h+pVHGzf1F+tUDkJanfsTuTkMPSqH0yM17WfU82jgE3iwy6Bd/5c1/5b/9Jkdn+mQLPqUBYHXt + SoKvwtd/ft/p8vWxaCoRnTb9Lw8XVCAjPeQ6t+4/FtxxMoM8lh8zogd3FrIf/k6sV9Prm79myYl/ + MLBw7EuP3Hlf+/mZyO5vrE6z9WpA38lrtPGNiBrto4QmtW8/Py3CgAlZOTc5iHTt1oK5e6bxz28O + lplTgADwAKH5OHebXtFrPBznWM75VkGPX33D89IWjnn1INadvij1vLCVu+N92Oq/Dpjt3auFduzI + 5LjIOzr78aD96lfIuwavevtbge6NfROrf/Xgz8+Au0OPxU3vsZ9aCeWdBR54je17zeUHO4GD34l4 + v7VBWZ/trPzifXve2BsTXUv2G18ih0SSadv7sf/nZ6pxST16uQ09lHbcA+93QeAt10YPYUqcmJjH + vT3gwnqNcKXeEkgRvHn0ePZmmGm7JACyyIAxbjoINz+WWFHfRvR0aXPw8y9A0QvgL992iOYBXyHR + W0X9EsIDZ+YIdbeQ0k2v/dWH+elU1v2mv+GuT+4k2farZh9JA9uhDdH11WV0gUY//vAC2SdvRycn + VN0/fFCEzMzmVyIVMAT6MWDTA/Tm8xX7QNJtTA7DxaHz/X3C8DAGhDgRjrM/fv0/bhTA/75REH1P + DNKSYKopsfgKHk65RJC5TYn8lMCCX2FUSOg/SD0/np8e8jX7RIcy4OnczE4hkzqnJG6zw8C35Ith + UOUzSVdLjKinvmLY3s41OjZORSnMlw+0bUNFFnvdg7k06ln+dJ8T3i3UyoQIzqnEdPOAnKK19DUc + VBGiNejRYa0GbzXv5Sq3/qcg6gCPgPr7goXfz/sVXKXnceBca5Hgpzlfgsp/oGFGqh+CAV0/xH++ + Kn1ymkaS7Tv2kHOxr4Au8B2D1zXxieHYU70Cz7MgvFpZQL/UorRQT1c4EqMkDir9eszM0YWXNPKD + NzrehklaqQR9sc6xsFaex67rroT3cQnQs9fsjFfSzoV7l+oBMIOFzvfrRYJNiBCx4k6O6McMVvC2 + A5/o1U6lrDmsH/mqVwW58Gc0LBfvPsvKTYlIru332VJ+fQ0S76og39SmaEb5/JGFMjbJpSJ0GC/N + sxSzc/YN2O+3ynjtlGjyy21acu+pVdOYfTMwawYQMJCDNZ1o3MjYeT2JurhcPaY5U0J5rlN0DMVL + JqzvkJHzhg1RvD5ij1wt1Zej7cKXZRc5oN74aMBisALxhsIY8JiZBezSMSDh3AQDd5qnGZom15C4 + AInHd1IfyqkeCUgprDegPBghvGT7K1Hoc6JLn2gKHGNwwCKhs05n3sByHgU20rPWyjj77CkgX5dh + u+M66PPRuyTwMocuMd+jP3DvZ63JedqLxOhH3lvvzzmBbnCtySV054HAfGnkueD2JM9QGm13aHMo + zu+eZJkKM7q+Qwh206QiM9qrgF3UqpXfD6MnERl3wyKfTylsb1FNvIDPwGjjHsvbeUfW3mXoIgXl + 9q5cD4j5Dnt9msxPLku1dSSISbpszu+BBm93g0FP/tgC9mDKLowL0STxJ4wGlpuUqzyk+kB8b/fx + ZgOOV/gWxQAv2vcQDfWtjyXyNmRyfm1zkMthCWFmWgmuYe3Wv/2CiXY9kWA/t2DxvxdNPvRtRE4y + rSLSPbQGPlaoEatkH3R9iWspa9fLjBJCT7rw4C9YDgITkgNnvmqWKY8KXD8+QO51qAfS9zor48X+ + kmNNFF3YMw8LrgiHRBnhreZS+WTIv883v3Lm8ZGou/J1/VyDN6MdBy7UVEW+1WGC/IP38ljXnkIY + l+UJuVu+mNVc9SGRex+l5XTKVhRZBvTfZxvd952Y0dy0eXnLB/h0Bu9o9R1u6xDfO4Hs9EcgmGU+ + wrBfEqS/TqeBDeUIy+8vJUGTn74eC2d+heWq34mjFoq+LP5cybWTpugw4Y9OH0mPwfroBqQ3x66e + BG+25Uf9mIhSWCbgCkFeJfoybsiiVVzz5XoXJZSNKvI6QrO53Uk8XB/DQI6iqWa8XDQQ9vArY+kN + tkvr58WSl3HXkaP4ZYb1+lBO8jLcngGTfypKhSb9wE7svpiPu0e2yFyjydcS+ugOfQxoKF4LSI5P + Ltidx2/GNl3Jy99MygNB5R2dP2vxVb6s2S6Q2iLIqMN/MAx3A4+iROu8lQ5tCN25nwMxQN+BGlFU + yNvvC14JGw8cl79EOQrTkni214MR7l68bCafI+Yfl++Ar2oGoaVMCvKEzvRWI/gEEngnd5Tayxks + 53uUwCKzWOIC3/TG06GRwNjRN6Z6+M7w0IkljBzhhI5pF0WTo9xD+YcPDjl23rzX0xROArgQd/+I + KHvjVgxPzIjI/Sq0OgXJs4ceKD2iDdcPpaTTC5nT8oxc4qgZpvATt2CURAO50qoN69zzLGxdJibH + 7uZG7HdMILS/XYN8+gbZYu6RC4XyahI/5QQ63lIrkWYCE3RWimgQtr6acCRWSVRsqnTdL3YpXf13 + gsKn94lWrr6wMvtWJnQ/LiBaL5OkQfh0Lr98AEYjSTCMu6+LTJH96NMB85rsQZ0nzucAs5l1QQp/ + 8RR799xbvRca4YDiD7pJ0zD0zsEMoPp2deIwl2qgJ6WE8scSvgi9gzpbmrubwMl8OySR0C5bp4+t + wXP79JFyBmYm5EQ24OMl1Jirnau+2nkiyufog1FwQd9sLvpXAEW0/yJfquKIZBXgwfUpjMQfywP4 + w7PZ2WVE676XQci9VyHnovUJBPmkedwWH/C8KDkKhdc3mmUsGvKGj0g3ysmjpvbCsvB4Z8TM1rTG + lQl4ILiXA7q95Nabx+HUyJb0hHgQBZ9yXhrNcnirDeJxUkSpNV0YOMb7A0LLvQYzwcooi2ZQo9u5 + fFK2iR82VHx2j5JIHwdqMIdRnnEckOtytrx1LacR1nmPkbK0L8B/BMmFYU8Tkl2/d7CW13cj//Y7 + vKV2JjRN3UAHjneSVvmr5vv39SOhrkuJ7Y1nT/DGSwPVt63/4THVF6uQt/xEQkas6OwzsSV3Gdpj + pm9RtG7vu8ubnsJdqOsep5quDcu7+EGhxZkZLzzfsfSCIotO4ORR4vCfUT7c9j3eF4FeCzPvj/BR + fAPMDpZYr+s3uEJ4G98I+aKWcVc+UICNmw7pn0L05jWoRRnCr06uXWnrq/rtU1nxfELOVVyDBUY3 + Q85k5JLjjN90ZrhkhGM5DuSZ4YhOta+68CyZV4SYxMlo4exaSP2pDnaAC+lUanMKrC/a5vY+QU0i + KKbycZlx0KDzK/vhObD3ESZo3xjRGtQCD7FTP4meaI4uFO8BQgcYCJ1k8NBxf6gbeeGqPbEyn9Yz + NymxzB4+O+TUWjus7dQpv/gh1uF08RY9aRSoC4TFq/A6ZGsScyyket8hb+NXq3Mwfel+KpSAzomr + 8x6EilSdl4howtYF0bNVCOU3fyEHPxSzcRySj/zjd8UFHTK+AX0LoVGcca4EdrQafVjKmV4EJMg/ + GuCdal/Ch6XvMDbWp0d/n3c3+nzrUhxny0NRTrD8HDn8y89jvPUYaaxsINpOedST+EwVOGvlgOKd + XEet3WqWHPtejpRO0AH7XFRe/jxTHpku5bxRwlYPhQUiYvYW8dZkrly4j64R8SK7rmck1R9In4WP + DoHqDLMv0AJQM6TE0S++twQPXZSEuHzhj0OHYUkCR5JuJtuTq3l3dGHLp0CN9Sbg3uM4jIM2aNJf + vPC5BdZHJBfg9OxvxKpqpLPCUFTwiMt7AMqXR+eyTCywTraCoZkTulzPawov06skF/SVvEUK2hNo + 7sMO78bdK1rDpS9hETsk4LJE9CZnLzZwmRETcDDKs/nz3Wlgi4+Ajw+KNykXIMJmTLYKTfXKSG4q + PLhe7BaZFYmGcYeiEDqlyCNv5RSPP5yvVyjE1QtZb+s94LnnefjDz+gW6IAvTz4E6rvDRKt3XrT6 + 71cv7+dZRbl4NulcJccWFLyYkEs8fb1OWUr/xw/xk0m6qDpe+Q/46Qd1V3R0vb8EA5JR0wgqzn00 + ev0a/LtfpXioKRcKKTSA+0S+/JyyRTVdV/rxQS3wS7BCToghfVm3XzwCyrknC5p1FOJVvPg1X+NX + Iqd2syLHs1x9HeKRBRy7fpHqMBpdpYzlAUfdB/E3PjtRz8KQx3X9y7fD4qXZDCWzfSKft890wSEZ + AYpXiFz7RrJVxZ4C8eWiY3GqXvVqyjCBSTEUG59v6hlabgWlW9gR3z2xdKbZ24XGV/SIG0jmIATt + ZMEpER6BOFXqwFUH4gMLu1Mg3a8x2PSbBPUheZMt/9L58xU0eFaZhuhOHG6jNgcGJkti4xkPLfjD + w4ybU1I0TzBs/EeBw6x0pCD8lS5sghhoZ/EFU8p8s7U9w21Oi+mjfMPzGc7MCu/W6RNA6ol0MKGq + yENzNEnYHSNvweF3hOb9IAaMd7lEMwBIgoabP8jlW4v1KGPRkhfGspHrWmU9j9MthM4zHIi+8esl + og8JHAqeIDsZroCGzM6SNj0R3O8QgJnRQkUybDbCLBpqsOnVWTLaO09Upykjou2WCl7OfkgMkijZ + ukthAbjbdR/M5XLTyVs0czg95wrZw30aVqm6FPDrbFe5j14crcwRBD88w0tHJf3Hj6VLBq4BsD0X + zIdXV8AuO+6RTnXgzf1dTsDTW/mAi6PN8V6NEnIXTLDUX6RoFoailG58ORJl1+OM3vwXD40HXoLx + +ao8cu1jHqop0yHzPY41rvx4609VtThz83u2sBSG4q7pD8g4SG9AZ97HUGF3I9nOVzRiM3Ih1+50 + YoKnoA9fp8RyzzlHchZfizf+6bcMXIkq9QZdPT3GoOJtC53xs8nmyH1o8pZPCYrkC2Xj2/UEA+a0 + dd23Hh7WrnMLuMtI0AklAZ1FMhdy+R5dYo0P1RNORQYh/847VAzamZ7l236bQ45vRLmn2TBT4VyA + VHW14IW/O4/azOKC68Vt//grH5fiDBn+IJFDK708mndxDtmgNNDWv1kXVPD8wGuvW8HHn41hHqAW + gy7FATlmTKUvT+aagrh7u+iQk7Kec1a6QrkJPKQXU+ot9llX5LY+HAJAb3K07E8fRgaZvwuEmd4p + He6pBadaEfD+du6H5WCoM1R8fo9sLpMysk+dAmTy0UUamZ2MUpFlZRtVyx/fJJerxMD9KxqJ9jv/ + x0lu4U6JYuKtXKlTEzoKUO/XJ3Lvs5DNjyfugTus52DVHOC9PYak4PnUXWRmiagvEb2IwMitL9rW + r15Tt8Hyd14BfmlHg66//LvpWeR9fUjn75gw0EqlO7KQGumrBra51+P+TjxW/9K5fluiXM2CF4hW + 0dXz8ubDP316cellm0LnlfDnT8W6VdKZzIcEBh48oHOsoJrKc1ZA7Zujja+pA+stKQtZxUbktjtg + b2S0UIPB8OrRM6/2f36S/Dgd70Sh+zmig2AaML7GPB5u0B7mHcUiFCMPBhJzFsFa8FoCt/1B5lcG + HpbfxwY021STfXOao3Ut3yNkD80Ow6RxMl4A9x4eZOlLfvl+uvKWBo9ZaBI77FxvvjTPCjx7HiPz + Hbo6fR/vAbRnn0Xqpueptk9EeJ/1Glliqw4rnTAjsYqLEHJJkM3hfZubzCgrUvQjzv7wYotn5G/4 + O5fVdZb1ULgSU1nsYWEa6QQKsaqIs+mT5SRYiRzKlRqIqfKu//LpKb3lyNinR53rzq8U9GVIsBTD + MCOnIoJSwBEDoXGnZmyxTd0TFgYhdYATIGFaF0C5pA6KXj3VZ9N5t7A6fPfBmz+jmn4neN2ryDNx + +9ozGR3uoQWvT25Enij4gM+bry+rluGRo/e6UxqQ4whjujbIx7cI9C9RKmEpxHGw7++NPp+6Pbtv + rPuAlPfjFdGDeKpgTl5XomjUA9x6X1aISZUjxZwbsAxIaCRyG1CwT0xE62M28ODH/w/O9+tNzd1N + YVpO7x9/BBif2FgmPDkgRQayt4Cd7EI+DC7BiG8UbD1mjX1lFgbxtefWT/h9/cBNf6KnnqyAGndo + ScYnVAN6C3S6SPu8hGeSnjc+NnqzTmoLvrOiDPhmrPUF1U0Ju7thoJ++mIB1YWG46/iN31fRL97l + Llocot1YF2zxzcPTOayIyjFSTWzzzMpfx6HoXMU6EGqt6KEpFwNB6qGJ8MZPZKk2jlhWNJ0Kt5kr + oEVmARWQy+s/f24EGUF//mbXljn8nHU1gErQZhv/yyHhpwM5a0cDzOHdtvYbf8NMeyvpqteLJHeB + 2KPTUz7Tzc+c4W79lnjvjoeayzizh2PG+iSqdi86RXumAnwWIeTIQPFmMTZcmYPHG9JzPvBWU4hW + aF6hTnL/bgOeoq3HgospsRf1RlcjwD68kquK4TW7ZLQuXAbGXIKRA1ZfJ92Bl0BwByWWpLUaqGc7 + EJYiUyBjJ9fZDGu5Ara46ujQxXo95uGUbj2PDts7mqk3Ew+sgMitT57f5wIWpxlF4K1w40vLQpdy + Gnt4kg2TbOfdW2v8SuEv3g6DR+p1toYAVAMcke55hT7dRd6FG5/E0uZv/fAA7sHDJHaAvvWmj9j9 + 0CATHU/fD6DmR47BXh23qVO6HgkpOjOwe2cRMYzYrudiJCLYr4mH/Mc6gz9/kw5LRoz7NNcTYWH/ + 08PB59ALA3XmwPj5lYGgnYZaMLUO74/ZySS3MrgCcpTnFfILFZFOXC3j7nFfguZWucTmsjSbdygL + Jf+U9Cie0Fhjfn5a0qpeH3inHoyMvx3gB3xujIXQVQrAivCawIcvGxik+1dNN/zdek6ERG12F6/9 + 1Q9++P7wXnfwi2eQaPEJKYZKa1Lfqhg+oAKJAWqF8qOcJvCnN/cc4ijl8DDCfKUDsYzdZ5iP3iOB + eX7WkAOSrp6eqbtKdpydkDXumL/42WfXsUK+e4rBIvBNAmcYfYlxenbeGqLH1kNkFwfvbf/polsb + P4UN0Q3LrVlLpCxkCVnwvr8bHm8K0QyL3S4kRn76/vzCEV6I0wcnt+kAudbQhyC0TeR7b70WGnST + 4Gl6z8S6Jrgeybc0IP7Ix7/ztPF5HuafIkdKVdoRd/JT9+//rTJUBg5kr0qq2zwkru4cBjo+pRFs + 9RlksB9bn8uqWGF1MAKkQOPs0d4Ufdiy5IxU8bX8/PMRfvexS9BD+AJ6EJMS/PbbGpZrve4D+oHf + TMyRckTAm888tWCsWxUWHk7tzc79psnN3d1u6Al6TffMw4DjI7+i9Mfvf/p8W/9gt+W/cfNnYFZV + VsDlRlWvw/rk4VRrAtE0tcymzL0n4K2BMwkgBwfsQVaTpVeho+BWXsDMK30INv3941v6H5/b/PfN + z6tqsp4OJzicmAXZpRZG42s6XwEZFY3cZzXINn7sw3VOL8gJdV3nqsM3AH/55KuI0cYXcjh3arT5 + u069Ki91hbTCL+RWuVoTybsm8obXGOKFz6ZnOaQgfI0F0RixAvOImhAIXbojLoifgJ6Hiw82/w/v + MH/McHjh/f3Pz0bXcoyoeqqv8sbXA5ZIct3h8IvheK3PwS60HCBUGI5wMXgBuf1FyugtcgsoJSJF + WYBfOl7LN4ab3gzW+t3SlcenVO6UkkPxTz8UvJbKaTj7xHgZvj4+M96FwPlwGHsXLlvGoyhKYnpQ + yUGKOm+5veMTvKDmgGJ0ViPBoswH9PSlo58/t2KqnmS/7hlyODWlToTHwsCBSYq/et4029cGHHF1 + x3zyqobl5nwhrBTPCZj99RO11vUjwVmRXsF17xZ0LI1hlgxyBcFbz/fDUvuqDW/pZCOj5XpvNt93 + BsrhR0UowxGYxqMowX2h37Dwubk1z66KCNOFNTZ/K9HpeZFZ8OO3nv+eInwu7BZ04zVBR67q6U8P + ir96Erp48kAj/W7An17bzsNfPUhmP62AbOnQ1F3a+ikEX6Xe1rOMFj0ZNTgIjzv6+fccO2WthNSy + Rc6xK4dlFN8uUIxzj9Tyvf74VQjSx/MUNER61Mtk4lxCPhqJPcFGpzRQGolp7Rc5LMc862tOU2Rw + YAbM2tjTybEyCnmmwYTF11IPPz0AFTZXsfTce97mHyRywCzMr55RC+ZHvoL6MnXIGh8vfR60WgMe + VPmtvqpR7plqKxzdaSLe+R5mRNsn0l9+Mbbzt17C4wi9llboWCmYLof2ksjN6WuS4KW8MyIHQQnl + mPA/PZLhp66P0B/9I9Lre5PNzv2pST99PWc1yubnZesBVAwFMn3o6PPHNRS595IT8Q+e6m381JB/ + eHfuaKpTC/UQ9g8tDdiT+amXMT5X8GGpO+TJwxlgzCEo/enjRjW9n18Fq6BkMN3qMdxbnTX5HdcZ + /gaZr6/r14rhVr8MGl7gaxzUOx5UZm6g54ZPG//7QJBzDrmc58Bb4+85kY/xRUHPklXo4qXRCiY5 + OAVfbNv1OC17f//LP+77xUVj/Q5EyEZp/asn1DTv8hwUln9FedI40fJWZwVqXj8QY+qQPquX8gOa + 8IiQhlXRm1/nSZNQvPU42+qnrFogCbaGipCFMaknLfQS2NTCHSn3sATLPdNd+OHAk2hMUWabHtry + HVx++EUXj7cNOFK4QzY2GIptyZOgdDQRcU7xQvHGP6A8nU1kF6w7sA7nxb96MfHxjdLxpz9A6JrE + Hu7HYU6+qP0/Nwrk/75RMIxb11drrurl4DMjdOlZx9A7dtF4v1wsSI90JPqsnevu08sFDAomC3b1 + 8NHn3N33cv2wTsSdr7637rcudTayf44druklUWwo9tE5oHGrUk4k9xTufD9HqnOfPEyyewJ9zmaO + Qu54HqsPsAVql2q4qM+KNxpsWkID1BQpMCLZEgGlkhVJdontTIeBG7qokVs+bYn5/lYeKUu9gnjH + SQHLLVq0pNOjgrnDZMh8fzWddTRrlW9Q6ZCqxfzw+/3Q+bA4EERzjRbj9GKgWx54zKyHblhbAj+A + 48yAnGbFoLRsuxRgZ1awjG/nbG2sbqtncgPefw864LVny8IOlSx6fMMUCI+QarJ+2YXkGLg4a1v7 + 3MAsLjliT4Ncj7F+h/BMEidYb2OjL4fHWkDpaCnkke7mqK+nQyl/d/uQhIkkZit71EZ4+cgv3F2C + kLJe1qaydqpHYr2ecz3hQnQlkH4M5NxIBYTDIhayL149ol6fPR1fpsLL3crLyMoVhfLVJWtgNg0q + Qq5aeSvw/RKCfXdC2e3mDJyWmSkcD5K5rT/K1j4ZY/jSDAdZr4AFi+FHmvwYL4TofBzXi5AGGHZq + G5EI16+B5R/vHCrJuJDnug4Z++YlS24NG6HQiPVM2DHaCcZRWZALvcNoWeMt479aj2iJlES8cDVC + 2eRDE8Vi/MrY9kZ6mBogwg3ZuhKxl7aB67XXsRSwhcfeVdGCaXXKSZH4DsBH9q5AK7hWJPfHe0ZN + mIlwvTQxSaZBHiYX2YZsd3FP4scn8MhhEXPYkYGg4B1+B7rPvATO0Xgn2c2aABU6eYbcKs9E6R5v + ih+Zn8qh05ioMNRLzXfwlcjvAnokfD5u+nL8PkeoHDoNs5mOvFmQdyEwisZE97J5e6yjBSvMHxQS + 3Z5FjxbU5yG3swNiGEcTLGsspqAaawnz0ecZreZin8A+GR0S6ifWW3AxuzLYpIkkdvyAO2VO5Ydx + DpGOQxPMq29pssteV2Ia3wFgnklO4Ng+LeTTHOjUjJEIBy1/oiLHasSW253xOCwIOdKsjITk5YwQ + zvYHxWiCYOpgLkI5S05YOqUNHWaLkWC1Shdi7hQ3Wh66B+HodgKxPqrtsXR88tBVtR4FWvUeFmnA + Nmwd9YkUD9wAuwysKxNX54nNBrAmhy5s4M1ZT+gUUXUQ2C40gHg6XJFX35NseSXrVY721wrPQXGl + dMmdD1TMukHq2xCHJTnqowyPok+clCmypaOCJlf8xAcCR4nHqfo5B58ERQGXvIxo+RA/hQKWhuAs + l229as+Sl734MaFCOzt0SRZ7huv9zpFjkLke5zEESpr9DJAW3u4Rb7Z9ChXz1SCVl52B8w5HCebv + wCKXkZcH2s/jDPxU1oiLP0okCB23yvHY9gGDbod6/XoRC/GZLciRuEbNfoXHCl3ESEj7nBc6Tlq7 + yig8Nej3+8glsV2YeWlL/PJy9fjD9NBgNtQ1sfehVwtlExbyrH4A8t7pji7p0hQwPGYfdJ4Ha5gN + 8VXI9pDbKBuffEYHtfzI3n5Ntq6T54EXdRdCBnMROY9pDygcK14Wo1ONbGbJMgpszYDbeURGdVej + ZeTtFNrIxQjd7UM2SzfYQlDjMzHq630gl2jxocFMCvF321zlV7LGMmNOB+KCrIrGZfYs6BifC0LP + 1M141qbrX/zHQXDUWZzmGHYh1sjv+wny5eAvnrjbzq9ZZlkYefctDqR4qwMgaWAn8NAwFHlveIuo + lU8zKP22Ck6Q+9C1bHMRWqdcJUdPHLz5l0/WyycmbiYBughWh8EJGirKFTvyuN6QeLjs0B4vjr1E + 8629pqDOlRdK+Vv0O1+KfNw9WWR0e7Fe2+913BsMUUhQFCOgg/8d4bs1EqSi4aSPXVunsplIkPi+ + zHmzR+MreFwuKrn1WBzG1tBaSJlYQ3ed66P5uvu0MKxXlSi55WdLG00+dN7rLliuAdIXQ5dtuGNy + jiRskA8LXi+ufDvNOwyflMlW1qYzBIdUQIGr5XQ1bp9WnpxjjzwhmgHVhC6E6d1FyDubn7r3dL2A + O0dFRL/EzC/eYhhHVYGX7Xzz87O8yqZJCDK2fECjIm5hCNgCpdorqlfLZk9yhT5+MJPjOaNX8czI + tYw8ZJpOnQ3MvSvhoJcBeu5ERydBGydyuNDib32pRvRELr6GSvKX7WTkEQINmpmWBhFWe2/lj58E + Nmu/ootixpFQdaYht+AsIt0ip4H6QjDDpQslgvTjIWMVa/blff7q0c2aq0HILcuHFAGX3P1+HBaP + +UL5F8+BeB/BCttDCh+axxLvIbU1bdlEgzs5szAs3m7GPXQdQv6VtMT2T9bAc1Ncydep4IlHzpVH + 7mr2gbC17GAPSz9aZ3q8QhpqHTKH21S3yKCsnJB4QbdTJXvrxRIk6DTkhFBq7oZ57A6GzD8jB0ud + sqfrqOYGnFmgYy452fX0HEAPs2sfIev4Tjx8vdEePvDziFwohdlcihGEQ/YZyPXIU4rJzS1kYgUX + YlS2WbP0dRplIjU+CYrjWV+fOrR//IgYe0WmY/pJeCifLyekc1ZZL6/XyYeHSrgQZD7dug9OEYQv + KXqhoCJ2TXN+tmTCZBPSno+bR3XPuoK+PdVY5jzf42D8kKB9Ph0xV1RezaOxYGGmXlpkMJd2WF3p + Xf7whFzxG0dzxvgzLAeCUZA8zHp5B1IDY2a1EfKWaVh1IZ+hcb6IxPfHfYSV3j/BbmCD33ro813u + DCn2cgWZ23oJzGMuIFqzJ4a3hdSz9XBDcJgYg6CyLYblcIk/8s4PcqI8uVPGZWnuw7GzCFIzVYv4 + UY0NuaHji5wu9THjSXZO5Oh1MokhnFaPSjq14aQFMOAKJdYXrrJF8NGvOnIzKaMjM9UKVH1tf1zk + 0q6Hu2w04HjOE/Tjk2yeIgwq1Pjowj6GYZmvMgM7Ko7oqBrzQMfHUICLOQtYvpTKwPOSegWHkgjk + EL2NejYTcAUb/yE+W7rRKlyNE6iBOZHs0Y1gtD8eC73P2yNewu+HZQr1+Pd5AchaM+LUnVvAsCMK + 0dVTCdYnuG4VccVFx3g6ZsuRcB/oC2FOnOjoRUI5zle5La4u8s7XKqLRoOaQ81iLKB/JoiyPXz50 + EzUhG5/IOB/VKzxruoqOp3ypJ9o+Egj5w5vo4HAAS+G9WNkRoY98y5Gi6QuWAH5XbcHM1asyutyk + FhJX5VGw8ZOlozsNNvfyjXSvqgEF/lmBh3QWAj4GbrbsNb4Ap69gIntff7PFktsPFJnyiB4XZGw3 + OFcNdCyTEe0+eTWNNTkHOJSOKIT+mc4GG5aQvHKFPLipHta9V/LQPqonpM5QyzZ+lUDqQC8A47zq + VAOiv//xwYPMyXQgRBPhhr8Y+uM9mt6auW4Vgh2ydw0eqGJlI6SRlSBLEkWK917JwojYH5LiizGw + 9qbYW/cQYDnIXF3YaecTUO5ridQIemCuuu4DtvUkirw+9aU88A0Mcl4mB3txvfkW71MwTNghf/Ey + vSEL2/NBRu4h/tBJlWgJPKZrUbh8G29OON2HesDUAcX1q56Ho+GDQFD2JHwwh4ibjjAFHZVGErzD + Q81v+CBx627Gy6FTM/6aux+ol16AAr5TPe414xPc485G6BO8PWqUZw1GvHcJuJ67ejP/mHLg88EU + SLwlDKuWnSXZCuJtjnYgDoQmxRWq14AjxWO4DzNnLiWs4seDuKQW63k6Mzw884m44buQreTm5vDm + zCd0Bk/V4xpcjiAQjZb4aYyHtmviXGZKuJLLrlLpYu3vLdz4d8AkfkdpbgXB7//J8/jaR+vwPruy + wmkeQhKb6kPNLZLcZq5MzBs+0dUfqAuUkiLkPZLFW7+oWn96DakoZTOK9okNJSbsA874eoB/6qwr + 3c9fj6jFaz9gV3pXMHhII1G+XlUv50AV5W19f3qNLpUcWdDVjDuy0oEDS4NLDO3A2hH1dDxQumy3 + QXAnAfLLd/RSo1BaLjoTNGr/AWvqNAyc+A9Fqly2wxJnYfLTF7gtmiSi1+FtgyLkzL98v2J1twL2 + 1XvkgPTJm7/1vMKXCfpgv5eP0QrjKgGNGXXIJPu3vtzvcykrKta3fCt6VMA+lkbgH5HlcWO23NpK + hFG2u5Pjl12zje+7sOvXJ0HH1xYPbt3LaR17JEoP52G1zqENiJhjYrUaqZvTNJQgmzoVoStvePPV + 9j/ydcr5gNSDpQtCJ6+S0bxMtOHzME/MeQVymOxQcqVmxAXKkspD9U7R5j8MM1SaBFqfu4KuqcNE + o2BdAmgmIkQOTYOMNRMQA5avM6SK0yWjK8wSSXTtayBF3yVbx8CW4FB9U2I48jkbDlBo/viHXb53 + dD3cZ00WOJAiBB3TmwP4EAFIG4Oc5HWnL5F77QFSHAtZ9PCm6/R6S9ARxAe6Ponx03eJrC5FiQfR + MiLhI43VX/5UL3KUUdE9tPCxji5RuCc7zLNXxRB3IghkLj+AdsNzMPr0ggJB4Dw8yEcDJkKGkD+N + pB6q8hvAnkFVAEPV8KhaFQ3cazdCnDh71kub65Zs3uGAbmp2A1x826Y0DGCPxc2fWBdDdeUEnzXk + kjqpVw3zIgzeOxcdmNslmp9lq8EKD0kgnVKDrvunycKo0QW8K9uixl/Ur/BVIWPL/+etU+Q0Q/K8 + vvAeorkm+3UXQ1d3bXQA7DVaxKr5wFa+X4la64s3kZ0KpesdSejQMpO+5NVqQLzs7ki77k+UqsHS + wPfs8hhs+nCO9TOUf/w+DG/7bOWWuoDfDkaoQG0drQ2jn2R85gty4D9VNDLToEnSxS6Qkb0/w2y9 + Wxv2T/uKDsv5NsyVbDVQv7vPLR9I3qwxHAON4mMSK7Zv+s8vAxP3MtDB2RUe1yuDBMPTh0XayM50 + +dxOBTzjaxqAhX159KfffvrENMTDMBXPgIfyu/F/+jZa6SiyQHZO68Z/3gPd8v9fPL7RqOm4U8QU + lpeZIL1VNEonmQv3B7u7B0L3ezvn3Nryph82/0Udlt3jlsOBZ6/k9JE+9JcP5GdyGpBzCUKA35dd + CO/rwgVFfS71OdvLLLDiqAqAoHHehreKdNozNfIS/j7MXXksYeYlLTq24qum/m5spYNgndH9WV7o + elOGFESNKiD1oTmUi4BdgnPmHRHSC91b4ptXgP4bsOh4+JIN39dWjvuXT0wBRHQN+/MJVt1qI1Vk + Fp1w5kWBDXk2wS42xGg2oJiAeV3eWDjkO336VLcP1E6vkWz8uSauJCngcSue6NBM5+yX3+Di70oU + GOESLcvu3UPyuZ0w/1FtnXy/QwA3Pow2/3MYfcXxZafuXsSKPs9s66HU//gb+vkzc/VOe5gYhwNe + e+pkbMkeNRjHzRHF3KJlrI72K+APwfiH79PzO269FERInPvcZ+OPr0myD358WZ/FAFjAJKAPhMa7 + g8G5bs+/ShekHOEu6txBg/LKrwxSe/tbLxXLBRCUtYGBeFN0jqsUUT59lityU1kf/vRwVPpX8miv + rrecXx9RPpnNiNSkXLc58W4BxHeiosieE52rX0CE7hTrKN706+Iw/gnWzn7reLh8vPm0SPkf/ma6 + f8m258HAcG8Olj3R0wUzPkiyOnosMsDa1Uu19214XymHSzzs6ZrvnAKa/FbBJi+P4iW6BVD0AjOY + LW/M8A3GqZxvN5gPUDRr3MEuhT+9YsX3Fcxyyfjwe2IPJDkXUr1gbPkQsaVMUHxhvQ0/JbkVSwvZ + emZkdOqTE8guTUOOofwaNr+4lD987wU7X3PquWvyHJDciQOGNO6wkuyeguVpMORcxz5dOzEtwEHa + r0S77mcwhmnlQ5tWH6LOsIrW17yuUEnwQlzZw94suKMLPCs/kef6QvXsbhVa8rmckOGM3NDy+BXA + s1B8MaM/5a2H47OHH7710BFgl/74HPzxads/feohw6kPculwJYHbxBH3idRK/qL59qc3VhUo2s9f + QUf14mfC9HGu4Ip0Brfh+QjIgvIV8k7sbv5b6/38MDjpp4GYBf1G/IfBUCpO5Eu0vYTr4fQQGZj5 + xQ0pmSZ7s28kNuhPvkWS0T8CKl7ZAlrjbYcs7t7pI8tyIwgBXxDNPINhxaowg8MEDaL29qEen4lr + Q/JAeiDj9qjzMdHF/fGb3cj2+frPTwKBPi7oHg7R5qdyM9j4EPKLtxste1peoeeeF0zTZIrmUswY + AGMJBMz5QCOylqcSXodbsunvz7DGn48Cq1vbIzdgC/3nz4Lj8o2Q3spApxkOAxjU3BjMeVuDNfCP + Cgz7lRDnVnw92tcChOadGQj6enJGugNnQO6qaMRhjy/KF6NtQz0xZqR9quMg2E6TQyN6XMmxulT1 + 7N7uOfgOyjbqnAkHSogrArp6DVHUjqW06o4WzDPNxYxwedTLOUxYqMegRjqvi5Qqmr9Cs9IdZMWg + j9abaOZg90kSYnnNPKxXQj7wG4zthrdchBlT1ODBegGkNgcl4xhnLWSx9ShmH5cwW3cflZXvQSYj + zyFxxEvfYQSbH7Pli9JbAtO+wrKYFVTc7LRe5JeLoZ9wzQ8/hlmxxAAiNeCINlxKulxAE8gzB1eS + 1T2r9+rNhbCQdQWpezTSGSpjAmnsHhCqh4+HG6vzoZylJ2J9Ua7ji9CtECszIZF13Otj4V1iyH9v + XyznJN/e5N5pv/pCsHvLXTaufqBBsq8exDhrB0o14RXKIrgpQbftF3kadguN803c9NBA3z9/4oqr + N1FmpQFzP0qx9PPX7Wvl1AJzST+Qua48Pj8isxaENWohWxQyXjY9RYQ12noGuAekbmPoVtU6+DJd + nYaogZjTmXOV/Lc+RKkOdCjb27eFg3JRiS+9zgNlHnO+fyRlELwM4TKM1kxCcBCMM0pVrQa4YfRQ + 7khH8PGCNn7klbxcXlay+THvgbIl9KHFPB8B22ezt+69lodbvKBffpv4pWD2amze8LK6fESvrK5B + vBMk5KShCnhbUnlZane7gGFSVp/zamp+/gZS5cXIOJiMPFDjw41or4IZesYUlR8fRF5/pPo8SRov + MtTY6ndiXa99Dk4//wXvfdBm64RDDDf+TZLHt9SXc+CIMLfFEaH9x9LHTItmuByU18Z/395i+JkG + pTlxkGJjL/o7b5sftfkjrD5eRqeVTuZnDIRmWrK/fGA4URrsaqjS5d7senDcPViicQcQLTC+bPh0 + 1Ulws6X6PX+XUV7xWCJn6iu6SJHkQ4EuELnz90upUd4VoEnTlwTNfNIXdn+2ZZMLrgFPE3VYjFMH + IRELjOw+13T2k4WSrC55iS47pY9okq/r7/uCZdP7C2B9BXzKaEFup9zBnFaOBK3L7Rx8QDpn9JEl + krTxi83fGupl+32Sy6Uvgj6Bqa8X4TVD9pCjrb6RD9hLd8nPjydWOlzonGnZChWBysR+H4QMY3U3 + g/wri5g5J2RTSeYI3QB4yJW9QOfu57SHTMmsyCbgDNbNf4S7OJRwxMdsvbDnowsnEZ/xInrytj5r + IL+drkSmu8d0fe4mG447HSMnZZho/tx0KM/xahM7qRediOFU/vl/23oC6qStv//xh58fNf/006/e + xGL5O0xEAgoc1GRGF01QdMHfhlnumIIj9l5FlF5Qf4L7vO6xUMnmsKx+WkLaH6xgeV/YCNfcO4Eu + ghLK3OpQL7e2l0DRwBr9Q9q1dDsHLNEfZBDvbkPvCKKFEJmRIIgI0o3+9Xc53x3e2R2ftU7Q1Xvv + 2l1d5dxMzWP7AJtwP+/5p7d57eYyUPjxkKjOE7UsmbIHzF/+D0t1/I2pE+kptORjj+wD/IAXHZ45 + FD3fInc5+Hq0uv0GyEUsh4qUi7zV6mwIwKujRO+bX7sV6X2D91P9I3/5xVLG1FcOUzzgAT1jb0En + fQE7H6Pc3lD8Mz6yD+9u/yBeQNt4KXXhAbWzPeBPsK0FnZNzL+/6G53BwZ7YTModEJhbjdQkWqeZ + PrVFURxkIGt7mPt5wCOFf/gfn9mPt2hTCJVjC0xk7OfnvAGmGfLP00R2/Q+EPV6VUtFU8pePduEq + l3DPX5EalCngH4fTA+77O5h3fxCLfGrD/n7Rif5kPsWSfOT5/6ko4Nj/XVIA8C0P+hOXt7M0aCUg + 2vMcLNYSxDxzrAIoDJ8LCeb3QunFyhjgCN2AnGb2WtaZRFcZ9sGL9kU2p1/aMQPwPvUJ6eyPpVTt + kgyKS2MgFEPF2PjYfsh5hvdB49LiUfl8qZVKu7fEbblXsV4Z0YQtviMUVOsFEPJhF8ilywVl0Uv0 + KJEHF6re/UgehfcEi4+hCG9Pl5Lz9cWDVR5CGxDje0VBuM4eKUM2UNifxuC1bW/GTBuCYXsfC6SP + dCvo9D7KyiAUV7y4EMSbfNZlxVAzi9gH6wu2WZhH0NP8TOLN+LVLHLo5tH0tQecn8r3h0NaRIsmz + hNl7ZXqbKfEi9GCooDJ/m4DvTT5VPtnrQ465hNvl+FICOeflN/G9Zm5X4d36CrJ1gtwNLHS1ZHkB + CstdSHT76WBRO6gqvXjSSPgAR8DOmp5D91mESH2AI6XSp+GV59TJ5PkxOjCz7eYDayk6fOenYmJD + AHsY37KRZKV5AOQsXgLoTuiEtM4zDLbYNh/+HLoXDY+Nscjp0MFunBG6Szq/F81RXXm1rYesohyM + dZhqVgH3rkdHJO2WFbPYyjldHsj9jhJoAwn0yhFcBuKyx9Jj/9YHuslGzrYZTXwrnWzl+dutAOIN + YPvYDg+84/lFnPgDJlpy6kOpo+qGpTnWWv7EJVjhyyxHJXinE8+rXgBLhuXI8+imhtBKpIOFXt+Q + Pd2CieXxWQXfwWxIOHKuwWc9GSA7Myp5ssqnwFI5LfBulR5xzqIP2DI3QuWaKISEJ/4Gtqedb8Cj + SML0Yxwn9tdLKgzew4mcB7QZv29+42XhMqTI7RelWAIPuMpffFuy/43Z13v/fpX5JLffoTRWPyYz + 7OWbEwjb50t/j9tvbwMNT+harNeJjnwoK/dMFUkycA7gfuLQQMLXX1KdO2NvUyiaELb0Gcy29IqX + 13vooeJpKokKVzM2PRZzhbwEinlJhvHYuKMOM4m/E/V2xBRT9s0rSJRNzJ6vy4T9d+XL2mD/kF64 + L4NqOLvCrzwhZFesTTkj8R3gH2qRPD7pJWYFseKhcbupKNCF07SJ3lBD+/Y9Ii2XJ7A+lXiAdRiH + WILVdVo1lclghJ4iOTV5OXFoXXKl3LtslbrwndZ3bdSKvlhPZGfyOPFs6zMwO3keUbkIx8sn61l4 + GdwbuvMTmLYHrBZY5dwZHYUw8VjWKXP4BosRLD9it2wtnEo4bpc7Ot0UuaB1lHZKNXxtdM4TNPFu + YebKErUa0rBaFFz4rVj4OawuURtSt2SPN2g5NEcq0PY23vq8QWU/wo8j5IBNjd4i9BItx0Dl4oKV + pDEFSjpsyHtdWvrv/f7FZ1TLFIve0MCKNAaJmUDz2HBYU2UwSw3DE6vElG3jvdHlxwy+X9iD5fOq + QlmzGhWZh6PW8kvtBOAxXA/IlGKHzt+7lCqfn/9E0Ymq7XYNhRoCZtQDmBwWwKonNVWAQK0ALLc4 + FnJg6sqk9xrSGFY2cF5pGF7IMUKXy/dKl/ajM7D4TCtydjygZ+/RwJSBV3LpPMMTZrVdFK8Qb+Re + Vc1EI9Ruyq07EoRud1D8oNX7yshDhG7aoS9+kV2a4H4cov39c7B1vpnBmSQdQQ68FfTci9d//KH9 + nve9bfjNVw5s5pOi89R4NY0pgkWNeSzeTgZgP5DaSpeda3I53AoqfOisw2w7PLC1fbWJq3+Jq/zt + r6N/8OO//Sld5J9JkkxzvVU2PV5+hUyJ1Je2xmv4rXg4oqtF4sx4UbremBDCcciRttx4bzkcYgbe + 48jEn/Vlx/x6+4yQ98CErBjUBU/Wlw359oRIxY9M3GWisoHclc/IEsvcm91fVENwhiza9y8VtvE7 + CK8xc0icJ1tBq/bwAG5aJgQdz0OMtZNSwmbLRaKdWq9YujVZgDyAjOx42lJFiaDyWQ8ROnth1a6i + dxGVNvzciFbjDtAwXVnFsUEe8Ff25a2dfOXh3Xp4JL4VCRCeVGHgtdIp7hR49QRPCGaYAHzH2jZ8 + jCUTlQUmjmDiw7U7eYuirL1CT8UzoIab0eWoXFQ5r74a8VeatMP5OvWys4GNHDfT8fj3ud8UeUsM + ZJ21zlvGzneA1StSMBuHjn7t26oqhyolAZDxGQik8lNo3W0dnf3iHNPpN5RQ52GOIoWZwE/l21qx + hOiF2fkdt4Iykg5S/JBI5FhrvM7uqYQOdvc2WfXX27yogFCiHES3NDRiVmmeC3xy+htZL64B208T + GpClikkK1x7jkXPooHzpfEWZJLw9juscFp6/txOJ3VnzWPXXPZSinnkUkjIpOKcxeFjFYkTy/ly0 + Qpt4JfADYQyYTOCmZZvUSGYvKQp+a33yeDpxORQ78ULSx97GrQjQXkLAOeT4+Rh0u3z7Ev7xJ8Ja + 7G0nLpmVILm9kO5jONHOGHt4V9cEhaLvgo2Z2gd8Tr2MjrK7tjtedCACWUQsNcaUHvJL8MdfyB/D + M+A17awDo94mhO4L7306Y+xgQ3iX3ODLj/kjbDcFi0ZD/vh9fZtkhlow6UTFkROv6cP2wTGXdOKw + 861tfNHtpfp+vaK0/ErxGo3NFdbhJQxqjlsMvNn2AkeUWkhF3ceY5vijw7HQOJRZW1ssrUcccGYh + COTD1/Y4XvBtON0bSHT9IsaU40teBjjJ8apYU7GGJpjhhS4nckdX4lFIVUcJ5EwJhklpJvpO3yw8 + 5aeEBKfALHY908ECXj/oWDV3SnxchlBxeAnpn5Q1fqnQqDDakgBZahzQHzIuqXIy/BzpsSUY22E/ + wioZniNqcq+m5fG6pwoO6T625mwVbPSaQrDzJzKzK9+unto9oFo/OpIUpeNRYL5MhT00Pzw3blfQ + bXwNivALj3g1yBZjncx7W8q0D1Y1uhbkAXEG/vTD88ZcwSafXRG8K+GL/LepUtbNPy7ka8VB7pUH + HpFLOYfkaTJBpF+yeB0ypYQFrjHRzYF6i/58MyAosze5DSGJ19qRVCh0Z4OcFugD7PJDAGJvEYn9 + /h7itQBSCDJVP+GDYhveeprTEa5WlqLTd28T3tf74F/DfSM3Hn9g/RHRhg+RvINPRN/eZvpjCq3z + IyR3Lfep4D+UHFa5cEb2q03oen42A1zbjiO2RVZji8YFKmV7NkllVXfvL/5go5ERnY7rcb+kxavQ + Wu4d0clDmeh1fkElujADZjeIvS093Xu4Py9xTR0WdDWpDm1GHvFfPDeZVKjynx5SkLgbsNUJw8eh + azCtXlVBrQr6YAorMUh2fFr1/q3D6jJ7KLr9GrAaT9gDVpwWYn/kpZifaClhX0vlftubi3/Ce/Ih + o1YGCeC5mahie48/vkUujt7tZFxTER7SeMJyvzzjRVGkDprxoJLsbfTxurE3H5YvXSEOrzitsNLc + BlHXJkhz7bO3BB51IGRNi3itGk30vqzBP7yLZ6GetiTfSsUqohPRtzQ3aP3bcrkitYHctHOLBaVn + CI5u/SB/6/UTCa/D+O23JIs/RTsK2q8D4XcKif77BYCOuWLCwwhfKH3cHEr+3oekjoEubXvzuLNu + 720w8YQPuLvS5S/+zUA5kZ3fY1o2iQ1wgC6B/MiMmFs3yEOgujAQ9RB4q/29y3D6gga5ztEuBLcz + HorL8wDpIe3b+eWaG3xcMhMFTEU9susJQO/Ywtxast7W15ED2EP9I7v+mZYPq49/emOPH8lbf9dH + CEPzw2KRQ/d4YxqqK84mbUjF0VBgsr5MJYlCgq5mD4rlLjsRfA2BRpyh7qZtG2NV+Zf/XNEue6qz + ClH1uAfrVSUTzo2fDFPfPOwdLza6/Ok1vf9uSJeSul2tqmTggpiYBPb1Q9f4firhu3YjvPrPD9jj + SwWB2v+Crfk5YC2PfQ0b7Tdixsi9gvPjD4YJwhoWnuEp3hq30SFmxIpcNxgYS7V3xTXzHuDvTZFj + LCcghT/p8USqHi/eKhJGB/fLCRDrADKDpqc6gJ8q60iJ+jJeA1/bwOHwSwK2q0aPXqyQ+fc94vo0 + Fet7oBDGC5/gLChwu0j+b4CPBzkT6xW9jDWefQzUZpzwFg8ZHTrZDqTJ+xnBWmOTrh9Fw/CtQBc9 + 1/pksG+QzTDGyRt5xXMEi+h5ERTDc4E5Qt7G98CREYQ3uyVnD6keP3WvXPmLT+19C73lEbwZsK4Z + JjESsUdD036AbFMewSNttmkNz7ML/Bl6AWMaPPg9AtgrKKctQV9walnvFIRg1z/Iart12kh6Dv/y + O/QoLTnGxffaKFnxE1EgxbYn7PwJ3epzQz7zcsHywhddeQ2+hkztpHibuPgDfMSdh6rnmY1/2bWO + oDQ4PkIf7eytLyw0MGGFB0H7/qARmhZYI/GLVFOvjJXNzzL0eyvAcnhGYMv6zwD7GpTEcsdv8fvD + W7+VjuisFcfiH769p6pA1mVExf7/a+WQTxJ+7PndOoSWrgikDNBRe5jT2iULBrN8SANO5ZeWHC7D + Arv8/gmUwH14u97O4QdZENmO7YGl4ngI5b0ta7jrX1wdzBGepzYk57FujTmy0UN+HPrmD9/aVZJE + Biq1+UQ3JDkTjz+9C0QuEojVl4FB5VRjwJ9e0x7fnNKkONny6XYIkEfwkS6t93FhWZaI7Pq85cqw + ZMC59o/kDiu2XZgQylBhhUuwnOPUG3Z9D/XuOeHm5/6Mf3y/57PIMZgx3uNzhO9rUwdsOa3GX34s + B8fXgBIhmulSXXIW3ttxRF55+8RLsckB/FJ8DQ7OPZmE52TVyu5nYGnPryh30iP5syrRP3zf1MPY + QXm7GeToXSAdk3x7QD65pUizvwEdH8jz4caO30B5J8lE5JUb/vgVeVyjAu69zpn0EVlEtPRSt1vg + h9lOTJ+AuU1OIRC5dpXf9a4h83wN27/fh/nZvBJnx0ti6LwOKYw2ZId+EmOVl91/+Ym/+1mzIWkb + KD7flaiPrPeGcWZ7+St/UcAJkQ+oLPc2/Ig8CuAY/ig+cEwIsqjnMSQPGeCfJtRKzIxncqQ0pYv1 + 9UL4p/+MXLwa2yuOHsrMqgWy9v06B0sVQSUdt319ZbpZ4JTDPb/Byqe3JxZmLgR/etT45nrBSklp + wr28E+ka5tvlhe8qGPvvBz3vp6Zdd7wDHZ9qyNPVmlJ6VxdFlCYrMI08MMhb3kzwF2/GWk+AZp7e + KanlmvhrzErRk9QK4dhVNfIhLSaSOMkMR55BCAncBKZWdwJY2fY9OJTZi25nPSnh2zyLxAxXTLfp + dO7kyVwc4o7csVhTNW/g0wuuKHi9XSpcXv4IbUYciR9bbPx6BGyvbNfQQCesLzFZTaoqnyrvkL7n + 28t02vi//A9pT9Yp2AWkI3SkjRBjLz/a/Afe/vwW5PRbYuAd7yAOZ42cbwX1SNKutTKYD43c3tJ1 + Gq7teZDL0dYCWr0OMYnookKRuUuYc+5ZTGkYXv/yQWTzBzX+BlJ5hZdXnO9NF3C8KVkdwM1QCiw9 + g7XF0GJZBcM5Q5EtmZ6QRuGodCNG5BxtR7B+mc5UTn7ywKJ0NWKBVy+84vfHYF8fle7+5BUefu6A + Tn01tItscD5M3834b/9s8kpU2KRZTfLDt/fI2P5qmf+wFrmb11NMU2ymyu43IofPe/p7n50QfvPo + S050PfzxGwO39OGSmD/djOl0F8c/vAiO68suOPbyLOHh0gjoaEoNIJdAy6EqyQFBIHI97rePxRCl + r0WcT8LT/GK5V0hLO8bszTkVtCHXTdGSN4NOVaVPVPqMPNAl94VFSbC8jWmACv/+rvteDhbra4Tg + kkwDMt5JFlNTthoYXeBAskyM6Drjdy+bbpAQz+MkA1tbCP/5I2dmrQ0KwNIr/iXNiVG9DsXWLtko + yWRLiDlBx6AWyHQQw4eNrmOQ0e0lML1MqtjCV3h+x1vC9+4/Pj7IZIip+Mz0/ZJihLS3fAH0ab+y + vTn+hdjLYO35AXGhY0v5rh9/xvSoZQxcZeWR1qrczh+H+s/P+Ydnu78XwD//RI8HEaz3Etjivn4B + s+jEYKeojcCUuJjsfEHXt/nBgJHjGOlvs52WH/mWIH4HLbHV1vTW39PHcI8ndP7jm6KeTVDfnDN5 + bJLk0SflGDnZpgSvn+Hl0fZJRfj2TI5oKavH3NskWA5y9UaStbwam+FVLBBymiFrAVHxe7lFBrve + uKPjZbi1W9yoNdj3f/C95WK73j9TA69aAPBX4E/GGDyl/YiqyUkwwXfx53fDv/x19yOMxZC0RW6P + pxkFux/343Exwj8+ChadeFuqvhxo9QeJ+B8p9rapECHY/cH/+ktTMaYy5CMfM6aRUu7Pv931RwAt + b/PWP728+yFY+t7fxsZM0wN21kBJlKW4oI1oBWBe2StyFCWYMJHvDRQuY4oFIUyMH/zKDyA/4x7Z + m8zHC8xc5p9/GYhLF6/BVQ7k16NHGMRy6/2dR8ipaN3wonavYr1hqQOz67soLXzg7f6QrJT0PRLn + d0JgoQ2ZwQUCD6m55sV8+j5HwNVohQ/JOE+L8RlkkEh1hMI9n9/Sx4MF74r7YrkrZ7DcZTWEf/r7 + D29xqr5cxRcn8OeXThMxsgHuvxfw/KH+8+9CyNzF367/LGO9QM+Hp5L3ApE9JYBOnajDj7FQUtS4 + 2Utg1xr+Il8m+/mDt7zNU/Dn56JUUCu6/vkFTymnAYPj2lj/8EGI+WfA7/GI75/N/dPP6LrrgzW5 + gAy+rHQm/vujT+zb1ALJ8EgQyBz3ixdNJRuAVs9gtgoiupkSI0N9OT7Jn/88l0dVB7ufFfSpig18 + 98srrPrHIZD2fJcNDBdDTnAELH/ASLfdn4WCrXdEP0ujt428HsHk+uCRbw5LscbKrwMJmO/oKfVR + +2MYNVD+/ACFQU8wtB5xpchpFCwEGHj4D592PEDHMvXBvIByhAzDnP7tR1pyzkNsC75Bnt427UKq + kYH96Sv/07MCe0AR3P0IZGXaaHw7+crCiGw15jeZL/7tp91/Is7bsGOqKDkDchvd0BlcNbopipnC + U+4lwRKet/Zv/ZU/PSXv/LmZSbQpYamVpDLj2Vt7GixQk6ccK7P4jDedzPafH4b00lK8hYvuKWCO + VxU9HAu3ZPfzABzKGPNgmCa8+2HAfd5DYvzlu9ylMwHXZAYyXqLs4XW/4rXni8SpGRivycmFYLjp + mATO1LQU3roUrPnJRUh/w3aIWVz/+RvI5O9zvBXn/QrABHlyLNMZrN7DCaX4zBwCefdXttP8C+Fd + vJfomPy0lmW52Fa+kEvRk82tlvtYW6C04fuG3HBZJ1IEx1SSnWb7t75UiJ82PL4EJhCrjXjrRznh + v3wAD0wdxvT1uDdgwe5GTvk1Mah9MxaIOaHAzYnW0xYkDgv380LiZ9Iv3sAmNfDMHJVdj+sT+8IX + VXE+gf5fv+B7l65QFB4MujxZJ+b//A7tLfZIk70A/OOPG9+XAbd9X+32hzeJJp728zfGa3d/Qbm5 + nY28zj/QrSGBA59LQpATbqeYt791reznZXhjXr92AOfFUQ7GzCDnI4oTCfTOhH7AjciQjHha1egW + wetQlug0BMI0D1PkK1fjrqO4ry36Dk06K6f2rRJNe77odp2LK/gVCUT+7Vcby897BmCoH3d0NhOD + bpsdLHJS3Fd0hjXyli5pbGhJ5YBc1HXFsusleGBz/09vxQvx97H1XFsRDzY9/dOf//zvdNdLXH+L + bei99yt56Iq8lZztAF5bOpCgceZpNY02VFQ9tFCYxdD41s6qwy8xngF7OL7aBZVMDr8qf8B8aQvt + IpZ2rYTmmw24nV8owzY1NF0/QVcpHii1N+EBsS47+B0sG92qvK4lyyx8dKabNP2MxHTgZ9JT5Lr3 + FPz5xeBkBDkyT8HR284kd+BPCFP0+LljsbCtHMDtqwrkOaDNW9Li0MF8CilxFAW3K1qXTPnkBGMo + umFBnenSKKL36AmKltBbsU4zoKCVDQgheiEMjeEoTHvNiPew+XgFldD8ve8/fqYx4/Lg/ykp4P53 + SUFnGRbxH3Hdbg6vN0CwG5eccs4y+K2QAjibRUTOWZrFm8oVMrRCdA34qDdi1jX5XukTn5DztIjT + EJUWBJ9NyIJjetCoAB8FC6Yun5D+zW4Gf/6IIcTBw0GaJmIP58O0QGlTCrzEtxngKr/U0J7KEz44 + GzBmyZk7eK09G7kY/CZah8MGxcp/k3BQF7CtvrzA8d0bxA9wWmyFhnTw8k890kSbTNSQvz1Ebe2R + E3I6us2jpkOMHwRlD/kXz/lP7JUnvslBIuLeWJvquintWy+Rn0l0Wu6esUEsvU7kkTtnY7vehxLe + +4kNKDYrj97upQxN+xohBJvDRDkm18EGL1+UzuvVY8sfVyrSNGjkeju08cZIAg9fwawiROIoXn9F + /ICwYCOkezWhlLzPtnSsM4aESKnAYnLAV+xogaR4nLlipfWmAhNWM3KlOxvTZAhLhTFSQpC6XYp3 + n39CUA/3Q7B9rfPEXu+prhzT1iWernfTyhGxhEVw+iJDFHUq3IdnKo/2ogfgWnPeXGv4Cpwk2dBx + vOsFf9NcFybBwUaunJgxNZYKwrX8qph/mzFY2pAEkP5Gkzhv/mOszEPECpfbR6Kf9QfgC/jo/t6P + GG2fFUIhFJtCgioNDjfJ8fY+XwOkWx9hyv9QwT+9woRPnMiYgu/J4KxZLxVT/0TodJG8gtvOpwB2 + yiyR9FilxgoYsEAeqSDgL8oDCFNqBjCvbgM5fqJyH0w0ZjB9vVKSW18Cfn23iDCFb0I0tGj77caz + CVm/tMh9j/fl85VmmPVDj7Tf4ADWOs0m9BTtcub1cAOzzDIOuNhmTny7MDxufX8Z5RFcLfRAYx/z + n28VwsJbnqS6SY7Bi9JSK/v3Crbh9JyWqsswtCxHRjfjrRXsj3VHyGciIVH5sQH/rSADdBGHO+XE + 7fw7SjZ83ZccHeU7R1cnSxv4cU8tqRzf8ZbG23Jl0fQDhsSUC1zARw/VLcuxJKwPgwbNKivz6SqS + Z8Bq02Qe0gxW+aogzTemgogv7aqM/fJFecGmLWtyNID+oZeI3n/CVijtx3+fN9g+V+8bXxMfyu5D + R9UnHtq+0I46dGb2TioSb/EqsZ8ZprepwfDVGIB/hucSqif8RsGDpHQJS6+GH77PMM7luuBIOtWy + nBKdnMMUtyvvxDMw7tITVc5WeLSF7AIZiwB00n2tEODtVSq3w+mGrOrkxGxbTQHUX+cvsi8jLRZc + vERFLKo3Hoar6bGR9QvgVJBnAB2p9vhJ//LydvG/QQR9c+psThnheZxkhNIRt5s+rb3S/FqErGya + WrIdYQafT/eHubecTVyH42Cfa84gp53ilq3CMQX782Nu1d5gcdTTBs/uNybpBo8F7615DwEvWxg+ + +tFYquSKlVI/Nhj7pC0WmeUdoF6MAxZg942321VsAJIGJmD277N2uAiUeoR3VNrCvdiW+uXA15Vn + g63/LBPvnmiuuFbDoX1/xXxj/3pou0dMgm3vw2QsWw5JdnNRZWHP+9bexEABTh3SxU2YtsLLRsiY + bULQy+GK5VEeVDh49ZvEJww82iRJr5y07RPwSh54OHWxCO0jbpBTPpZ4bXVtAE08PZDBHHtv8d0w + hGCsBCxK7cWbiSg84DlOX1hkKhdwErNelTiNTJL0vNP+RrFzFe+pjsR18rSgo1IzCq+eGxKaYUV5 + nnQPmQa8gYGgNdOSbXWjXA4MS4JTwseLcXqNYtdyNgl/6GqsqvzAkMRFh87EtVrBecapfHrXATmL + 86MoOprpYF+foBbyT7EEboQV16o5UlW9E3N+89PB9rk9drzrCi611UaBBR+RG565dp7rCw9vjZwh + dYjlgvifF6uUTw8g5FRrS3MYODD6PAwSr14zrfxDtyHkQRwI6eFF11/6spUG7HMM4C/1djzXwe0d + d0Q1xoZu+ovAv/0VTHqCjc1b8w6yfFqT4D0t0/YQRh9a79OLBM/JBqv/lAdgr51Cso+lTnz7jXIl + v8gGZm9GXHB6YHUQtt6MxfpjUPYVzgsksugRg8/fYBHOjwYu55jBYNq7mEi960CuiH6YVNIKViBr + GZQv6yPoj74/cR/laiuLfn4jQx+1Ylsl/wrH2wER67AlYJIjtEDflqxA6V9JwR7jxVUSV6sxe2EX + Y4u3U/CHv6gqxyye2fHtK1p019DpF3PtujGWo7AnaSLl9rkaKxkvslKd+oVorbvPWTBeV0ViNBYV + OItiHvR+B71liVAiaWiitL518Md2Cbn8hgFQUkezEt6/bxTvfM2KLJ3hcKNvEnnnvqBydFwU37Em + FItis8/tsBzQNA+e3EOliIVH7oywVe0Llj/BuRBOpw6CbOp8oguhO/FLWjXwMxw6cl4HvZ3v9j2H + z/bywtSsbpSMeGZgouMjit3ba8KrwswQdfOK7MSsi+1ZnUooVWeKbsWbmdakjQflOFU3LGeLTbkI + SBCeN7cJlD6Y6DaETANfeP7gVzcjj7d5x4bmo7KQnjDpRLmCDHBpe5VkRabG/DJasmLaaYTlHhhg + Soa9qvcaI2IsaGs3l/ehBFqnJO7nlQJK66qHhdyVKJeHM/1bf8Uh6B28B8v31kqgJmz0B0KRat+L + 6VKeGHhKZxYlQtVMiyn/erh9kgc6PgKrYBvRY2B9ThksjQ0x6Iw/GbysXkG8VvamRZcnBy7weCAn + MdcBP1WHDFpF/AvoHp8rR5aHYr6KGDOPx69YNylaoHmsRRQ8p57+KgGYMDrxw943kRb4CSsVYDRg + dPrjvxRqkeI0TI/OKTvFC7i1Kpir50S890OcyPAVXSXmw4nk68x6y6srXAmHAgykbATtEv/8DDqv + RSU5CQRv856dr9yPAsWM2xGwzvoSKszHTtGuJ9rlp5AMzJFuI11or968pCuEdOsictzVyqpGSg12 + PEC6lcB2zRMtV2qWPyP1qPAeNZYbA5/Z+UjUpKmLOd8aBtZDccAL9kxvazbBhcLtdyPP5f41dn26 + QOdub8QwKwH84bMYZHFCkFSS9rfrQbjPZsaJo18mKqYCho1wN1B8KtZ2afNlLzksMxTc6AMsl/0W + pMecBWL4fuZRrviMMIPrnRQ+vdKFiIcS4nvToGMVccav+w6s5NYfnriH7thS61SbSvNIdRKR1i2E + 0kMmEN0oQ1q1JAaJrJevgNYtSZBfJLD1vjYrFX16SLseLI+9e94C1Li/E+eAu2KzDx0LXfn5xU1w + SePt9HxtYJFmiuzF04zlXb1HePY4KVhTtijWX33m4dd7UYKqfiiWYzbu5Sz+DRViaHscYOgG69OH + IX7jpHSNBq+Hv00DqMwvd7owgTrDwFcTcunu72kFRFig157KALSfxqOKQU3Fn7go2PSON/bfY2Xm + XjXE7tWWboF1FsFsfcSd711D0E07By9XUZHF711A9dfeJzL76OToeEzxsz+hCbbncyDhEOfF+k7k + ElZM2xG1uKXtelV7HiQNxoFJ7c6gpX3F8Ht3PwS9ipKOt+vSQPPtxKS6FFO83TbbBlbMXIkXX9bp + N4t9BytzcpH/alraSOdvBo+XT4eQrZgTf20tH65G98GSFq4xrb+nGjzlxSHRK/vF23h8BEBX9Qex + Bss32CWVGNg1Y423Yeu8ne9ceDgsK9I37VgIWr8syhfKAUJeKFDyPjoy/JbmGdnnm+ot7PgO4Lzp + P3K63oZi+eDOhDv/B8IcZGBZmYurWG/vRbLyERbbYRpmOLymO/FmnhSkFfVcYboXRAG+qmAp4fpQ + QqCr6NYfkoJN9nq1OzV14iTnn7dJ51emaLfrh4SMJ7T96jgZvDzOZ+S6IjW2qAxzJXk1DrlQl2uX + qLQYhXqWgUyu0ww2hmoOr2kcEX9W3enn8UUOYCrPmLBoLhZ16mboXD0fHVGkTeyF72c4/+wKw2uv + FmxojRvQr8w3WMrVaGltVy6cv7eKaFcj8UjriSxc778cqa2ZAvI9njeYZzpCx/qVTQsXmQ9YMk1K + tM8z2ScvSyn8CBtDtBcY2tX9PBjIOFHyDz+W8+fH//EVcvjNnTZvv5XO+c+YOG02Gsspm6HMDCEk + np4EBi1KoMqSe+kJUrzemDs9NOHbzo/kGO6T4z1T0YHeLga6yN0cr8P3N8Ov5AXIl8vVo03YBuBP + bywiZItOeuQQar8qJ4F76YtVN2te8asuIpmoBQbBrGb/5RskDyLV4zIt62CrhQKmV84pVsloN3iU + bI8YSllNVD8UjPIS+4K45Vsx6Ig7CHc9hx4g17z1zD9ZwLRJipLisdIxavVNebRRjLe/eKztyoH9 + 6MC/fGX6HU56Ckcw8wF1x8lb7U9mymlaQmREShmvApFlaPNNi+XhGQIyfBdXiS9pScxvkMc/roYl + uBX3BXnc9jVocm1sRZGnVyAun9t+q4tjYfKqHVJM16bYtveTAX/6FaKxL1a5D3s4hdNeYnNli3/5 + 9KW3tGB8zWrLwT7WlaM/pcgA35O30neXw0t/1IIv/PHGXH/PNUhg9/rzD4pJD0IVmEvwwzP91fT3 + PdaBFH+qC/Ivflz8KvgrocbucwQS+W1su98CPPP2JKdsLFoqPy65susX5HmXI+B+/u3xLx92mGqk + G3c7RXC0Nx1ZBQHFoDxuPCwX0CITGd+W3IV7CumVEbAgDCSmwFgGcCTBjVj7elDVNBig15qB/KCY + 6bfpjg7EIQeDD4q0lpeieFF2vEWZbvPG6oHzBuvZPQS/fZIz3VIxhzk+6Sj1HbvljrMvQsE4LEi7 + LV7M9/5pFl1t5bBwX5zdXXhlimop72AdgwLMry52oTSzH3QZhSZesnau4RlnMjE39+rhQjuqcOmW + PtjzFWN7wpsKu+d+N88uWm/nwwxO4ddEWvMqptV/bgMc5t9GnOFqGoLKIRHKPhdgzqU3wMVo5KEU + MSwxZxBSkvx0HipM/sJC/L6CdzUINkBoa5GbHOp4my91BEEQhAGm/LmdXlq3wG1RR6Lt+nWcC0sF + PNIBOj1j3Vve1W+EaZE16LQhEhNSDFfoDUcT893qFuuO98q9SnMMwDWhS/KzWfj61RopadsZi84t + i/JQSRTsflL8z7+JOdMiZy9nWyow1xKi21EJxl3vcg0ON7DHJyo3WZmW45yJf3oO2XoYgVWadCj/ + 7Yd052PaV50JTzeQo6A4fymVX94C+UwmAWB5yZi9+bkA8Wvf965207R1iuErEOx92p+3uF1TVxZh + wu9DqFY3auk3Zx043j0uMNV3a2zWRxvht7TPSNPeXbu4JtPLq9F/MITfrp0ubtxLOx8QP5ROYE3K + V6T0h+MJ7XrGYOHBDWDt3DPir82tWEb/pSsZV6oBe38t8TZVQqZYg/hC7if4Ffhu8QzMPpyPzk5q + ApYcafPnnxDH0G2PFwrGBk1T8sh71Awg6xs1YPf70PG+DPGCGk5UAC9a5LJ1+kTJJZ3hrg/xdLLL + eOlTR5afBXPEQ/+Qjd3fqWGeVBxC6c0yZuNQQXg+PX7ovNxP3j9/51SMOVae72LagowNlWgYvigq + znfwL//bjin3h+ceORhKDTtnswJZmhVK2cgp4anuBhRt2t6F6Pgz4SP/WMj2nb7dXnmx955bLsiX + vc+0bewFwrIbWpLp98M0jJc4A/v+J6iS1n2Obcwr0VY/UZVgpsVzmg9QWjcOy7se5M+fJVJ2PU/U + +ObTZWXuDph6KgRnIx/BsqVsDlvgXdCfXv3njxaZ8STnJHIKoce1qdSnN0O0yzsz1mLYfBgqhY/B + JHPFIrx0WdHi9wd5Zq21459/je91Q8x70IPlq4w1pKF2CfTVuhXbE1Y68Ks+CpqzDsHchh//T18T + J9bvEz2pqg93fieaMjzibSgcB6KbpRB1r7pdIusdwO+N0YiDNxUIHCnV/wAAAP//pF1Jl4I4EP5B + HGSThCO7bBIERLwBIooisiRAfv087DnObY79+rUtpKq+pZIK+Plx5j7ZeySe7AzKb5KgTV80U/0y + MBTnKw0audo188DaAXwe6y5gOPOkz4VV8GDz15EP8oc3aLGbg8/9MBPTfLHNmk7XCHKcZxPnYgcN + fUPBF3/4YHzGqZj5/dDB5Vbm5L6v0LBs9V926rbbvj8sxliRWKBMlR/I5EZ0trAKFoyRYpHrxcYN + 8QxO2d/j6oXspTkUwlI8Z7DcqpxYedw0dKlvLrxaw/HnNxebn1NJP72rXTN9EILnXpJ4mYXEVLQP + mMFlUCDTRRCDNusaylwGCSRUnMj57nTxpEU7CH5+1AEKEVhVI8/gJ2IXlF8eTTxdq9YGwTEAwUA/ + XLM+VRDA3ai6xDkUr2bcX7qNL0TCj894q7NkNozisSTICy905fRIhFv/AplZ9tSX73mXAl1rDRS4 + J6vY9A4LycV9Eb2JMVjAcMzAxueJJU/CsJzRFIKwaa6YHsJKF8JFTODx/q6D5zcTvPkrzjYk+C4T + hyxrTHc6V8NdCBcSM9Pe2/yoDvYqWwZLL2jxvBbtCmEqjkhH+6CggIUv+EXRNqWGURtWnJ0UPgKs + IH2LD7q36xbyZ4/gh/Jlh7Xs2gCY/eEQCOrhNdDbtC+BCowAbaerPRZcBg0+xFdBcujmYNSebgav + u4uKDHhe4pWxqQQJGmBQXZm5IM9wCODUjw90kawxngl7NODPj/LarBuovLN74KSYJcYjmJvVzxZe + DsV7S9xtfT6Osb6gywRfZDjeDpDI/Po/PYq083DU399agfKGj/ghCRygg3bmYXdZ3iRNij1dGnp8 + 7X/xp239iWVmXAzvduaiCx7PDQGzFsAKyJBo+JPHc/XVLSjM2RsFL+fYrIzhPOFkMRJyH7qkb36a + IUvz50aMFzh4m99cgszRvUBSDrrOn03JApF16Ij20zN7/bLCiBKdBKrW6OMX4ye430kT4GnIi9lH + Wie/dWEKlstNpfzZXC1IHfEWiBGZvTfzGCyw+X9k4zNgTaqIB25jh8hmVrbAtgRFEIgxRNqukekg + RmYqA/Y8BDOujg11syETuctj+vM/MNXDUv49j8VNRzBjkkW/9UDHeVd66y00S8lc5zOewSQ1qxkX + EbwV271Ps2UCHheogoqQKOiMm45S6XjOBC69HDA/Vv0wPw+KAgWrdkmyCH3Tbf4UAKS4Id2V2WY5 + V98Ivp8DRj89ueizlMFOSlss6VVZzIwURfDXzzld5qF4XTwn+emdv37g1u8ZQbd3lWDnFOog6C0N + YHu6E6R5RysevHivgBRcHXQI9M6bt34hSIv8Sdw2uhW0vY8WGFsmDqCe3Id501vyLvIumAsHlQoc + STXQWtcz8YbPQH/+p3QNHyo6PObIG/O1Z4D+yE1kAZQ3S6h8GWjKLMa7k/0A5PUqFciunzqAEAYe + /32RBC5dzSLtqMFtSl0UyX/6X3tZOusiO/j1Y5B7D5qGrLqmQSZyHeRP6OWt46Hq4cavkOIW1Js/ + cmfBU4mOwRvzUbyEI33+/Ehy2fC///U7l+YT4I+ZCwAnzdGHW/8Lgw2v2En+5HDz+wj6LubAnqeA + hfGh6gOq4lNM2vtoQDKdLujOPs+Ur63Bhdp+u+exkFTw03tA/zxP+BPonU5uFVdBdn3Xwd66s83Y + ersI3oJzjI7F/Napsw2dNrR3hNToYeusfHmX8tGpJoLOuGpmGrkKpJjt8ZdTOLDk1jEDnGRhpIWO + Uizs/hbAQx8tSCnbXMdbvZWVoPNQAqwjHb1Pk8m3WTyT8mOEzcozXfnzW/BebSSABf2Wgs8E3D8/ + BW/+Jfjx/6stn5rF4TMIPndz3vzg80DFh5PAG3rsyfb/Y/657twfnyRoqUzKDadDBlm/NEmUEVmf + n5BPAJcbBxTGfRrjLmRqacMvEmz9lh//kr0Fiui8u48xvoVmBYvYFALWFtOtXuMVdnVFyc8vmX/+ + dEGeRrBWH4suMepZcP36AcqGjNKZYyptb4bHhByrQNM5jn2y0PoQB1nDMxzWReYxKI0yQgfv7XnC + fj/WoKktMWCv7BXQx8Qk8F0+JWRduHaY5fZbwWF3M0i4+X/09Q0yMFhLiJdyh3/9a0VuXfdMdLX4 + gNlejhhueEmC/tMXszzEPGyH8xMpSTsX61NWZnlw6xCL5zptlqE4afCsOBPRMsfVv6OIW+n/bCng + /3tLQU0DiahHyaI8NS+29IGKgbzLW2s4fLExPIdBQwI9VRtSLrILS3yWiMWtu5ieoBrAY/V5450Q + JXQVHDeDPNF0/LRMotM7A0JYdUuONPHG6zQtxg7c92NADKv3h0Xkm5dsHbqYHBB6evMTZDW8dcaX + WCfe8EZt3a5eEbIMlduxNvYjjJF0VvmMaA/LKATLPNswHkNEUre9UdoxUgRnft8j12ny4ltIUQod + OfCI78jfZkkOp6dsLe4uWMYIgbX4Pip53FcUGXexjvtzHDLyBxxs5KnNNsjyLQaguOQKiThLi9eD + T22QzXsj6BvPK6ZlxzNgOj9DLM6vYqDV04WQ405nlPmv+yBwQ5FC5rtfyMXy82Z+9djeg/euxVIx + 83R2HlUIb7sIIwt81YLuXkCDje73pDitasEbejfL476kpCg8s+DQIVIgHe89ps/7M55NED9lzRXP + JNaryRsdVcph6YwtuRx2xXa1HFhh9J1aZOQFGMbicHlCleIQ2ddM1FdTdjLYtegb7I6JE3ct470A + 4WoFGU2le0LIwBUqqWrhgZO9YTnfnrWcvIQd0orvrqDwwkpwPNcZsoNCbZbbFGP5Qf2V5J0bFexe + urHw5iUxcjW/HXhRGyw5Pltu8Pu8FaVHBd5Fuo3XgWFBY+K+4I3sPiiYrXPDca7ayrl0/aCT/dAA + n6TGExrFiyEF67rx7DzSEMb7qdq+b+OxgbpIkBFjiHceeHsTG9aizBydglxCmgwEqI0IeTJCvF99 + u6E29xTlcTmv5JpfMjpzUppATMUYJd3N9QTVUTP5qbYy/txZr1kBMS0gHnOLaBMPvfX17Sq52oUt + OjH7byOUxHnBtPYLEp4ln3LOopbydRYhMroui5dV1nOIrqqJ0hP/8rg3P7UwPbEhOdkHc2Dfyi4A + nrkAEgZ3sSBH8czAfXnXkC2pSsylUs5DjBONXJiiGTDRRgvWaflCDtpNdCw+tIUp83rjZ2NQOpzv + YS47MjAw/YhtTNG2hYfDB4Q7n+KG+MXUwZSbBxQ/TVMXfKhiWXqd9+TujanO6bnIQE317hg+kqJY + jMVhpN3en5FjX72CTsyyyly7d0nM6hFd5nbNYKnVD5KufjnQfgE9lCTOREUM7vr0uj0UWdYmFun6 + tyhY+eWnoPqOKclIbsX8jhskENZHHaXNbgfWK0dE8D29jiidr0UxE0Zr4Zm1GYRCydf5EL2xzBRN + G+y2luGq1KeXzLXARc7e2XkUqI0kVz6j4F1uPwCXK/sRKufkSFArXpv5ECya7Oj32wa5Gl1JY7tw + Z4kuOunxSOficK9h4OjH4NKg2mNHVvRBp3yvyHlns05PxWRDfOF5PMkYD2vC1618vmQdyfzXbli+ + /GRBoy5TZO2QoQsB0S24mqcJaXS7rpjgQyYeXvkj6NZF0ulAbAvSlRGQny5Pb03H81M2GLZGsf4t + 4kVxD9bf+ypz+wz4ficysCpVA5PkXDcCZ4auLCatT1BmLc3ysS4pdE4uQTlNhWaN7/ccRnNA0YG+ + pWE+Gu8SkrD/EueUrd72/Da81EFMjLd2HmaLZQN5WqMWofjQDzMj3RKYXPIZqVXy1JfTVYjgcsx4 + ZCx84PGAmAbYB5ZADCtE8QRkLZN6f5zIQWpPYKwWE8J8ZDLiShcMHly7SHL/4YJth+JhYCM7xLLW + Kjy5vo8PKujQHYVhBw/EvafXYamUfQD708skpcI8KRcfRR6Ot2tK0oZdBvpeWBdM6+6OlC3/2JbR + W5AVCUVo2odgfUDLh6zSOaiENQPoKdu3MLdN9Q//hFvXR9AfXhZK7Vvtsadg1uTQ8Fpimp+bt9SX + zZKqLk+kXzW5mST9MctyVx9QTj0n7teuXcGXwAs5ldEJ8LYVs3DffG101sJvvIrPgIGEKJRct/hc + 4sUu4a2jT+K7tgCWCwU1PIynO7EuOR+vQTkmMEexRXzmSfRl2TEQarDWiN2qz/h71acQ2i05ENtm + IJjbnDLyMA8qOmC1K5auTgx4Pa8FsQSWNHNhDBBGwccMwLfZdt1e5Bx+oGYES34PC9YVPiEkWfNB + SmtePQHZaIQ09R8keGN34JXyzcs6r2E8sxEHXo4qZWAojBkdNM4Cs1LMtpxULw7pcpkC7i6deFnI + 3RcyuNNzmPrwIQGoqToqqsXWl0YRR7lOqxe+JkxCOVC2ibzV3w2/AB21YHnKV+uWYPl19geOXmwf + XoP2jEJi7OiMjQeU57p/ICfOtUJAHiihgz8ycQ+zCFa2rBN5iSUdXXK1LwSH6C0Mqs+NlMylBkuo + t6H8jvcxSi/I9tgNTyWKlIJEznCiXEmp8lcfbTOTvNVo/B5+UrSQg6Agjx9TTYNTlbrErZkR0CD4 + aCDsUoNoNFbAJFm3FNiXTkdh/bDoymXsS346N4DM1+3l0SzAipisj9N2NZc+zPRlJrKRiybx77NN + ud96R/N+JI7C8HSR47iCS91dkaF0ZcHv1jmVd4GFkGVq3rAchTr85RNJeo6n6wG1WI4efEc8/W00 + q7fKLBSL+UTsSH396okBHQd+8U0H1FsfZZ8C7dINKOl7u+E/GWPABw1WdFRcrehTf+mgeQwG5CpX + M15Unaww9C4D8hXmCVZpH7ryxRBIsJNEYVh8qeBhYCcJOp7lxzClF8+HBB8EzHko9Nb0zfsw7Q5X + vN8pqreCqJxhoUgsUgL8Kf7W915OXLBqoVxQzgxtqKZEwHS+zd7YSncWGg8HBZLW6mDivlMF1uTF + Iv168pupqcsW7pLL9RffMT0w3Aqjvn+SQ9JZMZ7GQpO390+UXVV4fPF9lCA/zzEJBPDRF+SaL/mH + x0nKZWDDsw6Oz92HoKQOwBqiaYSGfpOxdJgz0Pc7EUKHPPdIY0xHX604ryC9ZS1+iuPb65rFLGFV + 6sY2BmqlS3rxAth3s4sKOau9ZdH7FTreqyKWxfmgP1pxClgwfxHa8G3Zf18MVJ2wI5m6CvHiLGol + PdsyIb98wLqVJHKQ4jvRLJN467HRO7hruhr5CqFgkWd9/sOjUkidho0etwgSOJokn5q0IAqqMZT9 + qifmcgSAxkPKQ7//uiTpbr0+v40nI0tKUQUiydt42uJzbztwCQSPPQ6ELNSGbGVeSDpfQbH6sxbC + QWx2+P4agIffjWNDf7Ev5Jq3ByC4w52FW74E4i5/FTOY7gG0mttE7Ffw8OhVJRkcdswB74yz1sxb + PYBQ03VkT1nq4V2URPDd5/dAVuVmmOOcY2At5Tuk1JEAZmp8Kzgi1UPBWEdAYF0hAr/3E9jEpAvq + Hx1cB0tBp0V6UmoS3wBmGRPi7LPAW05SnMLrbbhiAB43MH8/kgGCt9Gjw20F2zlyBKFbo4H4Ehzj + ERxpIn+zOSLWQQH6PB0hD84qmxHrXRo/vNkGaUcZrs+DDKi4SPYe2M8LCayJK1aW2a1QAqtKjO7m + 6pz2CEOY7RVzG8m0NOPlUa4ge9Z7cmZvT2/N4CGAoSwm5HSqneaXj0A+mdvV3udkoJWZd/Bi2DzK + rpnojeJnbqHwRR06PI4IzFbmiX98QzuekmZ97PYQ/Opv3i5YX1T9s8LAThPiXtdD/KvPQHyqRdCn + vjHwhXVl4S6g9jYmdBzWhqAXdLKUDbhOt+ituDIhWArDJlu906eUJ5YU8iMiGVW+3rqLygicHvwc + gBym8frTXyfxsCfpubRov455DbPnc08s+UgBtRxFkr+EuQSrFF6KaWmC7k/vhWx0Blx60X1gnc0n + +eEffUThLFcGuyMbnwPDPnjWkA+vPArU+66ZtVV1ZQ2zM4ndvdrM3MXC8uMepVhqvCEmt+HMQzB5 + A/HfztFbnPCdA1e/n5EmjqYnvMSiBGMjNijd1ndePXuVWEmYEHJwOyxVfbMAVi89Xo6DAMbXUeaB + UVcpMc987xGHeC+48QWkP0MaD6N5coHuvS2iu3t1mMOjwIOXvi9IYNcpXSplCeC9QRpxcPumaxhf + K8m+P1Rk7r6fYpFcx4Ks0jsB5xx3YN7qIxCENyXOhq9j+UhCyL7jW9D51yVe39pkwelchxgyFwUM + WdfPUr3HFjG/fKfTjLgGKByMERKHq/e1L/4I6xdLsATduZinfrJhouxfJPgmU7Eoi1vC97FziP9o + +mJp6qT9088BAp63iHTWfvqRWJ+vXvB3f+7A7hyeiTHqI1jnTLakDd+DXV/BGAuezMivbl0DZo0T + nRU/Ygulw7tBZpHDgqjvBf/qC9r8gJiDfGPJZ6jCQOafjidkQavA7g7vKH4PB0A07Wn96dfDpo9H + /DJZmLwtDXnrxQbUZ+RQCsM9RPqb571RfPk8ZNN9FOyt1gEEAqMG4ly0yArUNf7Du/l0ztEh4gww + q2JXgpn3F1Kd8NgQ6734sH7xBBl5OBXEOB9SwKmphGxPOXp8hxpfzmbfC9biu4spz8yrbF96HS+D + cQUzl68V5E/Jimw5S/7Nx02vBIO79Pqv3sBsr5nk0KBaX+eyY6E1nj6Y5LZKF9bnXGgNLxyAyaH6 + uuHDn79y5Zqy6EutteQ1aVl0vKfvgQ5EMeTTl2CiafcxpuCBVvDVAy2g5ajqRHWcDO6+4ItUELfg + L34WM+aQdjutDT6NqQau1j3BIGMsykNHleBuMQny/HPZ4Fu2M+D2vMSFbhjzR6tI4AE9HPTTC0tV + ny2I7YYEsuI+i7lU5wxWPlRQ+j2eKb+H+gh/+rO4vJ/NMraSBIBSpESZrLDgT2OqyPO1LEiwT7xi + FTocQQezCrqJ574hsbcyYPOjsOw4X29cTrUFwOVTYOZ9L4YVdtMMtnqA5/rRgoVvAhv+/exYSbHu + uEGEG9/FrMZJdPHlzdK8a/GfnuXz2V6B39xMoqhSQLH4ljD8foQUc4reg2U/hdsW/UOPtEIM4lUY + Iw2eRHOPlGtNhgE80Ayg6xrBTqxdMJyypYXHt7Wi4xWvw+wPNf/zM/78F5KYRSdt/P6Pb2ENfXz5 + Gw4nPMv10Kzn2QkBAA1PPDNr9blajhAyZngjtvn56pSetVRG+HMmWnu34/WWCRZodNAQi+MVj4vD + Vwa/3kFB5qIdB36LF3gdkgGlv/j/6Z0w71b0q5/cXbqy0A8+E2bm86uhThSH8CY4E1Erk3oYpaby + xwejpWTADBYNyhxRPJJy664YP8IYSg9gzviqe1y8HrXPC1pDiwP2xoc6PjZeBzc9Txxu9Qr6FXMG + 0maYg4YYA12peXeB3w8uUn74GhO3hRseo+qN+4byjLjCoVi+SM1G4hHmg1vonGyC0JYvM2Hcl5yD + tMHT8zl4U3Dcp9BxmC+m+hcU9Mj1OfSOvk40p9YHTriCCHJyniLT75KYiOyEwcZXiD6g3FsSfZp/ + +Ut0+dQNa/Tm8W99iSGgSJ/zJSiBIok3cngcCZ3JIwqhOVcB0kM9pfR8zzL42kEBc3W3xlRjmEgy + eHIn+trjYdwz6kt+VJcc2YBVB2HwxAqe8q4nV9y+wdS8lEQOr5pMfOEhUNoS5QWFSG+QI7z9hg2P + OxbKftkj7R5rlCW3tobhiRU3vq4OQn3ZiXAsxxvJNLWNp4+rG1BtNYYc5T2kVPp8LFm/7k6/+I9X + 3SoT6A+tRdxpNWPOdIMWzoS8iHocBDosL/YJPmsc4D7cTm0exrsGt+dB+ns40IWdTgF8xf6TRNH+ + MAiccYew549X3PvMdv578SB4CQKPh3OzXaxjnVN585MDmL2a7eJLMYH35X0kTva6DJs/NctDQb84 + 82nQLPGUYDBrMkLW2LkxNbtxlp5wuv38tGY8fmQL8Ix5CED5cobV/jYlMB4ewtI93TfjhxVHOBif + F+aevTZwPzyWIwXg6doYMR1sY4RSKvYoMJ1GXx/3mwS3eA7qeaQ6TV6750/PIbWMFkrEU2WBjQ+j + qJhqb0kO1ycQ9CEjyNknlNfQJ4DiMbOI0QmHYrAzqYW6Kx7RcfOb6IM4xh+fShx+9UYpyXsok9En + aRCqxXxRRQn8/ELXyUad2/wGYD5nuPlPSB9POJZgVYslupauVKz6d4BQYwuVqF/LjZezIgXw8/rA + zQ/Ye3Mi4AhKYykRs+7WYq5fhxT6e/0c7PcZ9ug8FCy0Dn1MjjfnoPPPVFeAfvIuRAtHR//pHfAk + YYCKDR/6IZNbyfsy1wAuOB2Wri4t0JxaDk/886vPw41ocO05eatnXlO7oFCArBGW+NiOAa3PRgKN + GCskUO/3Bgd1ZsAssTGKXrdM75RCtMH2/lAYJa5H5GXp4XSwTZJ9dic6rjjLIN8CDe/ujzeg3VOF + 8NefOMo4aIQDI8/QkX0PvxN9O2KWCxUovbQgziev4/lwer1gfBMNksqaOSyPKfYBm4IoiARjAbW3 + HBgIP+8YqczeGValnFjYXbgKBWdH1ZfM9Vv4uasD0k1LiYUyOkXgx7+OJNUH4afHdFc6EnvrL6zi + e8XgeshCdGk5DSxRfGfgXnITEjDibfg+D5kCj+tqIFPapjjmp2cLjXhUiD2wekPvxdCL0VH0UVwY + 25GBHQfheLCP6Ffvv1gKUygzxmXTx22MVb5vIRf26o8PetNUFy8IsxqhW3jGzV+/ZrTQKRgTpgYE + nzVW7gtDJLotnIoloptbdXBuJCvyLl7FtzTCL1ELpFT7eFiGKQ+kdlR8dN/82JXsxAre8uKCxd17 + bRb3uPA//YesB//UJ3Gb6rL5Zci7Omf9z99JyakiXu36BVsy/gtKr8s+qFe8TWVh5hVi9u2Tn3/O + 8+s+AR1Y9sT7zAHAP793w5NgeQwcoJr2NOQaRVXQO40Ub/qph7ajckTZSzYdt/4I1FzpTPTPVyho + f9ZTeCkSQH71FG/4//PnUcHJw0AnYGlyqD0WohXfe/znX48H9xjIAyAe6arUh+NgdBj2071Ynt9P + 9eu3ITWu9h7FZ42HS/e4ED24v2Ky+e2wvV0ZZGHOBvw5zhgYr80VHWsp02mj4hwsAl8hQ9X2wyDZ + ug+HZ8iT6msyxbjlE6gE7430+RbqAmfrGMZSl6Ps8uYb2jy1UmYiMmLW2qZabPoD0vHWk/vGLyZ5 + 3SWAfbUv4hFPL0aVhaNU4NYM+LHri5kebhrwn7OPyvG8Nnjr14CHbZyQeeZdT9DueQZN0+zxSkQ/ + xlZqab96Hyybfl2XdeHlBEaHP7yag6r3Ab4rgHib/l7xm47g3N5G4rlL7xH7bLFA5uQUL3G113/+ + 1j5e+JooG3+bi7eiSJvfj44BdAtBEK8lxO/aDn76btbwOZc3/whd30eVspu+lkake8GvP0kpi/29 + od9l5DRzCeYruwZyFSMXGY/hARZfRhnkudMRT2dZbXiVf75g83FMcu9qn85guvjA3Ec2lqRLAKiC + 6lH+0L1OAvtsN0KdzZbMCB+dBBlpwOrKtvjXL0TH5BvT/nR/QT0yYvT7PMEcsycMORqjoIr5rboo + BtwFix1IpnxpVt+X+p++w2wnfOJfPPz4EVL3lh2v8f2SwZLlDsjY+BR/coIMuvmQE2uncN7UTvn4 + 41ubf8AOa/r9QtjI/Qkh7fnw6NNbqr9+rMsvvr5+x6KGG99G563ebHrX+PN79v2S6MsWL7BGYYVX + ztKK2XikM+ijiEE/v23TRwE8TH6BQvZhULr1Q8AleqgIJacd2PoVGRSfzIVo4i3VeW32Ihik452c + Nj6xkucBwqVYVHKFr7ihavcO4aavkZaak76e/NXdI1VQiLKbem/zs1j5ULEhuhzLGsynoUvh9ZCH + wTOJPLr8+hHrMcN4t/VTnh+uzWSZsS7IKq+3eB5uHwWm3kX/rT/tyU4sweank2NqEzrPuQShKNaf + YPnEHR3k0/kFV7FBgeRkvsdlfddJXy22kEKMO9jqRwKzL2YCULtjgblU1eR2MEOS6TsO0NtwY2Ev + uGcs17VEZy6XSrg+Q4tcSzcvligJXZnXh5rol+++wA05tACAB49smynBetHwC2Y+0+FhZAywBOFL + ggm4eOTveY72Kdj/ny0Fwn9vKTimgkQ0UWQbCiM7l7K4E3DyWp14RXYVQCzcDsSB1ymmc2pGMjNT + LgDOnmuW63rnoa9lOrEe7g2s+qvvoC2GWwndWTH/oHwIvB3ropDWl4Z7PJ0S7O9uTPTdMwTLms6G + fCr8ETnC6HkrQ8sSDvgZBPvPq/FWYmQlHD/vFJV9L3oUpFMKs6k7kGL/1TxuJawi3wpLJd7DRQDX + L5uH8zULUe72Ow9f9/YK3Xea4/xMTzE1Po0m94+RR8bxQfRhltUItvseYgjMNl4BeDBykUkdHvcC + LtacrCH8LC1Holp3G7w7uRps0pEiPf8+wbT4dQsF8/HEUD9xYFZfBxYe8Sna7gaJB+F2OGF5ly8m + yTBXU+xZSQDTwq+Qh2tE6XbpBSwWUiO3vnyH6X7sK3ih2YecO3MrMQtny+Lz7ZGiUwCYa/GoAByd + L8iqHzs6l7yuyTOuFZKXsBmIkAwpEMfUw3UfFAMrHF+BLA/ea7uLh/UWpX5EkIOBiyyfOVH22V9f + 8Pva35DlNAOYkjZIQN++UuTehHPBW/bOhc2MDWQ737FZ1H6e5eCWxSg1pCNgozh8ynO+EJxdpCom + HRtjWUxESsprknl8/VJY2aXaGux84e5xMwaabO34DEvm8C3o5MIZWkclJIfctwoWPxobbuuJjhcp + jLlddnWhXYoqup0Xa2DdBovwehQvJBLFpFnPTTfDt1qxRI24M2D97RT2s5olpCTsZcAGlmzoRJFG + ykcGPexNWSDBJDdJsISTviI79eXAZQsSPT5SPPt3B0KvKh5oi9+Cd1GPAVI/gDjzR/ZIfj7asFTa + EzGsQff4zpRyOb8ggpQXvDdcfCIJvIHkRC7yw2jYLgk7uTqKTsD26VVflXF2oemdL+hKuo/HS4b4 + hNx9UMmBuykDlwZeDg9zsifxfpDAol7yGZ7PbIWUXfSh2x5CDK+8fCeX3LfiVWwdBlbq+4QOOn/b + 4umgwa/CWMhtnO0ul88jkrnuvse2Avtmrl8fBQ737w1zpnYt6LcMZ/ls2xbK41aP+dvntcp3PXRJ + JLRZzFUEStBjvguyttsOp8LiRYhdwAQMwgqgTzfB8BxcTVLELGrm+TnaEI/Jh1hCqXlcM12h1D7R + C9mNPjeLAYgPQTT5+N1kj4HlMNdDXOuE6Eqr0Lkd4xe8Ow8HZZ8xGFj5HM7Qy8cchchvhvVUcgE0 + 0HhB7kX9xsv4/D7hpQp54swnM57hFI+yZDwT/GoVteCSgudlDdza4JVSz+POl6sovfduSQ6COscL + oXcG3r/LFXmFGDfrvZvWbUtUhLyjvN8GOzI1tOpdRw720S6EE+wtaFUFQa6bHGKu1K4QHkLri0z7 + titWerYkqMWUIe5keAO/d27blAbGQjqnQbrC5A1/+UTcoj/EpLocbFgHeweTohD0MaWKJpen3Yz8 + oz97a8BYvXysOQ/lgWwWi/TWX+CSchUxc+s9CC/vhuGgyhb55bMwHzIervvnaaufus5Ngl1Dz3af + KFq1rnldj0cNwt3MojTgPmC9ZXMCySgcSJAVjSe0NBplcUw8kjX6PCy8mViyvg1+9A6H40BP59aA + 8/2LUJ6XJJ7F4Yolsw9spCswG7iktVLwqMIc+a+bW+AVdRC+Xb0gVly9wYrJksnCK4+Jj/TWmzNy + qWSLP2QBVO7Yo0mR9bDIxI5Eh6CO+eR6jeDIV4e/fKPjc4f39xA+SXi6nhqBzVAo3KrFJheft4ol + nHIW6qumoKPUJw330SQN5qWJAiE8jfHc49sLKlQNAi5ul2JGtqLJ0Ta4WGqcU8x90lCD/rSuyBu/ + V8DdH3b5Wx+SbPGEDS0LfvGNchTf9CXjlUw+gl2PXFXz4nmXnlaYnu4VQVfhUPCk7SUgIqoh/Rhr + lIrVysvmO+nIOUFk+OUnLG6zTS4wHhtyj3r/D/928DM0VJK/CTxbu4noz8kCi0JuI5TuPQ2eO/nZ + fPEkKXAUhJYcPqzk0Xv0DORjoGuB1L4uhcCMx21QZK9iAcZ+w35cx4bHlJOIxV5Yj7Z+OoLn4fwk + 7n67e1ttvh3cvyIDef71C6gFXQXW7WslCn6oQFDJ/JQDuW+QsuXj8tWBAv3QKNBJ4S900TgllI+0 + 0JG5L3TA2aIXwUiMzihox4TOM7JsWO/tHlXNCdPVAV4nn23XwswJBJSXlABC5m6bJLJA7q2eVQbw + oOUn4hUiHRZRqF9ySfMrCvPh2PD2RfThWy1ZVH6tLv7D3w1fyd0Xdt7anwkLraMWoswVXoNQyq4N + jaBhyFVvWzDrcpbJdaJIKGGlJR6cXHyBX/292mKj84y11lCIkRTskRkCfuMHkHMyjSiKvgwzKxou + xI/AJr6z9F7fdT4Pb+O9JobeJnSrdwE8Ot4T6Zo7D4usSzYM9YgNRH5vAPaDPgZcM7NDmRVYg6Bx + aSnP0+VD7Hw3NqtRJLZ80mlC/IdmxP0xBwH0FrQN/pVVwFaCr0FFQRY62MeuWMxrMstpnSISKzBr + Zv79ceWbyZwIapwmXrtrmMkT4A9Y2AdMvHL5Usq7WyoHw8bnsFEkrsQLnItCK9zFuLzdQrga7gl3 + CuyHJRivLAhcvvirv6PxlXIY8gZE2iGoi1VSAgYacr8LZu5yBCwxmB4q75TH1Dd7iu/bILdUp1Yg + ymQGL2knjtBojx/it2ru0fSxe8GkJTekkWcSt9XChvJd7F10RLxfsD0+v+D+FRrIsIZGp3u4ndJT + iItFzCngVx+AnWmP4CM/jGEieakB/TDfUXA1VJ190NqCYVDExDUHJ14y5Ody139hUM3a2WMFtvbh + 9MpJIH5G3NAsMWw5N74CST9qDCgCD0MOCOPhJRl9b73ulVk+PLsHOo7XJ8WNfUsliex15LBnJx7O + kebut/gMpCx+D6t+MjooGXXyF/9zyCyVjOmsoBDWtTdv30+eP1a3xdsM8C2b0188Y9ku2mGtw56H + D4vTSGYquJlpIo7Qxqea6Mk60jEjlxLuiMSR40vLGtrHbgQooiGeNz44l87XgLHcnVGFsELZ5Xru + IR+sGjHt+d18I1/NZU+ZXGJQvfBmMqw93PvbKZjJGBp6lGpL/uWznz9Db9a6JQPHTIsDWhk2pcup + SyB29wy5Og/VYx/baEfBLbSAWSvTI5cRGVCKgpEctnrNh/vHKI+NiIgKytlbRqQ/Jb6scvzji0sf + aDXMVGsXpM/sDKZUmlII3rGB3G+6Kya//YSwZhQXvzTt7c14vrSg37sB8vKkAYt8CV2oB3qF7JLX + APvsTy/4YJdty4Sxb8bWvLcgx98DKpU71hd2lhV4f4E9+eE57q5ZDuuhjAJeNOuCIvf2+vFJpHul + 30zCFRjw3ccD2fAuZtkXtqE1RfV2qs2kfJ+fclj500ysoV8AniJPlLb8xuNPz+TdYEPtWDOkhF++ + WARoPuFwzSuiEtnSBa3tFXjnrQjfT7Wsj55aViBplJTkK3gMVCvzJ+SAuhDL1xV9RuwDQr4sc8zy + tlNwu9vOgI7cLSgpSme7a/OtQe5oOqg8+qG33jIxgaC3X8gztF1D01i3wZsNISleb47O7Kt14fBE + KRb5lmkWDhhPOF/zEGltKBZL1x5LcL1qAvLMUBhm/d6LsAL88vd7bBSlDbf8CYSSCeI1jN4YXoZd + sLX8Fo+Sdb9Co0WfLd+C4fscQ0a+VBFPTsZJBti7boNtP7VKbiytmmXDZ7nf2wFmhVSNFxz6Nbzt + 1AxF/GANXPbsczAczTdBRSF4o+p5IjyAW0ZOVbIDeGImFsKSGdFxb73oeq52wY8/kzhPYTMH/ouR + 72deQwgwU7xYzRhBuyAdUYwRNWsFvRk87t893p8BBHN+Sbb4NHbo+pgmHZsMeUkb/0LaTtYGofyO + LjzZHRvML3gfhsyBPZyP5oU4j2nyFmU/+T99HHxMW9IJ7p4R7HfXI1EWeABCYWWjtPE3YrDSKZ5P + F7mCcvYZSTAwIaUIfC34i9+Nrw5LK/YVVC5dheyLxBTLM1sZaZ9HlKinU6vPud1Z4NmtHvHHB47p + tMwr1PvXhxhC+oiX6HDhwVligl88eXP9DVu4Dx8UaSLih4GyYIa2mzoBYyssoJOQjlBSmTKQGVMa + FuFKDVjS7EqU7/s2rNjmcvjkq4Y4etvS19QvvbzhP4ncr1UsQvd5wnk6f8jxNaQDjaylkzb/APl3 + D+tk49syy4bRxt/8mE+nOYQMRjCQ7/pzmG1el4CqkBZZTXukbMw3jDywNMBsd0QF58/8DPVOIeiu + s28dm3unh6fjM0FmlO2LdVE+Itz4EtIN1aKkuCcdLPffjJi+NwzrvqTVnz7zjkkxzL0KOulwfM5I + 2fBxnd5fCc4qFIk+6wdvPkRiCRxz5xBPHz8NfuAwARHTJMErxiVYOOA/99Bsku37TmCdb0kmk7a1 + Ay4Tp4Za50CD7lV9BO8aLg3hntV2y0c4Y/nqjwMJvfQFA9UskFb5bDFpUuuDI5D7LV6PxdqwuxCW + SdOhw5Zvw3c4BnAnpAEJLuuLzotyxeBtJQk52VIBlksWSfLKwysK5WIBc64zNXQIvBJL/ob6/HFV + 94eXyBj5Ke6gsswQujkb0MQJ/vAWGidTQObRuhVL4dUlqDMxJ5fGgzp9w0cAVbdsscDd6mYd8ZzJ + rnd2CBqanU4P3q6GYyMhFMT3qllTC0awrPkHXjf+9+dHlN44ozAODw0PkKLIPz2cTMtO3/DYgvvG + HAjK1723Tsyblef7gDC/0pc+u00rQQnoDdK5s66vWFJEsOnJn59VTJs+hAl75Yj22La8/vjrzqgt + YnLTZZjbTH7BTf8HjPTctkD1JoSgONFfPac4EOtRNoIHg0x2NYFQOwWGDb/TyXGSo2YtJGcFnXxk + kXK6Ls04864L0k7kEdr4/Xb3sQbUe5uigGch/U7Ns4YMyc7o0FRasZhKyMoVdq/IE1aPfkfkPYFm + fyukh7gDCyg4Azp0vxBnw9s5UWgtr99QJZ5Y9B7x7OIFNz35e75m8Y2E/fPvmi3eV7FVGRnTVfm3 + vvz0eFW0D6Kd7lHB6ctlhCjx6LaFfAdm4ytlwKzvNtr0HF3r8MlDnVQHdN/Wc67cpwGndLwgjbvh + Zi4CS4GzjQS8ahH0RmjdR8Bw3zOy0vAIhFhuDHlZZZH89PSMUlj+8XnzUDnxzOvlCH96wrnzKV1u + /rf84T9xj2SKp2/JMJBNNC349AmOl0qPGOgXgYQCz3z+/DINUs45oXvj6DF1crGFZrTO+PbeBw0t + VqmHrnX/oqPuuPG2xVmR76/9Hjkb339rnBL94f0hXZSCP4faDBWqB8R6Id8TKkZ3oWJaLTo6u7RY + nmPGgMd92Ae7Da9f8uvow1wzd0Td8Gzm+2yE56AwsZg1ZdOdjEsJv8LtHIA3nSi9t7YPyd5WkJFc + gE7qobUhdDOWWF6uUp6ubAa1eGGIdzhMw3JSF1H+flf555cV/MYXZT70niS47lbQdcrayW5dSsTa + K6s+j6ztwmQ70hJW5NSwruCLsPuGN3QZnlbM+ncVQs7JtYCNs7c3X5mwlrPDhSFOGujeYp9nFlLf + cEhJYaJTdbAY2RGXbUs0o8Tr3rmVsAF8Q/7WS5hOlrz5paQC88Pb8lEEpuKLxNr41Bq2Hv7TM4Zr + OTrxy7WFXT9AckBd4LF77uHLm3+A2UTV4+V8OYmgsPsMs67leBwjNa2MPpKBn90BNyPfZ1t9SxOi + Gc5aLN2+KeXnTncDqrnhMJlKxsPJ3bbEVnnUzDOv2fDMG5hcQI9jUu98988/ETZ/bRqWMwTa8cng + SXf6mOZQdSWj+RKy+beAhqbYw9jlj0RRT9+mjwJl/ek7ZAXch9Lr1sLGvnHBcHs/3JDlGtz8b8xt + +FPTux388VO9Mmyw5TsP7cN8IuXdC3SW02L8l19IuTXx+oUDD2tX/SId+zMg+ryv4YyfCtG0qNTH + 4xlU8D2UBrlFaT0sk8kpELL9GVfcftDZKONLKKzWQLTsXMXzyCobvzum6B6YgrckrZXAFFQY7+fP + TSdujzXIaNwRBWv19iZnuwjNyscOU/n68eav57pQvq4m0u65X/C6Jdswy+oL2fhHPB8GNgfZ1B/I + YWafDb0dTiPgVNij8/n2GXDD7iLwZiMYyM1YN/S1XjHIL0dCrDSc6HJ/2BUMu+yFgusuouPm/4Lv + w0//9AUV15CFGd0G4ziCSzc8FsHPn9NTkDYrtfISdIA9I6e+cx7Wpr0LCDfsyPE0PYf150/9/l6z + 17CgH7n3f89PrL68Uh64VQlprT6Q7QrbFtodwSA88yPefVY1puoQMNLNhCeSbv75HN9qBb6+i4fX + zZ9Zb8CdgfBeVuLs91dvZnJm/Pk1yM+YOl696xrIFzE8/D6/YQXCd7D8HGoszffTsCrg1f78qIAb + 1ltMd84qgd/g/0t2nguaJb4LM5O5k0P1rH7+WQe/L3BDzult6sK9tQNgKSQj+vLhKUm5WwsPXHBF + iG0+zfzzV1XzYwXU7l90668kEmGjmvz07Ph2FFc+n/mKKNmzAUuQARaSB+6QFhhjvKJtSh85kEsg + L5nYkPd58qEbrU8s5wemwGXQ8VAZPhxBXLWP160fAKNAYfG8fd76e5+txbMIcdU1/vER2FaRT3yv + q/U58EcGfuka4J//suxxbgH/WD9R+BW3IRqXPYSb30j0fnEBx14WAxi3jCAF1orOvrne+v09QVVt + xryTLT4UOU/Hey3bzvbGL2u/+YvIsyo0rHuphrIanyp0XDSF8uf1HEAf3Fy873eOTjOg2PAl3Bpi + bBeL4de+5mEOL/dgH2O8+RtLArjjwUH+QYrpL/7l47dYsbzhyyy/jsHP/yYKFq7DcuTqBJYfs0YI + d1NBq0L8tx56yFsGElZsC1+4G4gx8sf4fT8+K/jju35y1greCR5YFlrG2/oHdbMMWaRBjfM/6Bif + omL21LIE1r21icqqbrE8+br86UN0np0PnS9vxIAREgspiFMb9mTcS2jZ7hwMC+DAIomPFsb+cSTZ + zZeGZUReDZmRvRHLkCaKOcplsDFsQFwUyx5VmZEBibZaaNPXw9jfHy78SF4ZzLvoA5ZnJkHILy8v + 2Hu9CxYqeU+o7tgWr7XeDy+uVgMoHS1AjotWU8rETg6ugN8Rm8zRQPrdy993pCn/4nVOVVjvt+8f + bDPK4vkWiy0EdfHCgmrwHh5etQijmpe3/uLgzRu+ydv6/NafCkys5rJVXQk627ddTOlRWOG+OQx/ + /Y1+uO9SOJYVj4LNH5ovvq/BtAgqdIxSZWCPZ1r++f/KXXaGOpDnElbYvpJc2r2bVVryEnAXIyeq + c9S85fjUEvk53iK86d2GJ0ZYyQX/VrB4cMRiOql7EbKa8A0qz9QoxVAJZfcf0q6kaVkYDf4gD7In + ObKLbEFAxBsgoiAiW4D8+ineb45zm6NVlAXJs3R3ks6tU3FxYX2NeSe0RdVQhn/4algtwQlgM/cD + cZWp1baePhK49b/K5xT2WY/F+WUiPHwdfCpZPaJF0Llg59vYnYgZ8fZBl9EEmBN5VlMUbdxHhuhb + Cw+iNRIDVvcmMXDXZ/HpXls59zoVsVTnbYRt93WNpkFnZCh8ywF78GWDKRTqGEXnHzOj5yHOtx+s + GWhIRUrkKPgOs095C+z6CJZtEUV9emIDmNVVh3c+QknUezrIfvSLVWtbcspGfQwv2hoT/R1e/9Wz + v35KHsOi1396C9jHhygzmbV/eLsdDg1WoOFH9NvrPrx9Zkx281nQexl10aUTdZxepqUen7HYwsXk + 0nm+gJnSf/o22fPpy2TaJiyXAu162nzQ4FIv2WuU4TDABIeul0SbA90O/Onzpx0/cTW5xBAarxjb + dv90Vpuwi5RGPY/tNDIGfuubQNr1YezEDw+sT68voH1wLtjLTmVEq3M0o3R8zCTnGgrmPzylE/j9 + N7/U7EYZggc/zLueUPd//UMMakr28cwnp7htUH6ID3Le6xsLW72BJzW9EAX9Smf50/vUDszEjcZG + W7vWKP+viw+E/72l4NjhhZhnoafLA8sQgRxesGqfo4gmVnSADQm6+f2OZMqplfZGT8aSccIHDl2N + gcuQe5hPRD5XL2e+KDFEDAlHfI42VWM59V5B/jvV+PQ4FxrnbFEKi3nJiTWLlsNneBgBZq0Qu8qr + c+iiERl03zeZGY/Uu3HnIwHLSedwUY5k2Ebh0cJ4Dnxie/wXbIFBYshf6YmY4DlFC6/KIXIqZcan + U/HKF87+qEhoSw/rtZvWPHtIWzTk0COXavFz8uteCeLZ/ovVoS6i5u/59ccJ/srAGrDjKLtQdB6A + 5KdCjTpxh5CsbNfYYNGBLrHF+lC+mb0f0/M4rPVdiGH1Vd8Yp1bjsOR4MCFpPZnExst06MMXZvjL + 71+fsiyof6/2WwBpOt/wqUhP9eJsgwQvvZiQWyVsA+XUs4yyzH+Q0O+kfP17vvtWhGBt31WVRWyC + zBD+yKWb97tM5zqEs1p282R9noBhVBqiB/NdiJ20cT7ddMVELQdE7FX4HW03/RzD4ak98Wm9XgZO + un56eO9jhI3fEwB6+qpv+Ea/gniBagFifMcKvrOxx3YZt2CPlwPqRwsRnf74egOXPIT5goR/48u8 + yqhAlaGb+M4AZZd0ny0U+6uBbT/lAEXxJsCs8M7k2pUKWAp8gSiQlApjVms17mo1M4TlUuPi2HoD + e5V/I4iK6k1So6q19d0mBaTH3PVXPQH5qhaKBI2LPc3SO3rTTwy7APrayyRXBBKwmPUlheR05YhF + zl5Ny/CnIy1/WyQ07Vs0oqtjA7QUMr4jcANsIqcjFO3HxxfZYgHtmT8tMMa5PosBhfmy8L2JGuXO + Yrd0m5rfNE+GthMcSXFMOm2NZWmERyM8YA1RWi+8Xchgc9YYP9fP3eHGUS6g0oOQ4MB2ta3ASoEc + BFeSB7ajrUWUt8C/lDYxkP3OJ8EQJCidXUzCoYb5v/ij89PcjX++YORNpQfXVb7gcl5bsJjDZMP0 + /uNnGuRhvdr9LwWccnjOzTA860lO3xXa0CfA+/9FdBytGSm9GJIwM+qIoZoeQiVDb6yXxb5LVXAT + 8LIOh3lpc83hD0H1Rmo2v4nRlS+wBGhUwVMPKqKXiHfW1HUYaa7TGRdXVGub6FEBLWdnmxt6Dx22 + m1wfTuGQkr96sX7Z2wEcmruFs1JXctZ87kb6T63GuhlK9XSq5R5izhdmFCs65Y5prSJmuxBsZpwA + yMxTBl3fOu/z2uOzt+h4RnGZlEQFyxXwPktVsP4YgWjFL3BG1uZUJPW6gfPPTaopvJchnKPigB+r + 60b0UKAOZm50J3L4jBzmonxK4NFvgs0yNijHm6oF0/Z9xcYCdcBd5eAAS72uyIltqLNdlPgApq0S + iPdQJLqx/izBv3hRtOTjUKtd33vLI8RZWVSP/fg6oEnuR6zyVZDTgL2o6BCmBU4yo4mm80wXKPen + kTin4p0z1qDZiFc3g/zVN9Znt3/z4R9lH2rbM+lduM83forhaeBi2L2hIiwmzovOd7a6xyY8jzlL + ZD+4DMx5BhX8sCdEsDseHfq46SV6w5bDysHJ8+2YDrJUex8XXxrS56vcHHvIXSSMjfi9glVr3B4W + h9khsrHawyoXgwDl7iTPglFpDldlWQO9Z+8Rs62/+fr5DCV0Km3GjlsIwyZdxhC6Tw4RGZ7ulJ9J + Z8Lgu19E0/bfYRF8PYNEDxpi01cS8YzNLcDurTNJQ4yHqX1dTNhdK83/6l6iMaml+sh8SRr2qWxF + G+MfBXi8+vO88UEPqJ5XGRLSz90XgJBp/LFqVbj3B3z9PfO/etUIhyjdSNwC7CysOXRAdJ4AW+Bk + 1KvogQ5a3df79/6FWig9NCrzNEveV92NmCsZPb/RG+u8ZdUrZn9vCB+bRwyNW7W/egzDfITkyqKS + bt2kl5Bv+ovPbIKmcVVyd+EnMDFx0vs40M/r0kBValWi5ibKJ952AjC9mo2YEB+c9Zm8DmjPd/+4 + MPrAFPgOIdwo9MU49CIuRGqF7vmT+lKS+IC+MoWDB/bm+yMw38P6yL1EeiiT7zfnSnX++h866K+O + uOC7Dtss4wwagX3z2R/m8j4SFgvd4u2H5TuqNPL5TTFcJK2bp1NcOcy7LX14tooJR9ohimggZimY + m7uOixas2jbLp/SvX/sboxxrerNsCK9vkyfeVS3BVuRJC+dLps5wsMNhnXmagPYiOThMzFPEJO7U + wPQ0ONgcIh6MxvOlwsv5GBA1u1qA24AC0eUmxTib1w9gqLSU0EraF0lKvcp5rPAuukvBhLO9P65O + n2Ywx6eBKKmiUCbHb4juXXzBTsPjYcmjJoFmePj5Gy8bOfcubQjfUmvPx0KI6978RgHg28kj5262 + om0YLyViN5Vge48H1paOAtSfyYKVWDXApj2lt3hd1QvO01/o8FoNLcTIeU1ODhwjqlbagtR8FPb6 + qoBBuoxv+DofY6ws6Au2PZ/ALsXihGwHQOBVE9B4YTeSevuxLbn52uh0XQA5i7lLN3sbU/iD18mn + qPZ3l52DDsX8PvgNyRJtSzUhATMTMzjISqz1z7BikJIfhXn2T34+T0RgoJrPArZIxmtL5rwawCnw + iRPv+8qXUClKWGyUwWpm1DlNT+IBxkc/JiovGxHhfcOW7vbjQZybqORbJAg2GHzjTqx26IeNNUcL + ugFosNfM52gK2KBC6/mYzowfhAMrN8duN6k2iWy+n9omXg8d3LK+xMbqzflahmIL065WsKM9zGht + HtUM4EJkohSvka5UEmaYttWVJMbvlxOlSWyk3kfXB2zsD//6fbIxHjaPZKMLa9Yd+qheTu7rgwGj + M78rWOOvMEvHmQBqz3UAWdV7Et14tdo6CHMMFuGoYqWqLLA0P9QA6uxLWJh+HHqemUDSvSzGqmnz + 0boeYxMc1GLEV9btc6oWdgbbEK7YfTvVQM9t9Ub5dGB9Zv4pA1PkXxN+XvqHPPf6vhIAR4lTIUvu + D+VO10MspbD6ym9yfwUg32L5dYB8PL/2iwwuDv95pC68vswXVkm40RXuW2QfCvGJFts/Z81OVYmq + ThX+1f+xeUkcFG4fjcjtYNVLEUUJWu3jjJUiqPPfM+waiOOgIBfdvNLx9A0XlCTKkZRGqgA2Cb4+ + bDVF8aWjr9OVNxUBWenvQa7dfMoZpw8smIRwIufJIzltXn0LrpXpED3x7WF9RHbzh+ewwzJi/Svy + MoF5qRk7vtadTS4aC/rXeptpPAgORcFawUrSGqzzHR3Wz8TvpxN8guXzYg58JAMfiFLAErOOAfjq + dW3B1OxYXPBpoP3jE87heCL+lZUBX2UZB/bffpsZej4+S1RA/ZHo8yG7OpQKHrTB3q+JEW2KtkWG + F8NPoON5DbQzZQVf70RDi0S/JSEFpH5ILlQAn87SUJf50gtHHfyNX9Tc3gOt3nP7xw+ICrBJ+RhW + G2iOfor1Wfxq41//MxQXkaBEifb5TlcfchcBk8gt9lMmH+YAyjrriRZn/sDGsAoQHVMbX6qqoxNW + uBk2i0+wzQcjJSgQK8hFyME2eM7R3p8qoI2FT5Lwy0frLUh88Q/P6OBmazxnFxs8gyvGz5G1Bg5c + ohB4VRtjl+MVh4ngKiNTVeu9P36GcVrOMfTw+MD3eBPyBXpyBk+muBJ950tb/VgP/+LLsPSZrsa3 + UdG0vF1y+5mLM8w8YOAfP/UeSkY3rfND+Mvyy/w9aJJG7rdjAf/wYgiwCfbxWuDeX4hZNk7OxjrU + oanJIrnoCYjG1FJdpD3eDJbtC1sv79IuYeELgESipml883j5SD/6gY+aUqPzxDg+lHtjnFkBVHTz + NjuFoUvfPtdSF9DwfIPAfEt37PNLCtZAmUYAKxr4LV+tOU21pUW8vqzEmPwwJ6GwZGg9SQU5/b5P + Z/PZbUF//VT4Fk+NarmYgS2f9Jkpp3XY6EFKQGtoE9GP/FXb1Mp5w+3eWUQrrNdf/eulx7NV9i1Y + Qv4Xj5BOxYLVjOPB1k6PArQROhEf+B+6PSKVgZceJPMx/UXa1o99CcaVvoki344RWUDkS05wOhDH + dbC2Cb4rwGOLdewF4Ryt0p1f4I43sBNny7Cgi7KgJELavP4wm9N3qbkoqQVKcJCtA20+wwGKpywi + VunWw/jKQhMlb+mxLzGoAxOdfVdaIS/NkxUn+XoMOhUG93OPlXUuot4cih4d3rE7g0qg9fjOzibQ + iqr0hexQOFuZAFfSyKvCkV4e6q2+Ly2Klsfg/4rKBpz+ZYN/7/v4lSIdi5yY0P883vhZCMxffXDh + lTFqrL6bPqexPjTwjq5Hn93571xlYYvaWuKJxsZjvV3lFELJu/B7fwgp+8enEa1Dn0eq7Myf36TD + vtcVcnFjGu34MgWXH7NgQzY50L9L+wC8qonxmR25fAzYV4De42D6nxF1dPXV0wzFNLmT/fvzDSNU + QeUmBNhU+ikaN142ocmKuS9+8C3qvMNNlkQr+828Oz607czjBcav6wv7qp1Fq9LMPXg2buC37+gF + fklAXAn4pwdx2CZ2VuP5ChEnwzPOX+lhoIf4J8D3REbiiFFfb4+b68PLl9Ox/9WYaAPeXYD4lB+w + kV6siKo3QYXOAZ186c1c6FCWnA9npQhJdEJk9wpgMih24RmfA/VEh4WmBVy+autzdQzoojbXFOnK + E2GlIXZE+i6IpQvkt3lr6zbftqOWgGt4PuHYWJ2at96CBfU5sPE9iNZoPbxOb+nLdjXx6VrsRzra + FD1e7UyUIMLR+utEDvL8EM0AvUdto5IAoSo16l89AR2VlkLc8eYMdv732ccHCGYzEZUqv3xBl/Py + j9+4ZWE7lKpQ/odXXFXltQU9SgE6D3XAijjGORcJi430JeCJtsfjvPJWC7fDj8NqkriArMD2xaTe + jbC+xUOjPTOVUjj0Iz6J0Xkg9xtfSH96hfZJi2G1BieFOz6cD0PIglUITRWsNprxKf2te3/eGMhe + zN98OJZOvuY4c5FLlolEUxIPK7jPi4i/UUk8TL/aWuCzC3d+jLXxU2mLnPYhxB/3TdRBW6Mfc3iZ + sD4+U6KdpjNgBNuR4c3kP9j18TIs4xIm4rvvMnwNtB50HqeFMHlJJ/xE70mjm+apsM4L+U8v0Pbx + Z2D5zmK/Twwj/5c/+uU+YZkXobOOwiOGyulQEUvZgnpK3IkBez3B7s4P6GdqR7gdBg6fkCpr3Lmt + Qthu3IXYX41GRBtPEpxpUvrHVbe1f++7dDLEOQrbYSP05aP3+DNxcu4+O/8IM8Sri4H1oynXbM+g + Azxe3Rm7x3aq1zJcG/TXT//wH40t9gA/L/Pj0+K3ONvDX0qwWE5BTgdNcmiI1AUelDLB558f5d33 + c/ZhyeUjNvvNAsu7VAv0O2V4Xr4uP6zR2SwhQMJEFDHvKbVasfrDr+QsOqdo5+8VtKHFYu/zRHSq + 70uMnsnFxT531CMGenIKf0Jg/MsXyvuGhdxl3Y3drTDnnTkMUfI5kn08l4HqX7ZCDc4tvzkmpsbA + S7iBS8dkOCZ2UHO5c9GRlFsD9pZRifj7qYPw1IxXIpOMdai7qR3KgB6R2z7+K2tPoeRdemlmm2NA + lwkmJQpa2dr5y35NH65dmLvqnZhm9qBUrj4bzJ9KTly+u9b0N/YzXO6ntw92vkx5U83g+Z7Sf/rY + 9Hn1Jhymg+ijXW/koCcLyFsqnaSXWa431m8F6RBlm8937cfZ8z1DcubAOR3yXNvw2qVwGGFNzunl + l29G/RZQjo3BZ1T1qpFNM1Tgh0U1f7UDE3XufKlAEbApuU1trj1Y+xNCyYt4PyinpZ7aaXbhKxMz + YsRqS1fxLAUAvRqOqDtf7S7KVAL/+tqICfAJ0GPRdCD8dbIPmtbUFnuDEpy2t+CjeLtHK9H4Ctzq + WcNn1PvRlkc5I63CFuI/frSsx4iDaCllIpePYd8CEs1//do/GN0p6spQTKCETidfRL2fU5trZdjq + 2u2P34GZ868S/LxNQHy+otH6h3+MpyWT9J1/NMZ4/uS/9yEOCs16rJLXDNeBb7B7OZwc9uYWDLzc + RXnna5982eP5n16pUuUcrX3XcWDXw2Z5E01nY0xkScFNn7GePUaHqpWzQNy47kx3PMU2L2rCPf7I + Wbtq2iIXQyfdrWLF0cIowyKeJRXs/B6r9l2gRBuxBNXHyuz58P3TCzLYVOHRF1Q1cTbCvxt4t8qV + KM2RgPmVWC6MYKbODDxJdLooxQjNl6DhRJE2MLuHWwUvp0ODcZGeh3nn4/AkkImcH5dnRPXnb4Fb + 3/rEKlHqrPAap2CvZwSPrFX/4Un06lnbhyHJB854pm/gv7OAKJL7jEYlvQRAL+OMFKR/DMu//qyq + tc/j4U1nY5h6mB0dMC93VDlbwAYLDBI9xY9u+kTb1d2P6AhH1V/3/1u0fOn+9LGZj+3eoaw9bRB6 + zGNeLeNCt01zNwmSTcSaGFkDLxpdBsVbopHTaerp76afdTjrr8bnPN6kbPsJSxCTsPE3pR/zYSc6 + QPhWFJvhaczn70cZpRAO6ryY76ezsGofwvjoxiRveFKvRv3uUeis7ryuM8zHq94z/+p7ULqvescr + IyqO88s/+Kc5Ws7tssBXKs3EouJBW9wtlMDbXiQSn5dTzTAqCODZKidsG2kFaOJeY3F0Oc3nDHGm + 1JG+GezBvmQYqB3d0MPPYLxdvkT1OymaP697DP/4TBESUFOqMjKURcWcfw1xc9Yi+gZ3vc1fZqnX + NvfwrKS/fBfAN6jXRA9NWFlOSnxAGEC/HwVKbOwAbKQbn9ND/BKQkkrtTGOA6r/1DThU2t96wfTv + e6XXGcX+d+/XzJ6fIvn4/cy0ue70j5u+u3qMD/wsTrKz7vGP9vEn7mV+1YtoLB1YzueNuO9hGIad + j4vWtXV8IEb2QE/12YY3pj/jk6g1zrx/P/jT+w3W7aNdD5Yhqr/vHQ96Of9K5BL94UU1Nx/RtoHz + Ab5ujIUDPvWc9fN66/Anhjk5jR9FW0RD6KQM6j986zi7XgxyrICKfvH83vObi+BaoRqlBZY98h4o + H97e0BLeaF9vO4G5zGADcyhhImczU4/mM5Dh07iaBE+G7yyTfJP+8C9W0ndAt5WXWyjfz+3cZywL + FunKWXAxTNsXX/KVTnb/ymDuyvd5UTa/Xl3pKsEd7xODLQjddr0J7PNJXHKeB2IMkwB+YpBj3HBu + PVVJupfrifMvMc2i5Qor9W/8iRGHY/SXb+jx/ug+W1Q/sKz8RUcs1Qy/Pk1nyq3HIoGvQVxwasu+ + xh+qoypt42D73KD60XqqrR42cv7E5o6f54ksHPpbj7qmrwlsgq8Lf/wfu0bVOP2ptiTYKjAnKcdX + 2urMlwWygR4RzDZXZ0ysxkU7viUY9zLlv5M7wwVoB//1xxeU9CzDyjDN3Td+yAfm8Gohiy0Xx30m + a+wh3jIUwp+KQ34VAZ3IqiOeaRXiZlNUz/Beqn/6/V//pJQ37Qw8u0jAp5Fta7odnQZOuL9iozu4 + lPv8PjrarFElYfhN8k1pHsLfeoa/DREH/uIFdkYbYQ2FzbB4myJA/jPyWEm3JB/h4yvAH7xNWDs9 + 9Ihxt1BAU/0tiSHCjC7gnMpw11d9IfGdYfl8ahf+6fGKCO907lZjd9H7RTgtXW2g8n4E932ed1fa + +Zxz6G7IqJ89kZxZ14m4W/zkYOQ2GylVW4qWIic6UDouIX/9lD1Wh7fYZ/YF+0b6ogsWd0+SG+eS + UyVs9XjTZQZl7uWO4yPPOvN3v1glYcUn9tC5iqjNzSpMxfpGXDtghs+pljt0/NjlzNELBgtzWBmo + WJDDf+vPRAj9CoBRuJHr6s3R6qt4hJr30X2w6mdnrZLgALXl8Z2PbDQM2wQ9CH/9TcEyJ6jOWj7N + 8U9/IhgDO1r+1nNeJyElMenzoeuaZeenp9p/vxlC12P8S2EZPwLie7wFpj/+tuf3LGxC42yvMjr8 + 6fnzYr+As8UWO0JLrKP5+DNDZ1NSa5NepqCSu6UTMHvTIv9fWwrE/72lwCy3kODH8xOt1/yaIrSC + BZtXb6Db7RvsxvcWxLLVb/UkZ0EFzdJ7zhO9yBqfnbQWuUtmEJcTp2jMUy0RdZDx83Z6hRp/fZAG + 8jfmilNmP0WL9StEW7/q2M2618BKSS3DVq6hLwbQdTb2jkw4kefow6x71VsoWhlMHEvEN9GxHYY7 + 1wsIHhE/9+3j61DSXiQQFYtDgisZcrot3RtejF72YfA+DmuCXyWc41jDtiDZEXtEdEMddkvima/D + sLyEooKP+4vHRrcbj4h20KP5dFGJvBVsvoDRsuGF73niG6HhUHk3GmJ864lvnNbWWweDAlG1zfzD + UJkOEzK1DJnMkLD8DN45e7+NEgTKep6Jdy7yzbinHTj4dzRHCy9R+kjvCwwV38RnVevrV2lZBchL + USRlgxNnmZ6agJSry5ASm9OwcTqXguvn9JiHWGjq/XeGfn6YEGsf31+V8xwUiNRhz3XeA9ffcAkt + xv4QBV2cfCUP2UbjeTawIn1MbeO4ow+HQ4rISa4MwBDoq3CschZruH+DVcfVvotqwvMP1TLljsV7 + hL275th8XfKczpvHweR9L/xA5c6UXlspAbcq8Mn1U9JhPQVNDAc3NbHs3hSHhVIzI32+cvOyfVSH + vz63BfZvRiBPW0np0peyjNJz+MNuP140/njyWsg6ZYndr4VzDsxZDB1P/pEyb0G0KY+zDYkZS9i4 + X245d1hfGTz1SUqsRKnovNmbDsU5n3y03euaCOrWIT5OauLzkxrxHj2NqOEmQrxfbAN2DOYEuoS/ + YDNep2FF87KgkBsJVr3yOyzoyFcwJYlB3GAYI9pcP/bf/OCbkr4j1qPyDGF3qon7tUg0PSUlhI+2 + EbDuTZdheY1VAy3MKvjBGhZg0adV4XRGGimyZwyW7fjQxdfLfJK4P/Xa/nwLG+HZ+evFjAE1NFAJ + HKw94tphOtB0tSD8pU8Bm0x0rrnNlkzJ3oIrPvOPsiaRuvTIQ+f9LpWPWtNtqd4ActID44Dr6QSl + cYQL59Y4ZQY5YpRnnaC/elDAy42yZyQscI/HPT80sFrncZO+VLxh2bwcwPjViAmpzLxIeXkq0arj + roR/44spBcPEvXITLuxvwTd6UyL2EcEUPhQTY2fo7g5ny78SzhENZtFpXvXqSVYIr/vdWZGmWDkr + nDoVWIWk4lBDS7Qhs7PApiw/Yh0SqO316I3UaBIJ/p24gX6nTUA5c0yw+1gMh9EOSw9LRZBJehVi + h/coHmFyG/ZTuuojWkJm2LcYHCOMH9pX+y0Hroeu9GlxSIM+WsAoW4j1/Bs5ieojZ/Rvu0Hf9i8z + /KFX9JEe7wYNdffDMlHknHuIbw7W1udIsg3FYImmoYQCETrsesevxr1YKYE+kFUsJ865pqf7QYf0 + zkHiXblDNHbsV5AQHX6+uEhmzitiwyHYZ9hHnTAOI3t7C2jh7z/i9yB3eCcNNuQ59p1oJcfSVWFP + Jbwh9ML+AJtoie1PD/3InfBNvt0dvkuhDxM01vgyVV7EOhHNUCfnH/9gnNN8jQ65C89yR4nrcVk+ + aE9xQ5S1dR9OaZKvOUNU4EIhxI+oveULU75L5DnWHT82VgEMFa7VX7yR9H7Wc3q6nmcgXK14fvXp + mdLuAjv4SnUNq/t8Dt8n2KD0QxSHG+M6XCcZITxnvkKubldQ5l2UgfjMz3fiN6lKeSjYFbSz4ojP + fp1G7B6P8HnPK2J7TuhQj+IZKkg+Yy2fw4g/1RaHvHNa7d+zb4N8hjG6eoyElaZRcvZMxA68UlMj + XrEbUQ5HroJJM1o4dMVi4KZXYiKNcCvWgztHyaQGPgIlc8bRIV0p8eYohm/YNTPjPOyBfk6zChvL + 7f116Raw5deXhc7tiPFF+rTOT7e63SRFt8nF5zzApp9RBfH2osT4SBfwL75Zz71hnYKw5o5FP8Lp + td3J3n+HrZLaEVb1VhEMP7U2u+8nhNVddkiOqTNwEvVnSKTuge+qZg/MY/YEaGoPB6u15mt8aZ0K + 1D4TFp/1aB2W/mYVYFWdw0wez32J/A51GK/x5PN7v+Xh0TYl8SJWxHJ1Z+C39y8D7HK0sKPOIZ0f + Wx1AYOzrOa9JrP/N9994Bw045MtgHmx4PXQDvgR9UrOjIx7ECVYTvt1/vkP5E5FhFlozTg9Joa3+ + zS7guZ0xcYy6oaN/zE04n2WAcd0ec7rnA3zefl+cFXDRKKo1DnYMsbDafjEg2clpYFXjiTh5XgB2 + cVkG5dNIcfiLWIfBdcFB57YdyPMbeYBPeyVFuXp4zoLB6PX41b4mqsNZIWH9dPMNhoUOHypnYQOA + ZOCZv7vMEvlD1DFPh4WfpgJOh6AlNyVVI86zFx3J9xPwN/PH1tutuvuwX/UjPn/v2KGtODOA8T7j + vErnL6DytbZQ9Fm+GHvzN1+vTWeh4WbnRLkBs+Z7lotRJrj2bqxagNWP+RAFfSxgC/jpwOrmdYYJ + chas0qDPt/n6tpA4HyqSW4OV0+xqz8i7CjNRE24F1PJt6y8+sWMNXfRd2VhAzVh52HO/MuV/nhWA + l7sAHD9KXPOX7tlBG8899kN/dTZJu5hQI8z650pQL8lMEtCp4wU/an0/Ff4VfWgOYYVtGbfORuSh + BPy59f/qWz6eUzVG1paO5FwqDd3eFe0hl+LeZ58I5tRC/AK3MuD2JZHXsFXaWiH0K04Et/klX/b6 + t7sWqSQ4mwGlgvhl4HQNHWwkoTwwFz+x4ds2JaK9T6a2UZbG8Hrk1/nLAU37jeH6RrFcQXJfrnm0 + hbKl/tU3fAouNeCBpwTo6f8cojS7r07ykyCEzHclWnlU61VKBhnCx80nhgH5YX0FmgBPz0bDNmek + OcVxFaLkWBbzEn6/dIsTtZXMIaiI2jqXmnpsJoHq875ju4CBRoPj7w3agdVwDBsv4hV5LOG1vjXz + d8+PVYsLDk6v5e6zQvUCNEmpL+31l9zqR1JzjvjjwOE+GfhcWU9n9eP9lKryaMjppJUOZfuGgdtP + cfyAtbKBuZ+tBJybe43PcTXRLb3f+7/+v9+MIzvszAEXvKGxEi/Jz/mOTzfouuZrFubZpgzhLz2C + D0HBgXt7adSSNfm//esgXvLx6goMaC86IcGLZpTyNzGB6Tn4+SU/vfOtd/IK2snRI6ffhIZVkKsC + Hb5H1x93PrCFsqyiX37sZ6l2ObDqSSUjzU4s7O14aZG3koO62B+w7xx6Zw2Aa8HoW1W+0ElqvrbL + wwTTNXBw6bCPfHOb2kbH7M35iEVGvmVd3IPxBl2SXPSjNs0d1MGhxRF2MxBpy+nIVLAGY0EeTxoN + 9OB7tjQbu03PmJpgUdJ6k2jesv4hJ522/b73DcRbTee66cthLbEsQ3H8MdgwU5au6i+vwP5+2HYF + eWC+rsgAQ/1lBMOCy2nLbCUsv9mPGLXvDszvR6HYVKqMrefd0Xj7GcTw9nrGPjj032hTBiuA3E1u + SPTB52Hrb6cCbpzpztwF5vXCXp8j/IicOwthvEVT4iXBX3/AAXjN2rgdr6YkzDbBeHf5YrvHq0FH + vLxw+aV8vZKIzcAtPprY64o5WrzQ7MAzdTOSWjekbfyghajPmyt2v403rGicGhD7VMVnx9Jyplto + hTzxV/qrM9v5zJ3ODSTTt5hhpiUD7dlDDJxEM2aBKDAfP20jAR+oKsEtT4b5sP4yaPbTRK4kt+iM + Z3EDOx8huhg9NNqKLYd48DWwUftjvX6MnAFe9dNwUcmjszlbH/zxP3za84czbkaBRhs45DwlzTAf + jl0F3UPvEE2Vj9oiM70KN/yAxOYMIdqmvuL++q0PDi9pmF/jtwUn9aXN4nIF+boYXACfjcNiOwls + wMkc48JQHiJs1MaTzuCbbfAvXvySH4Zt3U9F6WJ3mNH16GjbVPxm6KFZ+1ePl08nmLDtTzYxWHyp + CX9bE9j5w0DwFGg52z1+LUwlMyOOwSXRFnUHHdxhrxOfb9h6He+iCfm3wmPc8rje5I7VxWst3PDd + r4V8hDEXIM4NMLmXj1pbvu7KQPY+fvAtQRblxEvgwyU4n3wuvpJoQcdjJSpJLhFLwKqzftw8BR0z + WdjWegn87G7TQfnpFx8Yx9qhTxgVqK4OFpZfVAJLnI4LjDPT9oHBcTk1v8iHiHELovgZqdcO9yVs + RDkn6cr5+foxIga+6+5Mbl/7oy3JbkO9x6cvfJKqpsA+mAj++IKYDqtE9JV3HPyW6YSVCQ71+Pe8 + ktwlnL2XtGZ2fiax6HnFvvMeAF1hUUDx5DgY/+qdX5nFCCylAbg05jpfU1rbEExmgL0oMsDaLlfz + D99ja8cjs3HzSnh4+DwxhEqhw8t7jfB4iFqs5AmoZxjGJmpENcfGOwkcwhWfEdwg7oj8HKt6vZdN + AdTz+4ZlgMZo+2wKI+kX/ofVwB7B+t2qAH0fvDSDZ/Ortzpk3ujQbub82vEjCa+jDYLITHyoeEe6 + 98cNJtVQ+3QVdGdLnewNcj5U/UmoEKViyyRgY+v7vLCXb0SO53T7V4/9oTI1Kk5UgK9j/Nm3XCnO + mutihl6OouLUGG5gixpl/NefEyb61euqKBJKw8j44ysDlXI5Ref7z8dKrtnOcjrCN8D86pPzUnba + rDTyDPXJXmZEmku9fn+PtxQ+nGp+8Y/3sOM15r/4cueDdDzpDYKs1eDL93SvyT3k33AZ9i1N5ZkH + q+49QujHsMXPvV4tVOpG2HLf1B86T4/4J8xLaeN0dzd5y7V/73/YptfODwuns23Hh8NLWrBpyKTe + fGWKAW+vMVHy3eg/e11N0N+5wmce6iXajCpw0fXIruSMahnwl75nIP9ue5821Mk3Z3nq8MsUNtGn + YaBbN/qWtONdrIskz9nXzSmBK31bYpioolslzbtxdWz5MHsylOrWVxIOrOzhaBUabXx6UQj5t8b/ + 6QP1uutr//CHDpspH5XmOYsyykt8Cqybw/JukcLqFoTYhZwK+AmkLQw41vRXpdRqzoeCgP70nFuS + PihZ+cpEwtWOyXmR2uinHDIXLGXuYcuClrbtegmwD5gQQxuD+o+vgj+8eD18c0DnwQ+gPlkLftbE + 1Zbzxd7Aq2ku+FZdo3ze6weyOvaBA4DciGUZswWawHv+MfOvzh/+hGZPpnmdoDMs1qTIwDSwjvVv + 3gCKvW6EtXioiZ0cpWFi0T2G1paNPkBbTxcbujKMPeWMvVFetIVTGx+4zmuewR++TVfrAO10Mufn + mLaUEZ5zDEdUsDgpw6YetYPQg4tq+dhUyDNa7kCxUcG/5HnIc0gpjd8hJJde3fH3Ke8up6RBf/we + ae8vIPbDsNF1s0p8Xtb7wO7xCIb0+trHaxm2kSs2iLAgYLsVPxExNPCGUyVX2DuuE/3teir804cc + YH6GLXZ5DvpklnZ9Tq1p/z26wFljj5QNo2jcX3w9er3HaSep0aaPrgUuxr5EbWSCtnGI2+BhOXaz + 0JWNM8eJ2iA92F3j3qkB2Lq79EipC0CeQTYOS/k1YzS4mUnklJ/penQ2CDTp8x8AAAD//1ydW8+q + ShKG7/ev2Fm3ZEUUpZt9xxkE7FZBhWQyAUXkJOcGOpn/PoFvZS7mWowGqqveeuq11PHxsLu6Pzxt + alId63naZvTuAwTuj9pAW397sMcX4zvAi9wz0XT/BmZxBxHgOZlFD+j22bxpPjshCWQbi/KuBtXB + 4VnA61ghTvJsXAr3cgJExAfECtiurelZ5SFyUf/TP05BMOqClcsI24wGo4Y7yKHQZsZumDRZi7hL + 9Vi2er2t4bDE73yy9jqYWc/Fsns922yG3hZks/r4o3eHtV8bD8MN6+hTtgvvNAVKQ3vpT4OM6s2S + v77gNtSfo+mOXcOxfG6ihhwPuzmi5108AkPOFHwqbEYhSz8Ea1E8E0m63em0ZfUcBh5LyDXAWkux + fUvhMWgROS08hLKbLAUrXzhtP4a96EFZWOuxJWJdYdf6044WN6z1dfawLfPMKFTYTLVxeX+bwnz/ + qtC+OLn05/q1fz5VTxQNNhc3f+rfbs+1s0qVAYJDHuMTc5jc/ha9Qnipw5HoQkvpWPrFzMMXLxFR + GUp3K4Z+AoXY2pBjePhEfeGGcNV7aFmW3Y5S/u5g5gKDaM7NjqaFJ/PSibkgRrsWCvW/DIKXptih + HWJ9u2uPx/tPPy4y9dTOqx5KPQ4Pwj2q3TFkjyVwHPVDrPL1VRp7fOt8FdkHfHztfYWOiqdDTvAY + NOqXmFL9u3UgT+YLAmyYZPP03o/wXcafgfHkgE56l+bw3LMNNufjBky11HoHvru+MRr357ZZeISw + 6t3btsV0rbdwrO0UHy9s1f7w1LU/sm+eTOnxYPvwHQ0OwYndtLOHFRmIm8HCWhHTjHKPyRMWfTCw + qhO2rK9vLfiM03wY352YcZep8UGhYIEo17tpT6nge6BLgi1RbcmJuvir30Hg7QhGETFtTtuy9zXf + IWgNd7rzsC3Cm6NJA+PbZTZbqMrhWS9NLAmXNpraZKzW+0MUvyRKa99PJejvrwtid2PeTqMpxRAb + yZk8DjHISHdTBsAi602M5XzSGgo8rFDdEqQNittlj5qHeJhn7CR7s51GZrdsHorVAS7zm1S3gwS+ + gyAhF/Xgt7P3ki1h5RdGp09Rv+deFVj5vxfeHWWaqNwJZz03B9j7u4XPJiZABiiIVT8FUG9snlnz + xbLWtWhJqqemALQzwCe35CICPJOFyalXhnbRt5PeNSU0dmxJnkv+mPyiE8H9/pTIKTBQRq1c7WD6 + 4c9YmQjnzrK2OcMLe9RQWtpTO3fVq4ELr8XGqid5Dqow6DlrcG83hk6ScwmhnKZ0ff6AJl9vXiw5 + A9aRoIJRi2ZWOJhAHUB1yt0xzDZXaEolQMxrg5UZbycPmrV/JpLQ1+3UXQ8J1DpUIVadinYU+zTm + F345CG75cPvH5q1DxL8xWeKVEv4iNGAg+gNtToPhLrxQhHNDVWK2hz2YlvsFY+l2wnZ6HujyfXbw + +2xYoob3zu7bR79f4w3L9V60t3bIM3CbEmlgxcqnYyCLIx/p8QWbS/4YL8d6hCk0JmIyb5N2tLn7 + QCaSiP0qVhWOVR8M32DdQPCUVXRyGLb64clGWfBKHcR5LKBLzJKVF4wrT79GTEicc/rO+vY7It7o + 9MtAL/yR0mW+96O3bZAqlDabow4fGT79zMd2UXhLwMJPhgPK9u608EA4cvCJ7UJL6JgWtQwRxCY5 + oq5QKHNTO2B9E5Eg/hwC+u15Hkb9QPHKZ2ZutljeK3OfXOunRLdJIZdQuemvZauZQunnelfhRSqi + 5fxV9kilxIMbJFdYm8NNNq31MtDzCr+unJFxH+9zheLJTNBIpMQleiOGwoZVNXyR+A+dtYcWCw8b + NnjRV2DmlUCFi/7Fp3n7oZPrXEOYmd8NQQL7zPpbnljQKF26OF4L2g8VqwrDUQYE5ezHpq68b2D/ + OZXLHw837qzbl0Tg92NPtI1TAgohs4eBXlZLPYqVrd+1JQwO5hV7S7z1y7wQCs9IJ0Zyoy4lL2yt + 8UOQ/KJKt+g1GLjqDmu1nSqjdykcaESfeJkPMdlEY0cEnO0ZxCs3ZTufk7kS3FLosTQ613auFF+F + 63nVBTZpe6ssedigj4cNEeb2z/x07B0DewdXUOiuGJ9CpA4+OU2sn9FePjtCACsVn66c0Q5uK51h + mjXHYfNICR0ZYFswb4UQP5d4qtx358EkG5Oh0ec4mgcjE4W28FMSnsVcmaf3OAtPVkFEtk6cu86L + +IVXkgt/NOiWCXgd3r7hEcvPR61MC9+Bep1+iXjlD1HnltleUD55i9/nXQPG4Cje1/6CaOQKlfl8 + BSnM+dEjvkmjiLwuV0dIPm8Wbc6h0/aOBs8/vFECUh512bEZgS1cvsOjLEJl1Dx6hmliPoiVnJKo + o1J1By8xe6J+X1sttzmeRxjtXyZGah8qI2ECBzrZbfkJxDVf5qXdHaZM+Fr6C5vOgnDzYLnnVWxf + lTmbGtqZsHeTKxHno0LHKYpCyA+yv/I5wNmXAAG07+/Y2PIBoIVYxrApKIfqxHwrk/XhE2iyZrHM + w1h7yEVJhH8sBX/9/fe/FoPAr7J6xcViDOjjqf/9P6vAb+53V4ZFsRoLfg1dmMS//vljQfhVt1VZ + 9//uqzz+dovXQOD32x+7wa++6sPi/176a/nA//z1XwAAAP//AwAnmAieugUCAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de31feb1a9444-SJC + - 9844020b2f36ebeb-SJC Connection: - keep-alive Content-Encoding: @@ -3031,13 +3032,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:28 GMT + - Wed, 24 Sep 2025 17:30:08 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6864cb8b99-m78df + - envoy-router-6d55f546dd-hx84z X-Content-Type-Options: - nosniff alt-svc: @@ -3049,7 +3050,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "393" + - "168" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3057,7 +3058,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "545" + - "220" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3073,7 +3074,7 @@ interactions: x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_7e6897b5627b428e9656d01c63113fcc + - req_77f08f0d21924c1a9a743f9a13fc72d9 status: code: 200 message: OK @@ -3238,7 +3239,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de323efdf9444-SJC + - 9844020db99aebeb-SJC Connection: - keep-alive Content-Encoding: @@ -3246,13 +3247,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:28 GMT + - Wed, 24 Sep 2025 17:30:09 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-d6c9f7dc6-gbbmw + - envoy-router-79bc6f8c7d-wrqdb X-Content-Type-Options: - nosniff alt-svc: @@ -3264,7 +3265,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "60" + - "91" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3272,7 +3273,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "94" + - "110" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3280,7 +3281,7 @@ interactions: x-ratelimit-limit-tokens: - "200000000" x-ratelimit-remaining-requests: - - "199998" + - "199999" x-ratelimit-remaining-tokens: - "199999930" x-ratelimit-reset-requests: @@ -3288,7 +3289,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_8aa4f854f0c34caca90b7dac2e327711 + - req_7f43a4c252084c3785fac51ceba733f4 status: code: 200 message: OK @@ -3334,122 +3335,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWROyOrumz79fsWqd2rtkkiTrjElEpiAgYldXFyAioCJTAtm1/3uXvl/t7j6x - CkjJkGe47jv5z3/99dffXd6UxfT3P3/9/azH6e//8T13y6bs73/++p//+uuvv/76z9/v/zeyfOXl - 7Va/q9/w38X6fSuXv//5i/vvM/930D9//e2q+m0WGxrmH4R2Bbw/H5Y/vs0FDMfcCeGzvzgzUxuO - Td4kB9Cmzkrwzrrpy+5z0BCJnyq5WPw5X4+sMVEw7wzs5fQMKINlAk7blRC3cB7OSFPkw+tZAjg5 - lz7gRTmj0DN9Ax+zZwjEu3/bwJDd3Xm+KI9oFX2UQTkzfWxfIMkXXucMyAN6xAowe8BePe7kZLdI - Ph2307BOOzVAWlNdyU17K5FwODEKwTy0c/0Ad505p16DJtGA3x7eH7BKKq0hX7YyMczYjcS6UTI0 - J0aOc0aGfBwWmqKD69okpN3E6PcYDlan4vzFtdGiuJIBakxqgo+GnQubeC/Dtb5JOJ18bZjf92MG - HGo386qmfkMPqtqh8pRiEr4eNF/07jWiOQ9OJFT2J31554cYnoV9QXJRCAexGh8d2uqdTA4f2g2M - ZoMA78Mxx9G5t3Lhemcl4oYY4FJVtg61ZleD1SyK+JDAcBD5wyeBXn1+krw+ZxH30E0ThuErJIf1 - 9tApk9sKfd8fH/l504ynTd9B21BO+MqxBiz5pPgILEqPi8JRdWG4OhRmr+RIjoW51ec2YiHIHnY0 - 105qDNxTV20EVHVHisTQB/54PXBQ5YuApPlkO+JYPUp0R6ZO9mdXjQRCKg3djd4nx1yikTAuCYXd - WG/I/ri+cspgkqBuN3vYx69XTkV4zRBv1TY5aPxdF1qUaUAJB4Q1QVuHhc9uIeiFAJIrUsOI5ghV - 8MRtXiTV9v2w3sFkwSQKBnwpYMfWaHEtEO2MgFycWhxW+Dz1CFfZndjiMEYrejslsPJnj70UKzpV - wywG2MpN4k6m5XAOBingKoSJmz9xM7PNlcJ+KFZyPBsm4It9HsB+2ZvEBmvUrLSoS4Rwg7FuEDVi - 3KKY6HmVZnJ56IG+HLVXj44PnxBb53O2NnczBolDyIxunxaI0B96kBGvn6X20TtsbvcmlEH+nLlK - jyJuyd4aLO/3F8Gdlzis488rujhzRfAaR/nIZ70hm6274kvKq42wm1cJLU3F42sTDpEI6EUCYaMQ - fKhvMVuOd6sCH2PDYc+yxmYdjDhFxS1oicq1MxuFlTfhx7Z6fP9UbKDik7rofjYHf4qhm/PetIbo - 1XglDobykQuZZBZoJwYj3i+dPbCznPfA7psSG36dgdEzugQc3jsfp850A4zbCitg5yjD++Rl6lwy - VDZ6aXGLg/kaRmQpbj30x1kj2jefBL+qWijt3AafoyjMeUGqNmiwenVGNj8D6hcsgctNeszvhx44 - g64hF7bLLvHRPDDnmQx5AsdtW+Cy1q6DuAkPgWzZI8Vqau0H5n54BWrKLGJFlMt8PGM/hMJl1+Pr - vjGGZXuvBLQ4aEfCB9g6dJPqFjqK0Z04SLAA7YKjCQ9hCIh/4xyHr61lA4IltLGazUozJkNnwaWp - eWwahTKIoaZbIPLJ+ifflkTRKBrURzNDwvqcneWoA1eB8fO8fwX5dG0GGenGNcK6ZL4BpYYnwIXL - CfZKqEXc4bxowHs3OVFO6OMsYwF9+Lq9bWJBwXWECfcVRPtjQ6wqqxkbtNsK37OW+lsq+83cj2oM - p6l/YmXHvHyN9qwFghwSnM6PSucSTc1+44k3iJ9oveWkg+C56j4YgcrYlSsVWD64EcePJGCcFMq9 - 5N5Wf+bls+7Qb31C8LLPSN6Qu04rtQihTaYYB0Z/z+fPzvcBFm6YmGH/dKZM3puoCZ4+ie5hPlC0 - pQYS3EHHTqD4g9DczQQuG5Zjz02ATotCDdBeeJrE+9hvp9fAvYRN8PaxfVCtnG9rYYUiXx0wbraH - XIBAFqB13l6IumkNJl7vcwcc+lQwLsYI8EVmd1B+xjw+T48mooe+ymBVxboPJgEOpGllH/oi/JB8 - LESwfE4vE4rh+CRp+7AdjlycVP7FS1ZRnK/sIUoos+YbVhf6dNY8yXw4lPPiPxa61+lV6gz4QdkH - 7+nZc9hU5wE88OaN5CN4AL43Hi5y+hpj72MfdOKzawzHm3fB55lT2OpdjABtF6Ljfao4+nB+tuFO - My821ldzaWjXSiXUT22NtYkzHD5cUgijx+M889cMA1F2FA0a2PfmjoEW8GP50mA6KR2+0OHaUM+o - YiS9xBLvz+4jmpYqk2RAW48YClNylsfRC3lbM8EGG4rhz/fLwKYgRmSNehdAyqGDHETkeOwdJoym - 78JHq92xkdVvZ/YG1sEo36n+bW4Htl7vrEDaXpqIp1lJtJzesIdDGcQk91wDcETpXXhFUoRPIE1z - 0WenGK2q9SD3gxHrgu8sLppHx/GXdbgDBp+uAD84qfxXJX0Y240wBIfb3iDKaytG9HmhNezLU0NM - HSX/7k9ZuXjknLxe+nL1tBmdY7rHAXyLf+IXqN1U+rt2pDn71leoTfIeRyHaM2bwUog+Ik38nXuZ - I3rGfgDQtlJw4PfniFUBXkFf9R9iCQLP1rLJbLCFBiHRzdDz9V0BF6aX7IytydcaUdd4H8l9PZAv - L0XMU5IAbl9FQa7TtWN0xRFEQhhdCD4YsbMelyVEIG05kmnyw6H147SiRrEXotQS1Rl/+MSIv+YG - 8dm5idZqrkLwaJU7vgy66VDrGvfQO5UDti6vGtC0MF20FeQdUent3ZDPRjah3G8tYi3nD6DiSREQ - yXCMD9Kea/pyx2IUbJcNwbLcDssuC2L01C4MH/eN0bBMwMKOSQbE7vEyOMNBkwIohoFFrM3xOPCp - /kqRfB8fOCwypjPYRAr0jGn35UOb/Z4HBHpfzsumNQAHXaTAzumMmb9G1iBKg13+8p3cQqse6I2L - A1i43GEWrB4741W+SrBozmeyB50y8BJ0X2C4miVWnuMOkMArXdCdwtSnZCRgPr9rCcK5O2O3vF6j - uRhZBjbn10Ls2uYc+uliEwYWF+PzTnsONDhVIfryCjY38wUsW92H0G53Di6ycHXoBzklfDuuQLQ6 - UgFjMLfh6lQePprlPaJcSkN022XCPHbvjTMeCRJ++U6OQ7Vj6yQDU975gkA0ffMZXuRDEnDq7WJG - jR2A6XOaDXhQhRLbjkWaeYajBIvZKbGqelZEYwG4P37B3l0/NuJaHv7wJtGf4cLovKHxj//9bbTN - dWH0pBFa+dGb69g1BlocrjJ8HarMl9NaAQzzjgXD5ISImzg9m8sdiOFJHd/4uMocm7/xCKdOC33+ - uJr5CLjPRi6zEyVGa2fNshyXEW3bhiP7kosHdjorMxSbo0bc8rrL5+3hqMFuI+nYfiZKQ+8uScC3 - /uCy4VR9Mcy1hEkqbcjdc5ZhvRyqAn2M+jLz5n1tFpnuavjy7Ilgom6HRe/mEfzqmVF+/IjX91YP - 7/28mb0UV/rInsgGm5oqJJs3EeCM8W7JO3E6/on/Tj5eU0ijw9vngvwDyGl4SCiPs5AYo8h0mn98 - W77fJY7gu6ToLBIkDTjP5ErM2OidBdpCBts8tfCNG4658OyLAp7a6vjjk4YN0xzDY97mxLt9DMDL - dFeBk1tT4ru71qFfPoWUB0e/zeqDPiYJpWgoxwUXPKuG8amrFjpcioXgT8UaeiEOhehSd8TZ7076 - Kvp8CgNLiAkOn0JOz3IigMtu/cyLZe1y9tBtGcx5eMLOIeLZSJTaRRc14bCd0avOGIxsRJ5q6cd2 - HjX0LJcc1KU9IZrhpvmHTpcVKvT0IWp/O0VUWJEJUTGWJIkN21m7elJgtDMDfPBnQ2fWrAhIS9ib - WJeXBoSvPpRD6aPhaKtKw1gLqo2WBoVkX036IKaFrqCc+Pm8efovfTVBVkFQegefrxXV4TRUy+im - VC1WyEjY9NUP0K+ThDjhFIBxo342cHSTG3HD7SYaD+edBpJU3mDzXrZg3VqyAE+HWCZ+mFGHNn7s - osjRDv6TF67O93tx8IPSD4nqJ87Hh+4b8NbEJjkfdpfoTz/91ueZ49thWKVn8gLErwPsZTcpmjfb - pISXEzt99U3Y0HT/1OBXb/pP7A76rOu2AuTK3mJlr9X6GPFqCrvCeOBA2DbDir1Ggfe7zPmiba2M - XvExhuLm2hFFaSSd3ew1QeBzn/1aLMScfbpAhjy5c9huNze2BrgQJBsWJlHa8KyvD5qZf/rJRfdU - Nn7rA+gD38X29ZYPK6fyJeKqLZ63W3UAy/Gu1AihZ4oLB5kOHaxrDw8HLSaKg0IgdK7DQQMFyQys - SQbsSa0Y/vSHt49rRoCQvpBhZMa3nl3ZfAdP6xef2AoiEtHJ4QP447HTC9eMlYImo3sWPOZNmpn5 - ou+t7lePiFfd5oGiwZrhO/IxOd63YjPEtdKhzUZ7YXu1lZxvY8uAG+bfsFL2j0aQVFqhKl0OPvfl - F2F+8xUaO/2BlW28+/LtuwfTfvCI8uXTxR2tAv30qNu9N/pkKZwAf/rhdvsYTFRFosHn0zkTZX88 - 5oJB3RRaysX48larf+A7CABsg49fBU0bsZ9+t/J3/6W3Kl9dZTDgQ3UR+f6/w07JWkOcrc68+Zy9 - aG1A58JH1Gq4UBHV5y+/yrmmez7YXUq29hOwAXQEhrEZKI3YBhoHA91VccCFai7m29GG+3SbzRyG - 22Gh5cOEXz8FX81LqvOUBSXa6+cDVrhr1zB5ng24gYcNwfslaXiaCC94S94x1tWGA+8LXTO0e/RX - /zcf1Ba75A//2GwP9MmpRwuOah1jD+eVMxWZ1sFdoezxOZjEiFqzoQFJSU4+ep8kh3CLZUAwf1qc - D1oI1qtQdPAcr/t5Iwdcvu70OoacXaikvPsELEwJSrBERoqzHDf6Cm7EgrTvalJeFDWiF6LTn37y - t7JsDLxv7mN4fTj1zAnix6H3+MqBm5NMM9v30FndXhXQ7CPoi4H10ccvj4MaLcOvXzTTZpxmUCbt - Hgdz6Og8UW7ZH79J2hw/DVMfnvCLP4xbcwaLvld6OCmKTAzu5Ov0upIMfP2jWWLAAELK9QJ8K6Lt - L/uYDETh9FTuUC6RPdNwRPcPw4CydXzhn3+y7JCQQn/wRGJo3l7nT2+uh8JHCLFqz3FENnrQ/vwW - fNPeVU7nXtmgS/HMcPztr6zjbyuc9h/vyztVw96sgfBb73yookBnWIAQUCKkMwf24jBIg13Aa24u - 3/wHDXOjSICctRX8HmOBsXcJX6CeLr7PSHgArKvmTLKzvYqvo+nkzGzbCuUHrBP1VtsR2yWRAYP2 - kWKNHNRhTctjB/Pbic2dver6j593gL7+zT9M1m81RNK1xk5w4AF12pr+/BRsWfsKEPg0OPTVu1j7 - +CFbL+p7hf67cv3V3MnDe6c2MzLLV0nsVBcAvWI1hrTv6zmbWuLQXVKG8ORWFBfS247Gn3/mryvD - x/Bi5EInxhl0tErEp28//PbrFH55Hruu4Q0/3kCGITxm0PqfiMZO38GaXbfYipSlmXR68oH32Fl4 - f4xgNEtAXOVeCKGPhnSb/+J7F+VFi8+p4ji8ccs7WGL9SPbYdRwm3LkYvRpc4v2msPNF8ILsz/w6 - p4zltAPXDglTg/BB47dOd+OKECC8HbHWTK9mkdcmhtTThG+9Kh1mYmTB92YX+mKMg2ixXRvCVuc9 - 4p6eu4G1J66HzmGefP6r78QLlVP46viF7NW9x9izu3EAuaHqC+N11GlUZQqI11zxx3BbRsw+ijWk - hEtJcSm7aOmNh4++vO7z3s4b2Cp/Etgl0oBds3nkK4uOLuR9++Zz5WeOGAu5FDlk3hPTMBD7fa/d - tz/hVE8tfURbaqKbaYm4iJeXszoegeBzzk94P3RcvkIgcz//mCjl0gHmAGuFP7/vKJhqtKhBNCLr - 4W2IynRtoMfcLODzKs9Y0QM5oueG73/6mag6a3JqaaCEUreav+No5RSnAz+edUPpoi+hqWSwYMtK - tAU40evjoR44sycT/VtPvjwow1+/2volcVjjXxUYCIWCw69fzEnh2qNnO0rkG+85dSFawZcHSYaT - 0lnP714C9yx8zLIHr9G6HFsZJpZm/PTTIL5ZswH++d3+/A6d33KB//NvsUHtF2OT18hQR6cnNp6w - dhaeuN2PV4nq1Ru988zQhgOQFGLO27fOPtGjBt94Ju7gXR2qBl0FMz+hREWnd0RvN2DCqeaKLz9R - QBLoFfBFNphoYXRuVjM4bmAxEdWnOzblnx/Pw0Zwsbek/DCt0lP68fe8u4bnaMTlZEHxZpyw66CX - vuI6y+DXL8eX7an6t1761VOFH02dcYtlQtm7FDMzyCOfNuNzBL/nv+PFHfi0UgJ4UWOOJLRiEQka - MYUVaD84S+sK/InPb78hzsH1G3GX5AYE6Ysjx+y5MnrJigxoTX31xcH28vXrZ/7RK8wgaj7u7e98 - fP3PVBn2YPz68cA++gcfuobX8Du0yWALI+3XX/TFlbfWb778je0+ml++wI/kMmyNJB3Y7WhV8BQe - DeI0ZKsPl/1D2PEf8UHceDGdVRWZAFUaZPj8OnQ5I+mqQcXTP9isQ7/5wzOaebb93VJRh4aaGcON - lEa4mExLZ/plfO1mNh984es3CnfwtOHYqQ/icW3t/PgPbl63Ae+35MDWpSwCaBMSz1z7MQaS9xwF - nIUEctzEBExyoVlAP9l7fNC9B1jLJrTRm9sfZ4605/x7vxaEjp4QX1XuDn0Z6wbuVlPA1todciqv - 1EbXIOhmpgSXaDleDwJMbc/Ezqeb9bUBlfvzT7GrB94wHfnP/OMNovDjS2dxgaGcX1/W15/v9OXr - vwP7Hoozmk5ztOytNoSqc1j9Ndm92L/jLVxU4iZGM7C851awyT3jx7MNEx0D/tYPZuUkqGAVHjKE - VfQ8+Us2Vw1d6msNNud2Ib7hOsOffrGxY/vrf6k5OeZ6+Ht/fImTS/P6YFLCsybeiDWco4YqtymF - Xz8Kn5vsCVbfWXxkphsHG/PpAhgxtA6ii+HggIyYLQVtBGQY3OMPfw2q+NbAz79THs91mEJTSSXn - ttxIwpvGIER70MLIn1bsn5QhH+XjKUXne+sT3Q68iEsL0wfffvOHJ0bpXSsosRSDhN96xXtGXsul - gZVZ+j6vCHfcN+EaEStz6Dj069+CH9/b54SLyFriQg4v1PKlq/IG0/PSzGC9eKe5XemDfbb3ioM4 - +kxkv3T90G+tVQBtfOq//F1Fc1qqPVIPXEvcrhLYgj62KVeD5RL3OXo6FblZBkTMmnkVtLWhgHts - 4BPOwSycAiXimsZ5QZG977/1vFz88hLM4usDm9HzzkZvQ17gKJ7uGPeylLMbdzLQ5ZO4/vZ+FfSZ - GwoffusROYjiHojCMbIQnPsz3rv3DqxZczcBuNGelGJhD2tXPzUUCKXy9ZdaNhaUduh0YZdZDKyj - /sf/+a4PEPOI3Gaq+tkFF65lJDEKpeGd3T7epcXLIaqhhg5PlHMKpZ3fEJcwO1/r1ZGkp8w6bG9e - t5y+rnUMT53Hka8+AgxIWoa+POHvXiavU3byVrgXrA/23qfUIU9qJTK9ATrfpDVo1qA1fLg6mx4r - GxUwMlafEjZ2ffN3/FwOq5yjGPorZfjoLZHO5NSQ4GZvx741Cne2QHuTwjVZuVl6TErOGdyxg34d - J/gebYGzNjypYLjb32dupSr76U8knbBDlEc5RAtmh/nH08TYqzNbosPqglGFC9YGcHaYPubwj570 - 3CR3pr01huBiVr0Pv/nMC1IHgeNKDdaSDDL6Xc+CunQgP77RF8zwDMvRT32qNKkjfBS6IvEi50Tb - nc2c/+mN73wTuxfHZq7mLpQTZfeaBa2XwKKFXgW+/if2i8fULHHluXBJ5wG7hxI6NEnoip6LfMD4 - xRbnp39hkhYP7Gn41tDoKAkw7PznjAaqOT+/FH71Aj5K8uDQvd3Lf+rp0QoOOg2gxMF3spOx6zox - +ONP9wDgP/7T6njvDbxb552PQOo0nDFebKgQ0cGGM58cGteOIAsqJ+OL0Fr5sjhNjeZXLWGfBpt8 - lek4/uk3m6zbNOt2vb4gtsRmhsayA1//N0B//3YF/Ne//vrrf/12GLy6W/n8bgyYymX6j//eKvAf - 4n+Mr+z5/LMNYR6zqvz7n3/vQPj7M3Svz/S/p64t3+Pf//y1+7PV4O+pm7Ln/3P6X98b/de//g8A - AAD//wMA5SCRFN4gAAA= + H4sIAAAAAAAAA1SaWQ+6Srvl799PsbNv6TciIFW175hE5mIWO50OIA4oMhdQJ+e7d/R/crr7xkTE + iDWsZ63fU//xr7/++rst6qqc/v7nr7/fz3H6+398r13zKf/7n7/+57/++uuvv/7j9/r/3Vk1RXW9 + Pj/33+2/D5+fa7X+/c9f7H9f+b83/fPX3140lPP+NPpFz8vmHVYP0/CeprWA1jSLEOZSbc/7+2mv + jozXxxBMdCXHhpR0HeazgvJoL5NYVJJiDXTVQtz7csSWpqb20npVCnZdTshplB7FZHrIg1MqAHyd + bQ/sr5y4QMGYNXxU+BDs2XxioA6BNTceeUSblqMctt7Tw4rgkmHz05cGQ0WysFJvPVg/wNeAa04H + 7zDG07A9YeCjTIsv5OYlUrTnJHWBb/ZTz/XwrOhq7y4MJMQ7eBPYd4BeI/8JU/0uEoPRnYjbTX6O + YO0X2D8lPRip6pdIKQyLxEEy0U0OlhJ2ySjjDFSvaHOV1gClQmuiaxer4F7qUYRb+eDxVbHUYip2 + XQ7Oq1LPjO979Uq0oEXrEmNy5eKlWIWbPqIL1AISSWmgLp16juHjE5QkPg3hsD8vcosOsiSSo6y1 + wzpVgIOfMSlw+kyMggtqWiGrzACuuA8D6P5QKvCi8gLW70YI+MU6pFB6rG9SyiSP2GvPKbCexIDY + 3fxQN5N/3f98HzMro85v2rcQcq8AR9O1BlTgJQ+F5b3Dt7qUKBtciwVmJ90kRlnu1FmXIg/obRXM + 8/DSBr7QZQtF3iqQcAvUgd/Ah4Xh8+WTILpZNlu+5Ar1oqUSD53liH9tvoJsU/fI8TQuEQ8+3ALx + tWGIVrNNQfutSRFr9C5W7HNTLKxwyZFwCC2i7+ybymWuqADinxHWTsM2LBa9ekB8l5DE3RJGlFGu + L3jg+4ZER74ftnmdDKiH2YAT6Ld0eYajAw4X1ifZBviB1rnco7bYKmLn9RhtQQ0q8HL2PT7Jm6Su + 1BAzsNzPOrFRbNicuoAM7OgBE8nqPDpd5QMLM8/fiPwOdcAu/uBD973XiUE+UU254Fkh9U58/Pv/ + q8RKOmo7aSaxc/ejrT01PdrzDSHmVBR0yYvUB9uOn2ZkRS/AduswA86R2xncsg5sN+atQ73hX/Pu + w0cq7wcnBQrx+UNOpEnA8hCTDakGcydauUXFxGe5Ia4p3HA8VXLNG0MoIHwX9rgYHkO032sfCDaL + nbE0uDFdQld4AeFesfg3HlSR4wzhun0TrzsTdTrwiQ6dc9njpGBosWkP30GnNPx4I2Adm6vXMES6 + HlS4OHWPgjeRXqKFy0asHnlroKo3bOByARW2vbEYRvRqUwBPpofLj3EFW3LUOdCxQ46P5kFX9/gj + WUionRc+624YzZ9w6qF1YhRiyvlS8PEmvWAAYI39RQkHPmV9BtV+r8wgmWewulydwvMq1XPrnYOh + Mz3kwBMjp94yPwTQFEc7h+7cljgRnpeBP+SfTEw7dsF4xx+LjQ/3GmQxx2GzbaqC0IgJod+5PS73 + jlZQ/3nn0IGTDyS0gp1NjwU1UNPebsQzqGlvHt/p0A8qQBy3sW3uoAYiYObUxKYbyOrEzZkBtyFn + sWQ+pWGffyIJlL5KiTo8GbpidVuQx7rPmf0YfbFigY7A8vn93IPNH8jyGUTkVF2EPcB9hhUBxEHR + PBOMh7cS7T9LoIM4IwWx8LGzv+vfg35FLGLD1rHZoybeYfdIXsSZ1CelR2GaIf/UM4+PeDca0eUR + w8jPGywpd7dYbn7E/vQdF9x4V/kdWlOoLfOFaKze1UsZkhZWi3L0mCKU6+XaMxKMFjji+PHx6f49 + G7Own3Q80yxViy2QGh0hI8hJwR5v0WIxpQcvkxtjv5NuxSQ95xDkj2NAbB29i/m7/pHNHF1SElQU + v3qAiA1UbAPqFXucNCn8/l8s41Wky9w8fKSysk5MhjZ2B2tSQXiyPWwwm1F89WeDHeefsP1yTwN/ + 3/UcfNHbmbhWpFH+KjMjeD6cHcaQiQD/wlYLRy7e4zh61hFljCWHk1IqHh3PcJhORPTg/ix1JN67 + PNiEE6fD48q+yRXsTcDxV6iJ9yk5kPhS4YLmn7OAgiK/YumB3vY2hr0Hl0jnvKFTjupyGQUNPtW8 + w9Lr7drUmgYfsol4JUnbPwAbSA8HDSDEWEVEp2SHDjGsmMsZBztRostOePnIeA0qdhoZ112vJfrB + eewsbHjntd4+F6OCvLc8sDQDzeYRaCHUL+94Rg8XAx7qdwVejdCZX8XwAvtSTxV4dGGLY5ReImp6 + 9xjBuKiwAvSHOotCzopLIThE1TSpWOobbZBahik+aVIJWCvtW9jwaUm8y3FU+/AkCehcLxFRQtam + e0tlHHgMwhvWBPCxpyxXW5hK19gr5HKg61DWJUqO2Uzk+ZnWW3Mde5gUZUyy5KIBVoCiAYN5jHB5 + G7KCs1s5RkhlHyTGbKz+GS/mdnO8VTndwEKEkoOXpHp7I+w6So8+tMDtLWvkxBM+osed9IThHdXE + OXzSgapDmqKWPjxyfqaNulzM54y2qD3inAt4ldrPMQQwvlTe4atPVIlOEI5Vc8RX4aGry7y2IfoA + J/OEuzVH9HVnHKAwpYQvG0yi9VwRDmRB0xGpwntKo4voAdP2CTkPtjpQMbUduPligs0kV2r2eXp7 + qD5zAznGPakpjTgfXpN7SfLVaum2OipEv/VsvXexvSbTGqLOfLEkBPrDXjANNpSnzUq88rKoyzm8 + xAgztkZkcKyjbRX9FGBVu+Gy8HV7vWCth10p9liSptqmrzvnoNJuDsTN3x86qkpvwRETgxg26Yat + L3wOdfEpxtoLsLRzuTpGdeoy5JS7r4GSZIkRqQeKlXek1Vt4kkTRPRgQ//SqvTGtA/NbdiKSmJnD + vjKaDFlh+cQXft0obYJIgjtwFLB0Siy6ncPUAWe/un7rpwa47oYkqCmCOu9lzRh4bOUVTJ/tiVRe + /ByWbI19qN4kfV6szgPzg5gC9O1LTBxMpYHL+rEBdppWWM6IaM+kmQ3QpFvqwZ2x2LMohCzEaZZg + c/Mv0bh/RjngS2Ulhvlk7bUoYwUKCYxxVTXvYYtiP0TXuwSxV8tnQNt3BSF/RDZObXmzt3sKnvAU + 3XmifzgZrPeDbcH7XnKx/dXHP9+Xq4qfx4+BwPxSXREKp+OZHNPrgdKnDEKxrxSOqLIy2e+v3gE9 + sYp5QVIwzMKJ0aCg9BXGSkXq2T5AAdY2qbD+TIxog+LgwPO50/GRhGbNkuT0x28Su5FWSs/yPUP8 + JZC9QxwXEbtrhBGmbOLPxO20gt6tToQJlHKPZUppoENtG1B5yYi4M99TIjtFBun2+uCTnLF0NG5B + CK8tF3q0bfWCgPnSiDH3WMlxeOUR3Vx5REjBLDEv+xhsL/M+wwdKFHIUnodhZu6mAl12VLE7aVK9 + BASnQN29HOxXnaz+/BeEpsCQ0jiuw+JCKUPobJ3nXbhs9Sq8uycsrGoiSp3thtXg5gX8xuNbTyIu + SdsePsoNzm5/vdUzek0eMOhdIpeeRoA/TvMohh/ZJNhHbdRfCjOD7OfTeOLL6b7rSRbQdJsD4vge + ValfeoqoY40lzipIEYV6q4Dhw1yIqYMOrFzJpbByDANHgmgWXJjBEj5awcQBw17qhZerDI4wK4i1 + chrgR3C5gw5VCzkd9ZdNf+N7RZHt3S/GqR4/4X1BfCmtOLmKt4IUumwgFGgrsRyB1gv/GhYISr0l + 2PoE6iKHxxje3DAm5oPhik1VPgpojaqdF6M8FPRbH8E3T2B5d9/XowA3AyVvhsV69bmoy2GlFhLi + 5OMlBRNFK7MwLLwv3UI0a5cOHdn4DeJ4bYnbpUG0DC3S4YtIVxJ7sglWFbkSPFw4H9uipKlLtfoc + slv1QwyaKIA7JG4lepdJwedmFQqirauFHuI7JC5K1YGld1VCKuTKefF3jbo+9PwF7evj5IFulm0W + yiGDmNavMT70hJKtQiE0gzQlVjAF9mzmBwaeuuZK5NVi6mmndTrYMp3B1sq9wDYccw52vSGS47Qu + No1V1kGG71leC7SLvSzPlIWlF3fk9qpxMQ2HSoL7JdNJUoTn6E89rfNXMe+DdBh+/h8409PHFpML + 9Tjf9Qrmj1OArQsX1msRJAqM9sXbIw88RJO9u0DwzUvYlKKnOreeXMKphA98Hux6+KOHndmw3tbk + G/3pOYzkR0fUM+Tpcj6FKZpvePFmU+SLTfB8EX79JFZQfKWrH1iWQECsEyuRE3XDY6//qSfXyFAi + 8pSBD8adZWNVMYtiHfV3hbb32ZtZEgxg6Z/SE+2ZNcPhVOr2aiCzgfPLisnpFoeAE6eChXQfn+dt + UkSwWdSIIZZigs35UatEPGQNksVGI9a9yuvpUR8NGL+4FlukI+pi0cSBC152OKPJky6/+WzU8j7/ + 9GOdcdbCt766RDXtedicfTZDb89h4kIoREP9llrkFmmDraSQCu6dChp0577ENrN/1JyvLXfkyBfN + 298fUsGfwfGOquL0wKcLPURr6PAzCKjtkq8eF3T/aUukvFSE5VJl1OnkvDjYoXLBXz9CWd0mOqxv + akz05GwWnPqGGVTIR8XK1arVgTGWDNTAeHgfGL6iFe7NEL4cvp95yNwLutcKDb7NOyK2yTP2Gkbh + E16Kpz3vTpGrLr/6+PWf+GwrhM4XBSiidRlsb2/Qii49A3RgnHOKlcdOqtlbEbIwVTQZ58ZVLtjo + Nlowd2k+83G4A9ueWXWoLeMFx5GRqXuF8yvEXo86ts+4jZbxymiQ63iG4FBLa57h0yf81Xf70Ajg + XbDPHJ1M5ewxdNLttR6EFGYic8RanQOVjJljwLeSxt98fbdndNpa+ByXI74kEh9Raacy4KuXHlPL + PCD0nWmwHoMXTr68iLKj00Kwr44zOrRsQS3h6UN4iGVSqpAA2rD3HMgqzHCUpXW0mfHNgCK4P0mY + yHJNDwZlwaCqnMd8+cVemt4+/M7vLH79BlVe3QKSYz7PgmNBe6magEN0QaLHVruWTh+QacBizeE7 + /7toLNqpB2BfHnHVqLbKd2hKofiuoMdcxa7+k8eyT4+xlT/nYZ2x3//hT3JIPZU+9FsFCjjBmS0G + Dez1Z89BesGWt9QLKab7QTXE5lkciHapcPT1ExLUqscbm7BZvvUgzeDNOPBEeqCjyrOj1v/qKf76 + PZWMuv9Cs9p4OFb9e0F/+dgfUI5vSZbXNBqmDSbk4H79zr1e2ESTfjzGE3TPV7evPwAMaC7zbz6G + CuUltMi8YvkugPqbBzlYdzXrzWTH0fWCnR5885UnvIcT2JgVNsLXL+Cw3ixA5zy+//IIwZtrRUvP + UA0e31OGvSKUhw2GhxZ285vO0wur6sq7kXE4q56LNam71Qus3Cc8Kpcn/vpjQLv7tiAA2xlrTHkf + RmPVWPRdzz++SGmSfDYouqPj8Q8oglfO1D3Cqn4jdpZyYPnl2yPbJHPVnYlNHWcO/+zfs/q2InLD + ug736kyx3J+0gitELYUsZjmcVp+DvQ1nPYMXw0mwhEZ32DpVqZB/fj7mtbx2Ef3lRc247vAR71c6 + x2YQgjmTT1gdz7CersuZET8BBz1W6nYDPSC4HFoYv3AMsW2ztj208H78WEQRDvawfF5xjJLJvmIn + f1n2L38ifp972AxGWmxvpmsRnAHCx4ZA0DsnJwUCCyas6nVTLx8SxX94hvPlLVQ/IgNO7BR47I9H + LWcLwll4u0Qtj4dha66vHm4WN3uicX1E+4LtM9jm5kpMHbuUrsEkgC9v8ZhvnqMszjXwzQ/eUDFV + vcL6U8F1kjKSMVsbLcJp9ZC9D3iPpqY70IzrUjiZ7YCNwXkUNHwdHMic5qu3Wx9ztGBfy9A3PxEF + xYjOuflpDofJ0H88NJpZc7HQK4M89v1dY9P8cxMA39QBPn2ubLF98yjMTppJcK+1gMqk3eBv/n88 + bvPiaERwPiDyzVPDmnzSEgLYz1jiejGi3mXf/1mv3zxUbJ1g57C5PHWik10d0TSwXwC9sg92vfms + rvb5nkMDXrYvrzhGjWRfe5C3gUjkww7aXz8owm8enWkVEntdg06CYRJLODJtr+ZfWOnRyt8FYqXs + rViDJ5pBnMcGuXz509d/saAM+vuMCHNRqZXEIvzWS3zKXW3g2p5VQD1GL3JKso/Kh2Tx4JDP5p/5 + XxOrFqG7JA2WguFpU/cFW1iB4UO06o3qoQSKDkm+SMSc9h91ES25AbmZPojjTZdi4xzjDtOOW4h7 + rD7RqkS2/seP6oy2AGIY7h2Wce4TIxiSevv5KQvuZG8N6WwP9nEdkaRwDj7uvf1A2iWBv/GeuSJK + 1PnUXw043cYAO4XfqFQ+5zmsJyHAV2t3B1uRMhCCp4WxqX6O9MtHdKjrUTUv/PIYxoP3XsDBeUnk + 6gMHcGJx96ESxiwpv/57OnXnDBr92OH4qxfLWeKfML2lPsG49GoOPwYNfv0skVy00dUbxhQ8OOvi + LV/+tYK5KSG3PkOPzc6yTYwhF8DO4Drvks36QPDmKOAle8a3P+HW+wnMOQz1mzrD4dmpS70SAz6M + VPW2RH7Ui1OLEhwCgWJ1UrOBXqPsDjt9rxG915h6eDpbeIgP0YN8eai9GFDlYLFqOQ6moi1Wexcw + UM2H7ltfvPqPnxG3yfnq92KvO0Z3INs5EU4+pqH+9PNAQKp7aNKkgZ/cowWr4vggdrY87XWKIAe/ + 9Q1rBJ3o9ipKHzrVEM0HrteG6bW9BBCICUeU1CBgsncBBO2DO2J5gw+wVbenhY7Z1ZhpuSYDRW75 + Aoxjp9/+wc2mzPvJwGYNOazT6FSs3OxbKO+Ezwym6/nLPz4cRMxBx8qizer2m7/6rQOMy9wFs9tf + ZniZcEyUqWxUCvW7BOI8NYiXrK26TafBAb98/NMPWnOsB/ct2bxl537UMbscBfg6djJRtqAeNvCM + OaA7iYYdgopo22QNwrh2wXxsexnQc5VDmGVr+M2z93rjZfMJ7kW7EBlNdrF++SR0HGjh0yjJxbj4 + dYjMo2vi8NSd1Y+54QoGS3H9r35A0F2z3/7HsTe9wVph2UP4MNvYMLjM3n5+CB9GG4epgekmThGH + fv7+q1+0/+Wxb78Mm/y6gVG4jAvn2MmVXMdMG1jA2ndY+jLFsvIY7MlxHhmSP75HbPftRmzrpSlw + DxYk3inE0ejUm4TmRtDI7YHtiI894Ikpf5Jm4fu8PLA1D94MwONTPNrf5xN78PP3DlOy6hgQHIvo + Ipy8NY4/gLiE9sBUrpf5HdUPdfCfdxa+g2Ai9rd/Mdx3Tw6g5NFjuaH3aGL4oEc36/4ixu7A1fRd + 5or4rddffuGqi3RgRHDl9OcsyJetpmkXMNDPw2BeyEdS2foGGvjj7S4vOQWnLjSDPF0f2P7yaYLV + XQ+a9nrDp29e3Dz+oSGT7R2PrgKnkpqDHvy+J/pgHcE+0FUDlSyTYtlO22F7tEQHXSn0JNsjC2xK + 9lYQPT3lmTne3uq40KX98bVZyCaDEmuqw1//iBjtzqZzc6x8wLzvlGSsJdVffZYO3/xEFD4LAMs7 + SQYNy6qJmSnWQNMnbwi7iW+xtSzXYX0nWwz95MASy2+eYP35653cSx5cq726HLxpgx5ZWqxFRmbP + et024iPaNfMFNn69pW3s/eF1hmNBdeq3rvrlWw9UTDWs3n2K/+jPkVEjdf3ub/jVe+8Uhzf6hzfA + q8fO4jcv7c+L2UIziFNcuR4otu26u0Ozlm8zFGX5D49Dv/6Cvn2G6Oe/wDzrE9FLdqZbzIQOmHpn + xW7bJ8XW9lACnM84v/1XjPLVScG3/+gd7nyrsrVqSoDlyhrbggjpz1/86W/8/Dedut0MP8DLPOG7 + fzgK7zO6tFtB1G8eZA8NNH78+rs+xmiKBSEUwXps531dCGBJU3QH/mtb8Snip2hZxcmBk9kP2P5Q + aC+f8L6hw2TpWBPntZh/fOy3f7Xqfa03NTY4CDHzmtHeVewfn4PETxDWIB7s7fmyRPjrJ3oNOamb + 4GUC/PL/Lw+NAZ9xjxgdGB4Tt7/uhsV/8MxPfzz4nOyaM+OzBb95Dqu7Z2CvAXB0UdkEEfuOZQzL + KKtPtPJPAWt0ZGw6WHCB3oUoM6gYpt5Su+th6pJ6Zo7HA1jhXvbR379TAf/5r7/++l+/EwZNe63e + 34MBU7VO//7vowL/5v89Nvn7/ecYwjzm9+rvf/7rBMLf3dA23fS/p/ZVfca///nr8Oeowd9TO+Xv + /+fyv74/9J//+j8AAAD//wMAofreDN4gAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de3255b261726-SJC + - 9844020f8be79e5f-SJC Connection: - keep-alive Content-Encoding: @@ -3457,19 +3458,19 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:28 GMT + - Wed, 24 Sep 2025 17:30:09 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=VFfAW2RmMPtfuLrTzUNpVtkGCTgbI.cIhPUNjg6uYbM-1758670828-1.0.1.1-8yYXMH4tfM0vLNUlTivR5vucY7dS1BE9QQPMKVlbX5OFT57OEEcFDWJoxckJK.emPquS0xDqnRfOa5Jo0eK2Cn2JVInU8J4sWIA8aNKb6uM; - path=/; expires=Wed, 24-Sep-25 00:10:28 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=Y60JgXCyDs8AlOCT4Sz659MwNF9vxmg7ZT0if2tB_9g-1758735009-1.0.1.1-edzTbnDjm9Gb99tAQ028oqq.0a.6n9CVp4cgHwaOC4YeltQgNmRQVuZhgdb.AxUhGJOB1r5qSjs0YB.mUELUNE6MZPRqTSGQKx2u8xkSAzg; + path=/; expires=Wed, 24-Sep-25 18:00:09 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=iELPZl9jWlHfLB79zsrh9F_h8.ePCNRGDwViPQ1yFzc-1758670828712-0.0.1.1-604800000; + - _cfuvid=4SQeJyQ.I2bvwQb3A_8ZRuKf2reXYAHRsjC.aarVMZw-1758735009446-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-6864cb8b99-rnnhz + - envoy-router-8b4d6d9d7-jr72c X-Content-Type-Options: - nosniff alt-svc: @@ -3481,7 +3482,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "229" + - "68" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3489,7 +3490,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "296" + - "117" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3505,22 +3506,25 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_81f6ede1ac214c97a7f774dad2a77e2d + - req_122bc8907b944787ac08c61aca86c793 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 1-3: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 1-3: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n \ D. White\u2217,\u2021\\n\\n\\n \u2020Department @@ -3587,7 +3591,202 @@ interactions: a passive characteristic of a model, whereas explainability\\n\\nis an active characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, an explanation is extra information that gives the context and a cause for one - or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6266" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 1.109.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 1.109.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.5 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RUUW8bNwx+968g9NIEsAPbqZsub1kzrNmCDhi2ocBcGLTEu2OiEzVR58QN8t8H + 3Tmx07QvB5w+kvq+jyIfRgCGnTkHYxvMto1+8uG3T2t3eT3/8+OHj5j++WqrP75e/3zz919uc/Or + GZcMWd+QzU9ZJ1ba6CmzhAG2iTBTqTo7W7w/O11Mpz/1QCuOfEmrY568lcl8On87mc0m8+kusRG2 + pOYc/h0BADz030IxOLo35zAdP520pIo1mfPnIACTxJcTg6qsGUM24z1oJWQKPeuHZQBYGu3aFtN2 + ac5haX65jx454NoTXKTMFVtGD1chk/dcU7AER58vro6BFRAqJu+gEtspOZAAMcmGHYcaOGRKMVHG + NXvOW8DggEr5gMUkhUoSOKIInjCFknN0eX0MvT0QEzm2feAY0LlEqiUkNwRv1h7t7WQt928gYO4S + gVQFURqy9QQ+X1wBcquQBVq8Jbi8PqwJrSSCLjhKxSLXCy4Mc+o030nKzRbWW5CqojTIUa6brEWX + 9CwcWVaWMGnxtkTEJJZUT+B32oKVYCn24dZ3jl7bcdR0LYYXFAZAKsBBxvEYbjrtm7Cz7Oi/DkPm + jJk3BC3lxFZBuxgl5d6eQh84HGo9Hr/2/siR2sRx+JMK7potaCRbLnthFCaCFh0dD56yQsSU2XYe + k99CIk8bDP2dtqGWNaftGO4aeuFv4fZNBywGqDt2BM02St89HYgGLS0dOgm4EXagsUssnYKVlMjj + 7mHccW4gSnnR5ZkmqjuPWdIWuI3+2TYORQYqeL4lyHLPtji9Z3OyNONhGnZ6LK3USqIyFbPpDiuP + fMUt1qTlvEKvtAyPh+OVqOoUy3SHzvsDAEOQPNApg/1lhzw+j7KXOiZZ6zeppuLA2qwKfQllbDVL + ND36OAL40q+M7sUWMDFJG/Mqyy31183mp++Ggma/pQ7gxW6jmCwZ/QFw+v4p70XJlaOM7PVg7xiL + tiF3kDtbzJ9FYOdY9th0dKD9NaXvlR/0c6gPqvyw/B6wZQrJrfat/l5YorLJfxT27HVP2CilDVta + ZaZU+uGows4PS9boVjO1q4pDXcadh01bxdXi3Ww9X5ydubUZPY7+BwAA//8DAJ30r7ByBgAA + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 98440211aab517f0-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Wed, 24 Sep 2025 17:30:12 GMT + Server: + - cloudflare + Set-Cookie: + - __cf_bm=L.lz2abzyoo00hM3BQMGug5tpFZBvaMS3Tdsdyq6POY-1758735012-1.0.1.1-rzd34Dgn6XWoZK41zn48IJG_8nCxKR6Msxjz71TctzbkErhy6oydCKBE8z8jGG2O8pEoygpMXGrL9a0EZGhyt5PnL.HoyYdiLlqnmOXJwIk; + path=/; expires=Wed, 24-Sep-25 18:00:12 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=t3use4kGM4FuUODHWJtsp2MbZAxLUAiE0fUTuhyKPpk-1758735012816-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "3132" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "3204" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "10000" + x-ratelimit-limit-tokens: + - "30000000" + x-ratelimit-remaining-requests: + - "9998" + x-ratelimit-remaining-tokens: + - "29998507" + x-ratelimit-reset-requests: + - 7ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_23c61d937f3b4543a9be58d418a5b439 + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 3-5: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + a passive characteristic of a model, whereas explainability\\n\\nis an active + characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, + an explanation is extra information that gives the context and a cause for one + or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n + \ Accuracy and interpretability are two attractive characteristics of DL models. + However,\\n\\nDL models are often highly accurate and less interpretable.28,30 + XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. + XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate + but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. + Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe + explanations should give insight into the underlying mechanism.\\n\\n In the + remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin + various systems these methods yield explanations that are consistent with known + and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn + this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding + our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. + According to their classification, interpretations can be categorized as global + or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. + For example, counterfactuals are\\n\\nlocal interpretations, as these can explain + only a given instance. The second classification is\\n\\nbased on the relation + between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) + or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand + is self-explanatory32 These are also referred to as white-box models to contrast + them\\n\\nwith non-interpretable black box models.28 An extrinsic method is + one that can be applied\\n\\npost-training to any model.33 Post-hoc methods + found in the literature focus on interpreting\\n\\nmodels through 1) training + data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 + or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation + and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 + Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused + the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe + may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof + physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan + be evaluated by considering its agreement with physical observations, which + they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests + that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence + strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. + In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases + and subjectivity can be used to measure the correctness.40 Other similar metrics + of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be + found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced + CIME an interactive web-based tool that allows the\\n\\nusers to inspect model + explanations. The aim of this study is to bridge the gap between\\n\\nanalysis + of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n + \ 4evaluation metric is necessary in XAI. + We suggest the following attributes can be used to\\n\\nevaluate explanations. + However, the relative importance of each attribute may depend on\\n\\nthe application + - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability + of a static physics based model. Therefore, one can select relative importance\\n\\nof + each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it + clear how we could change the input features to modify the output?\\n\\n\\n + \ \u2022 Complete. Does the explanation completely account for the prediction? + Did features\\n\\n not included in the explanation really contribute zero + effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation + agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n + \ \u2022 Domain Applicable. Does the explanation use language and concepts + of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the + explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the + explanation change significantly with small changes to the model or\\n\\n instance + being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n + \ We present an example evaluation of the SHAP explanation method based on the + above\\n\\nattributes.44 Shapley values were proposed as a local explanation + method based on feature\\n\\nattribution, as they offer a complete explanation + - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3596,7 +3795,7 @@ interactions: connection: - keep-alive content-length: - - "6093" + - "6241" content-type: - application/json host: @@ -3628,26 +3827,27 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFTbbts4EH33Vwz4UhuwA9ubxlm/BWl3N9tiUWCxQIG6MEbkyJqGIlUO - mUQI8u8LSrKt3l4EiGcuZ85cnicAio3agtIVRl03dnH791X698/27dc//vmwNJv/4oe/Nrfmdn1/ - 9w5v1Tx7+OIL6Xj0utC+bixF9q6HdSCMlKOuNq+vrzbL6/V1B9TekM1uhyYuLv1ivVxfLlarxXo5 - OFaeNYnawqcJAMBz980UnaEntYXl/PhSkwgeSG1PRgAqeJtfFIqwRHRRzc+g9i6S61g/7xzATkmq - awztTm1hp94+NRbZYWEJbkLkkjWjhTsXyVo+kNME0483dzNgAYSSyRoovU5CBryDJvgHNuwOwC5S - aAJFzJIIoDNAObobHkofwBA1YAmDyy7TN+9n0KkDTSDDujOcAxoTSCSbxIrgVWFR3y8K//QKHMYU - CHyZEaHeWy7g480dINcC0QO5CjPvGJLEjkcSLNhybKFowZclhZ6x8KGKkql7eKxawIFNjfckIA3p - LMiY3AW8oxa0d5qazrPLzE7bZGikwZBumvkbOgTqOFepRgfJGQq5UeZo5stj6tkcviTp+jDINv2a - 0EXOsj4Q1BQDa4FYYYQHtGwwDir09T76ECt2JDKb/9iDqSHRgZv+T1sMXLZHnQOh+K4xBVXszLju - WS8xCzQYIutkMdgWAll6QBezELqimiWGdg6PFQUa1Zljvnk/jgcaHRwSG4KqbXzXzGFmnOQO940F - 48H5mPO0edykSYF9EtA+BLJ9VRc7Ne9He6CjaS/aB+pHfLU84Xlq91zjgSRjJVqhnXsZ70ugMgnm - dXXJ2hGAzvlhtvOmfh6Ql9NuWn9ogi/kO1dVsmOp9r26eQ8l+kZ16MsE4HN3A9I3a62a4Osm7qO/ - py7dar0cjoA6n50RfHk9oNFHtCPgtxPyTci9oYhsZXRIlEZdkRn5rl6vT0VgMuzP2HIyqv1HSj8L - f5quUZRfhj8DOi8amf15dn5mFiif5l+ZnbTuCCuh8MCa9pEp5H4YKjHZ/moqaSVSvS/ZHfIqc386 - y2a/Wf1emKJEc6UmL5P/AQAA//8DANVGKhFDBgAA + H4sIAAAAAAAAAwAAAP//dFTBbhs5DL37K4g5JcDYsJ24SXwL2iyQRTd76QIF1oXNkTgzbDSSKnLc + uEH+faFx4rjd9GJ49Piox0eRjyOAgm2xhMK0qKaLbvz+z7vK3nleXH1o3t83n8x9+vzX39f/3H38 + gy6LMjNC9ZWMvrAmJnTRkXLwe9gkQqWcdXaxuLw4W0ynVwPQBUsu05qo4/Mwnk/n5+PZbDyfPhPb + wIakWMK/IwCAx+E3S/SWHoolTMuXk45EsKFieQgCKFJw+aRAERZFr0X5CprglfygerPZfJXgV/5x + 5QFWhfRdh2m3KpawKj5f38LJzUN0yB4rR3CdlGs2jA5uvZJz3JA3dAqJakoCGqAjbYMV0BYVjMPE + 9Q60JbBkWDj4cYf37BuIKRgSgVDD9S0MfkgJEZOy6R0mtwNLFMERJp8JJx8+nh7ivrdsWsBEEGol + D2hMn1AJql7B5bzslVJMpFn5BHIt7LfBbUkAQb+HsSjFFxlLqDmJlmBpSy7EfCH+kjZE/NbTXkIJ + 6C0ImeBtCWhtJlC2ymNu/+AFq0BMZNkMRxO4OQ4w6KEiMKjUhMQ/yAIKNC5U6CAkcMGgG67BoZrE + XtjASdWz03wQBl8HOaeZQA+HmBhEx20wpxO42aLrhyuz1dmGlxaxN6632Q7VxFWvJOD4ngAHvVix + Y92V8PyoyZNI/kqJjO4/bOiQPWCMjs2BULOl/b8Uql6eYwfDIiZh3U3gU0tCxze35CKgSO5drutb + jznHQOt1yJwL+Mlj9rDFxKGXFwnDeQnS59chYFrqONsYU4iUdHfUj8mqKPePPpGjLXpDazEh0f7x + z6YHvBeya+6wIclYjU5o5Z9WfrPZHM9VoroXzGPte+eOAPQ+6F5bnugvz8jTYYZdaGIKlfxCLWr2 + LO06EUrweV5FQywG9GkE8GXYFf1P41/EFLqoaw33NFw3m8+u9gmL1/V0BL87f0Y1KLoj4OzyrHwj + 5dqSIjs5WjiFQdOSPeLOFvNDEdhbDq/YdHRU+/8lvZV+Xz/75ijLb9O/AsZQVLLr156/FZYor/Df + hR28HgQXQmnLhtbKlHI/LNXYu/12LWQnSt26Zt/k1cP7FVvH9eLdrJovLi5sVYyeRv8BAAD//wMA + 7IASv2sGAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de327d9ed3c35-SJC + - 98440211aa0367a2-SJC Connection: - keep-alive Content-Encoding: @@ -3655,14 +3855,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:31 GMT + - Wed, 24 Sep 2025 17:30:13 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=gUtFsLdsSc6a3kJSF.MR4BPuiJCzdabOvGWDIUxxjSk-1758670831-1.0.1.1-JcGtRbYZ6g1zG03hF4XYiZ_gJCBmiiVO6scG3O7pxchxeWi1G4rpaqZZP3tJ60jQIy.KfzcD_70K._aVlFL1A3lEXMSv9yJD0Hzs2E0y3o0; - path=/; expires=Wed, 24-Sep-25 00:10:31 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=gCGKf1ve4Lz1CJhkn9h..akgNC5EcckQivCINu31fb8-1758735013-1.0.1.1-5D5ek6xDM9JJwtWkMa9AsY.5tI5ioKUUKIj5Sc6l76eeIqcp8Ce8DDhyJ_D.ID4ThZ_QXopV_TW_ZOB4tUgDGK95GydJaKGgF5CA2Jqr95g; + path=/; expires=Wed, 24-Sep-25 18:00:13 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=iPl_WP8lrdyN8ppfswhn2ZBP4CLIiZUBXJszzrKqJNw-1758670831251-0.0.1.1-604800000; + - _cfuvid=2Wq6SCJj.gR6gqyGNaXnc1XNLobCgYXmCjjxs4.1keE-1758735013212-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -3677,13 +3877,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2366" + - "3585" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2400" + - "3605" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3693,28 +3893,31 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998544" + - "29998514" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_62bd6d57dd56449fa16edd27e13217ab + - req_d38666e52a804df49316401cf219fb88 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 20-22: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnal + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 20-22: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnal molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual @@ -3779,7 +3982,7 @@ interactions: the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain molecular property prediction models because users are more\\n\\nlikely to trust explained predictions, and explanations can help assess - if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3788,7 +3991,7 @@ interactions: connection: - keep-alive content-length: - - "6087" + - "6260" content-type: - application/json host: @@ -3820,26 +4023,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3xUTY/bRgy9+1cQc+lFNmxns7vxbRukiIsCBdIi3bYOjNEMJbEezahDjuvNYv97 - MZI/lGQ3Fx34ho+PjyIfJwCKrFqBMo0W03Zu+vbn6/Tb/N2Pfx3+xLJ6/+ubD/eff/r4x/rjh1/q - oIqcEcp/0Mgpa2ZC2zkUCn6ATUQtmFkXN69vr2/mt8vbHmiDRZfT6k6mV2G6nC+vpovFdDk/JjaB - DLJawd8TAIDH/psleosHtYJ5cYq0yKxrVKvzIwAVg8sRpZmJRXtRxQU0wQv6XvXjxgNsFKe21fFh - o1awUfd36wJChHeHzmnyunQId1GoIkPawdoLOkc1eoMFRKwwMkiAFqUJlkF7C4Km8fRvQobEaHtY - 7xCkQegiWjLZI4ZQwd0aejMYyAvGLqL0FTNN8hZjlm/7kARoUqs9z2Dte66+k4NknjY4NMnpCF0M - HUZ5GFUq4D7XOSp0tMPRexNSrlxpI0k7wNy214PArMIim0idhPgVFvHcHQ5eQem02U3LcDg2NYO3 - 32Envw9uj9CSp1Y7MI32NfZu6pNA/IGBJSYjKfYWaCcYgYRP/aE9tUzIBfzXkMMXRSdG4BRjqLXg - yfnMKhKpTPLlfCQAd2jy6EeGVaizGJ7B7w0ynn1F32hvECQmFiCfZztmy2Z2MezJIug+1o+VPFPd - CEMVItjQZh/xkPvhAjiZBjSDabAlzpHyARz5Hfl6JOnsUK/5YscwazboZbZRxfC3R3S4z0q3bELE - 4a9fzM94HuqWWl0jZ6zSjnHjn8YrFLFKrPMG++TcCNDeBxm8zsv76Yg8ndfVhbqLoeSvUlVFnrjZ - RtQcfF5NltCpHn2aAHzqz0L6YtNVF0PbyVbCDvtyi+X1ciBUl0s0gq8WR1SCaDcG5q+KZyi3FkWT - 49FtUUabBu0od/F6eW5CJ0vhgs0no96/lfQc/dA/+XrE8iL9BTAGO0G7vfxuzz2LmK/1S8/OXveC - FWPck8GtEMY8D4uVTm44pIofWLDdVuTrfLNouKZVt71ZvCltWWl7rSZPk/8BAAD//wMAnTlNVlYG - AAA= + H4sIAAAAAAAAAwAAAP//dFTBbts4EL37Kwa8dBeQDdu168S3bNFDiu4CuyjQBdaFQZEjaRqKVDlD + b4wg/15Qim2lTS4CxEe+eTNvZh4mAIqs2oIyjRbTdm76/uNfpcXr9M3ixw/rv1erT38yrtb/fPm8 + +eOtKvKLUH5DI6dXMxPazqFQ8ANsImrBzLrYrK82b9fz+XUPtMGiy8/qTqarMF3Ol6vpYjFdzp8e + NoEMstrCfxMAgIf+myV6i/dqC/PidNIis65Rbc+XAFQMLp8ozUws2osqLqAJXtD3qh92HmCnOLWt + jsed2sJO/XtzC799uO+cJq9Lh3AThSoypB3cekHnqEZv8HeIWGFkkAAtShMsg/YWBE3j6XtChsRo + e1jfIUiD0EW0ZHKBGEIFpdPmblqGe+gLwkBeMHYRpQ+c2ZK3GHMKNh/N4Nb3RH0O95JJ2uDQJKcj + dDF0GOU4ClNATuckz9Edju6bkHK8ShtJ2gHmnL0e1OXYFtlE6iTEn7CIfWozeP+MIes/BHdAaMlT + qx2wxGQkRe3ANNrX2FdLnzRg/+cEI5DwSTbaUyaEXMD/DTl8VUtiBE4xhloLnsqYWUUilUme11wC + cIcm2zmqQ4VaUkSewecGGc/lQt9obxAkJpYCtDHITCU5kmMxuCP9T7bh5hbIg2mwJZZ4hDLbEA5k + ydeg+/jZwQJsaDX5aUSHB+0FyDPVjQzRYej8THgxDix26C1DGMzXyVLuwAK6FLvAOIgZ9OUc86W+ + FG+eWsprx7OdKoZ2fwptcM8mRBza/voMZ2v31OoaOUOVdow7/zgeoYhVYp0n2CfnRoD2PshgTR7e + r0/I43lcXai7GEr+6amqyBM3+4iag8+jyRI61aOPE4Cv/VpIzyZddTG0newl3GEfbrG8vhoI1WUT + jeDVCZUg2o2B1bviBcq9RdHkeLRblNGmQTuOeXXZRdmYcMHmk1Huv0p6iX7In3w9YnmV/gIYg52g + 3V96/aVrEfO2fu3auda9YMUYD2RwL4Qx+2Gx0skNi1TxkQXbfUW+zvuKhm1adfv1u0W5XG82tlST + x8kPAAAA//8DABpjQUJWBgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de327eda9909c-SJC + - 98440211a919f555-SJC Connection: - keep-alive Content-Encoding: @@ -3847,14 +4050,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:31 GMT + - Wed, 24 Sep 2025 17:30:13 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=Bq5t6IcnMlqPLLJ3h_X0ECXg8.PBcxp8AsYWtT7D9NY-1758670831-1.0.1.1-DtO23oW9ftUb0PuVqZkVcXCYeNzFrlWPuQybuTvPTYEj6vZbe2xOLgrIbMbb.GrIcUnVvoo1.5OfVNTdz1CcLB4gEAkfCsl2IheW2IMw6ls; - path=/; expires=Wed, 24-Sep-25 00:10:31 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=_IcjykGjHN8p_Py78FOEZ9WArD3zGukFIRJC8GCP2fQ-1758735013-1.0.1.1-3kXZnLNJTg8xaOW0DbcDFDjwIjbBOmJKMDs_Z7YFVnxmPX9FkQU9tgCb1.cYvdrJh5dxiSwh_Voo9IUCrAI3LdFkbHafpz26XWG3PFvMcAw; + path=/; expires=Wed, 24-Sep-25 18:00:13 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=2c3LkuvfFRxPtokhKTJKKF8wjRPMmP_oEHjxy.aEmEg-1758670831734-0.0.1.1-604800000; + - _cfuvid=4Td5ye5LAmFMyoN1y4s02njotx8n9H3UJNezvMnh_f0-1758735013258-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -3869,13 +4072,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2875" + - "3591" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2894" + - "3651" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3885,28 +4088,31 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998543" + - "29998506" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_837d3e0c65bf4d8cb14e3ac7266fc033 + - req_f680a7f4c07b417ab2762bef502f84b3 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 25-28: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n2021, + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 25-28: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n2021, 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. @@ -3973,7 +4179,7 @@ interactions: Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international\\n\\n\\n 27 conference - on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3982,7 +4188,7 @@ interactions: connection: - keep-alive content-length: - - "6109" + - "6282" content-type: - application/json host: @@ -4014,26 +4220,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNbxs3EL3rVwx4cQusBMmxZVk3tU1QNbe2RgJUgTAiZ3en5seaQ9pW - Df/3grvWR9rkIgH7+B7fG87MywhAsVFLULrFpF1nxz//Ns9/iNs/PCA/8d3VA3+8/6VezD99ePfh - TlWFEXZ/k04H1kQH11lKHPwA60iYqKjObq4X85vp4nLRAy4YsoXWdGl8FcaX08ur8Ww2vpy+EdvA - mkQt4a8RAMBL/1ssekPPagnT6vDFkQg2pJbHQwAqBlu+KBRhSeiTqk6gDj6R712/bDzARkl2DuN+ - o5awUX+2BPSsKXYJuhge2ZBApJoieU0CKcAjRg5Z4CnEewHDorMI+wbeP3cW2ePOEqxi4po1o4W1 - T2QtN0UAfvi8Wv84gc+rNbAAQs1kDdRBZyEDwYPD+6K1WoPsJZETcCESsE8Uu0ipV0dvIHtDscQz - /acUoM0OvUxgnYC9trlY18Fr6pJUkPA5+OCYpOr5jlIbjEAdIkSSLnjh3vm6AhR4ImvLP3adZY3l - WQXYA0ZCAcv3BC5Y0tliBNFc0lVAnmKzP1gfLkLbhMipdazBkGbh4MdDzAl8pP1bITUnMgfjICkb - JikV0SGX8DXqlNEClSr7wVAFkmMMDabixpB9uzK1BLpFa8k3RaSGHZcs3kCNHD1Jn2W1nsDKGC5a - aO2+Ak7gyA9hIzXZYgpxD3VER4PNPnnRf393IXARuWlTKf6ZrYujh08tJ4JfQxa6kPKmP7G1xc7v - hSYVkOtaFP6nPHkhsOtCTFg6JdSQInrpsLTeftCMWdLg/FDjyUZVQx9HsvRYqFvRIdLQz7dHuDTY - lh02JAWq0Qpt/Ov5bESqs2AZTZ+tPQPQ+5CGkpep/PKGvB7n0Iami2En/6Gqmj1Luy09E3yZOUmh - Uz36OgL40s97/mqEVReD69I2hXvqr5vNr68HQXVaMWfw1e0bmkJCewYsplfVNyS3hhKylbOloTTq - lswZ9/rd/BgCs+Fwwqajs+z/t/Qt+SE/++ZM5bvyJ0CX0SWz7SIZ1l/HPh2LVNbw944da90bVkLx - kTVtE1Ms72GoxmyHDamGltrW7JuybHhYk3W3vZnd7syuRjNXo9fRvwAAAP//AwA9lFVSLwYAAA== + H4sIAAAAAAAAAwAAAP//dFTbbhtHDH3XVxDzkMSAJEjyRbHehNQN1BapEbRogCqQuDPcXdqznO1w + NrFg+N+LWcm2nMuLsJrDQ/Lwdj8AMOzMAoytMdmm9aN3v30o3N3ph5t/ros/lnJLhQ3Wz3dXl3+1 + 12aYGaG4IZseWWMbmtZT4iB72EbCRNnrdH7+dn56Pplc9kATHPlMq9o0Oguj2WR2NppOR7PJgVgH + tqRmAf8OAADu+9+coji6MwuYDB9fGlLFisziyQjAxODzi0FV1oSSzPAZtEESSZ/1dru90SBruV8L + wNpo1zQYd2uzgLW5ums9smDhCZYxccmW0cNKEnnPFYklePNpuTqBSCVFhRSgoVQHp4DiIJGthf/r + SIEFlitINSZo8JYg1QSOLCsHGTV4y1JBG4MlVVIIJfQFUkgRRVuMJKl3yZIotpFSn1QKUHcNio7h + d9rB1xBv+1DZe8nks731ncvpR6aEQAnQj+HNbDK9PBnC15ptDaFLnoUUbBBLbdIhJLwLEhomHfZx + bY3ek1SkUIYIkbQNotxXZrU3ed+JZBmvYFnjNxEcq+16ab8sP14vXyt8Wq6y4CpiM4Y/U00RJOxV + 5fZELro8Rvqk4CMXxDEcK7g4gSBgfW5yyRSBcsMEM/FFI67Ro+Vj7mzacxE6yVTX51NGbCgXcdz/ + RW76lqJzkVSBVXMrPef+xU7TEErkKKSHIqG1oZOEBXtOu0PPdaeJmmyhUHNVe67qRA6KHbwPwTUo + 8Ap+9XiXv7Kq+cl+eGqCq79fa/YRqep8L0vHazPcj2okT19QLG3Uhkh5ZKeTA9YpuQ03WJHm9xK9 + 0loe1rLdbo83IVLZKeZFlM77IwAld6OPmHfw8wF5eNo6H6o2hkK/oZqShbXeREINkjdMU2hNjz4M + AD732929WFjTxtC0aZPCLfXhpheX071D83xQjuD56QFNIaE/At5enA1/4HLjKCF7PToRxqKtyR3H + fORm9Z3j8IxNBkfav0/pR+73+lmqIy8/df8M2Lx+5DZtJMf2pexns0j56P7M7KnWfcJGKX5hS5vE + FHM/HJXY+f09NPvh3JQsVT4rvD+KZbs5v5gWs/P53BVm8DD4HwAA//8DACPBR0gdBgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de327ea1e7ad6-SJC + - 98440211af8622d2-SJC Connection: - keep-alive Content-Encoding: @@ -4041,14 +4247,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:32 GMT + - Wed, 24 Sep 2025 17:30:13 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=2wA4yhfVvoxftDnjMkfDwZ9oZU3Z6OsHoWFwR9GbKkU-1758670832-1.0.1.1-TYVRY5MzyEpJjKDBIAVHr7zQtYgg0k85an0tt1Ep6gfLWpuf2vlt6FF.zpXqtNdylGAMJDRwU9QSv_BxMLIfRSAcX6.hJb0iesc6WSoAm10; - path=/; expires=Wed, 24-Sep-25 00:10:32 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=PpnAyLA5D6Ipr0xFUfzPHF.O._Nz0tQnNB9Cwcyaszw-1758735013-1.0.1.1-4AQSZQ.SdQC.gIzFQXTBS4JcWYg8ZvNBDWx3aKW7AIoBq1pg5vG09JUOowDXBZrAelpL8DQO4wQMpNrygoqrZljuNFmuZwzW4iGG9Mff8.U; + path=/; expires=Wed, 24-Sep-25 18:00:13 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=FJFTk_sR9HO1n9grTcGIk2RPqVy8qxeuTlAEtaSyrsE-1758670832710-0.0.1.1-604800000; + - _cfuvid=YJ8eyOpwBiSEXLW0m7cPts1kzceST826sitE3s8TMIM-1758735013464-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -4063,13 +4269,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3826" + - "3799" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3846" + - "3844" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4079,221 +4285,31 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998547" + - "29998510" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_e569025522274b42bb2e9814c666aaee + - req_a82462f0f47646d487b6eb24d6511193 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 3-5: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n - a passive characteristic of a model, whereas explainability\\n\\nis an active - characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, - an explanation is extra information that gives the context and a cause for one - or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n - \ Accuracy and interpretability are two attractive characteristics of DL models. - However,\\n\\nDL models are often highly accurate and less interpretable.28,30 - XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. - XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate - but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. - Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe - explanations should give insight into the underlying mechanism.\\n\\n In the - remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction - while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin - various systems these methods yield explanations that are consistent with known - and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn - this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding - our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. - According to their classification, interpretations can be categorized as global - or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. - For example, counterfactuals are\\n\\nlocal interpretations, as these can explain - only a given instance. The second classification is\\n\\nbased on the relation - between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) - or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand - is self-explanatory32 These are also referred to as white-box models to contrast - them\\n\\nwith non-interpretable black box models.28 An extrinsic method is - one that can be applied\\n\\npost-training to any model.33 Post-hoc methods - found in the literature focus on interpreting\\n\\nmodels through 1) training - data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 - or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation - and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 - Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused - the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe - may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof - physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan - be evaluated by considering its agreement with physical observations, which - they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests - that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence - strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. - In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases - and subjectivity can be used to measure the correctness.40 Other similar metrics - of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be - found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced - CIME an interactive web-based tool that allows the\\n\\nusers to inspect model - explanations. The aim of this study is to bridge the gap between\\n\\nanalysis - of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n - \ 4evaluation metric is necessary in XAI. - We suggest the following attributes can be used to\\n\\nevaluate explanations. - However, the relative importance of each attribute may depend on\\n\\nthe application - - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability - of a static physics based model. Therefore, one can select relative importance\\n\\nof - each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it - clear how we could change the input features to modify the output?\\n\\n\\n - \ \u2022 Complete. Does the explanation completely account for the prediction? - Did features\\n\\n not included in the explanation really contribute zero - effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation - agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n - \ \u2022 Domain Applicable. Does the explanation use language and concepts - of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the - explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the - explanation change significantly with small changes to the model or\\n\\n instance - being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n - \ We present an example evaluation of the SHAP explanation method based on the - above\\n\\nattributes.44 Shapley values were proposed as a local explanation - method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6068" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RUTW8jNwy9+1cQOiWAHdjZfK1vQbsLZLGXIg0QtF4YHInjYa2RBiLHiRvkvxfS - OI7dzV4GIz1+vEeKfBkBGHZmDsY2qLbt/OS3b1f9ffW0/qu9f/j6/X7z4GeP9R9f/7y8+Pfhmxln - j1j9Q1bfvM5sbDtPyjEMsE2ESjnq7Pry5up6enN+U4A2OvLZbdXp5CJOzqfnF5PZbHI+3Tk2kS2J - mcPfIwCAl/LNFIOjZzOH6fjtpiURXJGZ740ATIo+3xgUYVEMasbvoI1BKRTWL4sAsDDSty2m7cLM - YWG+PHceOWDlCW6Tcs2W0cNdUPKeVxQswcnj7d0pJKopCWiElrSJTgCDgy5FSyIkoA0qtLgm0IbA - kWXhGCYtrjmsINZwewelEjKGDpOy7T0mvwVH1IEnTCEbnvz+/XRvx0EpdYm08Mv5+uAoZZEuX53B - 4+0dcNhEvyHJZDbschR0jnNn0AOHOqYW8ymTtx4T19tCstTmWUtgi31WUVHDRRY5ttlHzuBOgQVi - rRQAQZ/iRJS6N+lzqDmJjsHRhnzsSvoAaG2fUAmqXiHEMDnWUhSOS2ZtclxXeFNuRyhkS6lZ5ZhL - 1vtWf4sBKspFShyELZxUPXvNF7HoK0lOISag571NF0UnTbSnZ/Blg75HzYmP6oiqiateScDzmgBL - dqzYs27HsHv4FEgkn1Iiq8PBxRY5AHadZ7t3qNnR8Jdi1cvONmuX3loOg/eumXL8Onqhus9dhJrJ - ux0j21DLFn1uQkdJtwdVynVDz6twXM0n1gbWIT4F6JqtFO+WbIOBpZWzhRkP45HI0waDpaXYmGgY - k9l0j/dCbsktrkgyVqMXWoTXw5lLVPeCeeRD7/0BgCFEHfjkaf+xQ1738+3jqkuxkv+5mpoDS7NM - hBJDnmXR2JmCvo4AfpQ90h+tBtOl2Ha61Limkm42u/k0BDTvq+sAvrrcoRoV/QHw6eJm/EHIpSNF - 9nKwjIxF25A7zHl5vheBveP4jk1HB9p/pvRR+EE/h9VBlF+GfwespU7JLd/fyEdmifJ6/5XZvtaF - sBFKG7a0VKaU++Goxt4Pm9fIVpTaZc1hlUeeh/Vbd8vr2efKVTW6KzN6Hf0HAAD//wMAypD7D4cG - AAA= - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 983de327de147af1-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Tue, 23 Sep 2025 23:40:32 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=NL5ZB_yhdHFXJfM0DUnzPUH_debj5NMQtTIJuXj8gYc-1758670832-1.0.1.1-908TuwWzj2b6_n94N7eRbEFk0GMiMr9q9xDuc4YYolc72_xsW5TMevcGxga2Wh7tuGnWElukv_EG96xjw0_cNgnkEAAqbY3Gr6JoFHev8qc; - path=/; expires=Wed, 24-Sep-25 00:10:32 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=hcgceY2Ro44pLUxbOpwAdL_m_ECQtrziBvasUWEMg_c-1758670832973-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "4066" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "4092" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998551" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 2ms - x-request-id: - - req_cd76ebfbbfee439eb1b2c9a28c2cfc74 - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 22-25: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nut + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 22-25: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nut to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain molecular property prediction models because users are more\\n\\nlikely to trust explained predictions, and explanations can help assess @@ -4360,7 +4376,7 @@ interactions: (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-ac\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4369,7 +4385,7 @@ interactions: connection: - keep-alive content-length: - - "6096" + - "6269" content-type: - application/json host: @@ -4401,26 +4417,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNi+NGEL37VxR9SkA2tjNfO7chBDILgSSHMCReTKm7JFWm1d10lcyY - Yf57aMljK7uzF4P1ql6/evXxugAw7Mw9GNuh2j755c+fb4a//jxsQ/g00Lo7fH6q89Xvf/z9+Ft4 - +tVUJSPW/5LV96yVjX3ypBzDBNtMqFRYN7fXdze367ufNiPQR0e+pLVJl1dxuV1vr5abzXK7PiV2 - kS2JuYd/FgAAr+NvkRgcvZh7WFfvX3oSwZbM/TkIwOToyxeDIiyKQU11AW0MSmFU/boLADsjQ99j - Pu7MPezM08NjBTHDLy/JIwesPcFDVm7YMnp4DErec0vBUgUsgNCTdtHBIORAI9CUCCmTY1vcEOjR - EdRH6KMnO3jMkHJMlPU4C4PRFlnBowJyL4WMQzFRCDQPosABtCOhU2ihTDke2HFop4cDTi9qhwod - +VR0ZYEhOMrFCwfcFJKJolTgCXMoBDbmTFbBdtSzRQ8pc7CcPMkKnh4eT5UKWAxFmR8cwQEzx0Gg - ibkXiM1cBmRKmYSCjn8rkMF2gAJKL1rN3EDVzPUwSh/dtzFYSnoyw0sEdC6TCAnYDr2n0JKA52cC - Rw2P+i98bmx76RA6TPqNO00sMU1DmYICDo5LPwV+oFW7qiYDRKUCF63GLD9WUJyjA/oBR7ri4Mmv - QCIjjCl5tlizZz1+ZcXJQRZImJVHmf4I3KeYy4QWV2qP9nlZx5f39mKm9wng0PrjNGMcwGbWsUMN - k3cnHzpCr50tSaPYcOAcQ1/c9yB2LHG1M9U09Jk8HYpHe7Ex0zT8m/UZL0/tuceWpGANeqFdeJtv - UqZmECyLHAbvZwCGEKeWjzv85YS8nbfWxzblWMtXqaY0Urp9KTiGsqGiMZkRfVsAfBmvw/C/hTcp - xz7pXuMzjc9trrbbidBcDtIcvj6hGhX9DLi+ua0+oNw7UmQvsxNjLNqO3Jx0fXcuooxTvGDrxaz2 - byV9RD/Vz6GdsXyX/gLYsjLk9peT8lFYpnK0vxd29noUbITygS3tlSmXfjhqcPDTPTVyFKV+33Bo - KZdbMR7VJu1vN59qVzfobszibfEfAAAA//8DAIamJ3RdBgAA + H4sIAAAAAAAAAwAAAP//dFRNjxs3DL37VxA6JYBt+GNdb3wLghZJE/QQ9FCgDgxa4syw1khTUuOs + u9j/XkjjXU/a5DLA6JGP5OPH4wTAsDM7MLbBZNvOz979+tuxkdP7u6+fqs/v+NP9x1+26/R+uyb+ + vDLT7BGPf5FNz15zG9vOU+IYBtgKYaLMutxu7rfrzWK5LkAbHfnsVndpdhdnq8XqbrZczlaLq2MT + 2ZKaHfw5AQB4LN+cYnD0YHawmD6/tKSKNZndixGAkejzi0FV1oQhmekNtDEkCiXrx30A2Bvt2xbl + sjc72Js/3n6AVz8/dB454NETvJXEFVtGDx9CIu+5pmDpNXCA1BAUvocEsYI2erK9R4FOYkeSLtAJ + ObZZEyhVKyC3CilmkzM7AsqxAmYThSrKYDdyLNYUGgyWIEmvaQoUtBcq8QdzTyhBwUYRsglsQy1b + zDQcLHeedAoYHFRo2XPCRODIsnIMsxZPHOpcj4stclDwfCJoCH1qLAoVTwpnlhhaCgk9qOWswhw+ + 0gVsg95TqEmBg/W9y+QVh8w6Kg+EOiHNBOX3Fc3r+RSyetORdpqkt6kX0tdTcJRI2oHqZuJKWy0V + vWzsQyKp0KYefa7TOSHV7CJU9x5TlAsI/d2zUM5fpyWtKNnkRSrt8MoohJ7/Kd2/xnyWz9GZfOyy + n140UYuJLVSCLX2NchpadUbfZ4HHpV8bE0i1EGHXebZ4zM24zOH3hpQAtSObFLLkVjiVtFDh6NGe + Zsf48DxDSTAoF+JKYgtZVRTbDHOF9uo5xCgzNN+b6TDtQp7OWbyD2iiUp/7NFeqV3IFbrEnzc4Ve + aR+extsjVPWKeXlD7/0IwBDi0Neyt1+uyNPLpvpYdxKP+h9Xk+dEm4MQagx5KzXFzhT0aQLwpVyE + /pslN53EtkuHFE9Uwi3vNvcDobkdoRG8Xl3RFBP6EbB5cz0l31IeHCVkr6OzYizahtw45uL+pQjs + HccbtpiMav9/St+jH+rnUI9Yfkh/A6ylLpE73M7F98yE8qH+kdmL1iVhoyRntnRITJL74ajC3g83 + 1AxTf6g41CT5uJRDWnWHzU/L42qz3bqjmTxN/gUAAP//AwD1xTo6UQYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de3378cb33c35-SJC + - 98440227ed8c17f0-SJC Connection: - keep-alive Content-Encoding: @@ -4428,7 +4444,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:33 GMT + - Wed, 24 Sep 2025 17:30:15 GMT Server: - cloudflare Strict-Transport-Security: @@ -4444,13 +4460,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2284" + - "2506" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2301" + - "2537" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4460,93 +4476,98 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998549" + - "29998512" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_317cce3ed66947389ab5af1c7abc65b2 + - req_2d37431f7a354e40a52e6494622664ae status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt - from Wellawatte2023 pages 14-16: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nsame - optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named - Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness - via exposure to adversarial examples. While there are\\n\\nconceptual disparities, - we note that the counterfactual and adversarial explanations are\\n\\nequivalent - mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules - that differ structurally at only\\n\\none site by a known transformation.112,113 - MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these - facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 - Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated - with a significant change in the properties. In the case the associated changes - in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 - The con-\\n\\nnection between MMPs and adversarial training examples has been - explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual - category are commonly used in outlier\\n\\nand activity cliff detection.113 - This approach is analogous to counterfactual explanations,\\n\\nas the common - objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel - interpretation is certainly not new and a common step in ML in chemistry, but - XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 - Here we illustrate some practical\\n\\nexamples drawn from our published work - on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret - black-box models and connect the explanations to structure-property relationships.\\n\\nThe - methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D - (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 - Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can - propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain - barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the - blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and - discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification - problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, - we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent - Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals - explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 - Both the models were trained on the dataset developed by Martins et al. 124. - The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular - descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented - in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n - \ According to the counterfactuals of the instance molecule in figure 1, we - observe that the\\n\\nmodifications to the carboxylic acid group enable the - negative example molecule to permeate\\n\\nthe BBB. Experimental findings by - Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed - by hydrophobic interactions and surface area. The carboxylic group is\\n\\na - hydrophilic functional group which hinders hydrophobic interactions and addition - of atoms\\n\\nenhances the surface area. This proves the advantage of using - counterfactual explanations,\\n\\nas they suggest actionable modification to - the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor - explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, - using the method described by Gandhi and White 10. We see that\\n\\npredicted - permeability is positively correlated with the aromaticity of the molecule, - while\\n\\n\\n 15negatively correlated - with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property - relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 - The substructure attributions indicates a reduction in hydrogen bond donors - and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable - by chemists.\\n\\nFinally, we can use a natural language model to summarize - the findings into a written\\n\\nexplanation, as shown in the printed text in - Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot - permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of - ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions - and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal - Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule - solubility prediction is a classic cheminformatics regression challenge and - is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 - In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras - to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 8-9: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nrepresented + with equation 2.\\n\\n \u2206\u02C6f(\u20D7x) + \u2248\u2202\u02C6f(\u20D7x) (2)\\n \u2206xi + \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) + \ where \u02C6f(x) is the black-box model and are used as our attributions. + The left- \u2206xi\\n\\nhand + side of equation 2 says that we attribute each input feature xi by how much + one unit\\n\\nchange in it would affect the output of \u02C6f(x). If \u02C6f(x) + is a linear surrogate model, then this\\n\\nmethod reconciles with LIME.35 In + DL models, \u2207xf(x), suffers from the shattered gradients\\n\\nproblem.62 + This means directly computing the quantity leads to numeric problems. The\\n\\ndifferent + gradient based approaches are mostly distinguishable based on how the gradient + is\\n\\napproximated.\\n\\n Gradient based explanations have been widely used + to interpret chemistry predictions.60,66\u201370\\n\\nMcCloskey et al. 60 used + graph convolutional networks (GCNs) to predict protein-ligand\\n\\nbinding and + explained the binding logic for these predictions using integrated gradients.\\n\\nPope + et al. 66 and Jim\xB4enez-Luna et al. 67 show application of gradCAM and integrated + gradi-\\n\\nents to explain molecular property predictions from trained graph + neural networks (GNNs).\\n\\nSanchez-Lengeling et al. 68 present comprehensive, + open-source XAI benchmarks to explain\\n\\nGNNs and other graph based models. + They compare the performance of class activation\\n\\nmaps (CAM),63 gradCAM,64 + smoothGrad,,65 integrated gradients62 and attention mecha-\\n\\nnisms for explaining + outcomes of classification as well as regression tasks. They concluded\\n\\nthat + CAM and integrated gradients perform well for graph based models. Another attempt\\n\\nat + creating XAI benchmarks for graph models was made by Rao et al. 70. They compared\\n\\nthese + gradient based methods to find subgraph importance when predicting activity + cliffs\\n\\nand concluded that gradCAM and integrated gradients provided the + most interpretability\\n\\nfor GNNs. The GNNExplainer69 is an approach for + generating explanations (local and\\n\\nglobal) for graph based models. This + method focuses on identifying which sub-graphs con-\\n\\ntribute most to the + prediction by maximizing mutual information between the prediction\\n\\nand + distribution of all possible sub-graphs. Ying et al. 69 show that GNNExplainer + can be\\n\\nused to obtain model-agnostic explanations. SubgraphX is a similar + method that explains\\n\\nGNN predictions by identifying important subgraphs.71\\n\\n + \ Another set of approaches like DeepLIFT72 and Layerwise Relevance backPropagation73\\n\\n\\n\\n + \ 8(LRP) are based on backpropagation of + the prediction scores through each layer of the neu-\\n\\nral network. The specific + backpropagation logic across various activation functions differs\\n\\nin these + approaches, which means each layer must have its own implementation. Baldas-\\n\\nsarre + and Azizpour 74 showed application of LRP to explain aqueous solubility prediction + for\\n\\nmolecules.\\n\\n SHAP is a model-agnostic feature attribution method + that is inspired from the game\\n\\ntheory concept of Shapley values.44,46 SHAP + has been popularly used in explaining molecular\\n\\nprediction models.75\u201378 + It\u2019s an additive feature contribution approach, which assumes that\\n\\nan + explanation model is a linear combination of binary variables z. If the Shapley + value\\nfor the ith feature is \u03D5i, then the explanation is \u02C6f(\u20D7x) + = Pi \u03D5i(\u20D7x)zi(\u20D7x). Shapley values for\\n\\nfeatures are computed + using Equation 3.79,80\\n\\n\\n\\n M\\n 1\\n + \ \u03D5i(\u20D7x) = X \u02C6f (\u20D7z+i) + \u2212\u02C6f (\u20D7z\u2212i) (3)\\n M\\n\\n + \ Here \u20D7z is a fabricated example created from the original \u20D7x and + a random perturbation \u20D7x\u2032.\\n\\n\u20D7z+i has the feature i from \u20D7x + and \u20D7z\u2212i has the ith feature from \u20D7x\u2032. Some care should + be taken\\n\\nin constructing \u20D7z when working with molecular descriptors + to ensure that an impossible \u20D7z is\\n\\nnot sampled (e.g., high count of + acid groups but no hydrogen bond donors). M is the sample\\n\\nsize of perturbations + around \u20D7x. Shapley value computation is expensive, hence M is chosen\\n\\naccordingly. + Equation 3 is an approximation and gives contributions with an expectation\\nterm + as \u03D50 + Pi=1 \u03D5i(\u20D7x) = \u02C6f(\u20D7x).\\n\\n Visualization + based feature attribution has also been used for molecular data. In com-\\n\\nputer + science, saliency maps are a way to measure spatial feature contribution.81 + Simply put,\\n\\nsaliency maps draw a connection between the model\u2019s neural + fingerprint components (trained\\n\\nweights) and input features. Weber et al. + 82 used saliency maps to build an explainable GCN\\n\\narchitecture that gives + subgraph importance for small molecule activity prediction. On the\\n\\nother + hand, similarity maps compare model predictions for two or more molecules based + on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights + or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4555,7 +4576,7 @@ interactions: connection: - keep-alive content-length: - - "50812" + - "6281" content-type: - application/json host: @@ -4587,26 +4608,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3RUTW8bNxC961cMeF4ZkmNJrm9KkBQKkBa9FCmqQOKSo11aXM6WMxQkGP7vASlZ - 3ibOhYd5nDdvPp9GAMpZ9QDKtFpM1/vxh8/z9Dfdv+f6r0f6c/XP+/v0x2e3jMffqSFVZQ+qH9HI - i9eNoa73KI7CGTYRtWBmnS5m9/PF5P7dtAAdWfTZrellfEfj28nt3Xg6Hd9OLo4tOYOsHuDfEQDA - U3mzxGDxqB5gUr1YOmTWDaqH6ycAFclni9LMjkUHUdUraCgIhqJ6u90+MoV1eFoHgLXi1HU6ntbq - Adbq63JVAUX4eOy9dkHXHmEZxe2ccdrDKgh67xoMBiuIuMPIIAQdSkuWQQcLgqYN7r+EDNJqgU7v - EaRFsGgcOwrjTu9daKCPZJAZGWgHyxWUAjG4IBj7iFKCZ8YULMacki0mIWhTpwPfwCoU5pLdUTKP - abFzLPFUPG1MDVjHhg4YTxV8Xa7AMSRGm2muoaD22uzHNR0vKipIoTgBS0xGUsRxH6nHKCeI6HVu - OLeu56oEyhgxgjYZKDI7srls55+lSOTRJI98A58oAh51npwKDKWsY6eNJO0Bc+nDxc3oAJyaBlnA - tDo0OKTSA3nFrk3r8JBLzS7iWRZGccgVcDItaIbaE9lxHbULUOsYHUboMXZYQt6UGr3007s9wpcv - yw8fz+VENtH1UtQPVLbo+9yEgEYG2naor8r6iNYZ+UFTH+ngbB4GF9g1rZT2U2lq6bo/ZbDDnLvj - 7mVULmw5+M1aVedBjujxoIPBDRuKmAd6OrlgueMb1+kGOdslJlyH53XYbrfDNYm4S6zzlobk/QDQ - IZCcs80L+u2CPF9X0lPTR6r5B1e1c8Fxu4momUJePxbqVUGfRwDfyuqn/22z6iN1vWyE9ljCTeez - uzOher02A/ju9oIKifYDYPHbvHqDcmNRtPM8uB/KaNOiHfjO3s2vSehkHb1ik9Eg958lvUV/zt+F - ZsDyS/pXwBjsBe3mtd9vfYuYL/Kvvl1rXQQrxnhwBjfiMOZ+WNzp5M/HUvGJBbvNzoUmHwZ3vpi7 - fjObT+vb2WJhazV6Hn0HAAD//wMAnj2aKDoGAAA= + H4sIAAAAAAAAAwAAAP//jFTbbhs3EH3XVwz4ZAMrQRcrivUmpIXjNHGCOgHSVoEwImd3p+aSWw5X + tWr43wtS17Qu0BcB2jMzPOfM5akHoNioOShdY9RNa/tv3t2t619nP30ph+/0+2n3Vl+HhseTT69+ + 2f6sipTh17+TjoesgfZNaymydztYB8JIqepoNn09m0yHo0kGGm/IprSqjf0r3x8Px1f90ag/Hu4T + a8+aRM3htx4AwFP+TRSdoUc1h2Fx+NKQCFak5scgABW8TV8UirBEdFEVJ1B7F8ll1k9LB7BU0jUN + hu1SzWGpfnxsLbLDtSVYhMgla0YLty6StVyR0wQXXxe3lxCopCAQPTQUa28E0BmIpGvHf3Qk0AmZ + BLOLFNpAMQd0zlBIrAzEmqANZFgn0wR8CQ3qmh2BJQyOXQXZKymgxRBZdxaD3cLO6UfwjgQsPxAY + ovaUdPHD+8v8WBWwrcFRF9CCo/inDw8CFzd3d3I5gJuAhsnF/hoT1b2MAqTTNaBk4lVIPUyFcqgc + ypo3iw8FYKBEpvHObnd6Sx+gJIxdIMAYA6+7JA7Yga6pYYlhm2s03lLWc27BAD4kvX2snJfIGrBt + g0ddH3Tev118KmDH1zu4r7G1tIUN2o6SS8Fv2BCgMRx5Q0cqqesHLjKAj7GmcOwbO207Q3Bzd7dv + P4XM8b5bZwe/Zlmy/wfctD5EdJqKHLZh6dDyX5iVnk1ApixomZzeqRZu2GLguIUGW8l1T04YjDiA + zzUJnYaKmzRE5Or04GmYcM02lcmDFDqJyeLF7XduLlWxG/FAljYpfyXaB0qjfr2HUtdW3GBFkj6X + aIWW7vl8ZQKVnWDaWNdZewagcz5m1XlZv+2R5+N6Wl+1wa/lH6mqZMdSrwKheJdWUaJvVUafewDf + 8hnovtts1QbftHEV/QPl50aTyetdQXW6PGfwdLJHo49oz4Cr61HxQsmVoYhs5eyWKJ1Gz5xyT4cH + O8P+DOidCf83n5dq78Szq/5P+ROgNbWRzOrU55fCAqXT/F9hR6MzYSUUNqxpFZlCaoahEju7u5pK + thKpWZXsqjR4vDudZbuavhqtx9PZzKxV77n3NwAAAP//AwCnPt9uQwYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de33a88b1909c-SJC + - 9844022a8bf922d2-SJC Connection: - keep-alive Content-Encoding: @@ -4614,7 +4635,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:35 GMT + - Wed, 24 Sep 2025 17:30:16 GMT Server: - cloudflare Strict-Transport-Security: @@ -4630,118 +4651,111 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3566" + - "3076" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3590" + - "3099" x-openai-proxy-wasm: - v0.1 - x-ratelimit-limit-input-images: - - "250000" x-ratelimit-limit-requests: - "10000" x-ratelimit-limit-tokens: - "30000000" - x-ratelimit-remaining-input-images: - - "249999" x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29997791" - x-ratelimit-reset-input-images: - - 0s + - "29998500" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 4ms + - 3ms x-request-id: - - req_af00be23e2ff4705922d42695c517ad3 + - req_f29fe98c1d5643038ebf250088b98350 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 28-30: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n - M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining - the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD - international\\n\\n\\n 27 conference - on knowledge discovery and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) - Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.; Shanmugam, K.; Das, - P.\\n\\n Explanations based on the missing: Towards contrastive explanations - with pertinent\\n\\n negatives. Advances in neural information processing - systems 2018, 31.\\n\\n\\n(37) Jin, W.; Li, X.; Hamarneh, G. Evaluating Explainable - AI on a Multi-Modal Medical\\n\\n Imaging Task: Can Existing Algorithms - Fulfill Clinical Requirements? Proceedings of\\n\\n the AAAI Conference - on Artificial Intelligence 2022, 36, 11945\u201311953.\\n\\n\\n(38) Zhang, Y.; - Xu, F.; Zou, J.; Petrosian, O. L.; Krinkin, K. V. XAI Evaluation: Evalu-\\n\\n - \ ating Black-Box Model Explanations for Prediction. 2021 II International - Conference\\n\\n on Neural Networks and Neurotechnologies (NeuroNT). 2021; - pp 13\u201316.\\n\\n\\n(39) Oviedo, F.; Ferres, J. L.; Buonassisi, T.; Butler, - K. T. Interpretable and Explain-\\n\\n able Machine Learning for Materials - Science and Chemistry. Accounts of Materials\\n\\n Research 2022, 3, 597\u2013607.\\n\\n\\n(40) - Yalcin, O.; Fan, X.; Liu, S. Evaluating the correctness of explainable AI algorithms\\n\\n - \ for classification. arXiv preprint arXiv:2105.09740 2021,\\n\\n\\n(41) - Hoffman, R. R.; Mueller, S. T.; Klein, G.; Litman, J. Metrics for Explainable - AI:\\n\\n Challenges and Prospects. 2018,\\n\\n\\n(42) Mohseni, S.; Zarei, - N.; Ragan, E. D. A Multidisciplinary Survey and Framework for\\n\\n Design - and Evaluation of Explainable AI Systems. ACM Transactions on Interactive\\n\\n - \ Intelligent Systems 2018, 11, 46.\\n\\n\\n(43) Humer, C.; Heberle, H.; - Montanari, F.; Wolf, T.; Huber, F.; Henderson, R.; Hein-\\n\\n rich, J.; - Streit, M. ChemInformatics Model Explorer (CIME): exploratory analysis of\\n\\n - \ chemical model explanations. Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n - \ 28(44) Lundberg, S. M.; Lee, S.-I. In - Advances in Neural Information Processing Systems\\n\\n 30; Guyon, I., Luxburg, - U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,\\n\\n Garnett, - R., Eds.; Curran Associates, Inc., 2017; pp 4765\u20134774.\\n\\n(45) \u02C7Strumbelj, - E.; Kononenko, I. Explaining prediction models and individual predictions\\n\\n - \ with feature contributions. Knowledge and information systems 2014, 41, - 647\u2013665.\\n\\n\\n(46) Shapley, L. S. A Value for N-Person Games; RAND Corporation: - Santa Monica, CA,\\n\\n 1952.\\n\\n\\n(47) Molnar, C.; Casalicchio, G.; - Bischl, B. Interpretable machine learning\u2013a brief history,\\n\\n state-of-the-art - and challenges. Joint European Conference on Machine Learning and\\n\\n Knowledge - Discovery in Databases. 2020; pp 417\u2013431.\\n\\n\\n(48) Lou, Y.; Caruana, - R.; Gehrke, J. Intelligible models for classification and regression.\\n\\n - \ Proceedings of the 18th ACM SIGKDD international conference on Knowledge - dis-\\n\\n covery and data mining. 2012; pp 150\u2013158.\\n\\n\\n(49) Bastani, - O.; Kim, C.; Bastani, H. Interpreting blackbox models via model extraction.\\n\\n - \ arXiv preprint arXiv:1705.08504 2017,\\n\\n\\n(50) Gajewicz, A.; Puzyn, - T.; Odziomek, K.; Urbaszek, P.; Haase, A.; Riebeling, C.;\\n\\n Luch, A.; - Irfan, M. A.; Landsiedel, R.; van der Zande, M.; Bouwmeester, H. Deci-\\n\\n - \ sion tree models to classify nanomaterials according to the DF4nanoGrouping - scheme.\\n\\n Nanotoxicology 2018, 12, 1\u201317.\\n\\n\\n(51) Han, L.; - Wang, Y.; Bryant, S. H. Developing and validating predictive decision tree\\n\\n - \ models from mining chemical structural fingerprints and high\u2013throughput - screening\\n\\n data in PubChem. BMC Bioinformatics 2008, 9, 401.\\n\\n(52) - Plumb, G.; Al-Shedivat, M.; Cabrera, \xB4A. A.; Perer, A.; Xing, E.; Talwalkar, - A. Regu-\\n\\n\\n\\n\\n 29 larizing - black-box models for improved interpretability. Advances in Neural Informa-\\n\\n - \ tion Processing Systems 2020, 33, 10526\u201310536.\\n\\n\\n(53) Shao, - X.; Skryagin, A.; Stammer, W.; Schramowski, P.; Kersting, K. Right for bet-\\n\\n - \ ter reasons: Training differentiable models by constraining their influence - functions.\\n\\n Proceedings of the AAAI Conference on Artificial Intelligence. - 2021; pp 9533\u20139540.\\n\\n\\n(54) Ouyang, R.; Curtarolo, S.; Ahmetcik, E.; - Scheffler, M.; Ghiringhelli, L. M. SISSO: A\\n\\n compressed-sensing method - for identifying the best low-dimensional descriptor in an\\n\\n immensity - of offered candidates. Physical Review Materials 2018, 2, 083802.\\n\\n\\n(55) - Lipton, Z. C. The mythos of model interpretability: In machine learning, the - concept\\n\\n of interpretability is both important and slippery. Queue - 2018, 16, 31\u201357.\\n\\n\\n(56) Harren, T.; Matter, H.; Hessler, G.; Rarey, - M.; Grebner, C. Interpretation of structure\u2013\\n\\n activity relationships - in real-world drug design data sets using explainable artificial\\n\\n intelligence. - Journal of Chemical Information and Modeling 2022, 62,\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 12-14: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnterfactual + approach, contrastive approach employ a dual\\n\\noptimization method, which + works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. + Contrastive explanations can interpret the model by identifying contribution + of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n + \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction + \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual + generation can be thought of as a\\n\\nconstrained optimization problem which + minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n + \ minimize d(x, x\u2032)\\n (5)\\n + \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n + \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, + a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n + \ minimize d(x, x\u2032)\\n (6)\\n + \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n + \ Counterfactuals explanations have become a useful tool for XAI in chemistry, + as they\\n\\nprovide intuitive understanding of predictions and are able to + uncover spurious relationships\\n\\nin training data.101 Counterfactuals create + local (instance-level), actionable explanations.\\n\\nActionability of an explanation + suggest which features can be altered to change the outcome.\\n\\nFor example, + changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto + increase solubility.\\n\\n Counterfactual generation is a demanding task as + it requires gradient optimization over\\n\\ndiscrete features that represents + a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two + techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies + are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual + explanation based model interpretation still remains unexplored compared to + other\\n\\n\\n\\n 12post-hoc methods.\\n\\n + \ CF-GNNExplainer104 is a counterfactual explanation generating method based + on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals + by perturbing the input\\n\\ndata (removing edges in the graph), and keeping + account of perturbations which lead to\\n\\nchanges in the output. However, + this method is only applicable to graph-based models\\n\\nand can generate infeasible + molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus + on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod + MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning + based generator to create molecular counterfactuals (molecular graphs). While + this\\n\\nmethod is able to generate counterfactuals through a multi-objective + reinforcement learner,\\n\\nthis is not a universal approach and requires training + the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model + agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual + Explanations) which does not require training\\n\\nor computing gradients. This + method firstly populates a local chemical space through ran-\\n\\ndom string + mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 + Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing + the model that needs to be explained. Finally, the counterfactuals are identified + and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 + fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE + algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective + property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both + regression and classification models. However, like most XAI\\n\\nmethods for + molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted + counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother + approach, which identift counterfactuals through a similarity search on the + PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity + to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations + are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations + are used during training to deceive the model\\n\\nto expose the vulnerabilities + of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, + the main difference between adversarial and counterfactual examples are in the\\n\\napplication, + although both are derived from the same optimization problem.100 Grabocka\\n\\net + al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich + improves model robustness via exposure to adversarial examples. While there + are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: + What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4750,7 +4764,7 @@ interactions: connection: - keep-alive content-length: - - "6085" + - "6226" content-type: - application/json host: @@ -4781,155 +4795,157 @@ interactions: uri: https://api.openai.com/v1/chat/completions response: body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNbyM3DL37VxA6bQE7sJOtk/gWFC3qAkUvQWG0Xhi0xJnhWiNNSI3X - 2SD/vZDGsb0fBfYywuiRT+Tjx8sIwLAzCzC2wWTbzk9++WPer+jP3z6upnO+u/v79373z+NfT/3T - nvlgxtkjbj+STW9eVza2nafEMQywFcJEmXV2+/Pd/HZ6d3NTgDY68tmt7tLkfZxcT6/fT2azyfX0 - 6NhEtqRmAf+OAABeyjeHGBwdzAKm47ebllSxJrM4GQEYiT7fGFRlTRiSGZ9BG0OiUKJ+WQeAtdG+ - bVGe12YBa/PYENDBknQJOol7dqSA4FkTxAqEKhIKlhSEfE4PUoRfD51HDrj1BA+SuGLL6GEZEnnP - dbaHd6uH5U9jaLhuPNdN4lDDHoVjr6Cpd5zfCQ5aSk100cc631RRgAb27JANOCSSTqgwtGgbDgSe - UIpF0Vav4LEhJeBgfe8IEtkm8FP/LaP1WaWKSaATcmxz/XQMWSZBTbynwTzgEaE9+r78ZEFWD0vg - AG12RQ/cYs2hHuc0hO3w3OphOS6hV4ItfYqyG+4dKdenvN54Q11I9VkTtXoFywToNUJLoUQAqSFo - WFOU8qSjPfnYZbjw2Aa9p1CT5vhOapXifC3XGFDhE3mfT+3I5tIdS6DgeUfgyLLmZJMQHeUdDyfQ - IQkWxYb8hOreo/DnQZ6cI7e5i8hdBsKe03Mp0WU/2eg92Sy4fwZquwaVP1PJltsuSsLcRrGCFndZ - pLNGkASDdihvEvTBkeTOdyXrFKFXEr1am/HQ8kKe9plvozYKDa1/f4J7JbfJpSTNUIVeaR1eL8dI - qOoV8xSH3vsLAEOIaeiVPMAfjsjraWR9rDuJW/3K1VQcWJuNEGoMeTw1xc4U9HUE8KGshv6LaTed - xLZLmxR3VJ6bza9nA6E5b6ML+Ob+iKaY0F8At/PjTvmScuMoIXu92C/Gom3InX3Pywh7x/ECGF0k - /m083+MekudQ/wj9GbCWukRuc57g75kJ5XX9f2YnoUvARkn2bGmTmCQXw1GFvR82qRn6blNxqHNP - 87BOq25zO7vfum2Fbm5Gr6P/AAAA//8DAEFJog1XBgAA - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 983de3466a803c35-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Tue, 23 Sep 2025 23:40:36 GMT - Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "3040" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "3056" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998550" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 2ms - x-request-id: - - req_b062592a27794afea64c5022f186484a - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 8-9: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nrepresented - with equation 2.\\n\\n \u2206\u02C6f(\u20D7x) - \u2248\u2202\u02C6f(\u20D7x) (2)\\n \u2206xi - \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) - \ where \u02C6f(x) is the black-box model and are used as our attributions. - The left- \u2206xi\\n\\nhand - side of equation 2 says that we attribute each input feature xi by how much - one unit\\n\\nchange in it would affect the output of \u02C6f(x). If \u02C6f(x) - is a linear surrogate model, then this\\n\\nmethod reconciles with LIME.35 In - DL models, \u2207xf(x), suffers from the shattered gradients\\n\\nproblem.62 - This means directly computing the quantity leads to numeric problems. The\\n\\ndifferent - gradient based approaches are mostly distinguishable based on how the gradient - is\\n\\napproximated.\\n\\n Gradient based explanations have been widely used - to interpret chemistry predictions.60,66\u201370\\n\\nMcCloskey et al. 60 used - graph convolutional networks (GCNs) to predict protein-ligand\\n\\nbinding and - explained the binding logic for these predictions using integrated gradients.\\n\\nPope - et al. 66 and Jim\xB4enez-Luna et al. 67 show application of gradCAM and integrated - gradi-\\n\\nents to explain molecular property predictions from trained graph - neural networks (GNNs).\\n\\nSanchez-Lengeling et al. 68 present comprehensive, - open-source XAI benchmarks to explain\\n\\nGNNs and other graph based models. - They compare the performance of class activation\\n\\nmaps (CAM),63 gradCAM,64 - smoothGrad,,65 integrated gradients62 and attention mecha-\\n\\nnisms for explaining - outcomes of classification as well as regression tasks. They concluded\\n\\nthat - CAM and integrated gradients perform well for graph based models. Another attempt\\n\\nat - creating XAI benchmarks for graph models was made by Rao et al. 70. They compared\\n\\nthese - gradient based methods to find subgraph importance when predicting activity - cliffs\\n\\nand concluded that gradCAM and integrated gradients provided the - most interpretability\\n\\nfor GNNs. The GNNExplainer69 is an approach for - generating explanations (local and\\n\\nglobal) for graph based models. This - method focuses on identifying which sub-graphs con-\\n\\ntribute most to the - prediction by maximizing mutual information between the prediction\\n\\nand - distribution of all possible sub-graphs. Ying et al. 69 show that GNNExplainer - can be\\n\\nused to obtain model-agnostic explanations. SubgraphX is a similar - method that explains\\n\\nGNN predictions by identifying important subgraphs.71\\n\\n - \ Another set of approaches like DeepLIFT72 and Layerwise Relevance backPropagation73\\n\\n\\n\\n - \ 8(LRP) are based on backpropagation of - the prediction scores through each layer of the neu-\\n\\nral network. The specific - backpropagation logic across various activation functions differs\\n\\nin these - approaches, which means each layer must have its own implementation. Baldas-\\n\\nsarre - and Azizpour 74 showed application of LRP to explain aqueous solubility prediction - for\\n\\nmolecules.\\n\\n SHAP is a model-agnostic feature attribution method - that is inspired from the game\\n\\ntheory concept of Shapley values.44,46 SHAP - has been popularly used in explaining molecular\\n\\nprediction models.75\u201378 - It\u2019s an additive feature contribution approach, which assumes that\\n\\nan - explanation model is a linear combination of binary variables z. If the Shapley - value\\nfor the ith feature is \u03D5i, then the explanation is \u02C6f(\u20D7x) - = Pi \u03D5i(\u20D7x)zi(\u20D7x). Shapley values for\\n\\nfeatures are computed - using Equation 3.79,80\\n\\n\\n\\n M\\n 1\\n - \ \u03D5i(\u20D7x) = X \u02C6f (\u20D7z+i) - \u2212\u02C6f (\u20D7z\u2212i) (3)\\n M\\n\\n - \ Here \u20D7z is a fabricated example created from the original \u20D7x and - a random perturbation \u20D7x\u2032.\\n\\n\u20D7z+i has the feature i from \u20D7x - and \u20D7z\u2212i has the ith feature from \u20D7x\u2032. Some care should - be taken\\n\\nin constructing \u20D7z when working with molecular descriptors - to ensure that an impossible \u20D7z is\\n\\nnot sampled (e.g., high count of - acid groups but no hydrogen bond donors). M is the sample\\n\\nsize of perturbations - around \u20D7x. Shapley value computation is expensive, hence M is chosen\\n\\naccordingly. - Equation 3 is an approximation and gives contributions with an expectation\\nterm - as \u03D50 + Pi=1 \u03D5i(\u20D7x) = \u02C6f(\u20D7x).\\n\\n Visualization - based feature attribution has also been used for molecular data. In com-\\n\\nputer - science, saliency maps are a way to measure spatial feature contribution.81 - Simply put,\\n\\nsaliency maps draw a connection between the model\u2019s neural - fingerprint components (trained\\n\\nweights) and input features. Weber et al. - 82 used saliency maps to build an explainable GCN\\n\\narchitecture that gives - subgraph importance for small molecule activity prediction. On the\\n\\nother - hand, similarity maps compare model predictions for two or more molecules based - on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights - or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + string: !!binary | + H4sIAAAAAAAAAwAAAP//dFRNbxs3EL3rVwx4aQusBEm26sY3w00CF40DtD0EqAJhRM4uWXPJNWeo + WDX83wtSsrVpnMsCyzfzZt58PU4AlDPqEpS2KLof/PT6t9utZf7j1z/f9wb//fg7+3t/n/epzfO9 + aopH3P5DWp69Zjr2gydxMRxgnQiFCuviYvXLxdlqvjirQB8N+eLWDTI9j9PlfHk+XSymy/nR0Uan + idUl/D0BAHis35JiMPSgLmHePL/0xIwdqcsXIwCVoi8vCpkdCwZRzQnUMQiFmvXjOgCsFee+x7Rf + q0tYq7cPg0cXcOsJrpK41mmHHm6CkPeuo6AJfvx0dfMTJGopMUiEnsRGw4DBgJC2wd1nYhCLAj3e + EYglGBIZp0t1GGILPWrrAoEnTMGFDmpRGFwQSkMiqRkUxhwMpSLD1CeJYHOPgWdwHXOxblFLRg9U + Ug9YQzSAcEd7+HR1AzgMKaK2DQwp7pwhwJpHoWvAhcKtaeppR778us4Kw3YPzlAQ1+5rei64Hj1o + i6GjKtuFIQu0hJLTs1z0QqnqrXp+4JHuGbyLCegBy5iUwNBHTzp7TKAt9Y4l7RvQX6li0BiAc9cR + SyEtHTlorKV/YWBJWR8ziVCqSzsCQ+wSmaJ8oCSOeAZ/nVrk3R3Bhw9X129rqa/fTd/f3h5HgBJ0 + FCih0Dc5tTGNQhfXLuFgp1tkMmBQsIFEPJAWtyO/b0BszJ0t5fOeagVrbAqcU6lvLYBGDyy4dd7J + HhL16MLs0EPPEcroJmRh+OLEApodJcZU5lMSujJGDXyxTltoo85MDDEcGgEpbjNLIGZIKLY2CcN4 + 3GrQ2Vo1h61I5GlXBmPDOiYq2/HmCGUms3E9dsTluUXPtA5P4y1L1GbGsuQhez8CMIQoh/6V/f58 + RJ5eNtrHbkhxy/9zVa0Lju0mEXIMZXtZ4qAq+jQB+FwvR/7qGKghxX6QjcQ7quEWy+X5gVCdjtUI + Xq2OqERBPwLOLt40r1BuDAk6z6PzozRqS2bku1gtX0RgNi6esPlkpP3blF6jP+h3oRuxfJf+BGhN + g5DZnLbxNbNE5aB/z+yl1jVhxZR2TtNGHKXSD0MtZn+4tYr3LNRvWhe6Ml/ucHDbYbP6ebFdri4u + zFZNnib/AQAA//8DAHBkkk55BgAA + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 98440229fe29f555-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Wed, 24 Sep 2025 17:30:16 GMT + Server: + - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "3095" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "3213" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "10000" + x-ratelimit-limit-tokens: + - "30000000" + x-ratelimit-remaining-requests: + - "9999" + x-ratelimit-remaining-tokens: + - "29998516" + x-ratelimit-reset-requests: + - 6ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_3fc7991109514ed399525a59ffecde5a + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + from Wellawatte2023 pages 14-16: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nsame + optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named + Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness + via exposure to adversarial examples. While there are\\n\\nconceptual disparities, + we note that the counterfactual and adversarial explanations are\\n\\nequivalent + mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules + that differ structurally at only\\n\\none site by a known transformation.112,113 + MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these + facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 + Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated + with a significant change in the properties. In the case the associated changes + in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 + The con-\\n\\nnection between MMPs and adversarial training examples has been + explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual + category are commonly used in outlier\\n\\nand activity cliff detection.113 + This approach is analogous to counterfactual explanations,\\n\\nas the common + objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel + interpretation is certainly not new and a common step in ML in chemistry, but + XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 + Here we illustrate some practical\\n\\nexamples drawn from our published work + on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret + black-box models and connect the explanations to structure-property relationships.\\n\\nThe + methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D + (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 + Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can + propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain + barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the + blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and + discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification + problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, + we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent + Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals + explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 + Both the models were trained on the dataset developed by Martins et al. 124. + The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular + descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented + in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n + \ According to the counterfactuals of the instance molecule in figure 1, we + observe that the\\n\\nmodifications to the carboxylic acid group enable the + negative example molecule to permeate\\n\\nthe BBB. Experimental findings by + Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed + by hydrophobic interactions and surface area. The carboxylic group is\\n\\na + hydrophilic functional group which hinders hydrophobic interactions and addition + of atoms\\n\\nenhances the surface area. This proves the advantage of using + counterfactual explanations,\\n\\nas they suggest actionable modification to + the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor + explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, + using the method described by Gandhi and White 10. We see that\\n\\npredicted + permeability is positively correlated with the aromaticity of the molecule, + while\\n\\n\\n 15negatively correlated + with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property + relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 + The substructure attributions indicates a reduction in hydrogen bond donors + and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable + by chemists.\\n\\nFinally, we can use a natural language model to summarize + the findings into a written\\n\\nexplanation, as shown in the printed text in + Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot + permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of + ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions + and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal + Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule + solubility prediction is a classic cheminformatics regression challenge and + is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 + In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras + to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: + What is XAI?\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4938,7 +4954,7 @@ interactions: connection: - keep-alive content-length: - - "6108" + - "50985" content-type: - application/json host: @@ -4970,27 +4986,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTbbhs3EH3XVwz4ZAErQbJd2/GbkBStjDZN4AAxWgXCiDu7OzWXpDmk - Y9XwvxfkWpe0KdCXxYJnrmdmzvMIQHGtrkHpDqPuvZm8vblId78vP77TD7df5Tf9ufv05mZxwx+u - HuJnVWUPt/mTdNx5TbXrvaHIzg6wDoSRctT55Q9XF5ezq7OzAvSuJpPdWh8n525yOjs9n8znk9PZ - q2PnWJOoa/hjBADwXL65RFvTk7qGWbV76UkEW1LXeyMAFZzJLwpFWCLaqKoDqJ2NZEvVzysLsFKS - +h7DdqWuYaV+fPIG2eLGECxC5IY1o4GljWQMt2Q1wcndYjmGQA0Fgeigp9i5WgBtDZF0Z/khkUAS - qguM9wSxI6hJs7Czkx7v2bbgg9MkQgKugcUSCi9SgccQWSeDwWxhYPUJnCUBw/c5DHkwhMHmICfv - fhmXzG1A34GlFNCApfjVhXuBk5/ev5dxBWwjBR8ols6yfbI1hUxPXZ6igy71aGUKd4sloPfBoe5I - gK02qaacoGaycbLB3Nmu6xOattMhQRvywPeGUpXft4tfx9XQ3ARb6ySy3nuXjm5/XnyAkyGss3Db - oTe0hUc0mccmuB5a7AuJLmzHVan/kSWh4b8wb9wx75J0ByggaJis3hZr4Z4NBo5b6NHLFD51JHQY - HfeZAYwx8CZFGsoFH6hmnROUQbP1KUJDGFMgqYBrspGbLXDvXcibBpI2ZRCZNsjcV+AC0LBV0DtD - ZbB59p5C3B6nGJhnAR1S2bomu1pJIQ86BrTiMeSWKoghSRyISIIbNrkztjCMzrAutEgFJJ5yMFPg - hsnsWNcd9SwxDAQdSiuts22nK1UNFxLI0CNaTWvRLtBwKfPZHs+bvuYeW5KMNWiEVvbl+OwCNUkw - X71NxhwBaK2LQ7H54L+8Ii/7Ezeu9cFt5B+uqmHL0q0DoTibz1mi86qgLyOAL0VK0jfqoHxwvY/r - 6O6ppJufzU6HgOqgXkfw5avSqOgimiPg/HLn903IdU0R2ciRHimdr6g++B7EC1PN7ggYHTX+73q+ - F3tonm37f8IfAK3JR6rXh937nlmgLO//ZbYnuhSshMIja1pHppCHUVODyQzKq2Qrkfp1w7bNIsSD - /DZ+fTl/s6k3DdYXavQy+hsAAP//AwAgRVubhwYAAA== + H4sIAAAAAAAAA4xU224jNwx991cQetoAtmHnstn6Lc1m0RTJFm1fFq0XtkaiZ7jWSIrICewN8u+F + ZMce9wL0ZYDh4eXwUOTLAECRVTNQptFi2uhGtz9/rppf7377/sej/enTZ+t+dw/+9umXH1choRrm + iFB9QyNvUWMT2uhQKPgdbBJqwZx1en314friajK9KEAbLLocVkcZXYbR+eT8cjSdjs4n+8AmkEFW + M/hzAADwUr6Zore4UTOYDN8sLTLrGtXs4ASgUnDZojQzsWgvangETfCCvrBeLpffOPi5f5l7gLni + rm112s7VDObqbhOdJq8rh3CThFZkSDu494LOUY3eILz7cnN/BglXmBgkQIvSBMugvQVB03h66pBB + Gi3Q6jWCNAgWDTEFP2r1mnwNMQWDzMgQVtBq05BHcKiTz+i7x4ezks8ixp7548MZFB0ZyAummFAK + 1+zbeYspd26LSQI0Xas9j+HeFw5FhI3kiqbBlljSdghfbu6BGDpGm2MOeaFy2qxHVdi8lcxFTPAe + jQBmobzOcy8isKTOSJdwFFOImGQLCd0ObyjyGD6FBLjR+bUMwYQu11lpI512J9mGwJ1pQGcFAyPU + 6DHlJwXVtrTx+Hhze7dXPTvXNbKANjm6dN4Gmwd3JNcGh6ZzWH6y1vicJ8KU0MKeLyEPwdEaoXIh + 2FGVNHmodEqECSKmFkvCMXxENomilH56KsQUnskiPHXaC4kWekYgz1Q3UuZ1IKLTSVVNNk93P5Ps + 2ptlRrLwIQq19D3/HrPkHmrP47ka7h5zQofP2htcsAkJ86OeTvZYnvCCWl0jZ7ukDuf+de6Xy2V/ + VRKuOtZ5U33nXA/Q3gfZ9ZqX9OseeT2spQt1TKHiv4WqFXniZpFQc/B5BVlCVAV9HQB8LevfnWy0 + iim0URYS1ljKTd//sN9/dbw4Pfjyco9KEO16wIeLN+Qk5cKiaHLcuyHKaNOgPcYeD47uLIUeMOg1 + /k8+/5Z71zz5+v+kPwLGYBS0i5jQkjnt+eiWMJ/k/3I7CF0IK8b0TAYXQpjyMCyudOd211LxlgXb + xYp8na8A7U7mKi6u3k+r86vra1upwevgLwAAAP//AwB00YDLOwYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de3424fcc7af1-SJC + - 98440229987a67a2-SJC Connection: - keep-alive Content-Encoding: @@ -4998,7 +5013,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:37 GMT + - Wed, 24 Sep 2025 17:30:18 GMT Server: - cloudflare Strict-Transport-Security: @@ -5014,108 +5029,121 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "4031" + - "5083" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "4047" + - "5110" x-openai-proxy-wasm: - v0.1 + x-ratelimit-limit-input-images: + - "250000" x-ratelimit-limit-requests: - "10000" x-ratelimit-limit-tokens: - "30000000" + x-ratelimit-remaining-input-images: + - "249999" x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998537" + - "29997753" + x-ratelimit-reset-input-images: + - 0s x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 2ms + - 4ms x-request-id: - - req_9864762e1a384b1e861b52fbf720555a + - req_12158a6ff38a4fb9960cc98b45d88f62 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 12-14: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnterfactual - approach, contrastive approach employ a dual\\n\\noptimization method, which - works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. - Contrastive explanations can interpret the model by identifying contribution - of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n - \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction - \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual - generation can be thought of as a\\n\\nconstrained optimization problem which - minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n - \ minimize d(x, x\u2032)\\n (5)\\n - \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n - \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, - a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n - \ minimize d(x, x\u2032)\\n (6)\\n - \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n - \ Counterfactuals explanations have become a useful tool for XAI in chemistry, - as they\\n\\nprovide intuitive understanding of predictions and are able to - uncover spurious relationships\\n\\nin training data.101 Counterfactuals create - local (instance-level), actionable explanations.\\n\\nActionability of an explanation - suggest which features can be altered to change the outcome.\\n\\nFor example, - changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto - increase solubility.\\n\\n Counterfactual generation is a demanding task as - it requires gradient optimization over\\n\\ndiscrete features that represents - a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two - techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies - are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual - explanation based model interpretation still remains unexplored compared to - other\\n\\n\\n\\n 12post-hoc methods.\\n\\n - \ CF-GNNExplainer104 is a counterfactual explanation generating method based - on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals - by perturbing the input\\n\\ndata (removing edges in the graph), and keeping - account of perturbations which lead to\\n\\nchanges in the output. However, - this method is only applicable to graph-based models\\n\\nand can generate infeasible - molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus - on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod - MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning - based generator to create molecular counterfactuals (molecular graphs). While - this\\n\\nmethod is able to generate counterfactuals through a multi-objective - reinforcement learner,\\n\\nthis is not a universal approach and requires training - the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model - agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual - Explanations) which does not require training\\n\\nor computing gradients. This - method firstly populates a local chemical space through ran-\\n\\ndom string - mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 - Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing - the model that needs to be explained. Finally, the counterfactuals are identified - and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 - fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE - algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective - property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both - regression and classification models. However, like most XAI\\n\\nmethods for - molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted - counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother - approach, which identift counterfactuals through a similarity search on the - PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity - to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations - are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations - are used during training to deceive the model\\n\\nto expose the vulnerabilities - of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, - the main difference between adversarial and counterfactual examples are in the\\n\\napplication, - although both are derived from the same optimization problem.100 Grabocka\\n\\net - al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich - improves model robustness via exposure to adversarial examples. While there - are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 28-30: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining + the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD + international\\n\\n\\n 27 conference + on knowledge discovery and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) + Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.; Shanmugam, K.; Das, + P.\\n\\n Explanations based on the missing: Towards contrastive explanations + with pertinent\\n\\n negatives. Advances in neural information processing + systems 2018, 31.\\n\\n\\n(37) Jin, W.; Li, X.; Hamarneh, G. Evaluating Explainable + AI on a Multi-Modal Medical\\n\\n Imaging Task: Can Existing Algorithms + Fulfill Clinical Requirements? Proceedings of\\n\\n the AAAI Conference + on Artificial Intelligence 2022, 36, 11945\u201311953.\\n\\n\\n(38) Zhang, Y.; + Xu, F.; Zou, J.; Petrosian, O. L.; Krinkin, K. V. XAI Evaluation: Evalu-\\n\\n + \ ating Black-Box Model Explanations for Prediction. 2021 II International + Conference\\n\\n on Neural Networks and Neurotechnologies (NeuroNT). 2021; + pp 13\u201316.\\n\\n\\n(39) Oviedo, F.; Ferres, J. L.; Buonassisi, T.; Butler, + K. T. Interpretable and Explain-\\n\\n able Machine Learning for Materials + Science and Chemistry. Accounts of Materials\\n\\n Research 2022, 3, 597\u2013607.\\n\\n\\n(40) + Yalcin, O.; Fan, X.; Liu, S. Evaluating the correctness of explainable AI algorithms\\n\\n + \ for classification. arXiv preprint arXiv:2105.09740 2021,\\n\\n\\n(41) + Hoffman, R. R.; Mueller, S. T.; Klein, G.; Litman, J. Metrics for Explainable + AI:\\n\\n Challenges and Prospects. 2018,\\n\\n\\n(42) Mohseni, S.; Zarei, + N.; Ragan, E. D. A Multidisciplinary Survey and Framework for\\n\\n Design + and Evaluation of Explainable AI Systems. ACM Transactions on Interactive\\n\\n + \ Intelligent Systems 2018, 11, 46.\\n\\n\\n(43) Humer, C.; Heberle, H.; + Montanari, F.; Wolf, T.; Huber, F.; Henderson, R.; Hein-\\n\\n rich, J.; + Streit, M. ChemInformatics Model Explorer (CIME): exploratory analysis of\\n\\n + \ chemical model explanations. Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n + \ 28(44) Lundberg, S. M.; Lee, S.-I. In + Advances in Neural Information Processing Systems\\n\\n 30; Guyon, I., Luxburg, + U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,\\n\\n Garnett, + R., Eds.; Curran Associates, Inc., 2017; pp 4765\u20134774.\\n\\n(45) \u02C7Strumbelj, + E.; Kononenko, I. Explaining prediction models and individual predictions\\n\\n + \ with feature contributions. Knowledge and information systems 2014, 41, + 647\u2013665.\\n\\n\\n(46) Shapley, L. S. A Value for N-Person Games; RAND Corporation: + Santa Monica, CA,\\n\\n 1952.\\n\\n\\n(47) Molnar, C.; Casalicchio, G.; + Bischl, B. Interpretable machine learning\u2013a brief history,\\n\\n state-of-the-art + and challenges. Joint European Conference on Machine Learning and\\n\\n Knowledge + Discovery in Databases. 2020; pp 417\u2013431.\\n\\n\\n(48) Lou, Y.; Caruana, + R.; Gehrke, J. Intelligible models for classification and regression.\\n\\n + \ Proceedings of the 18th ACM SIGKDD international conference on Knowledge + dis-\\n\\n covery and data mining. 2012; pp 150\u2013158.\\n\\n\\n(49) Bastani, + O.; Kim, C.; Bastani, H. Interpreting blackbox models via model extraction.\\n\\n + \ arXiv preprint arXiv:1705.08504 2017,\\n\\n\\n(50) Gajewicz, A.; Puzyn, + T.; Odziomek, K.; Urbaszek, P.; Haase, A.; Riebeling, C.;\\n\\n Luch, A.; + Irfan, M. A.; Landsiedel, R.; van der Zande, M.; Bouwmeester, H. Deci-\\n\\n + \ sion tree models to classify nanomaterials according to the DF4nanoGrouping + scheme.\\n\\n Nanotoxicology 2018, 12, 1\u201317.\\n\\n\\n(51) Han, L.; + Wang, Y.; Bryant, S. H. Developing and validating predictive decision tree\\n\\n + \ models from mining chemical structural fingerprints and high\u2013throughput + screening\\n\\n data in PubChem. BMC Bioinformatics 2008, 9, 401.\\n\\n(52) + Plumb, G.; Al-Shedivat, M.; Cabrera, \xB4A. A.; Perer, A.; Xing, E.; Talwalkar, + A. Regu-\\n\\n\\n\\n\\n 29 larizing + black-box models for improved interpretability. Advances in Neural Informa-\\n\\n + \ tion Processing Systems 2020, 33, 10526\u201310536.\\n\\n\\n(53) Shao, + X.; Skryagin, A.; Stammer, W.; Schramowski, P.; Kersting, K. Right for bet-\\n\\n + \ ter reasons: Training differentiable models by constraining their influence + functions.\\n\\n Proceedings of the AAAI Conference on Artificial Intelligence. + 2021; pp 9533\u20139540.\\n\\n\\n(54) Ouyang, R.; Curtarolo, S.; Ahmetcik, E.; + Scheffler, M.; Ghiringhelli, L. M. SISSO: A\\n\\n compressed-sensing method + for identifying the best low-dimensional descriptor in an\\n\\n immensity + of offered candidates. Physical Review Materials 2018, 2, 083802.\\n\\n\\n(55) + Lipton, Z. C. The mythos of model interpretability: In machine learning, the + concept\\n\\n of interpretability is both important and slippery. Queue + 2018, 16, 31\u201357.\\n\\n\\n(56) Harren, T.; Matter, H.; Hessler, G.; Rarey, + M.; Grebner, C. Interpretation of structure\u2013\\n\\n activity relationships + in real-world drug design data sets using explainable artificial\\n\\n intelligence. + Journal of Chemical Information and Modeling 2022, 62,\\n\\n------------\\n\\nQuestion: + What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -5124,7 +5152,7 @@ interactions: connection: - keep-alive content-length: - - "6053" + - "6258" content-type: - application/json host: @@ -5156,27 +5184,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNbxtHDL3rVxBzSQtIhuQ4sqObYSSpUzg5JAUMVIFAzXB3Gc3ObIcc - 2YLh/17M6jOpA/SywM4jH/n49TQAMOzMDIxtUG3b+dHNx2nGP6Rpm7++j92Hz/d3X9dfPlL48ucq - js2weMTld7K69zqzse08KcewhW0iVCqsk8s3V9PL8dXraQ+00ZEvbnWno4s4Oh+fX4wmk9H5jtc2 - kS2JmcHfAwCAp/5bUgyOHs0MxsP9S0siWJOZHYwATIq+vBgUYVEMaoZH0MagFPqsn+YBYG4kty2m - zdzMYG7ePXYeOeDSE1wn5Yoto4fboOQ91xQswW/317e/Q6KKkoBGaEmb6AQwOFCyTeB/Mglogwot - rgi0IegSObalOltDR5al/4sVXN9CXxQBDkqpS6R9BsUwB0epyHD9k0ZocotBzuAm5mJdodWMHqik - HnAXIhEgrGgD2HUpom2AA9xf3w6hS3HNjkMN2OdTaIfAocSwNPK0Jl9+uW5UYLkBdhSUq01xsQ2G - mkqewKHLChWh5rSX+xCzd4BeKfWqe1Wv5ET9GbyPCegRy7CUsNBGTzZ7TGAbalk0bYZgf9AmYDGA - 5Lom0UJa+rJTWhpwYBBN2e7yiYC2YVoTOBJO5IryjpIyyRl8PTbK84rg7u765l1f8Jv3ow+fPu0G - gVJfyizkCmNNgRIq/ZzfEB5Ymx3JkkqleukjrEMUZdszY9d5tvs2LqM2kKhOJGUQegvry9DuxYGi - rOSstA3QS4QyvAlFZRsO3ZqSYCoTqgk5cKiH8NCwbaCKNgsJxFAGI8ohJVhnX0Qs2XNfirkZbhch - kad1mYGF2JhouxBvD3CpwYJbrEkKVKEXmofn0+VKVGXBstshe38CYAhRtw0ra/1thzwfFtnHuktx - KT+5mooDS7NIhBJDWVrR2JkefR4AfOsPRv7hBpguxbbThcYV9eEmk6urLaE53qgT+M0e1ajoT4DX - F9PhC5QLR4rs5eTqGIu2IXf0PZ4ozI7jCTA4Ef7ffF7i3ornUP8f+iNgLXVKbnHcvZfMEpUj/iuz - Q6H7hI1QWrOlhTKl0gxHFWa/va9GNqLULioOdTlhvD2yVbe4nLxdumWFbmoGz4N/AQAA//8DAHSJ - TA1tBgAA + H4sIAAAAAAAAAwAAAP//jFTBjttGDL37K4g5FDYgG7Z3vd76tk1b1G3aHJJDgDow6BlKYjyaUYcj + x97F/kt/pv8VjOTYSroFetFBj+/xkRzyaQCg2KgVKF1i1FVtx69+/WO3L2TXhBPmj9XPN6e34e3s + 8ffja3l8o7LE8LuPpOMX1kT7qrYU2bsO1oEwUlKdLRf3y5vFdHbXApU3ZBOtqOP41o/n0/nteDYb + z6dnYulZk6gV/DkAAHhqv8miM3RUK5hmX/5UJIIFqdUlCEAFb9MfhSIsEV1U2RXU3kVyreunjQPY + KGmqCsNpo1awUe9KAjpqCnWEOvgDGxIIlFMgp0kgetjTCT75sBdgB7EkyJmsAZ/DT8faIjvcWYKH + EDlnzWhh7SJZy0VSgOH7h/Uog08l6xJyrxshAe+gwj27Ah7W0LYniUcKdaDYyqEzKRcHqAMZ1qnN + Ao0zFFKJJgVNYB2BnbZNMl1RLL3x1hdMApb3BKn2gBL5kIqsLTrsdIY/lk1AZ0oMQBHQTjKYT2f3 + owxywtiEM5d3TSIAOrQnYYHhP3/H0FQ7sh/hO/jNO+/I7X3Lvh1lre22HqBjDNjahki6dPxXQwLD + HzDZ537W5agtBK14KLkoLRdlFMC6tqzPhtmB8RWyE5BGl4ACFUYKjFZANHetfnNgMr6nPZ+PWku6 + pIpd7kOFkbXA8JemovB14ARelWgtuYLafO8f1tklmaGcXZpXb0psOZ5g+Jrr6N2lfykdHdA2rfM0 + ldBl9Hleofu23Rioq9yw6EaEzGSjsu6hBrJ0QKdpK9oH6h7s9xe4ETJbrrAgSVCOVmjjnvuPP1De + CKbdc421PQCd87HrbVq7D2fk+bJo1hd18Dv5hqpSG6TcBkLxLi2VRF+rFn0eAHxoF7r5akdVHXxV + x230e2rTze4Wy05QXW9ID17endHoI9oecH9zk70guTUUka30roLSqEsyV+71hGBj2PeAQa/wf/t5 + Sbsrnl3xf+SvgNZURzLb60K/FBYoHdn/Crs0ujWshMKBNW0jU0jDMJRjY7v7p+Qkkaptzq5IT5a7 + I5jX28XdbDdfLJdmpwbPg88AAAD//wMAQZXLYA0GAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de340abcb7ad6-SJC + - 98440238586f17f0-SJC Connection: - keep-alive Content-Encoding: @@ -5184,7 +5211,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:38 GMT + - Wed, 24 Sep 2025 17:30:20 GMT Server: - cloudflare Strict-Transport-Security: @@ -5200,13 +5227,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3959" + - "4664" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "6113" + - "4718" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -5216,27 +5243,30 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998553" + - "29998513" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_d8d9c0e4b33e4c03ad05c74ec9ea3859 + - req_c1385ac1d8324f5fbedfe480fb4b1d67 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from Wellawatte2023 pages 16-20: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nssion challenge and is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented @@ -5303,7 +5333,7 @@ interactions: \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal - is also\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + is also\\n\\n------------\\n\\nQuestion: What is XAI?\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -5312,7 +5342,7 @@ interactions: connection: - keep-alive content-length: - - "188340" + - "188513" content-type: - application/json host: @@ -5344,26 +5374,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUwW4jNwy9+ysInVpgbNhuHKe+GdkN4AKLFltssWi9MGSJM8ONRtKKlJM0yL8X - Gjv2tE2BXga2nt4jqUfyeQSgyKoVKNNqMV1049ufrvPvT+9+dNOvv338YKeb+O7T9NPPuLn79nGt - qsII+69o5JU1MaGLDoWCP8ImoRYsqrPl4uZ6Ob35YdEDXbDoCq2JMr4K4/l0fjWezcbz6YnYBjLI - agV/jAAAnvtvSdFbfFQrmFavJx0y6wbV6nwJQKXgyonSzMSivajqAprgBX2f9fPWA2wV567T6Wmr - VrBVn9ebCkKC94/RafJ67xDWSagmQ9rBxgs6Rw16gxUkrDExSIAOpQ2WQXsLgqb19C0jg7RaoNP3 - CNIiWDTEFPy40/fkG4gpGGRGhlDDegP9uzBI0p6jTuil1yMvmGJCKclMYON7sb6ORynU8jemcCCL - JfqjVPB5vQFi0DE6KocBTIsdGe16yS44NNnpBDGhJVNM4wo4mxY0AweX9+RInvrbbNDLmCVlIzkh - JHS6Z7QUeQIbgVyKkBAcg6P7klwuSdfaSNaOq0FAi2wSRQmJ4TucNJMK3t/e/dIH+rC+vf31+6r/ - fSDO2tGfx0ilAjxaAm14AI5oiicDYc77c4oM5GuXi0vDCidwFxLgoy6NWoG2ttigDVky0KSQIxfv - WxRMQUvoik5p41Le5VEqeGjJ4Ss/lc8gtMVXCsmkd6JFF8t5ogMCeaamlVNzaEeNhweSttSHiTr0 - cnLpbBl5yVQqqODUOuvNsC7oQkLI3mIq/W77ri0Kusf7vtmq6tjuCR0etDe4YxMSlrafTU9YZrQ7 - 6nSDXM4lZdz6l+H4JKwz6zK9Pjs3ALT3QY5mlcH9ckJezqPqQhNT2PM/qKomT9zuypMFX8aSJUTV - oy8jgC/9Ssh/m3IVU+ii7CTcYx9uPptdHwXVZQtd4Nni5oRKEO0GvPnyqnpDcmdRNDke7BVltGnR - XriXJaSzpTAARoPC/53PW9rH4sk3/0f+AhiDUdDuLq3w1rWEZU3/17XzQ/cJK8Z0IIM7IUzFDIu1 - zu64QRU/sWC3q8k3ZSPRcY3Wcbe4nu3ni+XS7tXoZfQXAAAA//8DAKN2il1PBgAA + H4sIAAAAAAAAA4xUTW8bNxC961cMeGoBSbUUq3Z0c78AB0VOLRKkCiSKO7s7EXfIcoaxVMP/veCu + ZKmuC/SyB755s2/efDyOAAxVZgnGtVZdF/3kx3fvt13z/navaffp9/zTh3cf/voh/oqf5LpRMy6M + sP2CTk+sqQtd9KgUeIBdQqtYss5uFrc3bxZXs9se6EKFvtCaqJPrMJlfza8ns9lkfnUktoEcilnC + HyMAgMf+WyRyhXuzhKvx6aVDEdugWT4HAZgUfHkxVoRELQ9yj6ALrMi96s1m80UCr/hxxQArI7nr + bDqszBJW5ud99JbYbj3CXVKqyZH1cM+K3lOD7BC++Xh3/y0krDEJaIAOtQ2VgOUKFF3L9GdGAW2t + Qmd3CNoixIQVuWLTEFihI6HAk87uiBuIKTgUQYFQw9099G4JaLIs0SZk7WnEiikm1KJwCvfcJ++r + 22uhuhY7ctb30V3w6LK3aUhH3Izh4909kEAWrIr4zBWmYlcFbXgAiehK0RdUyVvRlJ3mhALEtc+9 + DTGFiEkJBTztECT4vCVPeoCQQByyTuGXkAD3tozIGFzIRX5tnWbrTz6ISxS1j4vesj16lBCwiz4c + Bp1UISvVBzhpsb4UVbQeGb3f1EXr9DUtlx2Ywm8tCgKxUNOqgPXUMDyQtrDj8MBnG2MidhQ9yhgk + uxas9JaXaSt+W0cVue+2VshBk0KOQ10tKqZgNXTFsxeCUBTTKbqgLwROV2Y8DGdCj18tO1yLCwnL + kL49QqWDa+psg1KeNWVc8dOKN5vN5eQnrLPYsnicvb8ALHPQwbuyc5+PyNPzlvnQxBS28oJqamKS + dp3QSuCyUaIhmh59GgF87rc5/2NBTUyhi7rWsMP+d/PZYj4kNOcDcoZn17MjqkGtv+DN374Zv5Jy + XaFa8nJxEoyzrsXqzD3fD5srChfA6KLwf+t5LfdQPHHzf9KfAecwKlbrc6tfC0tYLux/hT0b3Qs2 + gukrOVwrYSrNqLC22R9vtRxEsVvXxE05GzRcwDquF9/PtvPFzU21NaOn0d8AAAD//wMA4nZhiAoG + AAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de351ae4d909c-SJC + - 9844023f4b8222d2-SJC Connection: - keep-alive Content-Encoding: @@ -5371,7 +5401,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:41 GMT + - Wed, 24 Sep 2025 17:30:21 GMT Server: - cloudflare Strict-Transport-Security: @@ -5387,13 +5417,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5948" + - "3477" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5989" + - "3500" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-input-images: @@ -5407,15 +5437,15 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29997016" + - "29996979" x-ratelimit-reset-input-images: - 0s x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 5ms + - 6ms x-request-id: - - req_d4d76dd89ff04ba39f998b34768ae2f3 + - req_09d6537141eb45a0801f41cd4a0293cb status: code: 200 message: OK @@ -5424,56 +5454,56 @@ interactions: '{"model": "deepseek-reasoner", "messages": [{"role": "system", "content": "Answer in a direct and concise tone. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them."}, {"role": - "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-0779e397: - Explainable Artificial Intelligence (XAI) is a field focused on providing interpretations + "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-f010a4a5: + Explainable Artificial Intelligence (XAI) is a field focused on providing interpretability and explanations for deep learning (DL) model predictions, addressing the ''black-box'' - nature of these models. XAI aims to enhance trust and usability by offering - insights into why a model makes specific predictions. Key concepts in XAI include - interpretability (the degree of human understandability of a model), justifications - (quantitative metrics that validate model trustworthiness), and explanations - (descriptions clarifying the reasoning behind predictions). XAI is particularly - relevant in chemistry, where understanding DL predictions can guide hypotheses - and ensure models do not rely on spurious correlations.\nFrom Wellawatte et - al, XAI Review, 2023\n\npqac-d73a7782: XAI, or Explainable Artificial Intelligence, - refers to methods and techniques that make the decision-making processes of - AI models interpretable and understandable to humans. In the context of chemistry - and drug discovery, XAI is used to interpret black-box models, uncover structure-property - relationships, and propose actionable modifications to molecules. For example, - counterfactual explanations can suggest changes to molecular structures to achieve - desired properties, such as blood-brain barrier permeation. XAI methods like - MMACE and descriptor explanations help connect molecular features to predicted - properties, providing insights into the underlying mechanisms of AI predictions.\nFrom - Wellawatte et al, XAI Review, 2023\n\npqac-ff54ad97: XAI, or Explainable Artificial - Intelligence, refers to methods and techniques that make the decision-making - processes of AI models transparent and interpretable. In the context of the - provided text, XAI is applied to chemical and molecular predictions, such as - solubility and scent-structure relationships. It uses tools like counterfactuals, - molecular descriptors (e.g., ECFP and MACCS), and visualizations to explain - how specific molecular substructures influence predictions. For example, adding - acidic groups or heteroatoms increases solubility, while adding ring structures - decreases it. XAI helps derive insights that align with experimental and chemical - intuition, making AI predictions more understandable and actionable.\nFrom Wellawatte - et al, XAI Review, 2023\n\npqac-28e90128: XAI, or Explainable Artificial Intelligence, - refers to methods and techniques used to make the predictions of AI models interpretable - and understandable to humans. In the context of molecular property prediction, - XAI methods like molecular counterfactual explanations and descriptor explanations - are used to explain black-box models. Counterfactual explanations involve minimal - changes to a molecule''s structure to alter its predicted properties, while - descriptor explanations use surrogate models to attribute predictions to specific - molecular features. These methods enhance trust in AI predictions and provide - actionable insights for domain experts, such as chemists, by linking molecular - structures to properties like scent.\nFrom Wellawatte et al, XAI Review, 2023\n\npqac-c7cfb85f: - XAI, or Explainable Artificial Intelligence, is a method used to explain predictions - made by molecular property prediction models. It aims to increase trust in these - models by providing explanations that help users understand if the model is - learning correct chemical principles. XAI methods can include various forms - of explanation representation, such as text, molecular attributions, or concepts. - It also addresses challenges like defining molecular distance, adapting explanations - for different audiences (e.g., chemists, doctors), and evaluating the correctness - and applicability of explanations. XAI is particularly important as black-box - models are increasingly used in critical fields like healthcare and environmental - science.\nFrom Wellawatte et al, XAI Review, 2023\n\nValid Keys: pqac-0779e397, - pqac-d73a7782, pqac-ff54ad97, pqac-28e90128, pqac-c7cfb85f\n\n------------\n\nQuestion: + nature of these models. XAI aims to make DL predictions more understandable + and trustworthy by offering insights into the decision-making process. Key concepts + include interpretability (human understandability of a model), justifications + (quantitative metrics supporting trust in predictions), and explanations (descriptions + of why specific predictions are made). XAI is particularly relevant in chemistry, + where understanding DL predictions can guide hypotheses and ensure models avoid + spurious correlations, with potential regulatory implications in areas like + toxicity prediction.\nFrom Wellawatte et al, XAI Review, 2023\n\npqac-933aa846: + Explainable Artificial Intelligence (XAI) refers to methods and techniques that + make the decision-making processes of machine learning (ML) and deep learning + (DL) models interpretable and understandable to humans. In the context of chemistry, + XAI is used to interpret black-box models and connect explanations to structure-property + relationships. For example, counterfactual explanations, such as those generated + by the MMACE method, suggest actionable modifications to molecules to achieve + desired properties, like blood-brain barrier permeation. Descriptor explanations + provide quantitative insights into molecular properties, aiding chemists in + understanding and optimizing molecular designs.\nFrom Wellawatte et al, XAI + Review, 2023\n\npqac-dfc13ddc: Explainable Artificial Intelligence (XAI) refers + to methods and techniques in AI that make the decision-making processes of models + transparent and interpretable to humans. Key works in the field include , which + outlines concepts, taxonomies, and challenges for responsible AI, and Gunning + & Aha (2019), which discusses DARPA''s XAI program. Other notable contributions + include on classifier explanation methods and on a unified XAI framework. + XAI aims to address issues like trust, fairness, and accountability in AI systems, + as highlighted by Goodman & Flaxman (2017) and the EU''s AI regulations.\nFrom + Wellawatte et al, XAI Review, 2023\n\npqac-630834dc: XAI (Explainable Artificial + Intelligence) refers to methods that clarify the decision-making process of + AI models, particularly deep learning (DL) models, which are often accurate + but less interpretable. XAI involves a two-step process: first, developing an + accurate but opaque model, and second, adding explanations to its predictions. + Explanations can be categorized as global or local and as intrinsic (built into + the model) or extrinsic (post-hoc). Evaluation of XAI methods includes attributes + like actionability, completeness, correctness, domain applicability, fidelity, + robustness, and sparsity. These attributes help assess the quality and utility + of explanations in various applications, such as chemical property prediction.\nFrom + Wellawatte et al, XAI Review, 2023\n\npqac-99876780: Explainable Artificial + Intelligence (XAI) refers to methods and techniques that make the predictions + of machine learning models interpretable and understandable to humans. Counterfactual + explanations, a key XAI approach, provide actionable, instance-level insights + by identifying minimal changes to input features that alter the model''s prediction. + For example, in molecular chemistry, counterfactuals can suggest modifications + to molecular structures to achieve desired properties. Techniques like MMACE + and CF-GNNExplainer generate counterfactuals for molecular and graph-based data, + respectively, though challenges like ensuring chemical stability remain. XAI + also contrasts with adversarial training, which focuses on model robustness + rather than interpretability.\nFrom Wellawatte et al, XAI Review, 2023\n\nValid + Keys: pqac-f010a4a5, pqac-933aa846, pqac-dfc13ddc, pqac-630834dc, pqac-99876780\n\n------------\n\nQuestion: What is XAI?\n\nWrite an answer based on the context. If the context provides insufficient information reply \"I cannot answer.\" For each part of your answer, indicate which sources most support it via citation keys at the end of sentences, @@ -5495,7 +5525,7 @@ interactions: connection: - keep-alive content-length: - - "5353" + - "5317" content-type: - application/json host: @@ -5507,50 +5537,51 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//tFhtb9s4Ev4rA33ZBFC8jtPWjr8cctkWZxQFFtseusD5ENDkyJo1Raoc - yom3yH8/DCn5Lb3eLnD7zZbI4bw+z0N9LcgU8+KNmc1ux5NXVzc309XVq8nqzdWsuq6uquvxm9Vq - OsWZxqIs/Oo31LGYF7pWcaR901qM5F1RFjqgimiK+fX09ezNdDx7dV0WjTdoi3lhEFtG3FwFVOwd - BtlQe9LIxfxfXwtyBp+K+bgsGmRWayzmX4vgLRbzQjETR+Wi7PEuohMH3j61VpFTK4twFyJVpElZ - WLiI1tIanUa4+PVucQkBKwwM0UODsfaGQTkDEXXt6EuHDLFWERq1QYg1gkFNTN5dNWpDbg1t8BqZ - kcFXcLeAFBKX0KoQSXdWBbsDiQ8squBky7CEXMTQBozJSzm1cwaDBGPSo+ih7hrlGFY7OWhLRvaj - xOaUJJah8kH8ogBtQEM6P71ovyh9NZ5Ob/HmdlpC+mumN2o6nU36v1X1+pUy+7eTGd6Oryez/q+e - 6mo1e11djuDXuwUoY0IOU5KwLFZW6c3Vyj8tC3AqdgEl/lgjYx+feI+uVpLpGDqOJXSsVmQp7soU - 7VZZMikMiHXw3bqGDe5Ae6exjQzc6RoUH+cp7YaLlJWTbKUXlyX81nEqdp+diy+dcpGiirRFKXAg - 3edMXHr0IdbkkPkyu3SS2ovcjZLyFdbkzHGKL89yfDmChQPjG0WOwdIGQdfYEMewS6ZN6NZgiLXf - YtiVKavEoNrWEhrJVufSO+AYOi0pvWqDbzHEHQS02amaWpZEilPRezsc5TtJUqV07JQ9DSN64G69 - Ro7QkKNGWWi8xdSboGvl1phTYpApoESZTiXknBSDrAO10YdTwyvFaMA7qDB1wKFib+/f/Qw+wIe7 - +/uP4oCKMdCqi3jSpeJZi1rqBdyt9nEP/fvHGvZyBJ9qYsA07QwqWU8DRI5pXUcu95413lC1y1M4 - 5ODo3OiBGpk0BPa26/vNB2gxNJjiLuGxJouAjrtwGGdQltYOHinWufBaWencjlKDSx7V1pMBbrtA - vmPQPuzL2gd8FuH5DFr2EJXeSJS6VtZiql3qAIMVudO4TMJFjRnRlFFt/CZ8GNpiYATVGRJg5BJ0 - oJgikPepRYeJIgc1KhtrrUIGLXRbCt416KKywJoyuJ5FUJTFfpweDjj9joIgg4BKxxhA8YahSdCn - HD9iAjcQHE5pXBafBY2JJSF/WxaHHpRlGSLRQLL/FEewgKbjKKbBO7tLq/qXsKYt5sJoihnc2XdB - 8tXPV40ZowSWeASL6mQ/STK4q4Ra0MUSFsC176yBgK3dwbJYgFbO+diHMloW8PcuQhV8c2wphR/w - B4bWopN+q4Bc5UOTwVGtfBcl4NHSLd2nIxe0d0J+iXsqQTh80hhaaXhUus7dqCS+bGmDuzn836hh - BHfWgrRBimhZfEZr1aOKEQEjKJtB7hfcEj6WMBlPbpZFimEBDjPmPQbJPeX6cdzZxCMqt1FCckhE - anGeiIEYgVG6J/epl8y5KHSr1kG1NQsa4NA8fUFW2CdxMh7Dow+GS1h1Ucoj76x3awyjQwHzpOJT - DMqhzOpJOVwyaCigjimc97iD1pOL/KK2h+LNZeVVykjirDx7f0CnjPLGRYTK6y4pDXekBg7smAf0 - BY1laH8hQI6RuBz4fWj7H/b8/kNP770Xd9S8ZPasXQZyF7HiqwpD9i4jsLjp4bHeDXCZBNUe/Y98 - 6Q96f6QE5i8kwDnRlych9yZ+QYtb5aK0156LyxdEfADMPd0e3OlNfeilITltO/Ndvi3/G1+WsCXu - lKXfT7z8dGDxDx/u7t8eO3SwxHAhpFpmSr3s9/4DbZsg+SCFJOn/W0D0gqBvhkMehyrv1d6foJny - QDGZVaQHZDb3vHI2+7xzIhjpdwFf6ltEHWa6R034GFWIA5ZlBzIRxxodoFUrH1QUhE/6UUlXxV67 - JGhXreQhkIpod8mJj0OGUrfng9KAXouMi8GbLpX/x5/2xwkuDRg8GcHPXWg9ZwakpvUh5SC9vRmd - dG9a0t8t0vtXI7g7otQSMM2BsnZ30qpp8esR3B9qIGxsTPJH2R5z0rK3okYwo75cPYSduGvFLzQy - kQMH8Aj+yTnsY1pgEUf9OKIRrG0a9SO3SkvNLTUkdlolhakxaQMGFZMddEaSs4fl5NBnH0wek7mA - RhYSwXfOHEB4BPeyIBlJD8SJBZigqgysP8kvUA58Fy057DH0Y38SXM8hFQhTZeDiXqrddDZSaw9s - Tom3d6Csze2DQBGYGkq3s9HlmdXJfIBloMjQ5koP5sOAKkkU9HvvnAH20OPFfY16IzJR1zm3fSX6 - R1If7kM5IeMhmqRuypPL0Oho+UDWZ8vPZdoR5A0322/cFU4sD7z/HctlvnYc7xrkwdmu7x16dq84 - MTfIi3MnqBHC389C2iICJGXY7NuglEIsoBHayeO/b4heZhwgZN+zuWUHLXIiP6J3OIdE/7YUZhAN - kg9PKqESBXvVYmDBiADK7SD/UxZ8S26PqxnHUneTW2cwPMKag4ZJvbH8E98w5B4JFaE1vUYwf4VG - SCp1tTvTChS+oRZeXo7TBeYvFw8vzl0WvWZ2SSIoZ47hsqcajXMpWa1a0VYoVYyP/lhTniIaCHU2 - KuIc3kvSKA7aNC18R1L6lwoUVtbrTfpOIsowXxX3sFw8l4X16zb4FRdz11lbFtKnXD/ki1MxLzj6 - tnj+d1l0w0ewNvimjQ/Rb9BxMb++Ht/KZ7Dhw9vhxXjypiyij8run02ub16XpxYeDEZFlsW0VrpG - s189fv6G4eP1h+vdsGU6mTzvD0jmHmo6ODs+e9cQ80kkz2XBO47YPFQkCr0NlC6NVftQTV7fVPr6 - 1lw/tMGb8Wwyfqja2cNmm2wVz/8BAAD//wMAhKMVIrkUAAA= + H4sIAAAAAAAAAwAAAP//3Fhdb+M4EvwrDb2MDcjaJM6nXw7BzQ5g3MztAjuHHeACLNpky+KGIjUk + Zcc7uP9+aFKSZcfJZgf3dE+JbIpkd1dXV/lbpmS2yO5u53fnV1fl7Pr8vJxdXt2ez+7Kcj67vLg9 + v5mfXc9vpcjyzK5+JxGyRSYqDIWwdaMpKGuyPBOOMJDMFuc3V7c386uzi4s8q60knS0ySdR4oseZ + I/TWkOMXKqsE+Wzx72+ZMpKessVZntXkPa4pW3zLnNWULTL0XvmAJvA71gQyfIEfnxqNyuBKE9y7 + oEolFGpYmkBaqzUZQTD5cr+cgqOSnIdgoaZQWekBjYRAojLqa0seQoUBanwkCBWBJKG8smZW46My + a2icFeQ9ebAl1CgqZQg0oTP8LW/Fwe0/iSF7UCaQaxyFeENe1hpJjgOR8aNgoWprND4HlNKR9/x2 + qEg5sA1+bQkespVG8Thb2aeHDAyG1hFMmq8oZnfzOeLt5XUO8VGW4nwupegey7PzM7zEq2kBX+6X + QKZCIzhS1/qQwndofIOOjNjBasdRbpTkGyjj1boKMQILjSOpBJeY8+Rsu67gkXZAmmoywYNvRQV4 + EK/SKuxgEqM7iDp9wWmMOZrm8HvrY+kwnTD52qIJKmBQG+JyOSX4iKaxLsT0cADTPIZAjADTvynJ + C6ea9GRL2FY78A0J3v0gCitE66ZdGkeJum8aZ1FUxLEI3UoCYVuOqkQRWtQHB+awrZSowLfrNfkA + tTKqRg3KNG3g+EZRBQuoAzmwbRC2Jp93sEk3tu4wlAhHW5bk4CAdh4UpKcLBg1aPBLXVJFqNjgvZ + kAuKfI+Uu9ub65vbsw4aPXCmBXyuyNPQFAINrPiU4PgkAZNVq3RIp3FjxKJNIV53WNNYH2aVFV1N + 1tquUMMkrp1tlaT4graCP1WGgSBo1hemL8P1/Ox2finFtIAfN6jbmAmuIqNXmY3VG/KAITi1agPt + UYexqB2ycugIiQx5z0/OkQjpQdoalQFsGq3E8EKpJKX/nF21vlvLkXBzeIZrsEDGc+c1jo/jSNqQ + oLzfMJUu1kJUVMdVXSl2I/g9j3dp0gs+uF0e40UlucaglekIaNSCFnxwreDSz4b9Hel0gUo1Pod1 + mzq52jU2VOSVB0kb0rbhlo3R1SqoNcaW8k3rlG19Spfu++mgPZ5hJ8uzxOTKrH/bk/IH5XzIYQmG + SEbcG78lF+HDVMt7L+Ah+5UhrjyH+7eHDFboSYI1cV1iIpIQt30KEaf9A//laRBb3NOGHOcZHa4d + NpXPgVBUsFWhAgQRO8caJqwCllAz+Vmjd9B6BnppXZ0WlM7WfLgfDkpDQqiQhsIj7TyX2tnGKQyk + d8WDeTCfR3FxPD445B4trduikwuQVPK4+HK/LOBDd0h/RKp2pEYPpXXwhpFWjHLrdyZW9490xVPx + wAa1kvH2C3itoqfHSA/TfnHHJDH0f9AOGqt4BJRHgS34+1nqXQ+4sm0crwy2+2XH/TlQJAHUenc0 + QCfvP04TSI+H7eTTx+nw/tsHbAGTeMW61UE1OlVzmi65DP30jUKA4N0wct/1E9eWHTbS0cXx7Eg7 + cUKENYKasJ8gx1PxeOLlB9T/ws7LsOfAnq0T07w2n14YL8VpAdHXdrqv3bOBMGb+vKf6nt2LY2rr + 7/7OMz/RBg2HAaUiLcdMycQX4f9nxPbCzY+SNZofo3nR1+PVeUFBnIxi33Jbx4SgElH5sNMRHAhe + KDKxrIAuKKFpEbGgPIEnZkdBcSBV5JiC94yV2K2jSV/ZVktOemqai7Mz2FonPaza0NdDW7Mmx0TQ + LTc2YjjWBg0xlY+4IDbrL31q48XTaV2X/hLQhZ4xI12p0fAtuqRqXFmHgZikVfDQtK6xPrUdy0Hk + Zg6+W/6Jk2GPZmNED3K+PahywER/Qhqxkb77jEVGTdqPJIvUntD9KYKLG/29p3zXavJdiP+KtF7X + +INvULDC16pWvGcUwKGiONVZYMQ9ycg0XrrCdVf8iSfH0UTwoBg4xbrIj3uXA359iqZt39tYQYYL + BjIxyS4pyN1wUrzCr9bJ1PMLuFd1bBp0tjVyj5QCPlKAmlhraibPgZe7VP+UPo+pOS/g/VDxRU/Y + bxhDOZRWtNGwMCCOpb8t90RfwCTm7Dn5XhTwc4LRAj7bZMDGWueQzvOk/bfWhWp3YJkGwgblfUvD + ic/ZYV7Ap8SfC1gmRvBjI/jnpDqQ4Q97DYyDcTg4+YimDhjlMtqNoTcW8HOkDRbwOqrKQ2bcq3tJ + Xq3Na+ccBHw11tMLuN8TYgz1lPo92Pvg0v+027xjwJNEdsAkK2dRjvgkZyAaMOic3YK020RM7x2W + SS/8//j51x16Z8lR1ckYJhy/UXq80annneMfHPNzy//M/r5RviTXmwyRhxcs/gl/HmuSJMmKXjbn + 6AhqlPTsfgyRAzO4weRa9t2XD67wlRZOFzl27aJCs6ZYkGjgv8+zd87lBdf+XW6cR8LaOvUHye5H + lhNabOy8eznG+q8hIzuK3lYUKjq6NCf7lMfnTVCyBevd/Vts+nBzdmgMiLH+inTzqvjiGHo+Gnnu + l5z2UOq/YrajmDPdTwHHGjTZsYp0E2MwJEKXjv+FAV+TIdfJUiMBNzYt+S73HZVOReIxzvxeEnyu + 2OgzoUbblYTB+dUgDJKip6cm/ryhGZU8bMqobknmUWSqMFKhnYSN53UCbS/BGD3dLywLWL7bxO9Y + Jo/EUdN5/174xZ0+KIO6d61JixbZf/JM23Xj/gsAAP//bJjBDoMgDED/pWcOgDNT/2VpNpFIRCG2 + LtmBf19wUeeya1se7aWQFx4EzbR4LyA/HdTjxzNAA8QhQroJWDZBHOcwRkYOQzcRNErpa1bEm5Q+ + ElpfBHDgu99juiiVOBPQdHx3njK6zSvF7NUy/QF/1x82ZDtSF3XaL1hx2LujWfmTGx3RaZIkgF7E + 3YjW5R9/nN3qWGxEq8vCtqo2CuMcjKy0RBsrHJ4rC9IbAAD//wMABEBifNUXAAA= headers: Access-Control-Allow-Credentials: - "true" CF-RAY: - - 983de378e80bee17-SJC + - 9844025e9f27ce9c-SJC Connection: - keep-alive Content-Encoding: @@ -5558,12 +5589,12 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:41 GMT + - Wed, 24 Sep 2025 17:30:22 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=3cmHuqvWDSZTY6pMfpU7FedYhVyymcGp8RIQCpdZw_4-1758670841-1.0.1.1-XWxoSRo3mVZI.eDDEeaOJNYXk7pn2DbchqGDxS6oS1jjdZzI8C62pznNyGfaQAhlqZW0Xlczy7BTnf2kXe82BZ38KeO7E7kToRcff3so4Lg; - path=/; expires=Wed, 24-Sep-25 00:10:41 GMT; domain=.deepseek.com; HttpOnly; + - __cf_bm=HqR52zhsIHmECVyWOTRymw59HGC.8bGggmcb3q78lyk-1758735022-1.0.1.1-LmdTwFSFJUnZ02SdunE8p1LtOnCTG3JbZUkUdCznAX1Jp2KP8UA7IPSdrXWF.zv4R4bEukLXsv8oLNppmQmj7JaBjjbqjvTMMAooORVM0L0; + path=/; expires=Wed, 24-Sep-25 18:00:22 GMT; domain=.deepseek.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -5576,7 +5607,7 @@ interactions: cf-cache-status: - DYNAMIC x-ds-trace-id: - - ae6e6401dab1a43831759dd21a0b1d41 + - 51d9875bf28bee3171f332f85f7c3fa9 status: code: 200 message: OK diff --git a/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml b/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml index af3a78de2..c36907f13 100644 --- a/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml +++ b/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml @@ -45,20 +45,20 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFJNb9swDL37Vwg8J0PsOkmXW9FLV2wY0EO7oQ5sRaJtdbIkSHS7Ich/ - H2Sncbp1wC468H2Ij+Q+YQyUhA0D0XISndPz69vVjcB7uvn88fvia3Z1fY9015r84UvtBMyiwu6e - UNCr6oOwndNIypoRFh45YXRN18vL1eoyzxYD0FmJOsoaR/PczrNFls/TdJ4tjsLWKoEBNuwxYYyx - /fDGFo3En7Bhg81Q6TAE3iBsTiTGwFsdK8BDUIG4IZhNoLCG0AxdV1X1FKwpzL4wjBVAijQWsGEF - fLv6xO7wWeFLAbMR5T211oeIPxbwgFrzF06EDIlxXcD2yJNWRY7ptS7MoTBVVZ3/77HuA9dHxhnA - jbHE4/iG5Nsjcjhl1bZx3u7CH1KolVGhLT3yYE3MFcg6GNBDwth2mGn/ZkzgvO0clWR/4PDdOhvt - YFriBF68gmSJ66meLvLZO3alROJKh7OlgOCiRTlJpw3yXip7BiRnof/u5j3vMbgyzf/YT4AQ6Ahl - 6TxKJd4mnmge443/i3Ya8tAwBPTPSmBJCn1chMSa93o8Pwi/AmFX1so06J1X4w3Wrlyu0l22XK/l - DpJD8hsAAP//AwDM01cUjAMAAA== + H4sIAAAAAAAAA4ySTW/bMAyG7/4VAs/2EOdj6XwrdloHbEN3aIE6sBWJSZTJkiDRzYog/32QncTu + 1gG96MCHL8WX5DFhDJSEgoHYcRKN09nnu2/CHMLspVm4x5m/32vx4+f3r3efzIP2kEaFXe9R0EX1 + QdjGaSRlTY+FR04Yq+bLxc1ytpjc5B1orEQdZVtH2dxm08l0nuV5Np2chTurBAYo2FPCGGPH7o0t + Gom/oWCT9BJpMAS+RSiuSYyBtzpGgIegAnFDkA5QWENouq7rut4Ha0pzLA1jJZAijSUUrITH2y/s + Hp8VHkpIe8pb2lkfIn8q4QG15gdOhAyJcV3C6pwnrYo5ptW6NKfS1HU9/t/jpg1cnzNGgBtjicfx + dc5XZ3K6etV267xdh7+ksFFGhV3lkQdroq9A1kFHTwljq26m7asxgfO2cVSR/YXdd8tpXw6GJQ5w + doFkieshnk/m6RvlKonElQ6jpYDgYodykA4b5K1UdgSSkel/u3mrdm9cme17yg9ACHSEsnIepRKv + HQ9pHuON/y/tOuSuYQjon5XAihT6uAiJG97q/vwgvATCptoos0XvvOpvcOOqxcd8PV0sl3INySn5 + AwAA//8DAPxI1L6MAwAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da85ab83867f5-SJC + - 984403d1081323a9-SJC Connection: - keep-alive Content-Encoding: @@ -66,15 +66,9 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:20 GMT + - Wed, 24 Sep 2025 17:31:21 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=nqimPZua3_KliFh.JfoICBZgXZHkBM_nesc1sdC0_rY-1758668420-1.0.1.1-8F27bITntZK9wGqpVc_0zEhBiqxRxntOxWaMvD9XNKKewQmDq.sNPr8RXZJvUlY5u7429wszOUTzqi9tTP_Sv4uDkwtbJ_JZ9dEhGS75BYM; - path=/; expires=Tue, 23-Sep-25 23:30:20 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=IaY8v3rpuntzFZ7S_XDlhZ6RkD3JvcApzBQOHR775ok-1758668420925-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload Transfer-Encoding: @@ -88,13 +82,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "560" + - "352" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "590" + - "365" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -104,13 +98,79 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29999935" + - "29999934" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 0s x-request-id: - - req_db3ae85e4f0444d591f3b3b5a6196ab7 + - req_1d99dea41df44ad693c9fb110d8c180e + status: + code: 200 + message: OK + - request: + body: null + headers: + accept: + - "*/*" + accept-encoding: + - gzip, deflate + connection: + - keep-alive + host: + - api.crossref.org + user-agent: + - python-httpx/0.28.1 + method: GET + uri: https://api.crossref.org/works?mailto=example@papercrow.ai&query.title=XAI+Review&rows=1&query.author=Wellawatte+et+al + response: + body: + string: !!binary | + H4sIAAAAAAAA/7VVTXPaMBT8Kx6dLZBtwJhbJ2lnkukHk6SXAgfFfgalsuRKMi3D8N/7JLuBdpJO + L73Z+njafbsrHYl13HWWLIj+SmLSgLV8C9QdWsCx79p8pVJYdzG1B2OFVjibjNiInWfI4khqXoLD + asdTTJx2XFIDtpN+KM2mszwmwkGDf6sjEaqCH1D5bRV3QFtu/LrVKmXpJJ7H+WYT9zNONB6NH6ds + Tln+wGaLSb5Iii94vJ9FFk1LFkmeZizJ0qyYTXOEYKAGA6oEWupOObJgMWm7R2S0A4MVHwxX1jqQ + kpvoVndGcRkt/YKSOyRpI66q6A4scFPuoiscQTJclYdoacQesUXvRYOUKsQhrO08zAy/S60cKEcr + 3XChAsXha4WkSqOtbTj2FrvjjChdaGjNpQVEbXfaOOpL4A4wSN9JLLwiN7cflm/vrsnmzKKirRGe + 2QtNZJsNVrv+dOO1YqN0kk7y9Vg8NS2Y6qlTfkmReLiD3E99ByjWECUe6ZECd69oxFCj9CWRmBcp + RZHYIsteEGlazCfzeVYUjDEE2AbvkGKaT2kxnae42iKQ0g9e+U6hiqG99FnOij4eLiR9btAb1Gov + 4Hu05Mgx0ip6p3UV3UPZGeEOoXFYRPy46AiW3mvZBfCJtzPvHAoQLLoVe/BOf4O6N2gV3qA/wEVc + jmJcWfNGyMPr8xa+dR4urqiFCSnidS2k4L3gK9TnSBQPZz/cLu+uft/Eq0r4lVy+sHPjg9c8Bh8n + LJvMBtv96Rk0Ioral3n2uK6jD1DuuEKjy2DypdFVF4wYvVVbrAHoq+3Z+37NNexB6rZBZ/tWSq62 + XS8edgltAK224n/bxZba4M50MiqyIi0yn/JffjmivAKDdfCfn+/e4wE759rFerweu6fWlCNttuvx + EJ7Wm8Suxymd5dQfM2VpXqQUMzEk7fbzxyEko7aqyek0pPwVhiFvzya1Fw79lazhjjj+dln8a5ax + OJeDmnugogqWR3FokuU585KcOdtAutKip/z3/N/c33/0xdJ0UtDZvAi1EKIaHgKMwnBF9AgxMlwG + /Ocdp8tb6XUOm+EJoAiC9tFPYoKW70VD0fHuC09DaFzvPoqs/auhOilPp9NPeOiRVLYGAAA= + headers: + Access-Control-Allow-Headers: + - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, + Accept-Ranges, Cache-Control + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - Link + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Length: + - "851" + Content-Type: + - application/json + Date: + - Wed, 24 Sep 2025 17:31:22 GMT + Server: + - Jetty(9.4.40.v20210413) + Vary: + - Accept-Encoding + permissions-policy: + - interest-cohort=() + x-api-pool: + - plus + x-rate-limit-interval: + - 1s + x-rate-limit-limit: + - "150" status: code: 200 message: OK @@ -149,7 +209,7 @@ interactions: Review and Dataset for System Health Indicator Construction},\n year = {2024}\n}\n"}, "authors": [{"authorId": "2167438752", "name": "D. Nguyen"}, {"authorId": "2184162840", "name": "Khanh T. P. Nguyen"}, {"authorId": "2267984723", "name": - "Kamal Medjaher"}], "matchScore": 58.483295}]} + "Kamal Medjaher"}], "matchScore": 58.35354}]} ' headers: @@ -158,97 +218,31 @@ interactions: Connection: - keep-alive Content-Length: - - "1440" + - "1439" Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:21 GMT + - Wed, 24 Sep 2025 17:31:22 GMT Via: - - 1.1 6b6864bce40e8c6517571357636f0dbe.cloudfront.net (CloudFront) + - 1.1 6b175795d4c4b1909e08459648cd6214.cloudfront.net (CloudFront) X-Amz-Cf-Id: - - KJIgTNg_R5aQEJJoq-L7_b6O1i5WZckzRbQn55mitTjQ76BSo6l-Lg== + - dHsScMxDrXunVOdawwLmCYPZwpFBAhCiRDs5pxw1nkVbHiG4za522g== X-Amz-Cf-Pop: - SFO53-P7 X-Cache: - Miss from cloudfront x-amz-apigw-id: - - RYL02GdMvHcEBKw= + - RaukkFZ5PHcEtYg= x-amzn-Remapped-Connection: - keep-alive x-amzn-Remapped-Content-Length: - - "1440" + - "1439" x-amzn-Remapped-Date: - - Tue, 23 Sep 2025 23:00:21 GMT + - Wed, 24 Sep 2025 17:31:22 GMT x-amzn-Remapped-Server: - gunicorn x-amzn-RequestId: - - 484e5c8f-1b3c-449a-b0d0-d9069d9f95bf - status: - code: 200 - message: OK - - request: - body: null - headers: - accept: - - "*/*" - accept-encoding: - - gzip, deflate - connection: - - keep-alive - host: - - api.crossref.org - user-agent: - - python-httpx/0.28.1 - method: GET - uri: https://api.crossref.org/works?mailto=example@papercrow.ai&query.title=XAI+Review&rows=1&query.author=Wellawatte+et+al - response: - body: - string: !!binary | - H4sIAAAAAAAA/7VVTXPbIBT8KxrOwkZIsizfOkk7k0w/PEl6qe0DkZBNikAF5Nbj8X/vA6mx20k6 - vfQm8fHYfbsLR2Qdc71FC6S/ohi13Fq25dgdOg5j37X5iqWw7mJqz40VWsFsMiETcp5BiyNqWMUd - VDueYuS0YxIbbnvph2iaZ1mMhOMt/K2OSKia/+C131Yzx3HHjF+3WlFCs3geF5tNPMw40Xo0fhyT - OSbFA5ktsmKRlF/geD8LLNoOLZKCpiRJaVrO8gIgGN5ww1XFcaV75dCCxKjrH4HRjhuo+GCYstZx - KZmJbnVvFJPR0i+omAOSNmKqju645cxUu+gKRoAMU9UhWhqxB2zRe9ECpRpwCGt7DzOF70orx5XD - tW6ZUIHi+LUCUpXR1rYMegvdcUZULjS0YdJyQG132jjsS8AOboC+k1B4hW5uPyzf3l2jzZlFjTsj - PLMXmkg2G6h2/enGa0UmNKNZsZ6Kp7bjpn7qlV9SJh7uKPfT0AEMNUQFR3qknLlXNCKgEX1JJOJF - oiASWaTpCyLl5Tybz9OyJIQAwC54B5V5keMyn1NYbQFI5QevfKdAxdBe/CxnjR8PF5I+N+gNaLUX - /Hu0ZMAx0ip6p3Ud3fOqN8IdQuOgiPhx0REovdeyD+ATb2fWOxAgWHQr9tw7/Q3o3oJVWAv+4C5i - chLDyoa1Qh5en7f8W+/hwopGmJAi1jRCCjYIvgJ9jkixcPbD7fLu6vdNrK6FX8nkCzs3PnjtY/Bx - QtJsNtruT8+AEUHUocyzx3UTfeDVjikwugwmXxpd98GI0Vu1hRocfLU9e9+vueZ7LnXXgrN9KyVT - 234QD7oENuCdtuJ/28VW2sBOmk3KPKe08Cn/5ZcjyCsgWAf/+fnuPRywc65brKfrqXvqTDXRZrue - juHpvEnsekrxrMD+mJzQoqQYMjEm7fbzxzEkk65u0Ok0pvwVhiFvzya1Fw79lazxjjj+dln8a5ah - OJOjmnuORR0sD+LgJC0K4iU5c7aBdK3FQPnv+b+5v//oi1GalXg2L0MtgKjGhwCiMF4RA0KIDJMB - /3nH6fJWep3DZnwCMIDAQ/STGIHlB9FAdLj7wtMQGje4DwNr/2qoXsrT6fQTZtoAXrYGAAA= - headers: - Access-Control-Allow-Headers: - - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, - Accept-Ranges, Cache-Control - Access-Control-Allow-Origin: - - "*" - Access-Control-Expose-Headers: - - Link - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Length: - - "851" - Content-Type: - - application/json - Date: - - Tue, 23 Sep 2025 23:00:21 GMT - Server: - - Jetty(9.4.40.v20210413) - Vary: - - Accept-Encoding - permissions-policy: - - interest-cohort=() - x-api-pool: - - plus - x-rate-limit-interval: - - 1s - x-rate-limit-limit: - - "150" + - 257abedd-97ad-404a-af94-93402bf79a27 status: code: 200 message: OK @@ -1341,1696 +1335,1693 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA6R7SbOCTJfmvn7FG9/WjpBJ8mTtmGdJBFTsFSgqoKIMCWRF//cOvdXd0RG16t7c - CIWrSZ7hGU76H//2zz//aou6PA//+vd//vWo+uFf/+373iUf8n/9+z///d/++eeff/7j9/f/urN8 - FuXlUr1uv9t/F6vXpZz/9e//cP/7nf9z07//8y+urZWQpdYDsW29s9B4EO5EW7lOIvCHbQXtut/R - 3DS3Cdus/RyO4bAhW8+J9FnCboVxkpb0uEuXYkmKKgYQsUqNvbnXF2uRG2iFeUW2x5evc4k+Z1C+ - 1YIYBvfUP9s+6MFuiuO4uiZqJ7IrGOCu7P3IpEPNaOSoMXrsSo7osZH6y31aydApvfdbTzELpJsA - CW8pnJ7e2+9tPijBeH/OhASrYzdF/hhCflcQterHRp/RTCyo3kDI3m9ZNyfiJOMeLfuxUbCgT8Nr - kbE/EINYzaXyFw1DgJLhHNPsXXb+8LwmFSjh6hEiiRu7RVVVC9sn0R6flqYVfGNGCwrsOSXHvb32 - p2biFlyT90itaLdmEx9+BFB0zaUKoEDnzKGTIdowg9gWt0pmnr+t8H6tejSmgl0P5clR8CavJqq4 - x7Sj0qJpwGPrSvy7ICVzw2sVVldGSk/pceuPnBt48i3zPeJEldUJYSvK2O8LkVoGdyimUyxX6Pua - WFWr1yKRiQKgqXuyNZKZzRN7B7Bday4Jjlnpc+2DeXhXTynZK2uCJlUabpApXET8kMY+6063BuSk - Z2OX1Mea9fz6AKesNen1+CoKkc+LCBpTKWiWBXUhos3niTMeKAke3QoxTdMUfJ3bku7K6ul3O+4Z - ALtu8Lj4JyGZLmL1wSWXSaSQhZvP366vBcbRyYmxcqV6btLRQddnolKjI4+Oc8x4xLwfHGguYCEZ - ZKNyQLrsPJrvD1AsZV87+NTJBQ2ErVHM6/06gt9+X/HG9wdYuxF4KEVEQ8nOXzZFbGBx2xT02O1I - N6rRoZRvqfmirkJCvZdv0oK5vqnJVR3vifj4+Aqsju+JGjpc9LnbmQbuxX6hRnMauyW7VBp+24pP - ouvd9MXOjXPsT9eC2s+L53Mb/R5iHGjNCGYcoXnG+2UzEyemik7dZGjMbELWC1b0MjRO95ev70sl - Uj0bJH0+WbKFpkvk0ly/VPrSbpcYr5bzlmZkVFB/dLYO+u43sTzBRpMt7SIca5lNdhuLZ1Ng5yVU - D/NKdW3Ka1GLswCxK8LEPvlasZzjW4aX6yckwbo96yzb3Z94l+UitZZNXAtyd4uw8DEl6vhihDir - cEe8p8IxnPhS6zjc7lK88PuReGe97oRy01egh01ElbeiJNw7yQDM55sn1yrVummixRmMMlqTwydW - CnG/kRe80QNxFBmYujjUFw8wiWUSaretvyTddMbf+h+F5qL5HBcJAva21Z6o4N4KwY68EM3DZBJ/ - i/p66Tghh6k/A1G2oVFzVy2y8JPsTiS9Pe+M5dKjh4DI+TifPpeCJ9XBQfR1uBBDwQedG479CH5/ - EomSSmrB+O1OhsslIzQx2cOfHG0rg1OVHg0cp9Wn4PAScDHRD91u0Rk1d0fkoN60q/Fl86I+Z+/P - GcGQzcQr1RktvSZ9cBpYJokTnfnz2TcFeHiePErSYy7EFzflGPZJFwrXJUi4Ml1ifByOPXHy1VHv - U6V/oiOpLRJtDPCnnDxGyKWUI+cps3wBK1qMUQQn6okr4gsdt8pQF7RPesTFLRkSOzxAJK3FcEX8 - qluu1gCwvihnkpAi8tk6NJ4wNY1O8snX6rnhvRv69k8aKKVf9MupP8u38S1QK0k9f/FeE+DAVz/U - 7naknodiKX/4QdJffRhSkmO4dQ61X6XGeLL0B5Rzux012PBCi1ZGH/ztv1TtFCeZpvX9gw2QFnqA - bMsW/hSnKE38hehf/OjHfTaCLXZD+Ny7bc2wfgygsq59iM/xDU1M4DSsydVAvUc31swpjQqsqDOJ - qg9XxPvDcYHPvPNoyt239SRPlgNoe+W/+at3y0neNLCUvEr20iHVBd3jPwjCZTVO90PdzYNzLSFS - FI14+kXTxfNTr3Bky4hawqR1lNWKJO/qJaX6yq/0/jG8ACIfSnJcUFDMdoY5xGPjOjY6XPyp5twG - 2q2CiPb0NgUln/kjb5N2oHFk9P40mlqFm9elGeXpG683ihR8aUaXhndH0YW6IBJ0z+IdwpWMPtuS - lQU9mvbULrCgL68ojJC3zkvq8quXzwZ908BMvJhuQap88SycRqifeUtsXCiFOEYygLNZ9BA73p1N - gn9QcDrPD7INVnbBf9KdjPPw2ISzcJkR/eIN0rK2Iaf3zUCTxD8B9FuZU3KOZ525KDUwpykpPTaF - VM9zNAmYO6XbkCOXN1roGyawrrxIjpC/au5+shT8w0PNqK/FEqXqCI/JeNGdnN5ZP0PK4fPZtMil - qw6I45qTAPcOnWlGLcGfdqc2w0519khp7P1O1OIoRD19dDTdxU7CG2ll/dWr83oHnXhMcIO2UX6k - v3rnP/Ur/uvvly8fWljJPHyLoh09IfZIps8tPmDPLAgJ2vGdtE58NuB5h4lcQVoK9jy2wo8vkbMZ - T2jaNpWCTScmxEnu23q+X4pJ3o4zhJ+LctJZeq5DrAxNRvwLefrMtC4LEuTUpCFSc38xH5sABm6V - 0XTtzcnU4beMp2X9pu5Fq2r2vqoZljyFo8FZZ2waJNXAURJnNBBX12ROjucKjhq7jLM+XNl0XVwO - vv1onLJSZt1u730gRkcIuf0mrz+PBx/j8iL5pJjckz89xnaB46Y6EEdamrp7X91so4tTQoMAtjU/ - togD3+oz4qBGKqZ1XKX427+pN/lVza54ifAJmWF4B1dJhn2lSrDZODX1Ns+8YKZAbjDy55Ro/kko - FjHZ3OBg3kWiDZyg97V+VdC0Fd3xYTI+me2z9oGbLNzG6eWrjJ+VTwuKrrjEuXNj8eOH6LG/HekR - H7HPuMmLQA+fEQl9e530xq26YbQdNbpdstDnMnN2MAlHiWpvZeqmjX4PwF4vjLjF1vAH9/DmgHCf - B3Gaj9nNcX5PkYoTmzqG0RTs03sTNApIpMTinMxVHq5g/BjiCFtsFeLNHmUw7vcDCR9gdkKxo0+0 - 6rxk5NTViNhUtAd4LWVPw8/U6YxTsgp9+/O4viQuo3l7vG34O9WpJde0GIR4akD42BINHScr5nuU - 56DEAVBfFhRdVBs5h52ofUYuTu7+9AiNHC5m4oabG0+LISJstXmD86G7tfNK5tgrPJhn7UyMb/yn - a/kU5Ns5HOi2jIjO2JUzIPPxlZZTdii4mF970o/PwVjbNbOnsYep2Qv0y3eLj5jMNzxIwThyl1os - 6Kg0E8SnXqG/evjIbXGGI7lb48pOl5rtHpEAzmbSqauc1YKdn34FjQx2yLsfs5jFyfHgV28GFUTU - n2plBOF6b8khST/+3K8+3E/fUGddtMlSwnzAhrapSSZgS++//BFdUMDT3QqlPnM7UwLJE9SRz2Hw - P6d8H0BxgBfxwkFK5rFlHJSP0KSBlby7DiePHNLjdk+NJiiSmcRkhXpXCsj+cVZ9fr9kBuDyOoSi - /HD14VHdUhBX3ZGa1ynu5k9zs4Dn8Il6xs5mopuve9jRfgo5NrzYIndtjKjyaIgfVys2ajLNkGUm - LfXbKxQ//o1+8Vbb1QFNantM4b0/zcSbfK2bC/UUgcXSghzPM0JfPtDDjz9we5PX535MWxh0g9Br - yr9q5m8cCyZVHqgxSG7N67VYQrvV0MgLd76b3eek4XKwVuFiLYYv/OL1xWdCUv7VTZb97NG52G1C - vPgyaiWTDzb9Ld989wcVU2xtc3igrRBuzuobtdxchID58EXTZ6H4QjwGZ3SQtttRSlI5oRstijGn - aWkoH7MBTSRkijyE25JcJSNA/FePQrmfzfE92qLfVlbN4Q/ePmnwkutuFq8bgGqOXRL4NtXnm37S - 4McfSmPf1fNGbEe8FpueWq/zW2fZvPUgLWKJauKtSRafkw+gs3EKuXO16ugXP+UbvejERc/4h489 - ODp3pITgspu67eTJkS5m1Nn2pGDWoV4hfkICNUedJews7HrgRFBIMr/P9bA+TAYsq0gleThIxXQ/ - WRrUhZBRq41Ctky6+ASZGoQe0fPOBt2+9YDOEk+coBN+fLlEYsBCotT2qhs9w55gTBr/P/tr8c5S - OOb2gWrh+ca++XGAaie6v/0tZv6RL/DVCyQYD1zSkJBpSGy9LoS7FOvLlx/CSTXXROvFWzene6VC - LFnfR+p4i97nZBjRsQov1FlcpWO/eJ0onWlgp1Ux7Aa9+vFVat1fH8Ts6dmDbnaY6u5zh/r7psrg - gkKeBK57Q+wSnSv8HFBAVRIGNa/QWYL5UAZE1aZPMSKzs+Rv/yTH6BaweeskOf7GI5yMmvpso2UR - KO8bT0ptuCXzYX0qYfOQt9Q2NK+b3GU6y/JqpxFjb/I+w0ak4V/8HDLe0FL7yw30Jpn+1t+uUiGF - rz4jrh7u9Zmvtivoaj8JGZXuxdxuygiZRtDT3DC4mrrobCB3lCuibfYaYuhkhXIy9W8SpdK9WOTM - jPDRbrej+IkExhJq5jhSNI0GW/xM2MDqAyz5XNLQ895okg5+Bl89Ss53KfbncaNpcNe8nNjy4+0v - q+Gm4OkUPok92k8237fbJ9SF7lMbPe9opjwOQFLRSK0CQTK/7ajCd09PiDOhtBPXeHVA7Ob4VDFq - os+uHgrQJasb8bNCqcUv3sAc529ijPxan5bD9QNXvleJMnAPtpSb/gadfA2o+7zIyTT14QcxecyJ - IVwL9tXLE1Rls1AVyyhZyLOW8FKZGXFyb66XTRiNEL7wmurHzZKwJkBn9PMb0l9/atKng8iQdiSh - 0j1Z9vxDA143I6quIUBcgf0z9K4c0J9eFZ9PIURV3B7I7oUx+9OHEpIxdc/qm03OLLbwtLMbCSrT - LNhPv//4pPrCGM1meWhhtvWA6MuH//knN1Q7jTb2ronrCXx1AnzM1bGrJRd9/RQNNsNsUV1fPbu+ - vKNW1tddEK58e118OtP4/PlhJjV6nZknaUFmxV3DbHZebHxNnxZ+/kg4n6g/E01u0J1tD8QW6Y5N - 13IUoFvdKLG+emeOpixFH/3cfP2bHZtorEsYJ4dyfC2oT6b2gRwI0bmipW9fE6Zfdw3Ow31DXHh1 - Ov1AtMJaZw8kxOIu+fKNBn3zI5THg+EvvsoWkJXzhfif8e5/9V2FrkcjJKrdUDTKmRnDoxciEvei - 0s0wIgOEY0tHWtk0WaTLaEB9tUZCuJ3i96LEJgCPFsTUlLabxeAAeCyHfBQ3TZQsw00JQFrDjRS1 - YRTT/Z0GUFSpQc0kjpJlN+8i9N3vUDZjpRY2RWzJSLya1J09teOK7a5Hn5JTxp6gtFv4960Cx7YG - oo+iUwvHKQhBPi6H8LFLK31pMib/+tOwErZcPa+tt4QvWX0l2txZPn2lqQajXdxJIHOHbjkqeQmf - 8sVG8VVWSHjW9xi2a8UlO/qSO1beqhH6W7YJEa/e2WRMU4+BG7tv/9XqpUghQ13Bn8JpGzb18hD0 - 80/vUSMDU1+i+mih6iH3xEnSvGj3q+iGv3qM+N/8mo5ZcYDz2bao+dbyepEGLsLOJE5/17nKnT7Y - eLdnqu03n2I4y+sGUrwKibWLpXoeN54GeIYdOX/5GP9pWgP2aYnG5jJ96nlzDNJfPYzilx9QItsK - TAt+0xQHuj991wPZvAmod9U+9fTzB7urBORo80d92EpbB06mX43T3Y0SwTmtFjiWYNFr/fU/5vMm - RvG6uIayJ3fd41HdDlhrFJUU8gKMapqngXm8atQKb0033y/JhL/3U81aDJ0djlqGX0G1HlEtvRkV - jSbGifSqQvn1PqP+ds4FJDUvg4auu/PnD8NnqGsnJvp7vUbzMYiln/7708/LVTiOgN+iR93BKouZ - VKWDnJjgn3/nL2i/ieDrf4Xwkut61ut1CRscWtTp06pYdhFIv/r++jnARjHqe/jiJTE6Lf7zL2Gf - VWW4WvIX++XXJrHoKeSsJU16kFGFntL1TPRz0/rLw9r1cFtoTrWP6ibiaRVW8Li9X3/+bX/MkhT0 - IdTJVitZMcdyIAEe5IGaUy8mvWWPIxjECqhaVpbPq/1goJfRWsS347YWr6FSwX2bvL96tq/Hh+Cf - Zbco1r/+3ona7pjDzw86HQ+c3hu3TwXH0dmQmL25ZLwK1x7w4clRaxdnHd/dkxg1wSalzieOusVo - zQAK+/6iWmT0+jTOrxKZTkTodS2eklGdZAFNLnuS8Jrcu6/+5WC9MxSyK/oQLaCV0UbswzD8vAZF - 5xpVV0DhpJgaS0/15cB2Cnz4w0BV9xQWTOQOCpzW3jyiaK5Z99VH8i/fXds0df4FnYW+9RxyIcFo - /ukhb52V9KvviqG7FxF89cv45XfF9Na9BWkULuOP7/z0PoxBtCMu3es+tz227Z+fXT7gUX/xrwXR - vUnUEbDls4//zOC8QT0Nl9xm0wML3u//qd0UWT1hGwC+/D2cI21Jpm1aCPAuU4Oc9tmDLXVXWvJw - ODzG0b6bSJT7ewjf/KCKZD+7AXfPGDJFiELY4mfBjgl+gpvcLWIx2f/6250DPzwoPe/NlhXgXPq6 - 9tSP5hrRKk5jcLhNQvKvvvjrj8nBO4Wctra75euPAg6UhuivbcfG1Vb/YEFJBXrVOgF17c4OwCyq - BzEtbvR7u/UN+f7iN198UPW+6HEEDy1WSbjRO8S8rBthsWvn+/xS957qQvvFn9ruZ99VX78Gu8Yh - Ifa33/SasLvBMZdqqnxmlPRqez2A2Dod2Z7jG5te2WZBJexm8uNng263PbynIKSHb33MsWxIsD83 - KiHna5NMm9pYoFFWEt0OjfPnJ/3Ng5Tiw+vDz987XD6Y/OK/RDq74V6dLarV2SMZXe+doe9+jGP/ - eHfzLqAe+vEzqyM8+s0T4Mvnw1Epi27xjtWE2i3nkCM/6/Wi6HsLf+dVRNXn2u/RpV7Bzw/Rm9BA - /H7Heiz1F0w0Kry6yZikERJrOP3xuYlX32eUxJJOLF9Uat7OsACCEFXkEO1r/2++9bgU0XcektWM - XKYYnbKPScOdovoc+O6CNnaUU/PoKgV7hyhAXabopKytMfnxF/nIl2xcSVqizyRRJvzlG3/8d1YU - xYHv89ALdCGbwHcnuG7uR6okeoWm4CkoqG2zLJx/enlbnwxZF5eEeJ7s1+OXzyHwhmKUv/7NJ1g9 - JbAv5mV8f/0/Po/GD7qAolFTWVM0hpvQQL3KrFDWo5HNh/XujC7nl/bNj4LNcjql8NuvQNI0Nvs7 - V0Hz7nEm+u3Isf5QtA76zUvMo4n9SUD2BD99sr7uJH/O3tUZbw7X7Yi+/j9LSjEERRpacsCnZz0F - BypAX78JsZbN0tHVbpfDV78SV40s1OvJ24N7P75HbuVK3axtxhLkTumpNRhcMvVencIPD/zH0Cbd - b55ZnoQ2hHZ0i+WnjwUhrr73p0n/9U9gt7gyDd5U87lHGGTQnrcj0blrgqjweZ/hi0ckEFWXiYs5 - H6DcMzN8oqbVaay1JXz93lCKbxybl1HJsbqyUuqO9tFvP7f8AKVWUeL++ks1VhJeniuH2FdFqbmv - HscvpalHpEZHfTl96gyHqKyI5baItSZeDLjyo0p+fII1/VVDbFVPYeFYYzK4VtHC5M5PkoA71eyo - 0wz2zBqpU7UJW+xblGH52pFvfAlqv/4ZxGgP4eerR4dv/kMRmyIhfMjXTD4nipx12ZUoGBr09V9k - cK/Xiho2G3RhPI1PWF0XYVyb91Gfi9lXgEijQz3t7Cast7YN+s5DyW6TvP1hKOQzerTLQJ34lqLZ - Pdw5bO8gJMeTXyXUZqyCtTtZxN7ba/1tzpsPaGraUS0kQzfUdjNhCUaP6H6rF5OzbyW45puGmJfF - SGaLqDEA25TUcNuu7pWu8eB/rd9A/LFbnVG4rkyi1ZlZCK9bWkIrsFV4jdmetQXWz/irz0kip4u/ - 3HfJAaN149Nr4979mSTOBDs3NP7mbfPmaKSg3jddiOQF0Lx9rVbw9auIJUxVN6qqa8lZsjuRIH16 - hajNbMLWzTCp896JbNid8QFdsvuVugz2xZKL/QT/+p0K+B//7f/hRAH/X58o+Di9RpRK0hnPaBDD - XliXxLlsDF1cZFqia/C6UE/6AJquq2WCaMlXYxNuKjYj/T1iccxSmreOUojmRXnie3dJqXdB21p8 - wcIB2bzYWBWRqnNUPAmoe2gh1ZlpFPMrTQEPKhqoeVyOSDj1YwSmMMZh4hosoYv8OoPPvSNSxPPY - LXa50zbC8d5Twyw6tMh7OQK2TXmqT8vszwcOCah1SqDkXZz9cec0LbSSsaGxbYWIucUtx+Psv4gt - yypiyacVQCqVHc2VTaf30svLYatkLtmn4qugnjzFaJfk3si7vd6NbOsv0LLwTZVJsQu2U9cxXIfm - TcvtxfC5dj9kyF0uLdlz+9jnp+OzgpUWUhpeU42Jt8LKYbw1KY35dZSIBT60MJKXTWxUrfVlTB0Z - +D7o6SlW3t28kl4TjobvxGvddx1V440MQxo55Pw8lIzFsmnh6u1RqimfJ6K7Z2/BR47ulPj+vuC8 - 2yzjZBFTqlwFjk2w0QOIxF1IAhvriehSNYOQtlood/qEunATGTgPRUp8rurRPLXLAQedvSZahrds - mfOYw1obluGS4QGx53vHQbcNSChcdow94zSpcKxrNg0K7VmI12wO8Pv9zmj8XR9nV7mFd604hK8B - sWIOAnyGZ5VF4WZ3V3VOeeRnWJc3mdiXOKvZThVjHJwvIYnvB76bjLPjgfVMSchm8ZYwVX0acAo/ - V2qkQtVxbRKFeFKXidrXR4d++QXPKo9oto3eBduqWgSFGInUk0u7HgR168AuyTyaf19PUXrkwA/D - G9GO9N3NQalGeD7GLg3f+bEY5/jWb5JO39NtIr2KhbOfAuYjeyb2OzgyodvfDby9Q0sLKdjoI9Hi - HpdpEFC1XWO/L61+BYfd4JPjLjsV4i8fy1W9pt6TXRB/Mc8VvOFh0Uu2o8WShsIT5K1YEi+Ctb6E - 49yCwNqWHt1x8OnxCALcc0ml++do6VzVhwuo2mB+66tJ2rpJP9hT7hbd992DLd3bM+BFrJIqpdsW - b/7OB7io8hdxY+Vds+EsLnC+OAk9ilLMeN+7RbA14xPRRq7vWHInDgjyNSdmKtqJ6N+XA355852a - l4joXGygBsZH2VBLTW+dqK4zAfeyOdItcX0kOqtHC8V0Nkn0UrNOsDe9g16XgRCimqouKl9F121D - Qk6a9Sm+9a5AeO5TsovXbsHdHiDgt+UcSSq8lJo3t+0HXPw4EmPLJZ2I7HgBb7EfRF9Fji9YT93D - 2+WOxuX1bpEgfdAZ7PubULd6N8nUDb4H56fEEc8xRsaidaVhVKcSsQZ5rKdu0B1I3gYjWn8/FWIm - Br28Ma5qCIlY1Zz1MUIsxVI1grTFaDluyxx+8S63TwmxqKIH+bCjPvV76VZP92AlwwDdaSz0ra7P - 810J4GDDZyQ0K+olvWn5JlbePbUET+2YmB1DrCnZjRxPbs3mxfHi3/1ESS6DLyTBOwdX4zuiz6KS - cOtG03C5uq9HKS22PmMnMYdCLQoSZchIBLe/WMCvvZyEVrH3J5PePXwx74+wuYwxEoNcCfA2997U - VktZp5MSlLCuTz61Mp2wQUxHByTXU0cQBAMN5U7P0Y1/SSQMspS1W1/qIQ95Sv2oRMnrg/IPjGr9 - GadiUHzu5a5u8LhyDbGPe4ktylEccWxLx/CFqqs/HQUjxo9B0uiFT3aM00AKYHe1A7qFvYKW250t - uCPeTNWZTDobb1yFf+u73mfCxnuutpDatCHb8KMX8/nQpuANJA1FDlfJMrtEgVe3DKNwSyo0i+nT - g2rU1tSvNzs087lvIcttFRIbaeJzoZUsUK9ahybMNBLuLecBrKPLhZhnzdeXba1N+N3MDjl2V1/n - H1YmgeV+lHF9bC7+XKjXBWjsMBJ4J79eNNF+YuTfNvSI+bjjN70ugXKO9tT2i1M3DNUtw7KzDolz - GJWCFx4bgKm4R3S7e6Q+dambyT98spLPC01apmc42mwnek2Ktlji8/aDhuvaI9YxTf3F5GkGGKcl - 3cvx3A3X8xLh7aRYJH0FbzR9TpWDpiu3JTtusrvp/Q4zZPlNRc3HTfN5wwjhD2+Ubtd1/HriP1iy - 2JN6QsjVwxafPNQW+Ye4D7Ov2bg4KW4Nd02sV5gUvK3snliO2DZ85rzfLe5OXcF6fbN+++ULRStJ - IFrPw4gCjuiiQzY3rNd1SQ1fZGz2VvMBPgURiRFFCM2HQe3xs3Abkp/Duy6+yysAG1OVJM9HWUxi - kVToG3/qrI2iWAwWB9hOlPKX/4UgHvMSLBRe6amlGeuHK2fg7GIpJLFa3/8e/1tQsbK/joug16Ji - +xoY8vpE/UP89Gfu2ipglbeInt6c48920Yx4XG8Nun8666S7mlGIrZwk1L0ddv6k13IMfGTOI8QL - Sx43HVI46EZO4qpo0LRZNjGczEtM9mt16//h70xKj/pPpLBFU94pNA9LIsHOfDKmbZj8i+8o5Vnf - Le3nE6M4u35G1McntKxD7IBpW3ta2jcjETTlfcDOEmU0+eFlfXoGWJxTnZ5Wz2M9K/oJYNuynIbH - OitY/rqVWEfHczgmeV1P09NS8Hq/H4i9b4OEBQ2p0ArfR6LsplvdS9r+icuGXYnmTYX/iy/iOaWj - poFbf/ruJ7i5caAWfRW6uFeOBlA2xET/TgsmPdpFWLSaA80+ccdmcRMDtgKXJ4FhSQVrxb0MtitG - dKtNjT/vtxsOutU0hg/p8fCn/JQBuHdpT4z+c9eZVt4mcPZPNzw5+kef/QfL4RKOCzG4dJuw2M8A - Hjtmj+t1LKOF48wFbwPTp5fQgI6xzg8RoXxMFAL7jh4jrcfTVdhSQomFxNW27yHYt2fqV90WLY91 - fUaPZuRDFjw8NInJO4Or90Hhft64bJlYNAH7qAY1mo1Q9/1rDOAbX6LsvBOal6KO//iC090I4vP8 - MsJ8CjoS8uzq0+esA5gzp1Hz9KzQ/GmUJ97E1TWUxJzqQ6aJK0B+tQlnFNBurKjIgVjHj3FjqoW+ - hJ7BQWZGGk2stvOpQ+YKBiv4hOOtsnXx85o/cB1dCG/tKiumPXqHwJ/i1diz/bZgIn+SZBudKE0O - 1Sdhu0S3sLtc25G/0GO9bIRPioqhOoTP0wTJD6/kOLt8aHS0N8WC3kUE+y7+zv7eXfF+PW4TyJp3 - HmdTtPT3rX078OPLerZaOvoujwDxphRGsLFeLJpIGvTl5yMsUalPfPt5Ip7TOkpohup2c41iXOTP - lpjz5o16K9xYAAxUcpgOB0TNi/MEfu3kZDcyG4nrU/EEuZCAutpjYYww5EHuKJhc58Cql0PMDrBt - 55zGUpF1rESrMySit6Pmoq269+5oOBBvzgLZjk6oC08/zjATHOUvfyduOvebFUBB7OvDZ0My3iUI - 8/2G/Pj70pjOGUyDyiM6rpe6yck6Qla+TajS8PU3//QQNqSZ/vipeHg7Lbi20xJ/IZui/5w+Dlri - l0uCLPrUI1Y2FkTJsqX+fntA/Uu4lJu3KuZUK+VtwdhpnYF+fwKxOhyipUr7HspCW5Gg9VzETZ4s - yX28m6g6Mpt9+YCDTe4o0qD13ozdnzgGLl1mav74ZXP+VMjbpNGXX/uIPwzqiFrJ2lBVb5ZugpeY - AbxEk6g+Z3YTelQhJJn5+usvff96hjBJ5PqLXzclHX7+8DTkstuIWJTzIUjW/KTp+johdnk6EeiK - 9p1Qd0m3IIAYYjru6ZevduwI7xae4Ezk+NB1X3yn0QffxWcUcmh1SvpUbM74zEFM957f67Nqvhz0 - rNY1CSTW1EuCLhWY51qi9pY03cLM0wdn4on7q5+vPilBLeSYKsa86IPerDV4jmZM1KSc0fLllwiM - 1CC79Vnr+P095uB+nXZUVd6VP8mrmwOGaeOxsq2Rtc7oALTx9hJKu3XDZnndSPDWGRDlV38aO1Ty - V0/8XX/v77EA8vqEx3U3kmR5PocKgo1/oVal0GQ4KtUE5SQXRFmn124uxCiH00ufw2WXqB3/7pb+ - 13/D1Zfvje+HmaIv/tPDtNV04TCGJdh48YjSXwlifSyVgB/VjVhrbccm+cQOoPdjRwyRb+ohrpiC - w8qXws0ziTp2uD5X0NzClmq75N5N7y2K0WmTBVQ9X5RuRrK9gnfxkql5X3v1fOruFd7mzpsm7ckt - 5kVYZXCka4l6Z6Esvv15hdiNF4m9fEbEENuMWMfJavxsIr3mW0MaoYezS674MRbs259Rom+P5CoJ - MRo7Yx9jvN4p4bKUElr4nXLD8qO7EPciO2h8NNEBH3dHh5KPWqFZb9YKelveMZRfp6Zj5dZL0fCm - HfVWr3OxvHfNQf7q4XB4SIU/U1U6yOB7AnHX3ZOxhyRY0B5u+cjdJhUxrGIOVWBcaC75XDEt/XWF - sGAz4udFziZ1Vg8g8UL0x6cmI36e8f6Z+394KmYrQcDBknYheqIbY8Pe/Pz4IVFt0/OnrT/18Dkl - e6I/8F0fH+PxA8u8lYnjcffvieF1BF+9Hq5t7dZN+LaNYY3djurrMtBp1LsKCON0pBmbKvbDO9jc - /YgoeTuhrz6R0I9fqtds1j+Dk2s/vRFO3ZTqU0rlFMlsRER7ebdkem9ZjM0tsokvBSd9KrvTgsIj - Z1CvlrY6t/THFQy+IZOg7Jd6vMqbHoTt7P/quZ7Uyy3Fw1Y9h693ILLp5a4qJG/5km5rVCRT4x96 - KA/eSMwOPvp8LvMzxB/BJEFGmc7Yqg/h3l1Tat0Wv+AfvKkg/hN5NKjlQzevNbVCSRPWpHTITV/u - uduiXh0v4aw3Sz1/+bVcp1cactabsNku+h5eG84ne3pRO3FSgjMY4c4j2+vy7P70aNr2E1GO9iZZ - FjWVgLf2ESVJ4RRCz0krYDdRJL/86crN+8v/7HnEeVN1i5dcPcQeDkd27n0pxkevlXjVGj7VL6FZ - zyeWtHDibULcolS6CWeJB97k6z/+980vXsBdtolD+ckubMCnq4zW9/JNzN2BsLnbCBPmP7FHwseu - qidx5G7Aye2W7qXHQ1/6yHBw0Oy24QgHs57cbSb/xZ/EWyPh5pmTkR6DP7LVCdCgforVBuNDSVRu - enUTd2Yj4OgTheVhnxbz6H7OKH7eHVI4Jqu/+Q5Aj7o+cko/JV+8btCQxk4oZDpBjN/YMfr6TeR6 - uQOa2ucmwIO6GagR2S//zee6AY9B1ohiCvdkaOQ3oKGSNz+8YfScnzJEY48R7+rONXWpmsMpK5Tx - pFleIU7NHIODM/v7PE0xYWPxgPO1iDi3fZBw90P0hMxz4nCllHzXbu5DCZd3eaXOc+aS4eCkEj4c - NIf4pqch/joV8c9/+faTDC11ux1hORVoXN9ngsQ+nkqcLtcd0c4v2Z/lxAQ4mq1JnDOXshfJWgWO - 9vMV9tXW839+ElyyS0I9s33WU9gpDbYNrBDjIxx8psazhJRjbn77VcvmTVZJmBV5EvbqZ/JnNDkf - 8MPgRpPBaRjdS42EZenhk2wzVN3C2lIGFsXNuHrnYjJ654nDHJFvNBzdmDFOWCxAxy0QB1yPCWfY - SSBIN4mEfCrUIx4iBb78Lqy+zzNE5SqCcNoeaNobckFnKY/gGjwu4Ro/xq+etrVfvyXZewv18nbl - ALix3o1yp0eMa85VhSWhqKkaRgPrbw+OQ6eXOo8425Fk2exwBTfncCCGsrXZuDzdEbKLodDjfP4g - Nuy37d/+t1/8Z7pZcXg5yBYNL7fMnzwulwEsfkO0Z7Pp6I+vHrI7DtctJN38HHIJhe70JAZ7zB17 - Gg8NjE9m/dbbjY91VwI26pQaUVQgRs13Bg92fNIfHjNP+5xlt1w9ib46AZunVj7A7RI+qREm4C+v - Jc2RcneelKwltea3t/KMjtUh/fFRNjUi/4H1/fymhvC61aySyxiY4CmjTo7PbjgWvAz+U7sS5Wa1 - /ryS6IRI40Q0CWMxmZpUykEgdKBWJPX+51hWIeRvzQ0307pDc1whBb5+Bf3tf69Hu//sN59173cc - XCbjr5/pnlvV/Kl735Bj3zpqlHBgM/EvMXp6zY6ks2T64nL8hHKuOwNNq8uYjKVXan/+VxbJfN03 - qZSBj7kLzX+f3z7nAIRj3YdHJTr49FRaE3zxbHyql30yD6ewB61Gd+qy2e5en8MgoOdox0Q9X24d - e2WWAq9Y2xIjFbR6uTiKAMpTE0buq5eW3L1rSPKtOqTHBuvzzN0DQNtLQe1oM6FBDECBe9NW33qk - rC+crYd2eQCE8Hv0/YXeIYRv/ZDAlXV/Eke4IRWXM9V3qZW02hV/f1eyJ6Ow1naIDWrz+a03BFfW - dc5RKwUK9VSQrx+BWImEM+Lmi0LL/vxMWOu8J/jyyT892RVvvkV8fA5IiKZV/dPnoNqaRgLTt2vW - 4RcH1v6oE2sunnovr24ePg/Dk2iHu1mL1teCcPfsFB77gRTc5n18wmR1CjXX6uCPjb1v4cNnO3Ih - boeGozQ9sTgfdOIlZCkGR4YGpQl3I/HHnPWJrn1At0vwpIZxOHezy7QSgt3+SqI59BMmH0QNmoch - hejqHZJ2MNoVfP2PEPrNoxhKXgrh51+qF/PCmP9uzogd7QMJXsXod/Sk5ejnx5hKGHTs58eMl8+D - 2AebQ6yz1SeGu5LQUy6d0Pzls6jRbyd6OVas6z0wNXzIpYycv3qPWS9bQraxVqhzSXDCRiAfqCYY - iSJJx3q5O1hAB4Wuw3k3mwU7u2YDE9zOX3+uKRav+QC8J8mgX/ysebx7LDCXBqKn8BrrNEzr6E+/ - EzPk2WDVpSD3RYmJefPXqFPXEYfvl0IIhVuifecrWwPdVydtZLOoFHymiQB429+pfXJr1H/7258f - KqipUs8tKgGddk1IrkL+qcfn81HheW3YJOZinS3vXixBZj0aJd4ukDC+3hLYj1VAfvO1WavuAnxq - Xfj5uQVfeJsSvn5sKL/5gC0avZQwkodNCtOr0GJ2rQVvNbb//PhF1nYxHFfqYeS4dCiYOm4VdBWP - HrXR6VNM3N5tQMe7Ffn1K5G/gAelSLdf/5Zj0+aaRfCdz4yiLN/Rcn0Pspihfqal+HLRBBs/QIri - 5t8TRD6abg9OkJdb+yLuczn5A5LJCnVvqSTeMlx8FtnnEBXg2yHr5FvXu3tdkX/9UvvOc9htjUKI - dx8pfEmvsR733RxjVJ5f4fecWPLVDwDtLUbhcundhHpaVcIhnM/fz1O6Jb15OdIGawy//kIy+6rV - QDa9NGp3K9bNXz4Iy9gbRN1ca38KRgxwe67tccpQU0yStm/k/eT0JI0ixNim9QS0D5uABIVmFeJP - X554kxCbw1Uxe6vNAfLN4zxKLp3Rt34UkG2t/80TikqyrBamVxvQcv58ku+8TkJk82Aj1yGz6KNN - 0EI8Je9xI0OXDFEpxEAd/KBh2Dm++JtnxSF1RxTPYd2LRXLDH+/TfOs7ToSVHsZoLRw2oZR1N39s - TVwCT6oL8ZXilbC3bgiwU1U6avLYoXGO2+8vwDiPJCkR9bm+0Ah9vz9kgsLr8/CJbz//eDymeZtM - shWnuO0wHrkv3s9iwCkw3p5piOQVh5bcX4WIj8tg3EX9QafDeT39ff71VvtouoRXA6prHtKvnmQU - 70sOKEhXug8cHw3O9V7KPz1tJ0Gjv4m/j6X3VRbJ9kGfCZNURwD9M7nEL1S1m+bDewG1kGLqvrlW - F4fNUoK53dih3E6XepbmloObuUbUkpPDV4+gCAJlCkieDe9uiFeh9+c/7q91VUzWoQ5w6dgRCZ8r - qreK8vhsdi0/jJv0PLOPwfIQ6m7MqdZrEXp86x0fDopDjtIrrMfv/GTDrEon3nAwEu47P0KuJnbU - 6UdO74rwU/38SbL9+onzamxLFOAyJ9b+ZXfiVByfcLoFaxJe04pNW7nn/uYhpyN2fTHqVUXKD1ZB - t8cq6ZZFPUswRcWduBGSkyUK1Sfkg3Qaxa/fsVSPqYKXDpSm2rruZnw6yuhJznei3Q/7Tiw39whn - LdPDwRlq1DM3HuHr143gv0g9ba+n/v/nRIHwX58oWI3u63sm7JXMbG8EULdPGm72slTPTh2UMGX+ - QLXn+eX3t7BZweGRhtTJq72+0IF8QGlTe1z3lwUtHaEl7OWkoaSpwppvUbYgdN4XlGgo0sUdF1iQ - sNuaOtvXoE92uTQYC3NDXGvtICF33wKsYk8O0amYu9691B9UnYItue6ENVre6+qDlHQd0a2wyF1/ - Wd08UJ1uGiWaCMVw4XwB+CgXQpyrH384uEYORXjP6Y5kd9Rz0cqDDf9ghOCEormZjhrediil/rFw - GVf17gESeqOhcBRdNKgWCtGT6A8aTopSC6Wtr+TzBUH4NgwRTQ/3/sTX2tBpWBGv47qj0UIiBhWJ - YdsXC9TBCBfoLGoku0qf1ARrkJx9iVrjgNlEWWygWzXvyNmXAsa48z6ARgeT5gJtiklX8wxLK0Kp - 2z5fxVt5zhEWivJMiI3Y9/5LCMGZL6kbySmay5hpOGjrG1X96oj4cL0f8Xi3T+OG3V/1/PkoEuQx - dyYe3YxsCgoXIHZmm9qjIhS/63jgs5wajaZ3/KdLPvikT08Ss9jQBxTOEm7d80y32l7sltk9HZBW - DDxRTibUUywWIfSHNYQLOxKfG4yPAryTHelhdbr7nDOiCour252cfPnesXiZU8wH+fN7wqBLHoeN - nwHqep24cDSYAPd5hdebbUi08q4hcR7eEfTh+kJ19JHr/j6cDaRM6ZMeTPVRCElZHfBuY7NQuz53 - 3eBfIwUXXnClu43sJGOwRAay9ZVKt3go/CVetRkgp5OoX+90XawczoHGSRSiTx9aMB2mM/ZdR6WH - Tc0KunHqDyQsTMaVW6cFB5vMwro2RSS+3q1aJIdXD81rvaNqnuzqxU9ugGORU6gaX6SCZbfyAMab - a8hhaRfEs4fpYUNzFno4im8kzJvogLXOutCduPY79nhRCz4oVsjhsewZ7yqtjDzL2NCit2/FqPlb - C8ZpGujBtKJk0thKRnstdkk4mySZepNbQIk+exq6NZdMw57vsbP0DvXTm8Tm7TXh8O1qD8TVjEmf - H3gpcfpsbJo12UEX5NqR4H64zH/5sLDTwYCje8zD2Xqt9QVPNw+rZ+VFLyRa18snjCTsu55KyZz5 - nUC9W4xXD+4SouONQ+y3P+YjFIl6SKqC273FCf1PFq6k7TUYCv+gLqqoJEutoWpIFB3sUFVUzUF+ - /X30u0sbDyfnvFOCcZf1cfB0je1EbwygOSeEhPBesk632hygaOEJjoIqHg39PKIWuDJ5OF9H4XTZ - SmEaHB2CgWwBoRA3EK79S57Pw66bOm3aoPM4LPQYVqbFXcuphO+Gq4kDBuZPTjOZqGVfC7PX3mGL - VcIWRsqLG/lU2PljXLsQ5Vre4jdTPTAX7tWE0z27YsQtvsKdn10rnQK/pZbRvroZTDiHwt2KqXyR - j/HM/DkBRe0pRO8WFPdBZQVglsqI4o0sxP06/zBQ3nDc6EUNmH3LdBie0vO4OzcHsLOJJ0ESdTHB - o4nBcNsrEZo34Druluut496J/ABq9IIYLYPs8/UEU/A0NtUI72NlUVTOOlqvyaXCOzYlr3nFu7Ie - USV8rUHRtzJ4N3yNkexqFg+ZU4PlWO5pHGQPNq34i6IFH0aEBqDM2aEzJM9I4zGQxFqZeq45QlDe - JXJ0dgBMUxFs4IBoSU82yS2Kr6EJ08fVoGbgJOsOTcDB7DgFNJWLQzzv30GOOJEqeHvia9bg0TxC - Wr4cLLy0qhDm4e3C59Tc6HnFr3V+dWRn+EZTIFuMZ2GqQwvyb0p+/OAS8Qa7wk/IaTMb8fK62yI0 - r4tDtSOz/YaMDgcKuzqQ84o/M/0WR3QPjyPFelGzToh1D46H2BgLb/MBwjJ8dJRoIKVOvxRg7h97 - GRbQ9UgsHtWC60+nDPFxkpDHoa/ZfG2OCbSur3jcY2mwhmcumhIfM4NovCV3fUImHX31sKH3wKzi - 2cVkAhWvy9TJYFswxZ4TdN7oETW+/smaVa134eg8RIKt9NCNSViVklcaTyzgcNsxcqM9JGPT0vCw - /VhT3h9uSCAmJEfOMxSWn94P9PqqHn3F/cVfSj9wERrTENeVX8TL6yqZ8JxGZxL3Jznmj5amoqJ2 - FerUcA9YMLcPqMviHlewSMHut17bPcE4u8nVyt9SCbM8/RCS5xVjxT0PkEECnzwafwQCqOQj6sf7 - cUSWpcXCNgAQrvhLQi6Rf/xSowhzNjmFpqlwGQpt9NhONxqbn57Rl/Xk4YKrhpLLHIBl2ScGBNvR - I8F8vBXCy7pyaMm/PFH70xOw6nMokRFfDzSa97duHu+t+ptX4o/tqdtdQONBFGs5jZqN56/9EqDK - Um4/PIhZ2vkiet8sjWInbXwuTVsVJoNXUqu1lU5QNycZWhM/U+sVh9YuUc9HNNGMUXeeF8D6QyTB - 6xtG9GqPYsz8HNpgQEOJ+edSFYtar2eOl94gCSsRmL61O6LvUR2JP7XUZyFVs981tZTW9vnty3VR - nNojUXYfw5pYBjyY8Sm34s22mwdxkZAelAkxZ67regEZPSw0R6Sv8lkU06Y2MEp2vkLx1yz8Tia+ - gcaLmlDfNrZstg7bFGw+/BNveLm2aAKLBWEJmdRWkFFQmcTGbz1I0K4naPKyN+Cq17BYPJFFG+10 - QyCQL8QNtaRjpR6lEMfenlrDRbKo9PUWaF0NSi2tDRRW7Y4ZElp+Q/WH4IDdIGQGgl14odrntS/Y - /uSKP3761SOer435Vy8aOlITL1yterA7faNx6mdqTZf75QbarUeoZWaHVS/sIXTfjxM9cbwFFv3r - ZVCJlhFzuX1hS1ZmAUgmaNBr8ZrBctkCE9XO3NNX9M07/nLQNtDZutaqD4A1giDNoLt/fOh95rN4 - CQY3g796am6Zxwt/gw8A/eGFhYDM8eR0pgS+l+lIAk6UO/apght4+TQeUQpzsJhKLcPS/oJfv1vL - iTdGRJYrJofE38dsxmgDX1bkYvhsckDtL5sgwosx7vNp1639XcFUGAfMRfaxY8++auHtiip6Ht6Z - Mska5qDia3tqOyJXLM+TbP7V4/ytFH++neYWjk4k0lNi7oolilAm7abTiRzU57tj3RxKINOXgtoG - AoDtYjOBH+Fwom7H35TJse8VLOqS0sPKh8vUtgYA4uH568eCde8HhLcmeNJke7WtGWROCUFwvIw7 - b3yx/p0YD0nvXUzlll9ilvQ5h8zr5IzpXku7ATn5BmzmnUWVs7P1OxRMBtq5qjlOYs/84fVuMGzZ - x6JnU3357ekUpEipWIL3eCtaM3ndW8md6UQI4R8W/emtlPUpSS7s3O1aSG8gRyTE81aijL1rCcOn - Aas/fTXhWJuAmOKFOrH+YOMj2vd7dm5dekhxVdD22HDwctW/RGujxWdTClT4HVKFOrDu42GfHSbU - 2uQ0LmFlKj99DcjYtVho5KWbyKN2/9ZHX/XfLB68Gjzr7a/eMVgOjRjBKd659PhJFH8X77wJ5pf3 - g1r+ZwvaSepU+MMDQ+/tYlj9FTw85AeNO/sUC3wjtnDV6yu/vmNaF1INL45qkCO4b/xh0VMZetPZ - Imp8ucRc7F1LWJ/TmZ46oBSCIXklfIqBRS8Zxj4TzkuF9hO0aZhP14JDoSfD8rVZRm5ECuBem2ID - T+4lphppmnjZVftMGgftPC7ari9mamx7Cfv+g54i8mBLFO1yuNENm7rgq8Z8XD82IEvnA9FpfVp3 - 1HkJGuTm07O7fYGFnZ8GzEUxpU9P18CU4reJVn07bhZzY83R1RWRa157ctXYHfAFN+jw+FUxPTj5 - tpjTEvdQtuFMg6c9KlNwO0ZQPT5TcggfIlv69NlCnXMH6p+MvhidY6ij9CEnxLC+mj9N5beXXF2e - qafsVMA2N32EKz+vfrUGkx0fNrDiVZlED+PSjR7hTAi6URl3gktjqnV1Be/a3SJWemvjpSyuNjSE - K6XH1U/9+ges/u43//7kP76S9E21mByDSo+Xuyku8LwJdWpnDfbZ9dA94F0ct1jKlB2ji9PZgH/N - d4K3QO24yTt4UB04Rtb+iTk7CXpwf94bYkhnC/z0GBgvekKPzuQyTnriFGrnbIf3fFIr83OXViBO - 8UhPpbZnzFM1FZDxtiHGqm+6Uiht5PgSj7cQH6xdZ0wqNCuNx7P5bKwZpZsWarPzoYfQH8Dwmzf2 - uXnUCQ96TNPIwH/9GfJvXxmEOWwBe7av9aPsJmZfRZygf88u5JYJT2tuQVIhq+a9n372p0+EPKjw - hkou2bmIOw28M/AhwZ1o17KyBr2QW1RMbk7P09vq/vzb5ap+iWdO2s/fSmiTmi01soe+5gltCxd9 - z2F4YU3HnlZ0hA87yqmJWhXwieFJKLrxHbF/+DFEpIJ69jGJVd3CYq5eJxPuD9UX75OuUHrROfdA - E6WInnD4KubnMutwDMNq5TPiT5dmu4BGO08jd47djhc+eYkuB/VBfv6NX+cDfb5Hc+Vzqxi89ZsX - cSd+iHr8xMqUEFGHkngj6/zO/uKnbQB4ZhIqK+YhnqWNKIIVX4nibHJrvCVGC+/NoRvXPIPNblcH - 4Jp+c+p4+ocNXLFEv/clWK3jbq7WP6cJKe8STRa3Sv9QigqakWZgVMHFosM7WOCj1xmxVfFdNB4U - eJTl7EJWvmBT8Uw3f3iqddFNWf3YBtpqFhBbvGZseXONB7afoqNOfgj9nQ8+KvKFAo/cgDLlh98w - kgQBF1/6tRjWXAxWPiTOwTUYF3vPEha2OJDDolJlfi2chB6c5lGigjsQLtqLB+eRLqOY5BCMz/tZ - /+VRRMONVvBnXcsB3OrcuG+6mzJwDNyAcD/HeB7PkpUlr1lGBLcDMfy86VgaGTZsMhwRc0ezjq55 - BRT1QsZDBs1CSLtYhJw4KCMKDnnHhLNUQbm+nfA+nPJuytAF//AaT3e5AbPx3veQ8PcnsS7xMZ7X - fArVIn/D+29V+EOsVxl8sbj/4XVMn/3YQvemjERFrO6WHb+k6NIvITmX3eKPtOMkqRTWHZxT+rKm - dd6RaYYcOYfTseCeB6eHktgCqmWvHZtCVj0Q9OmLqukFMhbb9Qb89KOV3kx/N57eBtzJNMfzoHYx - O7WXGh4yWcDOqt+5yQ+OKLRPE/7cG7H4yxeUKD1iGLCd0p9HIYB18xrHmdvSYtiizwT7NmDU1o9x - XL+2/CjYcq4RogIBzD4YVBi+0i/FOHWs6XJyHzBxSp+c5NBgTKahDfWgSgjuTf4/fwab8kPJbX50 - S5uGPLxwi0jMdnOzdmv+BU8gUElUKShmEZJG2D7Ijug3obImflvZIBellGjq2FiNeh0wHDylwLyu - c9YgLOUDsV0DiLWcvuAvz/r5Vdkyp25BCq6l03bbURnlb0tYxi0PWwYE7LCFWsPvfgXnzXhzCy/x - NO6EEvLF/CXOR1BizgEWB2hpvOnfPKz5CVz5hZjY+XRMbGAqHWn8IKdUy9loCC8XhsqyBrJa2tHa - 34+wfMGFxs5HjKl9W/8xsIcicXOArYm9shza5zOgx8XL/LlyWPKXL4VXSezqRrymUHyLN/LLa/78 - 7HJ0HXIVrDLu/VNiS2dzrH7zCuh9e64huTU2vbyxZ7UF825A2TwxPVweTTFBs+DR6veJKhw3ylQ/ - 4hLOvhOQozslPm/czPb3fDQ6ez0Y8eKLkgc4QsyXkYCJPDLvT/+elLAEQ55FHkz2vree8PuAxazI - A8Yf6U2IO88We0mm+uefiMH3YEbovYHxUzxS82Lo1hzq+fjLf8d92XnxIlzfNTzeHxI9bHbvfwAA - AP//pF1Ll3PAFv1BBvGuMhQE8SpBRGYhIogQVKF+/V36u8M7u8NenU5Tdc4+e+9TDxfP+eIo8jlO - 0e5fNr0PXB4a2qskDvLPOV2efQqYCx8QK3G6GI9MjqGSW/Vf/jX0Fl4zOSZcTtQPH4ysM08d/L3k - H37G5rlZ9/iBu55AqpqAeEF3qoEDK8bktIZfSnhgpApjOh7mSf+Nx7cTyHBQqzMq8UmneJWyFGaT - QUkWTDldbeo/YKZmGzH3z9ND/A6gkLs/dMZdAGj6nkOYhYZJysFxXcz2XiidGeNBrvWjcf/qN3z/ - 3GSPvybmYjlKwZ++c+PPC6yCNj/kUT4ESHt0M9gOK4/h4d0UxE1zU+ffJ0778/f//EpK7Pwb/dMb - x+qs51vEVBlUeNoGGxeNYLw/RRbufhRm5lOl07FuJihdI4eYu3+w+dFDFQaV5ZC5822aaMyu56co - oOCDxmm42TxcdHYLlg4oMeWm0oGb+bGRlaA1Xt/vWQW7P0vUw5eO2LJJIEfLU0D6H38TeD4E/O7d - 6i9pppg/VRjY+e2I/Hn7Nnu8QJjoDdzrhUCHv/r9ej1e5KSYbx07eq8Bh6MOsb/Zpq9VxPPAvTgV - BoI1jrTtshouLhuT9FASuhbGUVUAewzIac+fXS/uK+4rhFQyqTr34OcaEmgfAvGVaWDXY7ai6CcD - uSfy0rdzu/DK7aL7e304U0Gyx98/fmG9nMvIb85XBn963jdDb1z+6vGuT5DzZhp99+80+HKzEK/8 - 4Qu290lRYVKKCbrFiRiPhcJXf/0U4lvhEg8Hv1sg1xp3lHVxE6/Sei0ge7oiXLkIjNhLhBrgaXvi - gxh7+nKqzjUca2b5p7cWk1l+kJsMAaVr07pT5UcefFmPI+bSgQXrBbxDhXjrA7lRteqEy50SCiUb - kudev9e9PwOUX+kQ3zdrd5tHyYRckp92/to2EwBKC3f+8Y+fbMLn18Fn0Z9RiuCp2f1LFR7tYcFc - 3vrNMnFgAScoD1jc/azVpqdMmfjbO8Bt8ozXRzd1kA6KRK6/6zfud74LVJup0cnDYjzIqouBsVY3 - LBBV1vstfrHQ6Sx+59dXuv3xh9UKugAqDwasMrOIkJ4h3PslaTydFqeA9YlLg3U5VPG/+tVaMPnj - m/EoWaGseNDXSWD0oJm7F3L+PY8Wj34uxCwSwaK6CDs8MXK+V5US3hvbRekdFuPSDyQCunt6IJMp - PX28qUUJhfjsIV213zlNNsX544MBfA+bvjJzy4K9/uDdn3a3k91k8PteDiR5Wo07TRaqwLTdomCN - Mj9mEUA/+Z4XGfrDJ7rsKzz/+meU/bT5QhfWk3e/mGQHox2347BkoLjuZ0zt/YxZOqYlVKdR2/H5 - 4i7Po49lzC4Q+fKMmo15K4tsgdRApyVs9VmMcConnUwD4Yo4d3tmOQ9kMUHIejv3nD58gAHj2Dk+ - mPxH30Q2W+DuR2Mez0865XVaw9dt/mFmUdWRJXpsQK9/V8iTHzTe+Sf8x9+P96AGi1OEIiCVEyEH - RWy+GeIvg6vcPYj+Zp1muzuwg+Ismuj6x2dMRuxlPbYkZElrO67aqS+gph5ZpN06LRfGd8bA3T8K - FvFr5xtxqlA5vYM+kHY9s2Du0EKvqDeiL0SOe38QbQitacVA0KpxXqwJQi1+jER1EWiWQJJM6BPQ - kKOXnQDnhAML9vwhnicudLXf66T8+SeIi6tm7WFTQe1gTuSvn4An/8jALMmPSEWnT0NVtWXg9NMs - 5HYX3EybKj2AmvQtSlOh0+cIHlg4FBWPnJYJGn4eV0OZg+uBmM7x7NJj1bGw0i2VWHGS5ess9DZs - Qc+i02W4uNsYFBgKDn9Ex0t2bv78L1jJlCCd+1F3vIXPDF7YwiPWXz7tfEvZOGYmJteX+XbYV6wo - uLgTO5gAWL3DRQRn2XADSXzLFOtZVStvhReQ0Vi/ccXWYINcao2/flLDh681Uv76p3s/Wl907WND - r20uJHgkZr55iVDBB7JFdPvzG/760RUur0R/S9dmgk7DKlctPKO02jZ32v0MeRHeEfJjNxlx9QEm - fBCXw/PuB08qBbt/LBz//Bx3ZjnTgJFHUzyHbtb89X9hev55xLLKg46ffbL89beCAxdX46Jrsw12 - vw83HYvz1UMPGUa9MwUHB7ziLXpbLFwf4hmdA9l32aX9Yrj3d8gez/l6lUsbLrkQIjVTfco9DY+F - RLQXYhwrb/fziwjaetKQGH5oQxjT3/49b52PxUglsf4BU/z0xJqA1ZCDXkVKSaaAhDXf6JuURBP4 - P1YUCP97RYF2/56Dw3qS9XX1ugJK1rYGLPf40Q2ygQm/mT4Stfst7kTit6nY4yvGHM9pdAHBVisO - VEKiNQMB9PdoTdhWfUoKv+/0hfEaDW5JugZQ6c6N0G/qBnuXIAzUUxBv/NFQFS5NZ0wnOwSsYYQR - zKwOI+s6R4DKa2RAzYh5ZNeHCdC4z35Ql94hccKhy+n1/mDhsTsUxD97PqWSazkwq+kD2bdfl/dd - qtrQxW+TPN/FHK/3C+so7BcWgXA4Dy69PutImaZPTo65YseCpk4ynE9mgmz8Wd314586YHTCjwTe - CeqruZBI3v+eGNJojwuHNBOurTyQo1NRQPG6ekpAni5yM+Gcs4N736BWLJgkqak1bKxEDuwwMxMr - jz8xnRPfBjyRBpRIsMtXCdgYHjQkE3NSGYCXs1wo2zZr5GkJGVjuSxIqRyXt8LQSq+EOWOMVMFcO - idablnOnd/+Dl+nMEhvGzchfjXeq3FTyCVbE9c1oG9MGkyMI0JHCn77cj5GhDBPx0SnyTkCw4YmF - m+brSNUaPC7yaj4UJ2Ec5G0X3RVwRQslf7ImsZaTOnLJN5MBmGsHC3PO0xXkJwc+5sQiUc2nI//1 - LpUSD7JF1PHQAqH4nTXFzi4Y2U/Aga3Dn0wR0wAQJ3dpvIXVh4WZyzrBgRPjmLt8QkYxvIlD2X4G - 8PqB1gLW3gzI8a08XGwUSi3fh1+D2dP8cTnwBSWcrr2HwfOnjXzw9RYYpvzewQxkfZJXM4MbOj6J - xYhuPF3fWIVl3nVEfVCsr911KiWnJyw6yoRz1+dwDmFHPYdcvF7Tt1JzIqCG7YlcDnWQc8+1d5RA - DwbkhLKhCxVALXSnPCPOM343tPisrUL0bEK2+j3kQ3WFGnwdtjO65ZwKROF30KCxFhdS5vAJhPdT - d5TCjwJyzTB1lxcEGnykUEEFY590torsCEqCJ5G7Pb11ygjvUsHlGBJVP/10ejsytlwlnxHpwiEa - qRfHGmzL+kuCwU7oGjw2W3mfb2ZQxeSzdxiuiSIOWYWyVJj1jVmZDlpL2JM7EEadl4u+hXa1fZF7 - kOlIRyKFEK6URa76PVP+GKVYYTvxQ7KlODZsWx4yKDOmRpCqH8atdAYHCm5rIZsb7oBew72j2M1i - sJ7cl8tDFRagOW4msXFC42UUjQIKovhG0RSP+fYgXv3v/2lyKzezOn0fCr8dM3S2+jPlH2DjlfZZ - Lsi8LQeX5gllleSeIBS+DWWkWQRkONcZxsJbu+f8DDwbwFI9BwubaQ0rqN6+543LkDPn73hji8WB - L1DPWPqdM7qqE8lgjZyM+O/ZdRf07BzoK9IV6WK4NIuhqjwk02s/qYUr8u0dLrWiNheRWPPEjgvQ - DA9m9u+DdOlzyn+ZI06QZ89mQK2AA/jnaKrCP9QL2fOBEoE8HCi8bmvAnI40/8M74OwrgLLSow3W - T6GmRLZ8JgH2XMDPemNCM0zegeBYQcOWTfoAgZkFWJBYNqZt4KewfNQEJc/JpMv3E2zwwxQYnSda - N8Mf3iz4+CKmnWeA4yKFB+c6fRL3pop06nmjVrjj8YH0Ql3duap/CWCuhxs6H6uc0jKlG6RC+USq - kjxdIXv9AmjopkrU3HABdddXAdriIflbVZzjDRmLCI/9MSZBY+suNVHsKH/Pdyr5o0vHb/RQtJn9 - IC1JhobV62KSE/o0djzTmz521FqxyUT2+HR17niEPyg9YEpuf+Pd80YFr2LwQkbeiuNUPg4V3OsL - Ci5j0CzjmDpyD/0AGXpyd9deewXwD5/cel8HwCb3CMZxrezz9cnZIV5+CnzwLUF+xerY+BQZlArV - R9ffrOtcgdpeMcaTie6ifdaX691yIGG+N6K//NtI2zMngvu34tDloG50TUpZgxftqJJnjbqmd8Cw - gRNh3yS6bT7Yjg+lhWs4+sFQNuz4+53kTr7/8CPA3DuKKQMWEb4CL0bmY+zG9YxfCzxLl4lcnHUd - V8i+N4VBqoVixlIpDeyphwnXbcRysinevmEFFT/hM/w5Xiaw8b6cwpdvF+geB4HLIjyK0IpgMEv+ - TQGr+G4N5dNKB6K/hXfOn+R3pzTp50tOakmb0SzOpfwW1wDFY3d1V/dTVcq7qEZ0T6JPzpoTrRVD - hVGQ7POxPluJheGlOSKPnJ5gqa2LqPhqC5G+Ho465xyuldKaR0LOv0fafNFz5RVITJWgSCPjeodY - hGaYvlEisJkufBabVTzpLKMdD90tLUwWOv7bJlFVDDnVH8dKqT/HFd2MkMmXmKWRKC7XhaSTWoIl - lrRJGbvAQI6xGTlrKVIIr7yxd6CmjvISf23hfDIScnu3CeCPD66FlnLSyOl2Z9ytdN6O0lT2jdxF - e3A3bQQp/L7bnKR+sLn0pE083Mc7EE9jGq/JNxQVY6tsdFFX1RWOhJjwS4oJhef03tAa26KiGRee - HFNT1JeUp56yMc8PsYxNouPVa2s4BcjBLPdwwKY8LqYy/L6v/RQuR1/uitPCx5xa5OIg3u1+khEo - O34Sp6skih80hspLLnlifRW1YS0z9KDXRDUJ9vr4K80LVorvXceM/BliWn9+qrJwxRvl31/yx39C - 2f1dfvitF6P7DYxroPz2PXJ6ORbucqaODPH5qhDnxXjjFqhDCTtUfYhFj0O8bs/Jg2/uO2Bpulgu - 5+izCiMhfKCgNjyXpr+wVaoqPKO77XzGZbsOKrQfeYG7o+SOgvKjNnQ5xg6k/fcTlr0M7vj/h7fN - Fl+FAv7VM+chX5uVeRcVzGVjwMyTBvHCxZcaPq7AJC7dYrAyT9/8+38kubRfl7vNfQi7WebJqeTf - Ls3yaFFIUjTkybxMl2vXrAVtvRgkpLo/0g2GKkxU7oYsejznyweOBdDySUDhq/vmpAJWByvsPJBR - mGxO0+5sw+TmvdGVW10wRQ1XK3u+ocu38UZW7kkNeZOf0FnyVJc7Bj8IbaM2iNmpvsuh7faDTfr9 - 4rIopeb3XL0SVim5YymJPvEWmQurYFmiRFt71Z3O9y4CXpvckcpYfE4WVRBBg7We2Or3FW+XVokA - Pt+U/76vpk4iIAsxicoOas47xcyA+7hc9vGxdKqUHg8no70SBMoPWLmbH4IJxUdyPLkHfUu63T9R - pCspPqnj8q78UKFpcT0uWXx36UNAE9jxjez57nLi3fcgLoeQuBeqjsspTmX4F++IfHW6GEBK4K14 - aFiqRo0uH1VmIDw1F7zZ3gA+1XgMlMsp+ATCdd7AlhYBD78noKAjToVxOv8mDQ79c0XXY+2M7P28 - MPCRqSz+hUMX08cBd1Dd9/hF662Od34TgT89sb+PSxP7acJQ/jCBVJ2tnGh+7sFSYgR0tkwcb3/1 - 3DkYDHnFptks1zuyoQr5Lzmmfdys3W/twQepHQnw8zyy3gIyyDAlwpJ478AyGjIrW73QYUXKkbt0 - lwXDA12XoHmRfcXiHYcwHWWduENogu2PLw2cZ2L+trz0xT+uAax+kCNhZ7Pj+qa9CYXmGxAjvVX5 - Ymnqokj8WUPqSzjp0853pOMYiOjoVDFY/vjvqVEt5BSVHfP+5dCB0ozjHR+qcSWt7ihpdEvIuWSj - mC1kYEBTystAufJnl4OK3YPa13441Jpg3NBZTZRaqYdgfz+6Wb6AQZjgjqBSsZu1qusUnMP9zDYS - aoBNeRDAl+8USEsxT7e34ewrpKUbiWfvCxbxeikUw18mkrfPeaTv96OD5tMBO3/YHfPXuihrtAAU - 7vyDs7+Lpkj6+4rhrj83nC2hIpyLO0n610opLYoCcresDRh8+OhLcXBqaAqXhVzqhca4jcRSIeiM - CGonOE4pcH7/8KtollvcO4aKIVR9Jpge0TtfmkT1QMeGRxQyMhkJ6kIMrxaugmXnn3Pt+j94yLdh - 1yuyuwVj4Un3cbsQt/UQmHptE6HNaTpSffGqr1BcPUj843vvCOb5gt5cB/InbxIjXH26xKfVgINa - jOhIH7ghB2SpsH1PPtLspzXy74M8idutThE6Wvz493wwOz1VZBjySIlaVYXsZi4klsQmMT3cZhma - TW2iYxaYMbkojCflwKmI362azpo5t4E/PnHxbm0+td80VD5KJuz58M0Xxo5baARsg1CZz+6yqjEP - 30U9Ym6ZWTA5dmaDuYpVooubp2MjRAGsA+NNrj9GBVvr3FsgZXxPvLUcANWvsgEUv7igXP6UYLre - kaMMWnvfn9+l/LDMKRhf7H7rYmjQ9Vk8GLkAv/2UctNoeKsxZEWW+I6oWhQCgRGGApZ526GHoATx - PExrp/zLRxLWYD3wA4amJfSBdA/2HQvLJwWCKL99mozOyDPDDcNvmXEE3fra3W5roUE/hSbKaSjG - a9P+oj88xcrheBy3x34H1xptgOjCU9B3vMPyC4UOyjnLpotjh7b8rX9RwB5G2V3UNaqUTHJa5Nkt - 0tkQRIFioaVHWvS8u5NlZh54TFGIpZ2vT3e2weDCbzna47P5N78nvPz+8f9/45ezNA02cKN0tY6z - CQN2e83ihfIuEaFaQndbGhKJzpwTd70VcqA5G7LQfHSFv/pw/Wiyr0jTRMlFO2GoeNkDOX1v6xRI - C4TFRZeCVV1Vfbvay6Y8NPJGSPBtfQkPww8efbnEjd04lD++ThocGB7s+rjVN3rwVPlQ8BU5fhuv - 4Y75JVQGlNGdn+PmT5+Anf9hxkltV/iL7021rugs/oyG6+5AhLKiuiiW9IEStbho//SA87BgvkRL - w8MvKSdiBtHgbtD/beD8cgRkakrdbKQhBdj9K2J2FweQc3l+QFV4J8SMU1XfBhYuME46FqkaO+X0 - Jr08eMBMgJXt1sUkf/9s+GJwhHRrX6F9ZGwWgviQB6Oaeu52WccOuqRVdr+ocCmNuQ6e5okGzP7z - polDD72utIIimTAdDof9DJ1rxP/T6z8lPe+/LyxU7vVix6/oz09DyGQ6sIQbTZX9+zGbt9lIV9Fu - 4Zs+AXKzbhyH7U17JbxuT0zMedC3+/2QwPrrvsh5r5/cQc8Mxb+KiPg2CHVqVqGs2NPbwaP6HSg9 - X3IDir/ihkf0SEY6ipkt/0gqI/PY+4DjGtopzmLz6Hiog1jwbr8SNKMoozL8Cs1+DUsGA45Ndz0f - x1PNbBC6HLSRfTrLgOzxo3xzFKIdX1zuQSpP0cXXnfjYtEeiVn0BPs7q/MufdcZSBff4ChhZ9+lP - nPkJHlXVJx5zrynBFShh+eI1pL87feQ9S83grk+Q05vTuDjgvSm3u/dEsfWiI5ldHErHpfbQuXp8 - XPy1HROCSGr/9FQzn3m+V3wolMgwsiXHwdfYwM63A27XSxTLoQk7fdP2eCtyfujNEmbvuUHq9t7c - 4aViHr76q41pdcH75zMDdv2nQUd1rdz1fjqxgBkcSNQ7EfTFbIsfEJpPQOzmbedbqzQBbLbwhP70 - FZXbcfk3f6fo2Yw4IYn5Vy+xzC4W2HgIK5h27YJe5eSApS2Fx5+/QlTr+2mWQqaGcr+4I0FZfHB/ - O36BGtkZyi4qpHR5FBVU5G1E2gUoDYn7rAfHgLkis6NmzhbWu1D2eCAXaDj6b3h9O3DgpJL4wabG - 7PsdyJA3JgY9u8qIF3JbKuUtkFuwfISUcklzLmEB+tefPtKHWyVBAHM5D2TtnuX4ql5kRS3LNJCA - 4LqbBiUTTsoYEe8eODnZ/VGYCxDs/s9jJFgODWUEx08gh4OZc47nyvDuZyo6oth3MYQtA+6f3ArY - fiHj7teF8NyWLn4wgQJ+YTXzcK4fGLktdvPNs+wH5E12Inl2ncH26D4/kAsMIPbi6nS97XuQHRVj - dLbzJt70U6bC4VjV5KZ/jjlvExD8fR9x9CeKNzbrJ8jPFAS8eIcxVeoiAr/ifCXe9IgoRfffA+aS - tu23ui4x3vFGJhvLohv01Zwj008DO38lZ3s66vw3WR7Kn97Qk8dEp9UYI8hTCyF/bmd9Xpa1gKzz - 03a9mLl0HN880K3Dg/zpB5Z59gtcDFj/e37+UaceTJOnhqVJHfLpdbozUP58HBSymTbyu38FKZcS - oonOHFM1lh2oiL2CEuQCfYbssEHpwaTBKza7cSHxYPz5vchAMz9+RtWaYB87F8yy37VZRtEroAyY - hOi/mnFnLlJY0elnFjkoucQUXsoK7vwMOY9BAKsf5RF8ah+Cn2J/pexe/8GOd8h1vnm8cYvpQS3N - W2IEw2tcK5L1IJPslpy+G2jmXZ+C6ONMSPMOujtmEZXB7bgWyLP3Pd65qiUgHkSL3F/fsdmUsq9k - 80Rk4tA8otSYX51AR3rY8UWj7NIJNtj5GDFyTXG3Soh5yNbjmRh6IumLQJ8i3P3xfc95meOfZHgQ - 4PaI1eJeURq9pA3icDkgp1g7l+74A+uzcAoOPkpj/BePxyki/+onBxX1p9jz50jM7e6MwpL6pnx4 - TBsxP+VlXMUPqKHyRjAACIbusl0unfKt6hbTijo51QyY/OlDZF2Lq07PXR+C+S5xO98klGhqK0L0 - Ccv9Vmixwe7H40HUaAwmv+MlJp/mUcM0uiZ7/Bb7mYThXt/nN7Exj8HUfsvwb/yRH76TeIklZ4Kj - CISAGUDg/quXe/8mWHJjpNvQByWk+iKR/Hvn49lJfgucn6dH8EPJmk/b5d7BDEQROrWJkM+/9agB - prdOO1+c9PXM878/PwMd4fVLMTO8MNj9+kDyJSn/vUOxguez0BLTCtRc2P1vKGbJQKyrK8SLaOQY - wgfbkuKI+mYR7dEGf/0EVE4/SvKE8pAwnxtSd/20LadGVf70yOke4mavfw702vQe8JpzzrdAfRd/ - 9YFY5w91SYp7FcbM3BODRrDZblxT/vExFKU4pXSt6UMBsZIH7BCNOv5FlaxczLAgJ+/KjbseSuDv - cfxiEcb6uOvhAHKxayPbu6ruzk+nPz6MO1d66kvUewwcO89A2V5P//SfAlLrjDmuwvoaZnUvWypf - keDyCAHVxBP8x7f//K85jtwJ8AQMgcwGXswfm6SEID2dkT6Bn74mY5Uoqpf0f+Pv0kDALIh9dyNa - y7QAE/bjQeFc3on1WAdAc69gQPtqS+Rylg12/WnIkZheAm5homYVn8kPunqSB7KFZ3ch5rZA45DW - /+rl+qglGfQ+rwTs7seSNjilUP5OIgnIu2qW+1mEcLtVKf43/heOqnC9zAZuzmnr0s+i8hB1yRXX - Gf/R936JCvVL5ZDyFK3ucv1wJdjnDwV7fG6d4IUw6ryGuJkR6vSi+RgwP4/++ZXxMp2dCObn7of+ - 8HSqrbsMmPmRBfJrDsC6X38HtfTe4hr0l6b5wy8QUj5Ye/HdrC8RiTA5GZRc0tsVNPWwFv/qnyH7 - rUv/+md7f41c2rTTl3rzfrB8sRpJTu4wrrXJeEB7qy457r8nAzzAv/4pQrHZNSTK6xR4kivjHxM8 - wVq4V0/OXN5BltSkDf3rHyy2bSG72Uz9z48EvkyWf/g6XXGRQGtNX8gmg61zw7S2Sgy/MjGDpgNb - 1ZUGPOdK9I8fbbc1UeHHFY7I2uvTpBanFAgSkyHEn1edvpYsg2AqYhRP96BZU+uZwEOlmcSzW+L2 - oaAtCgmsjJzcunDpfiCvstdb5Oz8ZVlJqsIalhvSXyUXL4X+0KD5tHe9YP3ASvI2BD9uOv0bX+FP - rxJff5PzK50pzZ+PCbp6mhN1fQIds8ViQ3uTr8hnXqa+7ScfKvR9iklwu7z1wX1fDMVQPBYVfF2B - NU5zB+bvz4oM9pS6i1oVG9QIE+NxeLfjzHgogbsfi1CzvAEtcz2AnHa6IHcIOzCllqTCXT/tfg8d - u0gbMtilTw7zwdHNNyrDDrT1ZpBTy0dgsTR7g4+HUyOtKoaYZDc3gQWcUtxt9gQW+FoiBdWGRFLx - DvN/eqH21R86RU+94YLmrsJTJd6Jqzfb2JurxigJdhdyWpit2ST5o4FEO5wCzhMu7mp/FxWeX7ZA - /vj3VEVqpJyleMIKszR0/a1n9f85o0D83ysK1EaoiSm4ZkPD+NPBxuS6YGElSceq6wRwSZkjsdcu - zn+ieOEVoD8mdDpnBzBZGs8rrwWZxGxM1WWrmxfCj+9OJOBmTBeTO7HQeZ3UgFOUW8OF3+ohi01w - wVMaHmgb4TVUbtQwiLopBmDNZl2gUzchlj/XIF7XgStgL90qdA7PL3fV30oHLVu1SNLBR44jS2Th - 5Q2uAX8ArTv7CZ+CW3hQkQZneVzoaqagWPaO1PqadWqkN005p6cS2essjQPWkgDEfpEQ9VfL+voV - cQQZ2A7EB30OaGILPKRWxxF9yoOGHp/7vd0Hu0EmMKp4PoFZhvLEdMF6TBqwXrh7ArrDztAaUrt8 - ZC089GD8IarmVM1qitqmGAx2gq9zH+K15hoDJqzHIru+OPHaGzOGUHCvxG3eVky/z4+nIHkqSHy2 - Tzk3PmQR2iZ6Bu9hesZCK3AlLFu03xpBmHGuqVRDiym8YB2mZy5YP/mnPPgJ48/yhCOdS4aVo1vR - o2cSeA2vs08VwjAS8EG56+5SdXgBr8M2IS/0P6MwMXag/I7iD4Xk/gRbdzAT5VWNLxTw28tdnXEs - oUR+GqZZ2usbw9sJ2BekkLsKipxvkjOE60Efifmq7y5nX4CjHE9MFwCQHXPWV+cEtvq8EnR5auN8 - fk0GTNW+Cw5RHVGB154mZGU1RplsGzkff7wQ8pPsYGDSc7Pd622BZbiWJPdiA3AkiDsF+rGKTi1V - AXcP3hsYyPoh1+tk5PTHNRBUj4YS/6gOdD2QKlSet1tNVGXgGyyeZwilRjFQTlk5X6vZZKG61Tdy - VtnU5RI/dGDyTK8EffIaLC5/K5XjCXYonmqW0vzQq5Cu2koMevvoa/itMuUk2iaJeY2A1Y+9Dfps - lqIb8OaR+5q3CCZ0ycnzoT9y9lttjtJl00QKsRTBelBhJrvGL0GOUFYN7TQ9heM7jUgqak6zkQqo - gLqvJwbCzOrr8cp48OWgO3JG/Uopv221gv2fQc7M2c3b7SVH8rVUZLxe7798Wu5Wqwi/ACPPmZ2Y - 3fNF0UT2SU5a+W44o6hERdCTMBDv/KFZ8uRoKN9rJxBbpURfh6PWKRP3TsjL31cxDF+qKtYqF1i4 - fz1XuH/fITj13SsY6Ni5Cyf9WljANkfW1vA55ZpMg6fhdSHOnu8C+eYGBB/mjELtYu6LGgoIgTLf - 0UNXiUsqrYkU+5SO6Hj46jr/dj9YeZ1XlSDd1Mf1/d1s5Rmrb4Q+uQbY1ktrhRnsB1JtJRuFefpu - 8C//QHv56Bsoj53yeZEzlg4WF0++4jjwrhA3mMrx11CvjBPl2Wk34i/QyQV8WzqFoHjAh/XENNQ4 - ORBwflEjL0xcwErjHcOw3Vcg1NNlXJhSzsDdIq+APv2R0sOQPmDvOg45Vbqeb4o0FvDGM9O/eJ6I - GDJQWJUDOsdGMLL81aiV7RlZKMluyCVCGGiQZ32NeCa7jEJ2X1IlwLOOgsmPKYcvPIYoiW7oJB6b - cT6QPoKHl2Oiy/Xu5FvztTpo5TJBp89ByFc5ZFh5x0+kXl7ncX+/VtECaJP8IS4ulj+Ih69qeAXw - xHfj+v30PXx2xYJ08jRi+khuEbxH8IROH/HictwzdWCa3fng8GKPOfUeYgAJugzEheiTr6qchP/y - u+ViKV8yfE+VpNo+yNBrB2BqSAGEyVck5lajWHhRG0MpVII9n046UV95ANH4CUhy1kydv9fyAjr6 - oiQ4HWRKDkP5kOOwdNFJIa5OrTyzobKv3pc/1psSW77aSivue87Avc9/irDKSq9eGeJYi9cIuuTW - 0hdKGBl5Nbqs/rTMf/jqajKiW7LqPTwYNxmd7VcTLxpKbQX3dxedJ6Ggm2eHG/yK7UxORca7W3MF - Ney76w+9gkHSF1/9pEpdHC5EE/xDTt3wtx/eXV2IbfYF/Sas2sn1xjB40HmXruNjE8F1/hFi2kk6 - rn/4P348GWn3x5ovDC5E2E02IPdlCPPttq+Jfte/Fpllqo2s/kQGbHr4wyurw3jzv9dFMbtbgQ+p - r7p87gseyAUgB9z+vLiaqh+ci/tG9GNb5vxDDUK4KA8TQ7HMAF/IUg3fdeCSwOGZcbtZmQhF412g - B518nWXKLVOuuRUhbb2M+arap0gh7KMlTudF7mKFZAFi413Q7fFJ9X4m7KQEv0xDhnEPKKdpYqsY - xdfEko9UOqFUrqGoBjlm9/jgU3AplGPPFCjjso6y1tEPoUrvZ3Tf8YX4EucpkaydiLnlg7uEVxUq - pX8NUPzr1JFlQWJDM751//jDPG9S/4fPKB22FVBazAk4SJJPnFdVxTyPDQ3I8+NAUIdfI3tNBu2v - 3hF1r+/Un4xIkWg1kmzHR/z1hBR+8swm5ftd68vlraZKEp0WtPMLl3aXDwveLy9BhZdHruBWniwR - 7pKiVGGYcTn8pEWRTcMm2URIM/3NH0h5gIVBB3Fbv6oa/K6phM7LEMbUPgsYnuabhMFV7lzivvlC - 4Rq5J/GON99jLprKRiefvFgh0pc3e5uUVyYHxNvxbbktmqhMbn8g7saH+Xad+wqEwdf4l49LUdmF - stdnDKtvCZaiaVqgifwzkDXJBtObvWGlO3/KYO8Dj3ToziXMDjBA6jXT8zWXOgd++E9P/PNw1Dl+ - eFbwao068kEPwFpYLxv+jsWFmMKd6luFHx6UqBGhK+5xM59J0MIx2Njd0TYAC0zaQ5c5HANWFNR8 - /TyNDIrdryLn83OO14K9FzD0p4iclmfRbLVYaXD5PUKic8aJclnkyQBf71fi8XXb9EC4m4oZX7t/ - 9ZdXHKGF+msCmEZ9FW8J2y3K6zn2RM39i8t97kMI/vDM+VxxPt89MZCtEK1IJdFt/J2XC4T4KmBk - J4ccDEVXVQqj2xhp6k0F89/zXtPlgm6n+tPMlNUjRW24XWGbR5eXrnMKCcsrwRrW3Uivx7UDKZPX - 5EQvH0A3pYqUf/yDXUa6GcsqynGyeujE2gOlDxMn8I/vmltSg02O9t2Dn/cBg9SOxvVo5pOMtfxF - PJS+m23HP+i83nd0lm8CWLUoNmHt5z98YIXIXenplQF3E37EZccy3qTrJ4Wv90n8V78xNesNni/b - EzMjGppF96cOyOVlJa/c0MHyOYUhMHYnXJNXMxbCeG7hJ+ffuKLuJWfVzg2h3pxdDJq3lWNENhU8 - UXfBiz+n7hKAsFXc8x3/fT5ep06OYF0ol0AeHehOanvHcHRED3+ToXY3OMo1fOpSjI6ldhynx20K - gHyvbugmxDFgp4ZLwLQGMT6o0SOen6e5gzv/R0XdGvH2hq4NafmKiS6BYfyIXCIDzlfPxHLL+7jU - r76C3wBnSI9I12B0DGzIO+lMzs9B1pe/9+nRyyWBqpt02fmE7PWZQk7aFLj8slwroLt8TPQMvcF2 - Xu4Q7vWI7PxuXPB0aSFvlidiv+Mq5koEMsiOtxIrD12OSV3ELbwz5xYTcfiMtEMwgtm9PhPzlUdg - zWKmBHc9K0n2jtWc52qv/+OX6IY0taFSVkeAS+hjr392ziXl5IEGwAq5O//gv94hFX8ZtYnxWRq6 - P0+n8G/f+2/+nEnQyTsfJAb5rON6D+NUvpSgRIHfvAFmrKKAOz6gIDt+3c3BfQbo0mXE5ttnvCzm - kQF7PSLJWzVzlteXUsnYeUDnbEvjhZJig5kbz+RkFe44L45YgmzJepJ/Ui7/aOFQw51fEiO/G3T7 - bV8VKsGRonvx1EdhWXsZ2n36xtOe37TSxhCuSfgh985o6R6vC5xWL0bxPn8r5zkmVJ7fB9H/8r1a - 3E0xKGBwoudtsyngqkEHewHJmEOvL4dBDQB5ZxiDhxi6vVI/KwCb2QxYLr7nqyrWEwxFXcWTCXhA - U39hoBkBH0tBsrpzFvMlWL9hjrtBylx65uwSqr7AIWstO50W/l0FxKkQ0SVWz/nldSxAK81PPIfX - iK7GDBkIj+6AhWSo9al+9TW8+dWC9FN6ARsisgYsLH6Qft/vZfTyNPvTC/gXBSv9ixfwuybSnh/v - Zs4l7MB3YyjB92t93bX7RoGc3WGNoTuy+fSxwQME9XdCiGXEmODB6BUEHC5Q3t93/qcHoernRSB1 - 0ZqvqVhUwHxpLVHdQ5DjSmGxLKTba/8Z5xMBrKkIaWKSu9GdG+KR7wNMj8UnWbaieGkghfBd9+1+ - qm7vDtbufayn74JcofMp6wdpCMEvdpC2Oid9c/1PCddvlAfKGGiNYA9HU6nHn0mMQA1dPoeNASl3 - 3VBxNYZ4C+qzCXd+EUjFsxmX5yxlID4mCkJRPo1EReIk7fhN/EzQAfeWDxv48N8+WIfPzaXxIC/Q - eOqvQOADveHHOUqhdP6lmKpdks9Tt4VwsAtMHjlHdSp3sQej8RYiqz2t+TgexwdAmXNAuz8C6Ivd - QgXyYYO0zSb6wixBCe3TahBr/37u558ZAG5xQvSxdUZBYFYRmpx6QTnbZvpW38secKG8IYd+TLr8 - 81POvU3MSCt1Ij1yHu56mKhpOsdbzhQ95JoCkbQF2B3HTeWVwZYs5O3zTS+vCYIkspZAHphTMwsf - +QEHozXRq9rcsU/sdw/VwrigXd80G8OrqTIGaY7c4ViP057P8ODZIZatwYy5Vy5vQF9ZFankrtCd - HxTQykVC9IiYDTdJBxGaUckGsjV08Z8eg17PpcT+2oG+qUUZwoN861AQvF3KA/LsYfQTBZT8vt+G - 8upYw8i+PYjp+UtOm2wpFKCQOzF99xHT8MKqcDZ+NbJ6DtNlLvsevhz/TrQtBQ0x9MsDmtItCoQD - HN0x9ReowBf7RNobavk/vvK7ozc6deZz3GCRaTJzxW4w158xXvT8WcE9flGhHjTAvhv3B9TCvJAg - fl1BX3XdBiE/QaT7Yg1Iwsk2JNEsIUPPjYZvvqgDF1ZykfpSgmYVviOEU92U6Pz2j+6qsBDCPd/Q - 0XStZr17S6A8u3IJvlcuGynbTxM8To8Rs0sw6MM9eC8Kbg2H6EC903W8n5P/6qkq4umu10Ll1uaI - +MPlqU8xE28KyF2IxVj/NivK36qy8wHy5+9QxrlnsnIP7+jxWDSwNbfZhHFYuP/42NY2Uwl0zJ/R - 88n5dM1/bg8C73vANGmTZoM/lYHndokxRcY93/mYCv/qTfHNbZdfGbNQdr+RIOxWOYmKIwvD1s5Q - tF7ceJnpi4Xel2mR+rBVSmtvNZRNewJiOfdzPrtS8YA4MJ7EcevK5bna+Mnd9EnQHv/uJt1KGcp3 - ZkHncxs3/cv1RHnnMxgc4YfS6BFGyiM573pkKuJt35OnjOJ4Rn7G/Nxtku4Y7O9LnN1/oA/d9YBf - PgYsa1s9clGKGLmyrHavX3xO/+nV/VYH57HUdM0lbP/xJXx4L9y4ZpEnysUCnkhlpbs+qcIrBegb - +cgvqUDpeBwzoG7Mgkw8cM3i3B4F3OeH6B++cafl/DHhMy5lguKqAMvLei/K33imV3Ydd7/pAR98 - eCU5yN7xCtzaViT/cMOwbvdbHm8cA8tC1VHUHKOG7Q8HG/bqjUHqUzvo8ys48pBZpDGgGTqCbWiM - Cv7p07SKUvDPHz7UXYq5P32tvo1NiYF/QfGxLWP6vIeZkrmXGRm8o+jbBNwIvlXLIujFHmMiFqdM - +n3lFKG4gmDMD5Wm5AV+ICThK53//DCl+l6Ivbx1l0sKuYf7fBLXnJp4vU5PGyI51IPt2itgPT+3 - Winmpx9wlTOMv53vg9+EbsR9rGfAffIHC/FwUYLuqzRgua2w/Hs/pObJLaeiV8uQKo5NLCfSXdrt - p9D/QPIhR55xab/rezjbhwb558WKF5AhDPZ8I+gFvuMs6ScZngZNJMfN6t3xOZUa+HufQHrV8Yry - Qfvn1/J2wjf0+ZtKGPBHgJfL69zQPJonEAvJgG6Dnueb1l97WVC8loS2IjZr4mc2WH77HvRdvxN0 - Yn9wZFMbndiUjzEXLq28MJFIUCGtlKS+yEA9dK/kD28Wp8cV1P5WHLN5Q/mhZQxAXcATw3breL5O - TwcsOcnRv/G+cPcU4ISBu74vR8w2fADbT1b841drqYYyXHToEmsrQpdm9yWBWhqryBrkl7tmMV/I - Q6ZekRZ/9Hj95BEra9EjCybUYpfY5wOGa+/6yDuRKu+yOAuFy9zFKChWY6R9Dnrgf2Kb2BPP0X98 - Aqm8jYy0PurU0aQCrCqbkvSVb2CbbTaEAa8DzPDbwZ1kJ93g1W1GpIrj1GxWlntwTE8T8pRr0RT5 - Ve6B/4QhCcVxGskNkwru+gQXJ94cZ35Ehnw7ChtRDTOh3DgFEPTStcL77fBgs7I4gL7kLsT/Ntd4 - iY4MhPZ5nMiRF07j0hBXhc3jwpEdv3VueTImvFhOQM43sOVTl07JHx6iCFFCSaWuWJleVoC8ZmCb - 1YGHGp6D1A8EpKkjNxv+Bv3PxQ6u1vWUb8nq9iBzhGTXh+aIpRjst2peKmJ0UI5J2csinEfji8qg - j3R6/w7hP31wStekobu/BANM9EDS+X1BWmuzsqZ8hUBWTpq+3d/nAIIuq7Gcqqd4GVPj8U9veleX - jD1K5UpewadAx/5ejf3pMyawJjVG3u4PbKA8txB84Bl/jDfU8a4nYJATnzjSI6H0lg+yvNcHYrd+ - OdL56Yfizk//4ed8fsoViIxy2+NXoyyDCxnynxOLTDed9hW/WSZ9xW5G+tn+5JM89PZf/4Vo1oUB - OHkPNqwkr0cOhqTZ/fAAom/ok9enHvQlcWIP6vGnRSdfn/X55x8hPF27Iaj5QwSW7bWFyt4PwySu - Crr8+bl8tVH8PQ4joHfBXf4+T4I3CcZdf05AGJYrMtFBb5aHfZxgz5Uicgbm0+z8+6GMQZKTk/4T - dfJ+MfivHuPDLzJH7iTBBOLWdJCTQynf+WIAFyYU0ZObvuC9+wuA05ASkCl47Kfyext8f3MGOZ23 - udPVXMx/eKVeXkODc18I4KV8noKDpVi5UJcnG6LDiyeBvN9Kx+tiAX2nPqKzMRO67t//54dhOIEm - 3u7vo6cIcHOxXFAlX87noYLlJtYkGptmXFn0CYB3rF/EYK0aLPZ+kheIYEyO2j1xxxPKNni64GMg - 7PV5Mdd6gmnXR3/9rZyW33PyVz+QN2vDuJ6fcg39irHIEX78GHdKsYBFZ1xMD8KzWVLu1v7TO4vP - FvmfHwVvlREg76HR+N94rcnEBBx+2/kvshYWKlOEiJonQr70S9GDvR+GSpsaOUvXIIHy434mx7R8 - NCu+MBg+1FlD5XnF8e4nPeD4GWNkmz0EOGeSH7wr4YYs8cK4VHz+h7Qr6VaWZ7Y/iIF0kmRIL31Q - EHEGqAio9AHy6+/iPO/wm93hWWe5xFDN3rsqVQwDoGJ3WMFbC1bp+Vvgnn9mYceXxD8iDwYn9kOy - S3CmFPls+Rcfg7Imqjtek0uDOus5E/dmFvXqnYwMiVHfE6V7hoCKXi+C3V9mtp8n+seH0Hjabn/6 - fM1aYKlgkVgJ3vVlbXr/JAsGt9Tb9VommqX3OMNqg8yuT6oascThC/Z6Kg5+DcxnPMsF1Mt9JFx6 - WLVFFm4xkhYBkz+9bs9PBeSd1ZyBKhGwdFJfgCWP1EBcX77L7XgSJDr6Yce66+7GlZEOB7GzsSEe - poG0aVgiyeEq4sFwjEa3PrPIP9oLeYT1K6cjLmKw6z0YG/bTnck5LeG9J1esKleHrsdDNUp//mUF - Ue9un9KOwcY63xnFp+9eD5BnxMBvRzRm8yOa4L4E9RJV82ARBMihS1Jofo4a3vO5toW+UcFnURQk - Xaf7MP3x8/U3svh2Lz/gt9c3wWkVC3LKRphPFyXc/ukz9lL1WvuO3hYS5poEh9sljFZq3FLI7Ovh - l70eunpGxP/lV2JBPa2n5GcVf+9nphFA7nZl4Bcsm/sOpGPGgr0elMGDdP0Gwq5/b+WiLX98DIew - MaP123MJ0qpx2/lxNyztPOiwmyWKXS8btIV5yCzc61+zNHN2Pi63pwoFbeuIliaWO3qrs0EHH7ag - 6MLEFX6PyYORkHR7fb50l8YZGdBRnyPqhrl8fLm6+P/pKDj+746CSBBVkn3lszYBhGPInSEf8PGR - uJRNXhW08KfDrvn4RcsY3RLodb2Kjd/6i7aryfJIfArOzImTAviRBzwQ3rVFTudqq1dhfGSwou2V - 6OHlFPG3ulehT9EZ+6Gga6uk+TI8p/KR4Gv/2+848CUIa33C4S/U6aRpSQrZwPdwWkfDsPbl2UGV - zovE9OWi3tRhhag+jwZ++uVvWJntVYIY6m/8QNIDUP8VZDD9Xo4kKA0QkaPJVShqExF73wOJxvFo - MVLNXzOinEKeLrrcPKGmjn7APqbPsFaoW6ROj/Jd4VG0pabfDeFZ8uctqwHt7jfQw7AIQhKcpsvA - cdeJhZ/00+H0MLDuuj2ePIgESZ0FFHf1+pbLHukNLALu0q10Vc1HALzQb7ExKFK0vPTiAv2EMYgr - EzlihySxkHnyBmK/IHG36LLoKGafaSCg2K75LN0CCZ0ye6bmdQNzxZQJ4llmI8pUVq7Qw+aLliiy - iFaKX7r4ZQwh/WlH7DasrLH8Ghcosug8x9/hMExup5eoloc3xrTJc+70TAME04jD6tq/63FDQoua - RzXNhSrhgfVOmwovY4WJbxgHbbUWVMLEChQSrSAY+Jd5TqHR7RWvxM5yQWa7fa/a5mKrfplg1Wsn - BUcpQMQ2nrbbjtEthsubzsQf3kbEqtbjCbvuEO/2d8rZXpZkSPmfRvRa47UtXx8WXDb9Qy7RS9fG - wjMuCHbxHfuZzw50+5wbsL8P8mDMozsr/beCI0EeCS+xUy+/3kmhRqaUPLpf7ZLD+mChvUkP7GIq - gE06qSkyodiQsGU8lz0ByYPT1JjEr9sNLJJhXNCsIhsHxsGtedL5+55k4UGcrs3qTX/xIwRN5hP3 - ETXaNuEnD9lnqeFXdexdttMWHn7N4U7k8XsdhDQfHYg5GZFLLpcuG39fOoxx5WKlNDS6TLzqIObY - p+Smn+J8q8Vq78HUzeAwq7henNVJwU27IKzYuZpTSRYk5IWHK3GudjPQ3ynepybJeweFZEbEHZQW - tYwzYOU3+RqvzsuGvPvNJd4jvVL+cOZHiF7qBWuedQLL9VeVSEz2vZXr+VYvYd5vgJ3UjujWOkTb - QShjVOrVEdsOex/YRjiqR/PEpNjJBHeg52slI5OXLWw13G1gE81LIJEbjeiSEWgcs91KYEH7gFOn - 9gaBu1UQAZ/5BnxyGIfpayUOovxH+4tHeZuY+0yHVDgF27Pthq2+aTF8MalNcIMzsO3vG4Xx94Tl - 9zkGQtHdLuAybBXxvHcXLb+f+4Wew36wQ3GsLfwaP6FHHhI53XPDZd9vpUCPa/4gqqkbgNVapYDj - JYgDfo8/PMvYKXTaJiGq+12HJb/aM6zPszF33W2qt8UVTZgxvhLwVTxFmzqLC/SUSZ0BBK+BmtLQ - QubYpsR22GNNqoR5QtuHIdFk+nOpJB8k2NvlEyfKkFMSmz8Gqt5UEHfTapcfDssFCYVjBIt2kyM2 - vzgSfHzmeJ+xYbjLHEwOtOvewUVtFmDwX2YGz0Kj4evCknw9HVcGHr4wx/rm5YOA0FlH3dH/kTu/ - DZTcTEuFZ8V5YOUUJoCEcdLAM6932DKfDO2StjNhU3eP+aAWEdiGPDNhF7GfmfZqoS3NSjO0DJ5F - ZO+rDSuTyzKKry3ADrOErpCHMEH9wbsFM6dcB0qm/Y41mXNyOgQu5YWAZugaTkLQT1Mb0WJMTFg1 - qUrCYFQ0DokPBwwRN5GQPZ2Hlc3rAknn7Ix9o6qjrRl/BeRn/Uqi79a50/0Yyagbihn7Uu+AleGe - CazLYAii8V7RLff2teRmb+7v+wO4nllHONBUIDJ/7/NNWC4baK6OgFVRimsBHk0WCQvNsXt4KhHn - jm4CN/95C47GxQfLr1cz+FyUGoeXuB/GrX4nqOUUi5jtSc35WzkEABk/kaiDMNb0zeQFLFceBvCR - cnS1rtEGBfHeEEP66S7nqxtEo+Ius8Q0MWAXe4Mok8UDidm6yulQhD1a0dHfe0ZVwEM19SBrnDp8 - umOb0pzEIrr7T49oFaPnQnh7ZKC2qY6Nk3Wl24eK+5R3XBAdMeUgqKdAhPccGzN36c6AQyBi0J5f - iVpUnstetiyG9xxuOKE3TqPWLRQR5/ImfkLJcjmjdL8QnseQXMT5mG9MjEr4EXIT+94315br1FrI - O2g6PkWsG3HbI2HRqDJKgJ7mz52T120DTOkz2Brn3t0c56XD/sDoOOGqshbQcynR4lspfs0qqckU - xR5a3J6ZFydP3U1/MTMY7/qCtUMyguloq61gnoKBpFbX52NiuhaqRtkNoHcNXEFwyQyMd7URw47e - kfC+oxBmnOBivNs3/xh7BlovhwYgGvt8mW771qPrVJBb1C7aqsmvL5TQQPY7Dzja7fGJFumZzyJa - z2BJC2mEol1YwQELF5fqJXeR/E8x4HtavrUpOh9LFJ2fxSxdtgelTlAUoCZPRBSt2LT2/XR6aWRe - G1Y2/jJsf3jL9+s+OHbuPuXzvHnoxasReem5rlE5Uh2kJGee3H/cu17GrE2RvYkP8mqwRMcwrSFy - bMXDjl/40VIdxxSOzGPDSofv7hoy1ogc7lfN4ih9ot+0TzWz88kmO37KR61Vnujhr1FwFK1i2IJX - HoLuiH8zVd+BtubTbQPXwzsiSaOy9ZZm0xc8lQPF+Hxn3LV7GSPav48407Gut4K8F0R/yhG/cu9C - N6/xC8iVryLgCj3M16sqPCWouuZMo1QalrdaiugkEp8EGfhQephvMmyG8xfbnbtF63TtYph75Ef2 - 86pZjmIekGTe9t11yfBnH+h2v48kUYSbyy+niYU7Hvr7/Rq9sGqDPCEF5LrbvxDvFV+1px42hWL3 - r/tvBr/cIthjg60eXe23QB5fROy7Ona3jM0htHufBOzrd6ILlm0ZWC+pxEF9PIAZZdRBIBa0HW+B - fBHmRw+/CRNi70CCfLxsWQJvfREG1x1fs1DOzb/vJ+r5/q03K8liqWeKHgc46+hWi/0IJsjeAz66 - 1Vo3X6oK7vmUGIaaRtSQuxheu7Qh+mBplDO53wh75+Ji+cYn+Rq88wpugx/O9OYd8skUvyVwR80i - dldblC6N6ewdbQYxtHLMx4BBlWBHt2jm6pKJ/tkrMXNAXLOrhu0vP+aJpZKLNh205epZC/SLFWHf - 25J8o4oc/stvDjkoGvm1lAdcK1xmpjgn9RocoA6Xir0Q54YrbclTuYJ8Yl+xvdszycR7AhmNeRGt - jTn3z7+BJ2QgKD/OL5+bkTzBjhexY7ftsJYl20BsFT+i3W8OoPF4/8I/vhAb9ptun2WdoRunh//8 - F6BTAqywD4jmZOWen9QvvHgHAwdV8QbfYmu/0jTWFZHHTIpWmXwa2DR3h2TA+tbE9d46VH5xRvD9 - Eg6rbxw3yI4X+OdP+ejgQYaX/DX84d18jWgoQXyaJeJx8F5zVFbmf/FXKvty2AJtLaE2Y2ame/xe - DrHLSw/68md6SDywXD15g4rSvknWmPsdyeFgQXKyW3za8SIJdNGEJv6+sezgAnCpiBtgPm4ZsVnR - rrm28irwh59eAtdE23gtnrDMhjYY9Tah61tu2/3OBDuLr0F1uQPfLTBo7QX/Pf/yHNYQntzcwfaq - N4DeZDWFL0U/EcXXBrodEouBUGAP5KSu+50ch1ehIAzCfL9Mo0YKn6uQnR0K4vU/EawdmkP4kuOM - PN7zUi9vtZXgT79E++frYUaHc4y+k37AN/M+uZSPx394h8hOnmrL07mLkNOKkBQ5b4P9vFjoqQXB - 0ZW8o6Wvzhn64ycRCkm0PMxTj9zq+MGKjU/uVmzlF1q3qid6jddosc7PDPrPJiAn/eXQZY/HEI3a - M+D4ea0nBd/bP74ZAAgOwxoCW4LPNr8H7FeQaCtzog7rkklnZuers2+KCewVp8XB8N33XIbYAnu8 - CsQkrCnJ7uIGz9b2nXlSh9F6tNUe0renkLNSYToxXJIAoZMYHEyrOnD3Y67C3xF6c7mtJdg0PWZA - oFU5NjzgUOF8rVRwvVQWCTjlWq/rN7rAPf+R++UdUiqHbgKO2noj8q8o3RXq4ROKn+mHg9vprS0n - jm2Q77/7P3ysbTNnFXsjTYido9ppHVTOPQqyTCC4pN6wrb87D29td9j/Huvea4wnutTpSKI25rT1 - 6NkFZJaKm4FeGxpRfL2E/QHq+Mymz6E0Xr6KRGvMsZpKVc2PPGXhH1+xT8132M+7BxwhcyC0KYko - ei4VggJ/IFjgmnzhpFQCjLZPCVbAGi3fxVIhc55SYnwEw+WNxoKQWS9VAD9nK6cDElV4VV4NUVNJ - HThNe2Zw8+4U+0bSugto1vAvXs5vZR60Zec3f/iOyNclpdRaiQcHf0YkUG+qthC8fOGtHQ7YjG6a - O/6sQYUiv7g4q9LfQP/w41++U2H1dKdWqxm4UeuMZUAkugHGFyU9qDhyKofU3e7S/Su9UF9gn4U1 - naIpv4C7tOGAkQgcKH1FEAnaIw0Ox3qol8/MfqEQqRU5NYtBKWakDLxwM5ILee0dWwwqwf4+sSky - M1g2dGj5x6w7eNcbNGLdUgm+bxUXMFWh0GWKqw2c7SrCf/F/DqqLiV7c5YuVylUiYRS2DD1M2wmS - 9C3WW8geMjhxQYhlUB/qtTw8HMB/C28uX7ct2ligNuh98hlyMu+TNsFqVdEz2nSCTf0RdQfaQ8C1 - 3AUnfko1+i5Y/R+f+8P3C5MpTzQq4EFOnle5lH2UDbobekLCv/dxFuxMcjdXDJagNKjgjEj+wxP7 - lqWg7o++rMLNy+l8Des4IhyvlWiC+jh/fU+gXREpBZKr0w1bnVkO67uSZaADXgzGi3Z15/PRbqEQ - LRhb54MEqHDZt5Ts+Ehv+UGbFmctge09+QAtAu+OzQpSUFZNF3w1FA+V/uJn4ILmgs+u3UUjL1xM - cMuAiQP53AybVqEStFaxYVxNM9225yODY9Y4ODk6vbtconWB4o2ZiZf38zBJ76mBGHbmvGwfo+b+ - 9DPZG+N/egofe1uBLvpv35LhfrSZS5oMGfZnxbt9aUu9/CA8Ldcbkff8uYR5tcBb/wyDBlDOpUy6 - SajQCgMH3/A70KDADUTj6v7T6zZxiiBMxlMXaDfvEFHNymLpT58J3K3M6a3Zt8BU7AkrJNNzbtWp - iJ6LVhPrTA/1uLR5JTnokGLvDk/DkjIXHVnwOGJ9fLLDTxyi8d/zOywC+ejX+QYxG4XEbdsGsK49 - ZX/4Gl+1cdcDuSSBoD9su/4w1M/f+9CD8vgy/vh6vRZrpaK7YSbYrGI/3/FFifZ8gx+ZHw8E7Dc4 - dn1jRt1Pczl0Zxuw64MkunmvnGvNfgO/8r3t/Kxxt/OtusA9fwSfB3OpJ5lMzR8fn8EtpmBRRtoD - 3bhfiMbdCrpO13cC/vi5uR2YeioiuwCypN6Ie94sbdW0Z/pPP93xWbREYzGDlatvBN9NLl/CdIAQ - MlO+871q36c4ZhDL5rrrY4k7anYrokVfqvlwW/R657MzfN0CHvvK4/qffvHHn5Je0Qdqb1sLUT20 - OCgeZ0ofU1fCiz9uJN3z/YKkx3/+/Gffs5l7FcwcucJn5hYMpLlqOrp4yCB6bI7a9nsL/T99J0mn - CGyBLM3AELp3kO/62tRwy4Z2/BGwdT7Wk9t5Jbwqj4bY4S8Y1iJUW7TH2+Bt52rEP79TDKdh5f7p - rUR17w4se2/DNrwbw3z8JQnE1vNHVMHzc24ZUxFeGfoN+F7R65Xn7jwkXImx1/9SurWdNUPD/q3E - Tq5cPTHbq4L3/pGSdEmiYeGv2wi2q/me2e/wqunf9w2RMBFFmQd3f74ekukXEO3mvaLRCvatYD+W - xY9PxUWLN6YB+Pw4SPD3HdXrdZ+x+J7zM7G1CNWT6DAqwLNVYm8W32D6nLOvVKhzSuQc6JpwmG8q - 1FxTwydP/oI2Cw8FsG5lj80yc10SFKfmj+/85buIInQ3Af6WN/IwjJe7yRetgdxaytjIqiZiC88I - QfG7TcSNxj6iWnccAW31B07f9y5fk2p4Qvu4HeeVbe5g19cZSEPgYFevP+5w/eYMqKRqDcB3VvN1 - vvQVXC2k/PENd9dvvqAuvQHL10WkM74/enB9bzkxfe9G57eUmGAz2ACn+ZfN5wGuBfzpYbTfCBnq - Pz4HDng9kXDHb5sQH/c+ps8pYA6yMWzW/W7Bw+ehkPvwcN0NqqEHp/FdEX9b05ysbZghkUnjQHwN - lUZFfGRAcW/YAIw6dceazgsMF+FLVHvE0RzI2yh1rivMTRco9brrSZBn4UZ2/FGzDSt5UFvUEO/P - DzbRZb+gVvJg35vtaMtvsr2//E7UqxJq8+lqivC2xhO2FGuOVk2+feFWCRkx4lbV2O3bWhJsvyMO - njWOtv6GeRibaTsvjKnU3EgOPQDg0gVH3y1zTnp/vpCNr5AYlSbn85+ePju/C1agcaVtfQ+f6E+v - 3vEHmEsta6BCxhC/jrcwWnydehI/m1dyKl8FXX5uxwPb+GbBockTbVlsCcJfVH0Dcddj/+oT//Sv - QDa6fEbHaEbvlzgQVZte2prRRwq1s0ex/6mu+a4vWqBhRwWrZ3/IV6lpUli4ZoB1tq4iuvw8BnoK - UYlTPo18Ve1YhnnTtiTc+eZy4IYAfs3ujvWT1rir7OIMRved75XPTzQzfCHB0AV3rFzuMJorpk3A - Hz66r7pOn27wTmACbpDIvE+06U//e8Td8lcviNjWaAJoBQL8x3+3gnQL6PpJwU76udApLN4xhOmZ - w/7T/Glf/xPuW5+DcD6Mlh+xxdT0UIg2HFBQtS7dqssG93pIMCnnLN/WPm1hm6CUKCTo3MEZORkW - 4euMT8v5TbeOaXjEueY9WDsN0Xb9FDO8ZBNDvHHT9xuXXgnSn/oNxPenGWgPxy8sftcJ7/kl2rDE - qfBffHg9o4j2hyGDpeeqeK9HuWsdnhwkdO555yM9nRk+luDJGR4BB9/mwH78qwdW+eeSAGc2Xde6 - KEBE8J8+/NF2fSQBVOmF/+ppw1FqITm57by6V73+fIJ8AX/69P39BO5S5RoL19/yxBp3g4A+ljaG - R0+SZnB8naPh45n93/sMBHp0tXE6DxBoTpIQvQve9ZotSSP94X2h9WJ3vqlOD4+e6wdHtqTaWPFT - A46Sh2Zmr9fNu34LFL6ZyB9+nMsnjME9ZzasoRBHGyy+FdyCQA+Enf+tLyNj4VaMPTm9bM9lX3oc - QnUBEJ+Azbhra1YLOtxmi2i6lrnj6VaocIg/GY4f06dekmYY/+wlEP/qd0lVF/AiRRZ2XEnJhYml - DSyc5B2wzuAPwhQ+MlAZ30/wrazN3Q5CG8PXlRREPTGWO//Z29BI5+Cy+o+c+vKHRS23ceREj4O2 - VKmvwoux10CcXHT/8v9fPt71Brle20ov0XFrWIznoKfL0w9HsNcj5wOFKyB5BCyYhfYlEL1zRFf+ - vpjISsMb1nZ9bFut4wX4E//e6xusNkWBNMI1tK5Yj01P4+tYL9HuP7PkSu+cXlingbYf1ORPH9+0 - vYtuVI4PrCwwzHkZe9txrxcH9W5/S35RRWQmBYPtOI/yRf3yMgq1ug6edn4Eo3V+pnB24wMJ3+d4 - r18QCBof80GVy6X2Dy/+4ds9vrgjMMMZCtWFI6ru1APZ+QS86B+M7TUsNa48XB2YWbVFlMkaalpF - QgvIMwHEqRqVroMITSB3U4kNPgHa/Ic/ZgFciR20TN7+3I6VOvElYb3OvWHWTvkGW1mHAeCGcejy - 6bUBQXulwfGUDhGliC1Rg9UT9n9hEc3tVxHhxfPTmWBh+8fXpFKjHsFqS7RdTxwlTnuG2Hgwl2E5 - xBoLf7lDAukZHcFiBa8vbHyfx876ntw6Hu8N2Os5OO6hVc8fulQoOhcFuZ9SN//T0+HdYDX84Pmv - Rtf3KQbfZ7PPHDWVeuHZ6IJoyzsEy0kSLYeb2iNurWTid/kPcJ8RJqAcZm/Xn5ZhVb2MlXJv2mdo - 8vKwZvSa/n86CqT/3VFw9fWOaMqzq+mpW0rEylqGnd6vB3oqAQ+e8ZkjntUftGUUlgsCVu0EU9ev - 9fwAvwDhs3wkBXP5gmESuRII0DuRwg7OlPVelwUyWzFhi7BBzaX4PCKm9CusZggP28DABbLCrq0e - tDcYSTCNUF59OdjiwY8W9zA5YFOuJxxvLutuv5c6w9eR5+djKdag7T9SCo1rgnEwZpq7/m7PDS5V - B7E8Vr+BjoOdwBVJGvH7oImoWnQOMiJDx9HDDnLOPB2fUIvTNUD7/+fqNajw5xbL/nxkWEO35mFO - RHeW0vcvX0gwzdAjioBdHLlg8Rp/g/1r1omVWGXOLrY0QkiXDGsr4wLe/b4u8J2WCrlLzUUjJ6EM - UBSkCTnj7hgtPKh6ZK4LxomZAG393C4XtKgtS17fNgbU+Tgyet4hIC/6KPMtmfPkeJXmMwnk9Vxz - vzJ6Ivsyc8SvWJjPaWAxQIleUbCJ2tfl9S8wUT1KFdFb7wFWS3MYyM1jg3UvmLRtOd09KAFkBO/H - sR0W+9C2cMxggYs5zlz2cTKe6O7N2T5FZN9bLJ1Z9HTtAXvfX6xtC3fbYH9bKTkNyauenyVmwYFH - ETnH69nd0kCGf/ZElNIdXH4KpRndvTHD2nYWwDLAOkRVNfPECuY0WrLwC2HMRPe5PM+0XpDufuFY - 2B7OzHPq8jdbuMBHKobEGHuPLlzgZ2B6z0EgyoXuCpYRP1G7ytIMx28/UJ1mKuRfy4lkp7EbVuHK - sRAbQ0P8tLI0VvTLBjU/E5MzTvx8btZSRGGTEOx54AO2dRmXf5/PTZfNaXwoFxiYrB5Iva8NS36y - GNSN9wQ/8qHT2PC6hqg+1wHR2Qc/EK+MShQa5Y1Y9+ZVE+ejqoiVlQw/5/w5CChfZniyBp9Y9F0N - /N955rZbEYwIC6jQyzOSDb4m+rlbhpF8LiZkiuVJku/nMkxsNibQOE2EBG+50yY/vMRQRqs+/zaP - pXOZvHlkzEVKwtwWtI3puR7kbjbNb0445aNgJyKauhXiTMl+Ef0weoKmtNFJnhUvjf0irUHRrSyJ - l0mz1mqyIqM7x43EksmizRLmv6hWCUO0I4MofdXWAvLhzs2oxIHLqeeMgYnyCXHBOSRahedWovDZ - lsTRDtdBEIQlQyRiC3I3dUyF2ysT4VGSMhxzYuvSYuxDKH1DAWdEZyPiBNceJfAwBseuaGva37Un - mi4SEwjHowRos4QWGhU+Cv7iCZUhrRAaRoBPv8QfhO7BFEACh70iIizRerpOPbydHy62EN17vVbr - K9G4R3j352i5XR8FjClTEod9pS7bfLMZ3GdmCmbx1Gl0FdMZcObqEuwZJyCM4qoiyzANrJGxy9dX - 8flCtwzSeVEeLV0MWw0QKbM3UcekdGmYSDIsBIGbxWuzM+WDLsE82VR8YhxlWLsu7tFjUyr8/Ah3 - QE+R58BvlvuzxEndwGqyrcK0L04YG9WzXj/yR0JDUBVYfuTHejwlTAbu9uWFi5/7BdvZKE3ENpWI - VfpSXKqIVgWiW1USeaxOgxAf2gW2Fe6J2chN3v7Fp/oWxPjUrmtOcT7JUpp6EKuXuwNW8azyUN2s - J85sZtToITAq6ZddZGLEVh6tsnVewKwx7xmaaTGQq/+Q//wJW5d8zNeqE58oYo0JYygmbq8O3Re+ - k5AnF9UqNe72UDL0I0wQMOZyotu7eaoSTUSLnHONRut58TK4nAudhCIt82X48CJkvd8TG/EYuOMX - uV94cFKTaJXwoCvnsS1qf+JCPNNYhu21KQHqX6NOFHOzaq7LGyjdnQfGoeamOdeVLwaEv60nsheF - 2vq7JQuY7y3BBS8ylH443MLxzeU4VaJ9KjdrSvA6AGUOTXHMV2cpPYi614Jl6wu11mmUC7KlNiBn - 5Wa4nLxOsdR6dU5sU8eADGa5IfV2OGLjwRo197ptDbzdrPPM2Nck35y01uGFu/jkxKm9+y9fN/uS - V4vDWz5dUxogI+SO2JRbd+D0LLaQIXyreeWEUyQMcVog6+kF+EpLBbA2XzNgfpg9dvxBduk+Ix/8 - nYfJNrnLynZfQrd/n4mDtAJwRXpLwWBxyc5wZCBsEWyhcBo7HH2blW70OEEI1VnAtrb5Odf73AVl - oXre8YRWr/LhIR+7F3fGd9tftXWw1RDRuvCJnV2lmmbXNUWHfmfsEy6j9fDLMwiMEw6o5h3dOeoN - B05Xx8avZ1tRHmNTR0YoHLHhHVptHJ1bCackORKlUwEYI+kZQ/uhzDjKnRvgIiypsFQPMrmemiYf - Y6aVkckFDva9M875lz85kJTpmxT56lH2et33wodpSfLEVlxhHJQEqsV+x+/yiwDbYqVCBm5lUtx8 - SRurx7kCP2PtidWeJDqxWZOg0+/xwY59mvLtLCwJNEddxiGASs5HAuRh/MtyHO35cAtob6H37GGS - bgjTVdRyC9qnaxkcnvuUNoMmFdywAbC9yVO+nKZ+g9XxwwbL7r9bDvoRrnb6ITmOBtC7ppUhubov - 5IbTGcyW+fEQPfsqeaVJWa/o9GER4J1t5kG2aONVu33BtwseWLsWVrT52G4Q30pnol6x7G4L91pA - 9plfwRYyx2g5brYD4x0hm6dnOdDN9Bh4Dd8Tse21pj1gXw7Uf+OPqEvHaOtidRAeH5E0l55QgdZr - jAWik/+YRTuK6TS+gAXnajtiVePJMBt3N4V8ZijY2O2V4zQBwmPan2ZxviOXaMFawNG4BMFScko9 - DnAIwYULfRx/JBAt4cFjoZUjjbi2Ytf8uowb5Dc5J1kZTDnllOSJmNDLyO6f7uaJaQupZYpYN2kX - zX2diiiavJlE/dkArCEbJfQv8Xc+utshX5JTF0qd/kDYzZtmWK8p9WCjNiuWRSpHU58cIXy81gDr - 8vvkLvj8a+CXEQd83/1jgc2VAebjsmDHZkZ3Na6dI71u3zpAbCnuK31YBx4vSCFe5FsuL2HmC6PY - /BBrviNt6144gCPyCHG305nO33XKjuUziYly6n45qa7Xr6RuzpPg3X6Wjlbm3/mQx/cdRuxz+Krw - ogc9cbPi5a598+4lv/Ob+SAqn5yqDtkkkXlUxMIfQaOaomzoarcz9kRZr6dELDdotPRCgsR5Uwpv - PxVcu44nz7JI8iX0YANEoP3+5YPF5muI7HdlzLQSEFhCj20gc9LDmfsOSU651GGl6LhQguNurLfm - fNinSouvuZ+Shs7xJ3Mgz3xfwQGKvDsWx3sA2FVHxJR4lE+JmVZQI4uBQ/nruLwQf0x4fsMbjn6W - Piz2ujDonVYK0etWBPPn8DDhcD6U2Kl7KaKeTRzIgUu3V9OSgd55bYGH0rwGDb4FLm1PRiMZJ0IC - 3vaWiEb8qIP3hQckmA9rtHKawEDx922I9R1vGv3E4gLkFctYOQMAtsXTA6hmWJ+vBOfupqlZCdxz - bhFj6zSXZ8RPDOYadcTeBE9jmRcpYH+jdF4f1yudLWXz4N/5AdG0ohFnYwjVTo2J/4NvuuffEhjc - 7UaU2N+3vEhJDFRmrLATITXa8a0E21WVsHVtppo2S+rAScgKbFxrj1K78GP4F391TumijavSC+yu - ZUqyz85rRH2QoHNwWKyt2dGlgiBmkKWJReT1LuZrHdx12JcABeUjvw8bYG8WMHXnN6MsvA3Ev9Q8 - wIS1glB5tGARSvcC6RmrAXONNI0echTAyJpCkj8ubD7DVNhE3XjGxOMcHC3rnF/gLVBP84JMJvoU - RFtg3Xc3/OLc0BU00VDh5TZMwY7/a2IJzYhev9+w42t1mISnVEkRe5qwD/0nXaYiFcFuHyTyFJ3+ - nQeSW53HO14Ay2SMFbyUVCDuc/rQ5bC2PEi6sgvE5/jRyFYcY0Anas7CL5mG7WpvC1S/q01Oj5uQ - T09RZ+D6QRvxyutK55c/WUBzL7/gKtADmE7PPoZOTctZbIepplS5MyDNWwH7pPuBjavCC2S6uCYX - 09rvnB3kQnKFU0LkFbkaEXp5hK47H4OjvdZglbifBJ4yv83U+Soum6rSAoMteP/xQW0RJ+EJ5b0D - wJ2ZpV5gMl/+8F6wba2ak53vw6avHOIRVwRzmost7LkswpgjFf38Pa82VRLWnrLvrkX6SqFMCxef - bOTmi2/NmWR+M4mY3vVcj7dn5sAQPcX9zZ/rtQ7OJvp0t57IJacMtAl/Otz5L8n3+DnOAlz+/PsP - H0bzA5AAiYqYECOvNI091KsFpIqHGEeBRddb7M0gXsoPjnb9YsF1ySBbO36CxXYCwP9GKYUru6o4 - i0ytZvf8jH7ucwkGWmm5sPsnJCPzwbIZ34dlocEFXMWHObM27Ic1d+rgL14FLPtIBgq7NgUnR0qx - OTa2Jux8CRY0ULH5s42crKZcwK5FObmlpVlTcx5KeDMNHsstF9Xj6QX0fWsixafx+clX505ZNIij - /Q8vrMP24GFpC8yer7p6nkJpBC4d8j0+H9xF1GsRvsW3jVOZhNoStBEDL3dJnI+bPEXjYJQyOpsf - FTucZNdjHi/9Hx8i/o25ulvHLCGSdLUhqnJWovUBhd0+Dxs2AaMCQXBeLfwWfTovAL4j2oTEhOzM - rVh72HM+F6WWwPFXvQPuwX7q7RLFF5Tcouc/PrZE3JBIzTu3Z7S/78393kKwHaM2gLv9r7dYH6Fr - hQwJcDzWKy/dxX96gjJFar16111ddcYLec6Hc76Nkr2A4NMW+IVITAWUiyN8Jxce28Jc0DX7ql+4 - ac2F3E0wD//4+pukh1lKsE7by1N6AvC7VljN2SDiDuohhn94+bReeY3wRmuB9n4q57X+pVpnSvYI - 7cRaCFawPHCksWPwES1pjxcM/R2LRyW9LBrNa+8oEdf64vLPn0JcnN1/+PGzvVii1D9RIyspVCnM - vQ/Wx4c+0GNveLD9SQtW2WTTtsrie/jjBR/v+gxdqOF58PwiLraii+tuZ0GMYXrPR3wiWjTQ92gz - cGB9io3n0OTbx/dYsJ//LLXb5rboTEPEbW5LnDKYopXzYA/2eEYKXnzS5RGqFrpzwhhIucnVW5Ox - u4LJZcE7/5na3++FIvOqyJ4PQPtULwVk82zGGL9jsGT3ukcSp5+wKXIK4I04zaRqrUycbBex/h6/ - PZQOL+WINfnX0/U0XmT0lz/++OTSKXceCs/f7y/f5ttyOnvo5apPYkr1Gk2Hez1CjR90bFfHQ06S - xhfhrpfhC+eHdPk4IAatGlRE/z5njSpf7EC1vgbkZdNPvp8PlJyu+OIncx/yNRiY4F982vFpvZLG - TiD/qP66Zfh6Xaw3g15BcceGQF+UWvA2oj97ewbLHax//JPR+is21jca1qJPN/iCpjKX77HMucOS - miBU9QI/TpMT/eEhxL+2E/ZLKtP1VUwNjA3LIkFaNPkob4wOeng+Y628kHoTqniB3pfZO3R/rDb9 - 6QVyXq1/8Z9SgucCgv8DAAD//6Rdy5aqsLb9IBoiIEmavETeQUDEHiiiICJgAuTrz8Dad9zO6Z1m - jb2lSkjma4W19ntM0MvkwN/1Y4uGwSP3+Joev08JnftXgs8r/m61u9ajphhX/NVeQ5fkOkRvYetj - J+FZvIz1LQe4ZF+8x00aCzTceJDtnAL7732tT+/H6MHXcuP/8mCqq/aazyJAL+Prw1gsNCYsx8Ak - 0AN7thXko4xqcojw3rPsmJZcZSG9NzZkOGhM//kBkMP3jepeErJlzYsACLwQm52SxmTVZ+gsuhds - 2NCp6Xr/wU9PaDe8uEuvUx5GsxCRuaOUzbdgXvs96V7A9ZYyMAveCSRzY2OHdW991A2ogSA/Hqhh - MrvYCvW3gt5kxmSK7b3LROfeAwwzH9v5zi86p/Ba6J0AoYqjfoepQoP855/2XPr502dwR9ITETpx - 646a/daAt5dbah/uj2I8pEIO+JL/0NN4VhgZDnMFJ63nsfkijC2FnZfwHJMUHzZqFTPFqSNYHOCC - tcuTc5trgiyYq1jFtie/3Nl+DxU4nTSd6nRzink8Zx1wx+VK9zkXxvP1cTV/eQY+5IHgzgUEV/jL - Q5y3ocXscxOukL+4NZmPoAAsrx8G2pkZJGjVh9vlWFvweMoielz/nVrB0dnt44OBrYp7D7O/+8rw - +2FwzROigvYX9wqsxyfCp21wHOjkgCvQPkpCvam9DvPXKCbwLgHDh++pcecLk0NoJ1AJdsl70Dut - 6HKwfVoVjSX+4Y7H8elAbqPN2NBR4v7tb19S+NW/W+5YJWEKlc4UCADriQydHBp4zHifJAttwQCY - mUGfb3d/efIUWnYjr3oluGwsAywWfsjQJ3KPsWnOMTull1HmNsqMg+K1LyaVuAZY/VCwKyZPX/J1 - CiPit3vCbPqMCaCjA7rmug22a74saLedBOrd9U2D+RgD0TyLDlwOik+v91L58U8Dz4FyoOFrU8bL - up9k+Xx7UzchuBb5l/yEWxB+qE8/B8YmpBO4cRsBuwDb8cRtsgr4p+mBg+xqxKJKdQEwt2L0p6cE - PXQCGAd5+rvf9XLMDhGoHiwL+BhUgEIxNNFj2BjBcnqO6xsXIIPp0jOsLKGoL8r7LMHzyK9TU/Kh - XvPiBBQ75YRD1M/uV95SGWjXEgfDqrfnDmxSEJZ9RdXntIvZ4SM90fQcIPVRt07p4KQQXsl3wOrK - lzSZdwZUTRBg5Z1jQEzKh5BpxUL4gBUxi+8iga0JHXpKrKL404u7x3KkQUnMYViuuxSueS55bzXH - XTJy58Hqd6jPVxKjxqtPYV6pF4xVXNXT8qkiQI+vI/7L8/YcHGG7pGuFzHsO7Jhy1W8/4HuyvzAm - 7cceijA4UH3mBjZ5X+cK1ryOANye2dec9xpczvoJB2sev3zuBw957BlQ+7m7x8u8+1x/+h07c5qC - 7/MzXeG7zpw1z98M8+YyEPkhTwn17mUFphbpLUzwTcW/z0/2pupRUF+O2CoE/OP34I+vfv5phrtd - A+eDnRMuun3Bku29CC5L1uPynHA1GU9fArUz2tGgJVk9P6/KAt87I8OF5/RggdlmgdfT+0kVmQds - eY9LDvtOCLAK7QLMztQFYM1bqFF0JiDAXHv+nY0AHw+fd7zEwSP86SXqvd2WTSeuqZAoPFTsf/rj - sF5/AmGTUJrx0CymgjM8wHuvkuJFI2DaKicCPQVXZJtdNJfNGe2kWsRXsgSjALqZxCFQo7Amwrzx - ht/fB2wa7v7yVrriN1jzv5Vfb/Wap/bAfHIb6nTBJmbJpltksRLYz18XVHx46xulIPzlicPyTgNN - Lm+ZEGzWPIv5BrRAX+0Q2R6UeZij4ZhB3+vP2AzkO1iIritIvllfwi3jK16OBPRg5Io79k+Xlk3q - K8hA+nl+gmafncFaf4jgu84d7Hw+IRvbjD5hYdvPYFPJ+4L/+ad0LnXyERpF/+H1D89oUdqx/svH - gddnBgGV9RnoTBMFrfVKaujm9o//4ClaJKrxssH+6lPG/prgw3xKXVqdLgYsqOz+9GPNr3r25w8C - +bH33MWjBYRlfdgH3eqXJsLUBe3vg0WaQVPAUMhHDl6bbMHe6d7Xf/j8w99Vz9Qz8ybrL98ztqod - T7W6WKivbcsHiBfBohxUBUiPXYk1XG8HhpvPuE7tOf3qHezbGdCAivd94CRgIF5KgfdQkU4aPfHn - 5bd/E9h4oCfbVV8RKFU8mvrWX/Xjgy1Rr/RQBfmINTSfarb0HwWEGcqpnbxdd60PRj//Seb29o15 - E0QlUlrZpPrnG+sCQAUPn7s3T0C1seJZtEzrp7fw8aF92CdMqid0fc6guJJfcZe7DKLz2TlizRkN - MBWJ1ENocFqwKTsNLJ1MWih+c5H+8JNIWDZg4N7EP/1fzs+tAcpZPmF9x90A+eXdp7D+0sNY7mOh - 2YQNHKBj/PKxQQx8iQeq1ybB5ZfXTudn/sOPYFtssb5oCfLAmmcEnFK+6nEzVwKqBWWkt44tbGxN - JYFqFNV4v0DqkndqKrCFn+q33gcGSZyj6l2W9Jc3rvm6BrmX1GF9Y+qFMD+RARUt66ib2g/3mbwi - Czxvypt69cyBz5rH/y8nCsB/P1HAn94GmWD9BjST2wl9ZhGur0rciuUk6C1Y4OuD95LXsdkzLgFs - 8EYmvfA91Uu0OT6RZ3oiTZe8Zh9ZOrfQykSZ7q0tX89GYHdw2BR8wCunPp5fpW4hT/DngO8iG8yj - dhvlJA4NrKAvXwylZyeAF0Ub+5fzQRdnqVGgHuod9uIJuqwt9w00XY9R7dWuZ6TeHwvW940SMOWi - FvwXMwdZ/qUMkFAaAzM/eQcUQ3xSvPNRPSpXSmBQk2sgYJ1zp8NrX8HNV+6xm5wf+rx5EQEK3jkO - TkxXXebPU4mE7UXDintThi3faibyuivEZ77zhznuagLFiTkBm+9dIfKtV4FX20N82E2PgRGpy+HR - m7mAN7WmZsZZWdByIgt11+mo03egAuzNk4cP1f4Yz6+JRNCMlBs9bXRar5/PkCLAPQ2XeDMsa0cf - GOqDRhjwBZ1dvFpAXmvVWLWt69B+nlYAP4ZdYH/0Gld8JlKOvjj2KEbTUPTHIySwz/lrUH0oF09Z - HproFvUNPajHSzGFtsnDWgu8YGOMVyD0z5OJVMW0sMoALdhZXxOSU3LA5/RSALq0twWEVsxTTxwt - d+Zp3KGXrX5ovq1tfRqfaoZOshZT79m8BkGGFw3lkSwHqDB3YP5OOIPSPsxpRoSunuRMT+CnvVTY - Q7mgsyANe+jl4wGfDP7hChp5O/B0XgLCnqZUf7W9ncLjVvwSadioA8/w64mAizB1xs0B8PpLlWFo - HXl6gG+rnh0Q8vDm8jLN/daueeVKRziafklPTH+4097mIBjVZsQ5O1rFliN1hd64S2l00cAwcyIy - IFeQHUHyXdKnvS1wKFu4BB8888C2j9PVgKfrRaEWKFDxvU5SCDmtFfH+gs4urdzJ/Hve93eVDAJB - UQY7IWtpUkkndzskNQdtqzPovahalzlGIyM4XUx6yM96sY1TpYGf+1ug1oWY+mhc9x68fzfH4OY8 - 9rpwqqsr3MJoT+3jkOhMPUcawnpvUW8z1PpCH0sD88NjxNg4pMMcp1aDlvFZ4GuWoHo++laEtrp3 - psfjeGNiXnY8KsR0Cp5PB9fEah48qtymobo4W2xasmeAevPsUSVsrZiPvooAy4FV1LtGe1dow2sJ - pVjFOL/HUbxUYznBy2XrYm93eQ7iQ2M5/Oa0oxqft/GUWyUBVH60OA3dKCYSfIbo4pkpLj7VWV/o - YDjoGy83MgfblLHbtBCEr5NDAztWB7HQVQUFx/qFcVGZrjjdbiW8eEZKi9PDH7bBne/BbkdC6p/3 - bUxr7enAeHxBrFGhYfPhnPJQFm8bXKQmYxSs70SjRE6pl8SOK3jNq4Sn3t5SS1u7SkssG+E8fnQa - ZLY+CBxMevTxA0zgjusAy/W3tYMRY2RTQhYv4ff6hLivNtRm8muYl5s6IfXjOdTNP49hqcZ0gWns - pAQ9q2CYcKQ/0f2tmQGPp6iYH+9NAA8z0skuDR5AuF0kDZxeDx1b9ZUxFvnnFq37G5+di18sTlS0 - 0JubDT7qGx78/f7LuVrwPuTxMFqi9oSu9Uyxkbd8MVVjkqCON3x6uUNaT0X9ipDjoDPV1LexzqXt - O6m9kx7vv2kL5kKmHNhNwxXv415j0/axySD1xD01WuWjz0Vn8OCN+7VL4q7WZ39xJEg8wcVWLi3D - /NptBFgNw4L341wNSz+QHnK71KPZbH1iISicHsof6gRvsVQYX4d1BM+eZ1D3CrSYfw9Vi7R2s6Nu - uQ/AyDLRhEX1OOCsjXMw32W/hMft9ksD/NL02VqyCllHmZLd5vRln+RONXgdQEC2w8eLeYHBDFSg - CnEeuBgId+6rwR/+mZdkB0bhcYngw32V+Phk3voO9fcKTTofcXYvqpiszwMpWm0TdGV8sTi2pkFu - ec/4UFc9o+c1gdFtzNGA4wIg7gPDhOI1GKi+fBIwMylMwfr3Ys27mYxXX7EDlvzcUPto+mxaHmCC - l/KOaPA5tu5EH5OFNtoV0wvxh4J8huOCrO/ZwXZTHV0+EVQLSVdDxzjbj/U04Y+EbPzGWH0DBWyd - 6uzA13Ak2FheN/C9l9kC7Vk8BUKhVIP4mDIPDvXmQhhdfLA93RUZcqUe4QO4J4XI1CYDG63EOOua - Tp/qcAjhmVxtrCRvAOa+lQMIt7pE5PPuVrNnsp6kP3EBDmH9Zl0XWhO8ib4WtOltYTNQXQPSY5LS - wJbebLwe7xqEe43DzjkRC3KqqxIV3BHgLC5vTDhatYW0i29g3a+vcecJlYJ808A0Eb8zoN0NJkBz - rxjflOPNFSh6R8iylpFmSRu58375TMirBYc6YGsP2353S+Hk5AYtKnhiNJp7Hnhqu6eK9fYLwbf3 - HTxV8pEqQXIYBPpYWlS7t4kmVUwYUz5VhJY4uxBWnV9saS+tBtPYSunx+wnAUtX7AE7qOcT2GzjD - kubDArLzJ8cns45Bp4tfBT18IP7pg+W+La5QCNbmizD81N+NvTjot5722lMptlOSpnB/e1fY/6bT - wMxKNcGPb09XfGbs+S6eaMbqRM3QXYrJFIsJYucV08x2bcYjZnXI2jxVcn9XfD2FjVXJpXLa4/20 - 8PoczVX22y8YW31TzIF/rOAtTFzsbISbvpR1WULnOKs4wK+nO51zzgMPNKo0cToupuo51yA6BJTa - OQ/q6b49Ksjg8/Cn53QWds/qt98Jx5pcJ+/DeQFzpxzx6b4f3CmKsAWWo6HgdF2P46O+d/K6nml0 - aknxEek53CmVdQ12Lmrd6ROe+p32JQk+DA8untbv9+OjgFlIq7di3Lc//UKTs3NwP2ZVPFEgV3uK - udNx4N2mVpD1PTk42IaqPi4469C6PulZPr3B9B66Bib1KaJuwYg7nr7eFYLntMPYG85gNqpxAis+ - kKq4Uf0zvLEBd1UbkDnlZ0ZcZZ/AGxB57AHrVEwMaSks7A7ji5gubMw2aQqDu++SRSD3Ym53FwJ3 - UPkE0lUxAa+J69SlU3ujvp95usAFogCvDacT5oynYuWPCSb1OcLmXk7rZQc3jvwx3IKqA+SL6dzg - Ca54TG/ZojDxPTktNL+lRPfu8AaLTmwFUvUmkd1+3LkdDLonWPmA7PxeqflkExEk760RO3cpqxez - ASa4HQKL+gZuBrq0pwWI78+B5ka5HYj3FTWgKQeN7pvlNVB6UxpULm+HXNbrTwSNPIwyrSEGdkd3 - Fp3jqg8lmR4iRAYmOM2IYj0bA+4kPtkoZdcW1k15xK5zkMDSP28G2DL/SH04S4BFcy/Azj2Mf/zP - R0KUgfjVz9jfndyBFbqtwUflopUPnvq4fj/oOgLFPz4Rx535/OlreujPRzY2B9ICVcseQZPscn2G - sWUCvV10bG/kRO8M+2kA5XndUr39mPHScM4TkEfW0/3+8o7p3CoS/K3faxfFg+jdQQnvu+Ib7KIw - L9hdN3p5xQO6H2dl4H0lqABUMg+vfMCEm4UlsPJJAKktFzSdyRVq4GbjA/III214vcJPsz9Q5UYx - +PKtZkCDyhuqvcXPj+8rmeRvBaspdoflVtstXJ8XtvhGqKcZcxPYPeU39gpnYstpXBRkYBQHn/mT - 1WxKXBn+9OBpPssxzU7dE7478R3wpHGKSXgcQ1k4jA+s//zXzDsKVARuT32xm935Mr87GIlcSPV8 - /3JXvLgCtLvy+JD0ttsbhbzA+9ntAiCBTTwtWR9AZNdWYGK9dOc4VVoA3A2mahnedXrTbzIsXNhR - U/pKLt0HngGUZg5wnPduIbyflxIe69IMyHc9p15stxB9pOZMDe+Use9zx3s/fYJdtRZrdjAeEXSl - UqPRp2ni0RVNBw04k7H5bh5g0V63Fian5kad06sZlhbN0d/zwePnGo+rv4GHTf/BbgcmMOdybEL/ - Hhyxp7UPl1kfO4M/fsDkpOvEVfwUXKpuS2alAcWX3mINPr7bmtr38yeeVvyBt2FpsYKswOWvY0Yg - dzYPVGuuYcze7azAJ8if1LlL0vB6TzcFsrdcr/x4LuYobcc/PRtk5AM+vPTyoDOTLwHDbOhdPd45 - cLoWCnZWf8bbxZPAy9barxVDV5+3akiQ17MTdR7KCL5LGydwiqsDvl/4TcHKUyTBle+DZjo2YD7P - 0YTi65MEW2ubDF+VeZG8e2GFyJujAL40sctfXkAPT9DUE9gjEzYg5GlGCwLGT3jrYH1HCk0fUqGv - +n+Eqz7Cdvg41Cufa1yYWdHP77Mpqx/9n/4wbrciZgEoZfh5LATr+X6vC9y+jcA2VxTqRS0dZqje - IRCmKcQFKteph59ahiSL3tibtmrx0z9g2x8C8j1dNsMUf08ERHL4CaQbvQxsdnEAz2LjYSVUNXc+ - y00Cjqqn4nv18dlSHcInUoqPi93pXOpsup2ucPOVenpe34D5wuulg1fO2GP7+khdysX3DNyHTsLH - ra4PWxe8RjSXckAtYVvX7O1uUjikXkMze5p0kmyUCHnxZqR7O88Be00FD9600XAY7Hzw0+c/fREI - 5HotPmLcN+DyRAFWHb6O//A0OcsCQfyC2HerhiOiEvYDDlqgHuNcbmEiWwCbw9rVvSjRCGw/FOjJ - z57xch/XHhuBNgSLYO/cedAsHtp+JFAl2PlsNgzJRLCBPRGkr7T2nPKucl2kAcan4FWzcOZNeDwe - MXZ47slGYnJXqGr5IyDcpaspvVnNL3/ATm8nxVdQXy20jhKl5yUdwfI4vDLoPug7EJd0ZFORxyNs - zbbDmq999SU47kxwC+yYJj88eg9Vg/jeSKj9Tpt49WcE3hIOYXf1c8tgdhl4RBeLnvacP8yv0rWg - oq29no9XXWe11ltQfhkZ9iqJA/M3yUfpTEobmw0J6jnwL0+gh2pHmFr7TBzcqyArCIT40MPM5fM6 - y+Hqj6it51L8hddjjww3faw9bc71tOo7mFXshoPR8nWmfpADP7RMsFpnsc5YcqigINICH/wwKabt - Q8zl7Vi88cFEirutTw4PxGl2sCulO3fhMeVAg5FMYCWVjLlL2UBzhja9oXSjk00f5H94oc57qM/C - a+LRnV8A4R7RoP/yBRg+whP1GsGMhTJkyc+PUTNWX/Wy6c0/fAsA1+2Gxfquc6GBDILFmbyCpXNb - Qt3vFXzbvEf3o0AF/vklLXIeOhUku4L9/RZQ1zT3hXCxjAiaePvCua/qBe9F1wl6XQmprW0XfZL3 - lYcMPgux2vtqPWPgevA1xATj+2M3fEBMPJiL94xauRTVX6e6O/L5TQk1HF3Sl/fhvsiPVspwMnzr - YpnwmID72e6wcXYOOtufbz2MAvlBg3azj5dfHrbbjSHVwjIvZkoFCz0E1GIzdKOC/vjPxbdHgMbZ - KRb+kZlwe00u2By/9rDN5cIE400/YBeVvt4sOOvh6/bcYf8LBDaXu6mBh8QLqGOUp4FF/r0BD5Mb - ye9646leZHm42ZQGZdG4/a22G/Ba9hm2ipvEljIECQzy9kKdkng625AXB1NZ99eeIeLQ88ibII6/ - Kb5c9hbYPncwgIF1eVJ/xbMvc1iF3DR26Z51h1gwXl4CfnrdJsuxFoLm6sFv35g4NdyazWnqebDP - njr9+cPRs3UPlmS/o7cugDWjbe4AT232VG2qd0xlRwvQhaQFNg1XZ4yoi4KayFqo3mS7mGl7fYJ+ - lyQ0mY4NY0t7mwAjW4JXPnSXO/fSkDULBVaW+F5PwXdIwaoH6Y//6dHXRhTPB58gdzjWPOxPHpyd - jMN6a1Tu5AmdBjklKgPOuRH9uw/KCuTkfMIqMs7u1jyrEEovz6Qu113qr51OBC56DcgwzI0+1uEQ - QRDEHTVyNXB5KUtaiN4xCtin8outwQ4S5OvTjryOlxP75ZXgl297kfopJq7XOXiSlZhemuqoP26z - b8HuFtVY+X73bHldjg4q7B5j60JafVFeFoE3u3qs96tmcz6rFfzpiXA/tcVUHKYG7TfTGVu0CBhf - HB0L8nE0UJ/3xbpvOO0JJ2+8UbO8+oC/5U4JYSG8sf4cONB5UTKBd6RyZDLlCHxzjwvhRlS+NFBo - FQvz45HAMR8JzTwtBBPKTA4gomXkdcVn8F39ijQR+KSWfJzAZ9ROI6CS7+MjAzTugyYJ4D7tT0GL - 9VIn2Yh6WKMmXvNgANbvN8KCiwGB/JHU35fbaaA2BY4e0Hxy5/dtln/6MJDyeCyYes4VoA/Z9qc/ - 3CloLovMGSD89eStp+SIJHiPKoHwB292qf0pQwhOmkH9ce4LxhL8lF3pqmGvVM+AXA9AAQ16+3if - Pj5s2plmArRKI3/1BiaptgxP+9cZ64ew05ftfgpR+IhOhEVm775+9Y1quV8DauO+XvVyA52bE9BD - /EwAfwsnGcovM6PavpPi2f1oDZhLKaDJ2sCYQVvigH77BmRyb0otTNlWhnOf9oR1qQK68Wnn8D70 - UiBWvVgvr7XnwklfT9gRrorZY/eZAM2ODyIsG8flg0IJ0NMtBbovq4b9/Pg6Ze4QhEq3xLMOvRZ+ - 6DWhez/TCn5EnCG7x+5C/75fhyoNwsszoI5Jn/Us0nME1voH9tf6CL/mR7K+ePdgnqoTWDjmGkAG - kkqj7+vM2KmzNOQe+wtd50rGz8v2Y8AKCR984LtvTbonScD5dTnhoLEjd3EFMILkNQwBHL5fnd5P - 7wVOHrmR6SnWYBH6MEOr/6UGFC4DE+PM+ctT912wgGWLVQFkC0z+3c/wHkIY7jdFsBXuQczO8kWC - fureyLThHvHn6n01ea1fUb011imeuR1CzocGLjoQslkiOwfyAcuJCO58PKfe0sFV3+GDNwT6ZNlf - AiMRhjhy5QwQZqoVilQP/OWX1IBYASMOI2zhW18s2tVTQHCVFvLD3yWudyPgGh5S9fshYJrMLIW/ - vNTSEo1t1erhIOVgA3w4Ms395THQVnef4LvnxGKKjw8F/fYDeN3rYZl7WYah/tHwRfDaeEFBz0H1 - oMfUq+2BfcXWJ4DTGnHV4/dimU3aw/TMLPrTNxN9SA6wNpVKdWc8xWMbEgncLm9KHW0G7l8+0Aid - hq8wtOstkRYeJmdJoE7gUsZ8/+UhOi4z1QRyj8mI6h6er8eIxruyXk/onOU//MDGQRj+7qcqwA3G - 1efLJjs6WnCo0YWao1XHi6JsS+j33Zcq6JsUrN6FT/m2exTBhsifmFSH7AkT2QHBrIWavuWuSv7L - b6kVJXM8HaI+g7DhemoRwRoWMXMs6Al4xj++nvRCSiE+ZigQTpJX8x++ksHpLV4JD9Yp6a+dKMB3 - E2wx7roOLKdR/ldPNJYXYvMv77yL+wTnrVWxWWz3I4zyFJFNsy/c6blNesRVnoP1x2OJR4CDHp5y - 440PC4hdsSi361SM3YL3a34sDpobgSGWXHraXw7xtDODFKz+Bv/w9H2fHle01teoLXhtMfOtY4Ky - EU5Ue6lCvYxo6GBcigci1deYfcOuMtDDXd+QO3JXXeRpasLferJW/BwBu0iwoUJGD7egjxlHjiZq - gWsSEO2rYjwUgIPSKzBXfc3HC7dvQzid+AobYVytzwddIUqklP7wnW6uGo/S60XG6/p3Zwv0xi9v - XvNgZdiOO8+AAZt7qm51vf5epylEq9/C8ZstbJH3fQfNSLvRADwf9RIUWvfLa4Ot5FmAeelDgrrt - cxRf+M2/9V2AzRPbafBg7L4D69RwpaV+439copAohLYK1ilTc6HzkxmmqElZQ3goXGrxPFsJ/Oq7 - DeEIp8Q/PIebZ33DeK2vkTVvkEzKjhTffKWm711ioY8sT1h/swXMlgHIr/5HRFkO3OV6YBoEr31E - g0N7cMesfnQ/PRxI0e48/OWnz0k/BdNajx2bYcdDu3EJtVPW6dPBznggnO5pAEtVBMuaN4OIA0Uw - fRzJndb6JPR9NccGPMbxdDzKIdzvVBhIa/1gWOvN8HLyLrSw0BjXQZp1cO9XET7a1rVe6ENuICxt - BR9mT4lnicwOulT9dvU7RrHsHk4JVz8SbI8cdFncEQuIr4RQHfN2zPKyEiC/fU5UH89JMbfakPwv - Jwrgfz9RUDoJhy3d/cYMQaGEz1MiU/zefPSlbF0T3uNRoefni9bsvWlbWLy8OzY6TmBTtP2UKFIt - Ru8P/zCI5/FNIDpKEz3eoBQvr14NoQn3NTYn9GRLwqlPaF4qFVs12Q2zr8UTqqe118VjNAthMSZZ - JpoyYL35mjqT4qMEfSp/8IEmg8ueYbWgg5yW1KSpD5anQHg4Z2MTlE/mD/w+n2VId/tT8H6+8MCw - eA0A1Mo31SPjqZPsaciIEOLiAC3pMCHrNAKpsTzqhptvPd9UYMI2FopgE1oHfR6fUwSlbVVRDWRe - TRcATXiidz9oeS1zR3GvyxCC+5UIZu66gkE3FfzkpwCfua1VCAfn4kCGRD0Q1c3MFh1tBQi3GFO8 - O6N44nyOA1LjeNRvJZXx2vPZIplpJc3OGh4m1f5MyJKymN52/K6YkTxq8GM7Cjbm89pF3ataROpm - T4vNnQ2kyrxJGqXhE0CsP4stCiQNfYDU0WyqTDbLB0GDsGQg4H0I40WTkgYVoV1RlztuY4ogd4XS - 65xjbyGnQlT7J4eGTolwHL9iQJ9ItVCzC13sb7LrsODsewWHqBKpqUdGQfXtq4SKZwX0PEnBwKvb - 2wTzFDU03wuZK97nPELKRxSxcXFad1KuVwhTbpdStzWIPjmjpkCs0AORusMUz9HYEBTmpoUxq8xC - 4OscgvfnNGBTFgedXZZtAuVH71A1Kr2Bx2msIXB/SlRbNoK7OFp1hc2xbGixW+eFWYXaIJWzdzR8 - 3bN4aLfZFe42uw+9GD0cWEM1HmymWcNBcVIBL2yeDXqTrKcnKd+AtYtlDnc8q6ly4Qp3jIFDkHPx - JmxuHK6e974SIntwAPUOUq8TC7QZumaOT7Ut/ykW0nAa/O23+OR1YBtdfAdqQbWnl6cVD/xJDXP0 - /pwH6khLW7CDes1hRUJMJF5wWVed5ERGnYVo0e0eMfM2cwQ5m5zJS5Gc+ve84FuVQ6pVtAOL1mw1 - hK9KTDOEnzHJu6iCN9PTqCd1N7asP6Pp9JrwWfdDXcjAniC8+0Kqwc2j3nbpTYEw5gHG9adxR73T - eQS165u6wFN0UWx9E25vZUSdT3CuecZXBgoDqFJ9WAqXT961g2IUXYNxf/UH4RPMCjK++Rlbxf7h - 8lPyjWAfjyFWXncpZtB9eNBCkYdPeRy67CS3CtxlRwvfzr3kzo4jCYgrzIHc/fQVz7O0jVCKiBVs - 5Z0P+BKPI5SXbYa1SxMO/OUVEySiegnIfWgBb97bBb6c+4Xat62iT74bPlEkcTk2NaPVWRfLLXjs - vwM+jM9P/eWzyUJFe/nS4MvtwTZefE42ZemEHSVKmMhr9iTTcVKwxlWsmNy9I0PibYa1B4O6zn5t - IPxIGBHWBiKb7uHRROv+pMr9yRUrvoRoYxweAavtZz0Jm76FkWx3ZLM734q5Hg0NrfiEC9Emw9RE - whNeGl0IdurrXWznqhLQFyy3QP4ebX1rSHyEmg5sgk13CoqZXFoBfgMg4CyWOzDfiy6CAhfRYOZe - 72Hqj3GJDJNxQV31ycBHT1VCy1GuqDPqPaCDp8qIGUJA5P7+Lr5lDiTIjdcNDrLdvpiTss3lbdZc - 8FndHMEkZvUVmkHAU11UDEBbv+FAzM4NWWr3VXy3+6yBYeiG+HASEv3riJcA/fhBU8+fYiZqnkPm - gBPFfhwzMUqfBL5VKaRhP3X6BE60h8NVcmlwH1o2D9u6RPfJK2h2/TQDJXrDg+E47bG6X1v2Ja7J - Q8o5CQ0e2Im321mC0PF3NXanBAxsZ9AANpxj0D22REYtc9vJhIcXnHpJPAhva8hhupcfFONFZYt5 - k0b5INsZvrOqjWft8uLRExsjTnctiCdndDTo27cU48PIge8u7QgUc+ZgdcNejIDR1JBsuiJ1vg0c - Fh6DHC43paXRS7sW7DzSEUpT98YJ9kd3sPJTAOudoFFVxs9hyjeKhKjprgmjVhcLffUZjNOtTbOt - vSkWJ7U0uPVj7+/5iLrtG3AvsgdBOjsx1j4kCZm6SbC9rp+pfjwCuJzRG7tfL2FkC4sF8NV7pKYh - HMC2f9wreNrSgqqf22kQj0e1RJskegfL7a25wpVUFlSi7IrLcXrX06W1DDScRQ/7t+PXXTxLJQhH - +4JaxyJnJGiHBbzQ5YDvQtS5y7VQGnR+DBvyXkyPCeo9ntAxwAY1DC3RlyRNNfgcXgesXS81WOKX - MiJH42p8fiR3tuKnBU+lscNJFY1gcm1xQj/+SS6O6S4Z8Ee4HtDBLuIeQORJ78CD7Ga0CJy8WA7P - V4MeaMzw5U2tQoxpXUHtLl1oGrBHze/NFydr+Tane0M5FiK9vjooJmt/7lDeFawmaYlWfKLXq1Xr - bFnnRLdDLBBoBTiehkHpUWfqHnnkou4Kre5Yv+eNj4Tsiy2n7BPZDpUtTrvGi4nEhBE9g11LJvGu - 19v96zpChllAhKSX6umukhyevPGFLWvRCvGpcgYQmPXB9vEiufMxriUk4kGndyGy9OVZ5jn6Wjyl - 5/OhBrN+PxjouE61cYbvq16+rBthP3kDjUY/qckjmx2oJ2qKtS1vF9NBog2s5FcTLBtyrEfFUJ4A - +sWbbDQL1MTRuhLVcUYDYoaPYnFyKAEbi4TqL2DEy7sSBXjYxndqxbLFxG8/wB+f4eMzusW0EliF - VBbsqLu5s5ol1ylB8yvYYHWMOrBg5aJA3to4VFejk7vioQI3r/uWgBIeimWxXxPU5fKDjaab2bTP - 95VcJy8UbKvQ0fnLOmuxLL4RdUt4iIVT/4DQlOUTXfmmIJ9n1qI95Ct6EbRDIe5xPsLHu3TJ2cms - mKmcViHKtICaE9LAVqafCmrLHZJvuZRgfvgPCMOhvGI3OyTFHCVhCNvhKBDJt94F3RZaA398bl6U - Wz06o6PAn75NRdrEn+z8NJFwFq/Y2Mc6EI9rnG0oRMTKG/CAGKlAYHjyMLWJSN1JFTQHgtmMqbGP - azZTk/V/fGmfrvYwS5CVoBBaRq1j6RXLPaoruUThSF5vbRhYCvJcfjhTTy8Sb+v844B7cImGZ4A8 - bxyIZDlE/u0Xu0EmmN7lNwdBJGTUknOsb92OPCErjCKAZu8y9rIkE1xVSSHInyhb6Ou5dgnfVjQ9 - X2WX6UbmgY9tKdRd9criPZwKOok9B2jlc3rbZA1Mb2e46tFrMWfXkgO1FXYBw5Hyj2/a3uio8do9 - Bso+igzuwrXDmqPHBeV6PYLsvb7zY1LF5e9qm8Pr5/nAfnN9Fd/ENQU4T5WHT8TXgYBHXwFUPRKq - jIlbz9mg9gg2iorDdLdnkz3cOhBEfEZTQ3iDrhRDD2r3b0xOb22oH27XPkHnmi7Wzd2HTZ/1Heu3 - 22t0r0h9/f1MWvCnf30pPtQLD945fOX9Ha9Fy2Jq5F6TT/zTp/7WrcCUNe8Ezlp5pl74fgGWqZUJ - 35641nU9rxZuvJohqxgX7I+LEy/LNEo/P4MdbdYYAw4vgNuT3Ki5a4v4b72sfEvtV5gX8zsE059f - O6ibI2MzwCOIwxZip06ou/odA87TySRsvj7qtSKYQfU43KlLbk09u1Auf/uLBk7Nszm67B246n96 - uOz2Az/oNwfevsMt4F87dRDvArbAdsd9g+kNEjAn5pGD1PVauuIvY2p61mC/NdcTzKteOOwKDgpF - dSC8/enA8uNb75TktFj5eZ5YokD2SD40ozhlS1RTDm40KSYwvryLSSq9Ec7g5uHczUExmXeywL0I - 38EucXdsGJiqoPO83dOTs0RgQeVhhAf/Lga7Sj7FsyFhGX7BdKOh3EhsbL+Z+ec37EWuauZIYgSD - JhipXnDOyvdfAejbdsLmUUoBm56BLAdqaQSnxwzA4j20Subs8UzEH96iYFLkg38TKUa3Kv5+u+MT - vowsomqbKcU83WEJzkMrBox/pIwI5HSFOk2eWMHku/qrVwlf6YYnmzJL4gmgwoFL53yJCFM5XspX - OspwOqfB8n44BRvunxKC/LbD+rAAl4UQXQF7t0KwO5pNvXBuUkE7kQmBoiHHM95xnWwpzUidAJNh - FpxZgG2VCkFjPp7ud/LWLqpe9MGuLo/smx6TKwpPASa3HX8p5kJYB+W05mH16607lXgkUH2DkR6O - FdXp91g7sF2n1PmJJNSfu6UQtE8vPr18PxMY3+Urg759T6l6+Rhs9aMtiM5rhUuP1hNsB6Qh07a3 - 1JfCVBfCuQ3h6oex822uwzegVQXal0fx+VhhnbXbsESIXR2qUVkBojwDCGUDfvB91W/l9fDRoFq0 - 599+KaY6UHuQPlsteJ4eG3dK82MA7kLZUXfz3LviM+wmeLroMt3bx4f7d/8azjL+rvfDT3i/sENA - XN4Y5mRZEgDlKKDW6reYNLQpONQ7F5s3s6rnh+ykMKkCF5vna+5OOI0V9ELFIWCu98sDBA5BgtRg - e5Qv9cTZjgnRVxHI7mD3ax7wmGAglzt8gKlckIOwewLEXRwcsKftzrbQ8IifluXnr/Uv2/yfHwmk - IC4mZN1GqN1pTJ0oqnQ2MHutc5R3fChysWD+HLRgEtMw2NiKUvT5F+fgUIP1YEUjxUu430tAa503 - 9i9BUTNx1/RoOwWADJvnXl/CuY3g1VdMbNxVyFb+1uA2ay/Y2aJYn8egSeDLuV2oUcB3PTmTICEj - OrgBWNinXnrFTOGFzzR6e7unmH05t4LnduRwXJ0f+pJ/DxncfZMDTomF63nt9PfHj2nA1EE8v2Ue - 2nOD6QU5xKXTLdKgn2/7dZjnTp9+/sZ1UUYx9KZ6GvSTBYt5lEnDmRaYnImT/vKRSW4ksDzLKIOn - 5nz4209Uir4VcLt+F8hHdYrnc7odoWTxGzJ7sl0InmUTuBe5Nw2O5OtSGKYmlC7anhqU2YAFDi7B - 5csRrIPUZpMd2wF85h7DgRk+4rmoMwhr6/DE3i1Vi6kiwSKv+w1r+29QsM05NJH7rRZsuhwppvYb - mnDKe4r9lX+nipgTWvGAeqppDZMqOBYQOu1J9+EI4oUe0yta+SrYieGrnkuTcr/8atXrvr7F1iMH - smJOZNs7UUHSa93Jhrkx8J+fVelZgCZdgr/fT8YLe4Ka52ycbxHTl7XVHuyFeAmacMb1rCReuyOf - wSNEeHPFxNmaCX/+Wqdbb9geprOHjLPlUDtxL+xPr695Dd6PMHEHlXMq6JfVKeCo1+jzsvt0u9/n - vVv6iFkoKS00X9uUOrfJBcIFHwlc+RArL68BM/DPobz6zdVfa3XVIyAAoztn1NOSFpBVH0ODvF5Y - n9wZfNf1ia6HzQHbJ4pcZuW3AN7ebRp0Tsy7o2KhbHeMI4P+8F+4JGYLV/+JL77O3ImCMZftIVUD - yW10Nq0dq2BwJsdVj43FIvG1CZXb8xmg5LX6hS6pYPIyDPzzF6O6PU2wOnwEbNbSU2dveR5RuFdt - GiyJAyZIEwGOS/ukxuYt198rPE7oCPcMJ7tJB+J7Q1qojtxAfS1q9O9P73/umf/nJ8RfPldiT8QX - o7/WfOeu01PKM8WaCbyaeu10hc/qrgb8V+2KRTverjAT7AO9T8QAa8U33aHrdiKg4Kt63U8yWv0D - vj3ekc7GkJvgmmcQ9r4faoFIpxZql86jWec82DjnwRPEj02IrU+muJPnNA4SH2qGbesbuOxziQUo - t5VO45NnAWHn1xB1SGDU1NcK5zsOPGheniqRT+dTsShmzkGvHQm298CLaRq3Mhg+uCILGZ/DNE4f - CQY3rsTe7NfDFD1uT2BcNR07Z0GPv+rXz6Giatb/66UFWCj0aB6zGTCWQAguvAd/64MxcTf2f3ld - 0efMna94zuGO1Cdqu3daL2gPIrDqbexqn5tOWiI4sBykjCzRRYoXmLUlBK/ZpKpjvet5xNm4K0/3 - PT5AvQWTH/oZqGrLphmBeszfP0cZLuY7pvabWjG7og0PylPnYudprmczhjCBp+23oNqlmWp6G7we - bnfwG9AaisPUtKUB2dGtA355DbUwRY6w42C3pzfzdR7GCYYLTAwqYTdvtWLrQvkKAq91qPvzx3YH - AjnRqx5nx3KM6Ypf8jtzbmS2GqMQN3R8gnspmDgIqwCwyV6u8Jv7OhFW/8yquoDglw9ib38ahl/9 - wGXQxGF3zN1FpDYP1nxn1fMsprvNEkLRqBBVolph4mTLa9dxtyOSvd+yiTEwwpi791TzpHZgrewn - sLcuOtb74ycmx70cySljIXYrxsXL9fBQdkKnPLGNt8kwQY2/ws0dv6n7IB93rjzUwMe3joJ63+Xu - bPZbDvZbo/nTe3xIY/6HZwRpkeGKQlXzv/9PlZ3+1ieTySNc9WKQJt/epdrkeXB78PZrXqEzvv+8 - ZViXJ0qVKyMx4ZiiwOj28Vc9Pq/6HQrQFLQrPqx+U8wrx4EdhsaqF5RB9NqplB9LE618eRjY+HJG - EMjXHcbq1tL/9O6uuwbY29xCsFxJZ0G0q4/rzxNbvvdkgocOOmue8wbzmr+BVf9iP5HSej5JcQv1 - xrviYNaByyonduBuJzzJik8uKxpRQ61FEurCSa+nEvoGfN+UFF8fnwT89AN8Vjc1mI3HsuZd1Qgz - EJgB1+XPevGjuwCdJhWplm+r4iuUlwzwxuFI/U0GB3K2DRPxmqzjVd+5S+k7EVDD8kiNhH/803Or - X8V4hrW+liRCmAT9hLHziPQxaI4peLudRq/5I3CXdHI9+MmfCQ7QXdcFf5dyQHU8nSZ0kuJZWnt6 - dKodr/muXU/b9rH8+UWF/2r6GMlpgk6f3CSwKoRhFLOhBO/MulE7SJ6AvfjGBGs+QU1Prdz53J9C - sHOnL9maVx/QPre83e16xdgh2zGelkOcotVPB1x4Q/Hwq485kxgF821jg79853jgROwGjlwwdHRK - eLcyhtPFfejEZVsC1/pQsDPOH31OX1WONJjxOOE9ZfXzUY5Wf0td/uz/w5usWRgZbP4/pF1Js7Kw - Ev1BLGSSJEvmGYKiiDtAVEBEpgD59a+431u+3Vvfqlsx6Zw+53To5nIKn/Yibcda+avneYuwNhGE - B9vCUd0p8V++APt9xWb3zujm5e8IXS4S83deMXGsSoUnspT/9m/khqQDibtl82ps1bCNmwWhFlA7 - 5D/Fp+4rvuXh+A7DMD0fSm3KeN+W3oXLhL+LdwTb5fS2oRasNrYct/c2u74z8MDxCtY2FOfEj1MJ - SpuQzuJ5dGvhnr1EGCqFjpUHTOMVvxALRLXdsJPLI51yXnyBcpBSHG6Xnq5e177EKD8lRPN8lC9n - x9GhXG/LHj+at8CbnKKTBQVsaucm7q6Tn8Gb69f7fr7q5SKPKvzzd122UHLu9PUKqWi6Dtum/Bo2 - PBoqiJlHj50l34Z/8coX5Br+evZR7/y5kULijcQPuH3KNX2NUh3Yb6LGKB+6Gz3LaI35Yea4q1vv - eqpEu76cgR3Xw1I8ahkeOFaZuRPyvLWNrBTp5sr81TNqNoiCDIzi74cV8HjR7VuoDJjCI48N+FIp - 926rDf7VKwJ+PA+jvHQS1JqwwE7Povof/2/voMJKe53psusvdFsFg1jH08ebvG5+/Vcf9ywaRq/U - Rvj8wQDrWbr3mIqIKTFP2IRotXFOSz14QWH0SuzsftIyY11Gf3691XaKR7dI1tFQTAY5n7xM27KL - BP/VV5cv08aLMZ9KWBqnA7a99zmfAk22weZ1Z2JGN8OjpX6UYCdCaeZF41dztRypyHjXl7nBga8t - o82ncPgFr7DlIj4mBTrw4I9Pnfb8RKef0MLXbDi7Hgi9LRrXFGHjI+Py18l0U57xBi4gOYXDe3Y0 - ovN39vjH11Sf47QZGqEIYzGr/+3vAlVYgNcxTfDJl5x4reVIhsA5D//8scVpXxto7XeIXSkWd3x4 - nKUWFBA7NLh4bP8jEtTSI8bmbJN6zpQ8heGDplix5Begsaa5//xSeQWvfP3lfAQtK11weJAvdGmn - VIesIB+w3egMnUczZ+Djdo+IepjXevzzB3Y/BzugdQf2EA4XWCiSTJR+oHRUv88SdJjRSTAnwbA5 - Ch7/nxcF6H+/KGAuaUY0x6rqhQvKEd7bCM2ifvzVpIgNFZIJjERl84j+HuJUwqeVFCH9Tq22vjyn - R7bGn4h63qcAjLcfBMRlCfF0eaab/JRt6BhaHG4aq9T8Eh1LOG6XAtv1c/LGx/4Nx7DFzbQ6sudx - ouyPQFcmb346NzmfH6/+BV/KQLF/dEi+IBy1qJQVj/hotgbeXeIGtXL5I64jv72xu9IWLvIHhkgr - 1HjjrlML3/ycY7d9qJogqcmGbo/lh2XB44e/9cNPIs4hl8ItpsBVGBiSLztzsv4bNucCJVBdg5Cc - NF+vqdv/zqASbGVmwfPkLd7lHsLtcRrmjZk1wDlGysIqgCwuvpe9H5apqchj8zPRmWQe+jY+veCl - ghzRhiPSxpW/i3ByfCvkjK2JV686ZxAhVyanbzvX/Tx9X6jWrjF5QiDmW59UC1RkZZi/rnGmfHC1 - M+TSw0g0N9kZZSaGEiW9jj2yVIBDoliixZw9Eo5yTyfHiHgUnBmE3YWXKfdUQAPz0VKw7oqVR7Wv - /4KP5BHh28Y4A8t3XAabkTGwU95xvq3n4gKVjnWwMcosoJNYMQgJykqwGF3+4meGKqfv/c+Y9yCA - B1dA4auvJGnZIefsn2SiryxiXJa95vGet12gcoIlKTkJ1ssnX1KUCotLfNFMYx5g9ozSe2/gJL2+ - c1ZIcQ8D3zrNr/D8pOtcdA3Mjqo+C7xSenwEUhUeja4g55Pr5ESL7zLk4FyRW3y8e+up9CCUr+OF - PB8LzMl2FXVk53pPcl0OwZgcugL6P7pgH83fYT3mQwqzyr6T5IsmsPyMgIVy8liIS+wPJbfKz1B6 - 7wx888JrzPPknSKgXnxyv7M3bZkyMsJse1szeh2wt8QzCcGyRCZO3vLH49psnuGRrdHetVYAlB8h - D+VDFBIjuBjDqs52BbxkALMwdM94gz9RBz/Vdkj0sth8v18u2tcbrk+Fz+czXRK08soZWzA0wALu - vIq6JtuI8dMGQAjpUsCJtYmNlQXaukAiQmZ7PXGsfJRYuLFXFRGXJ0QRz6+ap859gWexaXH01ZE3 - ha4PoXBMz7Nww3X8s6pQgpmuXojp3Nx4TSDY4d8QiBE+bE/4njEP67fZ7+v5gM0+ljZ8HJ0n1q+P - GxC8UXdR0wo80dwCanOonztIJjfC5U9TAMemZxsEPU4whiDNl+ZcJSghfTMj85lQGuzf3OnpocF+ - FInD6pp0RPNB9oicDuWwNuxNRWJ3ouHy4YjHD5tSgGt6i8Ojnera4pAxg7qSPMKTJ3TxKp1fPAJr - MOFHOzl0k9d0gU3L8cThVdfjyu9hlOx27/JV3u8xJ0RSCavwWmF9dpyBfVqTBOvr2SSJLqJhSUsf - gkN4Vff9lGtBFD4bkhZ5CFH8s+JlmTQWym5UEmXHF0EUpg1O31nCjvPdNDI66YZocKnxpfp2MenS - 1IV35HbEFm+JxzITUqFl32riZ7VXc+umlkjnZ4A1Bh3qrbhdSnhbhC9Okq+Z0+JwKpGe+jbOrwmf - 04x9VejX8CmRW+Y0CIrrQmiha0zKUe7BlktnHn2qS4PtkOY5bbGqw+1wkLDjYSXejlpXwqQJCbae - kuVt1IUd/JcPcHUHo8m9fXg8PWTinoYG0Lk9XxAnvk3iimmljRd7MGEtMFfsx4qbc0tSb8jbe04U - kRtorNf5M7z6rkKcTrwP5OcEZ/jq2cO8nFe/5uNoZdCLkyySQDLkRFPsFB5oQrHaXG7xonKPETDB - aw7vxrut6UgKESYxqxBNkAZvu2+kh7emvxLnAAGlTfLb/vAdP27kDITEcHk4DLk4s/Fvn8Nb8i4Q - C/2N008c/8WXjHgbsH/xV69DY0fHk+jJxDRfI1im7DtC3L5SrPqfkzb3Hc1QYfSQ2KXEglWXLgnA - 9qqQ59UQh1kztxGex0XFRaz08cIFyfjv94fv797lKnj4sFKrQ8iTJ9bWD5p0aLwifsezIqfi5+oi - lXso85IOzLAanTbC7MkL2Eqbh7auqdmhkrv/sPG9LmC7P+5nmPBVhI3g8qk7GscVLGcHE0V+M/mS - XdUUYp95zMCZnUGQJjlB+fgkWI8JBMtHYRvoP5oSX8QupkvtXCL0KJggZBzmlG/hpjCoA4OHrXdX - ef2wOQXktSbEV1l36mnp2BQRDz9mYDhrvPUdTRH8FAq5VF87n81DxsBD1DdhnD16bznVfASLk7nh - 6GVdYoHRDRvN2Spg97RG+TJgZoHxMZOIG7JWzhmXyEcs/PX4uSXVIHCnxIYCc3NJPL3HYWFXAaK/ - +2wW+4vfoLUS+KhilgRPr6uXTrVNiALLnjmhcHP+eIshDH5sR/DHNAeBZS8V+qmVQEIlqLw5wl4L - +cm1QwaPvrbVMsrgFm8/bJvqqP3au8YitVo2fEsb5C1a82XgI3lGWJbsw7B0v6+OmvZpzwd3PNJV - VaAOg9VSZ0ivNiXf0euhMmUxVmB5G2Z3iVv4t371Yp3zjRVrCA0wDyQKfTYe8a0v0V98exlj1Nz9 - /RrRYMGA2J170rYnGnU4bklB/LBC9Tw+RR4eWQdje9pe8VZFcgSj+/dKzN9g01+R1yL0b9Ybm4fW - rjcDLSY6noQZ47q8eWv1a00Qxmk9syjY59jteLjnwxnu+MRrI8PCRne+OFjNbth0+9rA2mEjcsbF - HFOXKRZ4EusZh+ts1FQqsgZqcuVgC9Np+Pf3Z2qIxIDBkc4Awwj+8QlHOKUaHfNfKl19W8HueLJr - 7uRGJTxQ8p4BSEm95Z0bgqBUdaI9XuVAybVp0ZD1BZHzIsoFIRt9CEqX4GDnj8Lzq8voyRVvkgZN - kHPxVUnRh+0Mol6sLd+qvYuokPcgXAUa1/Tbdws4XU0Nu8OW1xOOY/mPj4SmHVq0kyCbgsfpleI/ - Psk544EHZij7+Cw5w7AatwcDLS0dsPMDy7AoplcBgtPjDMxVHgQgrGewSB7/L19sxBoy8Ogyjcja - 5Go7nlzAnr/IIwDj3ut9YGEHft6On8edz9QpCP2XEB6snxFz6+aWUDhSmViZ+drzc+JC+WS7OPw5 - Qb4eXa7/4/vEbFkvZpd7lKCaZh7WnmoVL/HwLuAciRaxvcWk/P1xiiC0jZQk6VXJ+a9ab3DHQ+xa - 6VrPd+1RQK7FH2LwsQVWcz0tqGy6AFv7UxCCndN5r2CvM2VRlW+HU99BXw54jKOjUm9XhZhwYpoP - 9mu7BmueKTLk0YsPF21yvS2K2hL0EBhYN9xvTiPB3nvERSGOppMOhOJUuQB81JzgOvXqbV8POJ+S - AN/UvSv7Q1AbGPjPA7GUSz2sy1WWIIeMCDvMV82JNMkXWA2jFx73/LwqF308/vFBK22QNqDLJkJe - Y+BM6/Aek9OXm+FB52Uclss8rODijfBxqlJs1x+xnlfmtcAH63/Jg0n0QZhK4krvoA5nmj1cjdWQ - LAIJlC+MnYcHqPr59UB/eDKxb+VTW8G1baDvnRHRsofrbbu+AvnXdcjffdkwHVk4vTHCbsh+45HG - 8QuY5drh69Q13vbYqA2XiWnC7Ure9b/4cY3iSLKQtWKWHIoS9J9+JNr9YtVs+4jP0vdAybyRXsm5 - h+C20GG+AQ4CTvE4bQ0jWIerjZ0P9/Ho8RAx8CweLiGTeUlOl9fjBRocziFwkTBsd/KWEB70ihjl - Ig6jSOcEmgLDkfue75cjOL0gExwL8pdfKdEZHp5ow2N7YoR8FSKpgAn/ivBfvAlBtECgJK99LNF7 - zju21AtUnPSN3IRaoWsS/EZYXyMzFB7ajy7Fuwyhk7+iXR8ctdV6Ku6fXsLeNUniwYWrhD7HFhHj - e40oleY6BDCuQxyu7OqtR+e8/ek1rMUKm29j0PnQqbY+PNSpN/DaXUukPr55Ox86gvG2XFsYCcm4 - z3muanr5myJ3TkYcLp9aW1xPc2Fg2XeMJ4EDVDCXGU6heyB/+LEISbPBnd8Rt7ZudJGY51matkUN - mWPUgjXuWAl+i3nb8a8btj99tZ//XBtrGi9P7uqDd4p04rUjolRWnxtIhc0lRtlP3oobeYPbIx5C - CZZBvXWlWgCh0H7Yv5BPvIqZ/EJjbqrYF00xX7sabtLf/XWfypgvP62C0IDWnYTffMvX2xi6kNmq - J5EjOaN/+Qot5uiR26U8DUsBzjKgijgTbfOX+NO8hhcovYeMjanTvQ3ZRYtaQ6bhqxJNjftgtEnx - hHRsDUWXb8hcZ1CprwN+7ngmyJOSoPI8ZXj3H8AqtZcLFI6rjC9OwsREPV5dqOAOYiM6hYOwrF4E - OnPIsW7erzueD7YETDEJhf6+5gvnpgw84/xOXP19yX/d59ZBHmcrlsPzgVIYRyrqWy3Dft8b3vZg - Sxl8i4tOCtk5aBsjtBtQ86OJrUvaaptSGRLkk+iBYzcyvC242ilq2PA5d0Wlx7wP/ArawyMlzsmJ - 8+2+fTv4x4f9x4v973meMhmE3CA5XjdRuQOcVic4lJ4sIAGPdHhkPYxxo5H6h483F4rGtwl5q9bA - gtHcQH57EqK8mWe8GldqojOWB3zZ9Rh7qvIUBrwmzbwuopo2+slFu37Z8SqtN23kWXg0NRebz/Ra - r8/ZVuGxI/dwmU463eDIsRAFT35mV7/UyB9/fqcHHcvTLYqnD0YLnDv3Na/WedFI0OIL1NPQxspT - SeK/fAzv6J0Ql4RrPifOOZKUikjY5rJJo8O0yRDaVoqxRSK6sMW7gcUh5Gc6fVNvWfmTiFz5pZC4 - /tfYui4hl8kxvjTXOl7eTB2hb92WRF7sKp77pN8k7MMHtmnbDkupdzY8HvwEh6C75QtGbQM9Q3pi - ++5LHr0fDAbufgRxdn2/yi7TAVgiDbsSX3rCUQb7VBiVYieSF7rkZVTCz7TdQ3p7vb3l/hFd6Jsz - xX/5bzo/Zx7uehVr+/2kj8lmwX0dKfZV9pOvXaREUPLyLnznjELHTy5m0I1Ego3I07QNoro99q2S - heufP9WlqY12/UDS+q4MVOu+KdzjmZwYs6W7v5QiA4wDltNP7JG0JmeoN/IYPp/nl7Y8rUkE83uo - w/VwZcFWpIeL1GR9g/11ug8UPFAB78jusLE83/V2X/1FuuxdZIufeqXr2QMJuDaOgN236FAhY7sX - qK44xErw0fbzGEoA/TOLTetH8qX11A6l6ykgwepftOVPL+KYd/70CSXvlYUwzoc65N1WjKn9FC9A - 8u7dvL6ZQzzRSmjhH99xvi5Tj2ck6cB/tCUOn8eTt2EOzzB36Avrn2aN//GZVspPM/dKbW0+c3kI - 46PsY23nGyQzjz7in+uTuPr3CXY920OCsyN2a0sAdCmlHk5jrM+MdHdyjrsjFYoVDHBy3NScmxRH - Aju+451v1aPX+SNUbxdIdDX+AZLzXgYe0wVgv/zdNBqXwAVgxVOItmsydFujRBC15+s/f266bipE - CxcyWLtfvnuPr2sIbx9Nm5cdf7Z3FYmI094Jdk1HGwR+ODGoekUJ2f0LsFqVKaJIuIzY2P3NpTn3 - Cdj1L466LdUEtvJEiFGq4TvOxXh17v4F7vxyEtRH69H7kBXQPZ0eJBblBMwlhht43og7L9TwNH6w - bhJSi5jFSnz/1RQeCxt+TczN5E+/SM2xhH98+Qk5n85rLIRwjiQrZIfz6JGzdimRkhwTbPJAp5Nz - +5V/v5+40rINdIgZH0qNb5HM3afiDTHvwwxBSKzrl/Uozt8SqoJmr2if9OEv/4KEdA2x6/t72H7f - 6IV2fhdKezzS6jleAEl+cbjuO09X6Z4AZL8Y8rwcAm2trlIL1npaiTceVm/OO9WH5ufckj0+4gUx - 1fbHT4kWBLNHr7/RBMi2I5JYPxyvzauu4Og4GMvelQfDztchn/HfmRneiFLvcOihdR197P4yT1sI - Orbwj0+71rnVuubcX4CSgITIoX+JWSZTKrTrhf/qjQhEKqwdPsLBcfVz4W/9+3nOiKTBMNfzOMO2 - WnZ3Mug8WgXxCOdx7Ik8Z9/4T39Jy+35JaHNzXSwN5uB5S+84d2P9lYgpz5AWmOSuLYDsA6uXv7x - Yaz8Lr96DDauA8HnXBLlHoPhLz+B7CjrxE0Sux6Dp2tDUz0YIZBwoLHb15KPW+PdiPzVkUZ9q5LA - 7gfj21DFYGFkYwTc+zxhcw1cbRmkVwK/ZsDNzM+Z4uXEjir4LT0Medal2ohw1MALQ9Ndf7fDshaJ - DqE19jg4DKW2JY9gAU2unbHN/4C2vh7nM7x8j1N4XMIaLOdDAWElVIToufH9098QnrE6/OnfYeqL - qw6tt60SVWPfNbfvB7TerwWHShwMrEOaFOrm6Uqc81rVGwjvKRDnVCXR/DoDanaSCHa8ImHTcBoN - eGTC7Fk6MwyrR73+1Qd2vw7rvCTS7e+83oLlYOdl9fHyMwwWlD//ttdbFrCY7qGH6af4YUOoOErO - N4uBSjVJ2Nf3HoVys5UoZm7bvO36n97vCotMCyAcOMklFr6j14GXn/gzHNOXR6XJTiBCtowf2M3q - lencGUbw1IQsFfR8+85iCKuAYYnctG9tc9XmjL7FuJHoOnP18OcP9iWVsaYMI90GOl5g7EoW1uP6 - A+Y5vdvQyauIBFX40Oap/22wwfvUwDo8xuTnGBG8np7dzHBSMYzK/aDCXY+HgGt++ej6swrVY/8g - /kCtersw7/Mf/w6bSf56c+bZHTTXp4it3X/+ADny4Xs4f4hVrc2wSoKrS1cpMrHnzE7N7ff5Lx7n - fDwaNc+XtINh38P5ADkfjPdj3f9b/64vh22NBR+Jxqchf37ZdtReBfydjx+iSprsfa/o1sC+XGXi - 3uPTsAT++joKeRSEva9dh2nwSAJsjT3hzHTqYbYFekba3AezZfM6/ecv7/qH6OD+GegKoA8rATxC - xBSLt+ptx0PPFW5Y5lXWI7MU8McdH2cm8/h4ddlahbffAWA7KBXAQrry6KCzMg6eJ1Zbjy7q/vwN - 7L1vei6soS+BO6oT4svOweuvmS3DK9AqbFaYans9gxd2/UQCnq3jpX3k0Z//MjMp7PKlCKr5T1+T - Inu8tHV7HlnIi3DEgW2Z8fxV6wWO9vLGWuF9PNrdgQrzr+38w7ftdu6SP70Tsu1E6ZSP906C1tyH - onxZ88U6Vzxg74c8ZJRA1f7iHez3nxgOA+JtI1fxr75DzJ2Pfn/caUSGYL+xrwwV3f0c/6/eh52W - +dZ0r/eASTQ6svuB8SqOJxudwvAWcmWjDBS4DoT7/mPF1FSNa8KzhBLl9cKJc+vjlXgbD2O2VMPj - rvf//DfwifIVGzC4g4W/OhJkP/kpfOXFkq/x1ckk+srf8/E6D7u/pPqSIbhv4sOPoa3wcVogvfiY - eKDMvekd4vTPjyd//Hn7qsMG+3WfcrZRIZ8xh0ew/555AcsMJhJcR/jnn2pBEGrcLc16uNdzsDEL - Z29hS72E8+nMzcXjxdb/8ObwrfAMdn23qO8qRLmzvrCVX2e6oWzyYU+8GVuhx8TLK6IQiTpvEzvB - qzaHBnr9y19/9a/lhe/6UfMvI9aK0zIszcUIYfXWtnBbyy+YXHaQIShtgq+MKGt80CcLmpyWI97n - gSm1kj6CkUr6ebOfxkAvfv+C5yQ2QuQkbDzyHZfCMZIBjtTGqveeFDxgr3KNHcFQPG78hjL83bOK - mJfDTdvrEwykTYuIY5e43uubBZyu8jBD7/nTNnRXk3/1jpAd5uHFdyiDLtMZpPCeP2+5LY8GSk3D - 4eu+f9vzYELgmyMlenGc6iVTjxtU2G4ivipFdEsvmo92/j1/XmU87PHBgh6+bjjZ/ffpA10fHo2+ - IO56qGPKckIKHb3/zN8//bgWpSk5x+666wtz2OufOoCx+8Iamtdhnvr3ghZv0LAHzrq311cTyIl2 - SjK+/3rb2VRkZGXD/uL0p1A2hN74V28muMhVwPrreUND+5CJ0SA57utDVkJTbW44MJ8JYJnMecF4 - apKQ/FY3nmOeN+FHVrQ/PpDT9p39Xy8KOPZ/PykY3odzWJ3FPJ45etrA5eYEe1O7MObW18GFhklP - xGCWpf6DPBBd/A4b4s+jnIo6F/2qxCN+Hxj53CnMCCwjcrFrMSxdHgOXQpDOGsbwiuL1aX6glFx7 - E/s6WLylKd8vRIpHvQ+ieA/UUTob3k9XjN3qEQ/T+6qz8PxeTvgWItHbjGfnwgo8LJJu3QOsHIIi - FH49JUoaCR41TpEKuPZ63dc3gLFw9RDFkgNmprOvdD67+9gDJOXYl8stXwXJktAyevG8YBbElDc3 - CSlP2SR4OP4GWoljBR6NGpDrz5vqTVH7DDLq54r9yz3Mf99yOaPyYDPzEsca2II1EaENC4Sj31UH - rK4nCcLxpyNBD+d6eQwokxCtPkTV65FumV5HqBvMGRsuXrWNsP0CYP84kcfsa96GP4WM3OajkIvz - sgBrm1sC2y+NsJO7Vr10S8Uj6SdK5KGPjTeFdzUFQNjonElOPnDj5LdQv4o9KQtH9hbIrC583nMH - O1dNpVz/q2z4nr4h9qNup8ym3UHnXmCclEc+37ShVtF4EFzstF6nLScks8h8sg1W07IDi18vJpLq - qMQKt8r550XzFq3L70fMoXkAwU0LER7WK0fCpD4PgqYeXVQ4nhou16wDKx/ZPEjR9CKBEvyNFVgK - ZFtaOh9ppcRsohsb6s5djouDmQz87ZK78PvwOXJWlkQThAfpIHjbNxz2ZThwH6OAYDiLFYmkh6tx - xXJo4GvgZZJPuPPmO8oXaK2JTwIp8wHv+FqEXOtDyHMIbmBz42wGIsLizPuNBQQKbQiljHWJcvit - 2mSXdiYdDlGCA+6EcuoiYKKHs6l4N+FjXunsBu77Qc6PotTo7/pc4JcbnJAOyk+bOm5S4d/9SLn8 - MqySHDGI8aBInifBBqw9phV89N2PZN9W09YXk8pw349wkNp3vNFT18LR+MgkfR0Ubd3Xgw7rjZuF - l4Hq/l5JKtSPVUqM+0TiEXyuPFqZ1p1BlC3DVJ+erHTusgk7zfutrT22U9g7QojlRrQ0vg59G6iZ - LZL0yZ9i9kmePEShecAq/3KG1QvTF3ysJ/Pf/VqxRBvoSSCYIVtdvC0U5wu8+cGRePFcDmw7yRmC - Bxnj4h3/wJK9tRcai6DAml/1g3DYfAbeftgj8lrP9Xq0WxbSi3TDyagAsO7rhda4Blgl0dVjLXbO - 4PsmquH6uJs1y92cCrZXdMeKyEvDdrmbDdKLt4mdjccDp+dNhs6LoGDzLec59/f/br/AI9jw3/Eo - XZcXtKmVYefrPGJ6PI0bXB56jTM5cLw/vILez0hm0U/jnAvvbga0VF6xmtxqKtTuUqK8i3J8Lz4S - nbwwrWD/CnWSPIDiCW59SpB/Omvz4Q//sERbRLmNCb+obcFiTiWUuKqUsXxblJo962kCAr47YBsO - jkay/Jggb2AfOH81cr0YrfWCP9ZVQ6ZVFsCe9ShBtD5Y4b6+mL3fWRM1R0bG5lIe6zk6KzMMsXXG - mcVcKD0KKgO58bBixS0OYLlWRQX5du+7wkWax8WDNiJiLjeSuI8KLKukzSg0CMF6CCQwKhfTR8G3 - wfhsHj8DsR1GBmPVnHH2sjJAvWdzgWWNGhK41s3bCrG7QFkcTkSZuMyjQ/H1kVb7PolQJNP1GO9t - B3e8OuBFA3znUxf92uBFynjJqVAfAPN3n+brJ1MGLpuuLtJw8yAq0v2YBzbXHKOM08mD8q63ON1Q - Sd7AP7AsWmu8Kq8nD7+hbZDotrzrNS2ZCIYKm2EzFjmwLclFhcellecf9zNjrliEFn6224CDb/fK - 2S5RTGinHCb3+0uuB/aMNnBy+gBj+5QPE5XOBXTCiMUPl9qUt9LQFsNPYZNT4mzemkTPFMzZfCX6 - XP+0OflOJTwiXiSBmXgeNe4fEfhXLyVm33b1fj4QsSE+YTMwnvHiMycWbZf4RnTh0QzrK11ZJLdC - FnLZ/e1RN71I8HPxPXKLsysQ7mq5t5kv6/nbihdPIJdwgYUnOnMWD19tubMPFs4/aszrBdpgzcRT - i7LvkIdCd7hra8i8Gum8cAqxisup7vGnUKU9Xoj1tGyPz47thpg20DDGSw1WZoQy2PNrWLNpVffl - +y2jYtyWEBh8AIQxGhP4h492swTaWphi9W//z3q9N1Qk9IXGkKlnNGlx/Q/PXz/9SJ5ss8bb7XhM - IPn2DDE24+dtS1LIUF1/EMehqMVckTxY2MzbB1vBoQJLPN8y8NauOnm4tKOdn9IOFa19wWmgfzyO - j2wW5l7s/LufnMRdCrTnE3xVrteBFxltp+zFmdxondfcNwY8eLTWEHLKlRu27ysoj9UchuFnMxyP - N4hR/vETEkeHLp5E5ZlBYTMsEuijri3ENHv4Mp4etmw+zld7+oxI8Ic3dgILDptVuy10kXLBuUDd - gXKHOoXbo5ewVVzWeh28OAUv2z8T8xzOlGrq6sKdb2HfSQPAcQhKQL/ugyPXVRq+BepfkPdnl9w8 - 39f4nqMbuuZDRdQPV2nrcicjlFJLI6F2sWMKi6QDE5o0YrZOT58vzjWPv+h1wYVqH+OlF7YI+uJq - hnU3LPGcHdsFkj4zsHwX2vp3+FkqnEWOw8m9rPO1SUkEbtEihmuYmp7QLr4JqTNDosmcGC9+cAil - vjHusyiGQ7429TBCLuocUmw58VYVvWz0nj5hWGtCBVbGurJw53NEefN6zuXs2EDf1DusVOy9JtSb - L3A9tUesFBNLZxBvMvyAKcQybLA2loxyRg4dM+xZmqAtSnvWgXidORIs7HOgf/j6YGqG6Co0PO4Y - DxFw6JxhxcF8TReZLf7yAcnY2R6WY/jWEU4SMr/KS5PTmFU65N4u9syR8xaP/bnQ4aVKulCayos3 - o5XxQdPZDonr9TIs6J5BYNV5jw2cyrXgDN8QyuXdxPodgnz+45fex1fCgnRpTDNnx4u4mXcLjXob - WvkQdFD8kPL4JBqttJ8M9/tIwucj9Mgr6xLAkVEkbh4cNHosfj74SqE1C3dZy7ejlPRQO6VXbJqy - oQle/9qQ+eQb7Kjb/rF2kZrwL95fbPLJaXvtE/gs7IiUCPqU9ekjg1o5BNiUhWtNC1S9oLzJ3D9+ - tPBlBFH6NXRyH7W7JzBRvMGX6P2wTI9WvDwvvA6H8FoTbLFoWNbnG6Jrmf1mOtmztx28ewuP82YT - Q3hBb3HJxvzx+zkOXgf6TBjwkvKYPMKjhYdhBMJv/pcfVgY985VeYASaagDhTVAbj5aKocJCgB6O - 93jaeDJu4CnFC7EkunhEuS8lVEP0wBET8tq4KbkPLbXWiLJeqoHG4VDAFPQqDnDU1h3XtiwM7sM0 - 0xN61JT7OB2cTF8md+7X7vEt+PDOMnsJWrdrQWGzEBzZ5xVjGwX5ytWxDU95oRNDincLkirhP7wr - B/eVb0JxLtGqVg7RxTzTFjy/GSkILjq2st7NV0pKGSyzmBH985uG0RsNBhrxUpOicLO4Wy/TC2RB - HhGvFsNhNfVJh4EG3zgy73Y8vz9eAQ8tq+GEBbecHzZzga7vTjOt10tNg9nzwZkoDkmI1sbbKbzM - 4FsL53CPn5h7X33+D5/C49ACbzMkR4IPAVQ4kLGZ8+ujLtCnPgNsobalM0+aDd6FUceaQygYhaxm - wFCcjflwsClYBFn1gXIQJ6JmrDLQpT336BwLhGT0I4K1KooIFineZolp7/F2aTQVmZ/3irVC7sBo - fRQdxZeC4AizIKe4shPofUKF6F2xDxov9jEmjdyTiB6/OS2VQIbmuytCcJTIMN7ZBw93vkXu+nGj - 2+24Jogb0Yqtc/GqFzFhGPhizxciM9KXblnvlHCs2vNMDeYLNhgZMjAUZgxpsX9ecer4Anrru58P - ae4NHO6+M2SkTZk5ZDo1ZbiVgbazPEl+EcKYNjCE8BYe5Pk9cZI2araXwIecPvFffG5tyqjAjCeJ - eA8j1ZbVkEO46y+Sx3NZ7/jTgxeZruExmX7gn57Il5HguG2GfPM5TYQOt4rzc5bnmq7V1P3xdaLY - p3e8bsHIA8j14yzchLj+lYekPB5HRQlFVdPrZTgoM1yZxsXpzkfZ0BcXeIy4Lzaqbw8Wbh3OcOfz - M6vCj9bdw0MP9nxObBfJHru1a4bOkt8Qm7lG3rLHK0DvcSZRW83eGpr8C0SP1guv5Lzl+3mfwWhf - rHB1MD+Qk+y3yD/kFdGPjVOzlRH6gMxxhlW3X4f1EE7Rn77DaahKMTnJeouU+1vEesqYHq82cfOn - n7D+NFywjqKiohQ3Mla1DHlLeh47+KsuHk4uV0pHfJFD+DZ1D1sLDobN760SKmdQEHO+XerlpQwL - LNtxwEGylfV2XgIJRo4SzOL++6jw+HZQDQ8PYtif3hvHK1/98QGsMU8rp294r2CA4hw7Xw57tGaF - 1x8fnsmuR2hgf1SUaDzGcnnRc4ou8vaHH6Ggnpd6/Nv/hK5tKBld4W0WahJoAQ5hz429YTGnBMJn - 0zS4qNBCx/Tc9LDnQES8wqoosZvnIjlvqSY6kKp44cuUgc3SPPD1q9sDl5b8GSizyRNvj89VTRUG - 3DI7x+7LyuhKursrzbdDiN3fZGs0oYIJlSDERH+LSs0NcskA42GbJIcKW1OoQAk6OjiFDHASr79d - Yhe+HfSav59w0taYl21k9OkBY/Xe10vtP3o4nKUqROtrjTdPljNp909wieBI1/Hcs5BOSY/xmHzr - xUj6EE5zH4eiB665wPTcC+16Ywa63wLKPrZQelqfM77jBxcvVeR28AY0lbiKx8TDz9gKWJy+Cba1 - yav7AXk+PMnnPuRj8QrmwjZGuHmchlV5kwHbwmk8ZieIiXN/veqlneQUuve8DY+rbw9cPb9ctOtz - rIMwqtfpvp3h1rFX8pffie3wKvxw5oZtD1xjsvMtSMV97JLFPobx9VUYsOMbwQf2Mwz4pklS73Bh - eOzOgbfqvOnCZ+FG4Ta1s0bCvvTBOWn5mdUkKZ/6o1Wg620LiHyZb9qi2d4F3n+0Ij5bXTRqX7YC - HT07w/p+X8cXT87QPocUm9eDROkBORnc/a75kFzMQeBNSQR/fNRxVTXnFIPRYcM+N+wfTL6mH3rU - wR8eXPZ4Wpf7dwa4ThTsU+s/AAAA//+kXUfbsjzT/kEspEnCkibSJAiIuANEBESkJEB+/Xdw3c/y - 3X17C2VmzjLJpKLUHapFntl75du7n4hDoMWAv1kl0rnPCDbJq1v57//aWRDydmRPAdy0V4UuOSpy - 7KHP9BdfCN2ZeRy9VfShc9hynxfkN13WeB8je+b4He9wQ59HuZJWrbLJzjfyzdikEqapFiPrd3Eo - +3O94S9/iWV9v9Fb/rSdbOmWjizmtujkbuqKzN3DD9rrl77w4obhQXn6SLs8rVxwNn6AUVwS8sff - KYn9DYYv5oHc5H2LpoBbM7gFqUY0BtN8ijq1ks93QyWv6I3AWA2XXorWUvXlhT0088ovChTli4jF - 8JXqC3MJDBCvefqPz7bH0k+h0R4y5L+eWF93vxG+ebXG223cdBwz7SKTjX2gVGoNl3sJSieLlRQQ - q/5ZLjUOhiEzE/fC/KPUI76V1k3e6z/yeVehnKyYKdzW8IfO2OobGv1O/+L/X/6sTxEpELOw+uM3 - +aTlz14ai+BE8nCxo7/6Iydn0u717RvhQREDKKCsJyojH6KlL0sGMvsm6fzyfdDfa1/imV0ege/C - 2cwF+3opIUsHAZ01ps7nNrhmMLsyiCBeclx2AsUEdz+H/MVLI/hODNdpizAMQzvfPoKxyR6vHpBb - nDVAaTJs4KIzb3wMupO7fYpRgU/mzSBFobm76kdqgYl/fZEqR2m0JhzXwd3PJq/sFDbLrY5ryfvh - hFyoI0bY/6kK5CQxIu61qfR1IVUnJ9h8EMNUD/ni3B7+cfC6G7FXz2r++DPY/WN0S6S02d4Z0qTT - kB3wFYgffaFy58D99zGjx320samowT+976zgCmjpqQUI94PmPc4/US4gBweW9vxAfiON9Hc7Dh0o - lRu/829uXE4dqiBjo5U4rwFSYo/Eh55+e5PTe9883ZcJFIo4fvqs62DKBkHkA/mNMXEfsadvc34u - we5/I+84NiMN9GMH1NvQEGX3s1fyLDCEBw2hk1AV7vJ4QAPc7suFpNP76K7Cq3MkLaA3vCH6dqnX - 0QWKt4kjp0OhRWyWIFMq/eBOXgcroltHX8uf34H0xyV05ywEKazPwgP56XBvtuahtKDRQe53WSE2 - f34OHA4hxd+jbetDbP8CeHSdjOhO/hkxcrYA/ukNWzJbfY3vayoBTp2QnmQgIqByB2iPgUnQUSUu - jcHVgK/+ddyX2Efun34CuWSEONz5J19CZ5MON83DEqsllA8dMv3xW/+IHytY+8Bk/+ofhrnX0gWE - bgUDpthI9KdfTD6WwJlUMXKuNz/Hf3pmEIc7hgczabBQZAXw702HlF1vLA6RGHibnw/keW7b0LIb - fWmv73u+Nvn6GagjGa2c4cUg75xu7LECez6hq3IDLh0uqvTPbz+TDY10x3cgmZG3L8l0I/59mH2w - JnmJ+WScxn9+++4noEwVFn2RKZzA/n18kMsJ0DVSYvjHv1X8HgGur6sjS7c7JJpQlmD8jWkP0/H4 - 81duraL9ej34JcqEBXsfUgS50YMeqC++mMAb+BffhmFQcgevN6Ubu1Zwe/YSsYpaz7fY/oUQpJOO - 7q/+1dA/v6CONNbn9WOlb2I6l3C7a6UvG5Ph4koPQyhcvQr9+UOrneUpVHV+Isq8aSM3s4Umnid6 - 8SWJm6MV9QQDGGoM5qQopFv5YyS4ZPeCOJ9gyOekC0Jwgh7vk/qAdVJHfgwNHMv+QS49yk9GhmH3 - tljM7/7IUnm9D3uFb4kqHwaXdrc6gUk78cgUrou7DcGzBd+kfaDg2YcNHpQllGfB/PrLhqq8pzJ2 - jtcUy5h7liCfN+oqkO+YG1JV1QP4KJUDjMhgI5e3m5Guc22I2ZDV6I+/0Z4ZGNjWP7DzbwcIz/iV - wD2f//Gn0Ulj8Z//R4OIH3f+lIIoP7tEu0qmvkyVxACGGROkfThN3/2NEsane+LzG7tFC8sFgbz1 - /M2Hn+U8LgYKNzmi7xfJbtvk0j8/MXk0OWad8qlv9FAMUlmZCBlOKbtbvz0SwNWFgvIdj0nDHiog - 2VqE6a5HMBy6DdDQDohbtdVIbb7pgXcNdHQ6F1JOhCcZoM4pOkF1BKOlXwYWTD8f/+nxZqmHNgO7 - f48uO37+FAa3YGIzGym8MkXb2ap42D8CgXi8OAHqnpz2+BqR4lP3IYEFTnMAe8ku0Xkq1YY/niJH - Pmdygu5xc2o4S6wdeff7kXq21vFPvx7/+Jr2s5d8vcsXDbpPAHxpvBN3sX17++MT+CvRQP93/zuf - Ivq23fR199Nh+Bk7/HtU1bh29579p/eRJc/REnV2DQ+vRt7vTxv5HW/k3d9HWtReXOo0jxiSb8+g - 8PK0Ig6/bQy5e/BBdsr6YNNIqkHwSl7+Ibi86T//5C4vNrk0rjZ2vPT25XpRTHR+9YdmFV7YgqfL - Y0b+I7Ej9tEulSwe4wbz+gVHg2grlvzXv7TCl+iSnT/86VmkAi/Kt6/09eH5iZ/I0d+CS5pP6Mmz - +tNQmNx1+t3fpyz7xoF4p++brlAHKfiLV13kqmhriZwA+9yn6FTJOl12PSfNwbyhc7WifHOz2oFn - gemRf0dtvoqd3P7r17mxCxuq6ocO3tfxRVASd83qnG3jT7+RF56UiFPsxoRPe9HQ7TGjfPlwSQiZ - XO+Jude/f/1W0dy3ADMt1Hu+DBhoPs9Pn5bJu6EfvSyhqEsMZtJBaOhxMit59o+SD1Wn1dfQDis4 - eO0N/fnLFHnnAg5l5uFGQBul7Xv2RE50PaStd8nF4a21oNBod2T+pATwQ3DrgK/yGULv29ldQe1Y - MBDYBD0pP7g0nCT/X/zGBdnclXkfWoiv8bYzfdwsJ6ikchm6Mz6UdZAvUafWMkPajjiqELi0PesF - CD+/zq9ZXhu5z0At+cS1GXGnho/+6dlQeD3JzucjejddDfx/lhRw/3tJQWWAE1GmpWpoe9sGkCWl - Q5SaPelsn/98+MVkbwmdUp2+51yC5/B785mu1SNOypJODuQJk/NQH8cegBMElfXSfGVg9rmAqiuC - n9KN6LLe7jo7fPsAbp/FRooDcY7fvbvAs30qMO8FszudM7WCUuXb+Pg1gI4PqGjhcs5NpDnFPC72 - Xdyg/bI+JNCZZdyMSFrgQAedXDY/yZeHQjSQkLlDnvEmIz2rvwGGheIQr3ZbuvbiW4PWZiwos8Q5 - wsOc7rsg3M0Pnn2nL4eS3WS7H/Y5HgIdt3evb/B7fNgku7gXfXOuYgmTC2D9Y6m+3OXh+BIclD5E - 9iM/7CcZZxpIJvuHrpIVu8JzPpWyIxcqSb9aEy33452H21KoCMliGFHt1xRQMuIQeWdA6CZf5+Ro - BQFDrtnhBZaGyz3Z2nduX9kfl9POXyHoimhCrhSy0Tr0SikvnEmIji8Pt0uR4IHPZ2Z81tYvIw/S - TpO/InKIVqvtuA28WMKy+/yQ+Yk1ysuenEmSEOs+4B6cSwDCMUjU54aUIdVyoVMGByquayLrzRvR - kpADhL1xUvEq4WhcUxX5MJs7g/gP9quvv5uF5WHGZ2JXhwLwB2fqoaRbEbmQJs15lck3mYT63RdT - auVLMcs9rE0/xKw5opxrwtyAHJQB3uKTHXGnYivlVxuFyAxvbi703s+HASmO5Mm/E31TmXyB4nOC - vvyWCiBUt9aHyXzviV3GJd0+mZNCEl0Skp4jMs4/cxFhl86EOCNWR6H0nwbMpuxEird40rfz7zFB - NZ46ZN46C7CK7RmQt7jt0jD+Bub8ynjgKrAZMbpMdwXzYzOyhoMTCl+/LmLT/hDAdeyfJMszSxcG - ZWnlv+vjGveZL3bRY7h0rISCsVVzrqXDABWRJSQtPybgSqmQQG11AbFFIWpIn9gm3P8P2dyRozS7 - dzX0JbUh6cO03PXjhpnc3wcGyz9Xyve9rcPf57Hc0UKnXfSW5OXniST9Am38SX2Xwj0+kBPxA5j7 - ao3lt1X90I1uScPpWRTCgJRHommfoOEPJ4hh1VgSsvnt5vZlxHlQEisNpffvT+8e5VmDNtM+yPNw - 3aLt/jlP0If5GzMfRge8bF1K+H6GH6RuQtJsWuJW8Cr5Ke7xscq5d+lOkmh+NeJbMW5ofdJ7cN9X - uD3bMHfXl86y8MZ9AbJ+s5oLZ7SWspBf78jJz1YkNF3uw+6t/tBFOtF8Nb2rKJfg/sFVFRkuW0by - fgYxefr8JFYu28WZKa3bkvpBMxt5B7nLAD/SS0KOa+KGfsdrJ3/f5wD5SBwbUp2LFB5VacaHWUhH - VnebEIpFLSMkmhHlTqMTgl4DGobF4QPo933E8JA9IxJmz3POG7XTwaEyTSzdtEGnh3ifr8DeK9y1 - uMlpzpoWuFXCYY/3X7QNoM9An7Kyv5F7la/6y/XlN5we6Invj3yxdkmkbBLrb9pnGfnajjI5+GQc - 2vMr4p+x3O1zjTBR38OTrqd3ncEDf3dQ6BSX8fd2XQb6otCiy0KEcbP1foBCKcTE5Uwu3x4lUuAx - Tz8k/4zAXeTi1sm/W/L1Wcvxc/IAPgvVR1kjTROXaPsW7xa8zqhARtl0Lh2fgQe5pTliXpOu7pz+ - 7gV8N/4bb6HiAN46raksdY5BktvRaqbqFzvy+xwPROfWJF8sY9XkcjnV5JZeXpR9HdlJ2iZJx8z3 - WY/bsCm1nBKeJSc25aN1zx9eVDmT3I9DrG8H1dtgKZMG+a/u1Ah1QRNpK3ufKMNY6/k49hoQms/V - nzLpm29GWmO5+hkcSdPKaljGlTVw8L8F0uq4zYXhVNXyZkshubIJ1+DOfvNw3bYUofEl5dh8razM - wX3VsALWZss/pQXro6eT4mPX+0mtoQMP2Svy+aF60816vk15vx+iCssNLN1D0wDDnVtiffua0qQ6 - QJigM/UTZ8U6NRaphY8fUxFD9ZZxOzGDBzErv4lSEBNsrZZNYIkCmRTkrYzCp98yecdDLEhNlAvP - /lbBbn6NmG8tnbKHEi6wfk0OUZ7gs5+DMdXwNLsMlvz73qD6SBZUL92IRznYXPo9vlN4/s3Ir1Hv - jVwF97n+3PpB5miq+VaJUwyFzwGR81GOwO9+JQus9Nn0j/zrlnNutjhyJ73fWDTnRd/6o+3/1V8U - 4Sql+LnePDkNHipCHOYaWhqcJye/dSSRWMQRNX+rJAcgWYjf61ou9Loay8nlyKIHk4QR//pM7T/8 - jM0Ujev9JbTQMaobiZNDD/b3O8kluH3QY8drXj3TCfrC+CF7vc7X+/W7/P0fKvf4ogy9GSBoPZ7c - PnweCXaYDjBMTISh611yjmkNEQz3xSNm5Dsje78daljCpiXmcNF0co5/GWSOXIWFld71fagsA8Nq - O6O4995gOsrlBK1FXJE3nat8+Vq/EnbayqLrPvF90Yaol8/XPMFLQUzKd+ABoZqGjb/4l3Gv/7iG - 10TpcW94yOVdnJowtSMTuTROxvWeox5mtFZISO5KxBW/jyRnHnPFfFMb7m/orQJ+6wgRFV62hjIQ - wuO1MUqCKEzAen8d9l3dygsVTnehy9d6F3LCvhq/ukieuzZhZEAtTBF69ekD9N3zyMCAb1kUdKd6 - 3OBR7iDS3wXyK++Us29hZKASDwe8mDrRaRrcU3hQDjlxfNkdqb63cE/j4UC09qEBNn29UpgkCPts - yX/A4pCqkA/jGGLGN2d3a8VtgdY3FZH20juKdSE34DXReuSCkubkMR0U0AMWI/vzKaLFmvclBS/n - g4wIj9FirPUC8Pc4EnXyRIDdX+/Ib9Ma9/rBuqvOS9LxI56hv7Y9aKjynHbLtVfIjXqCS5WR9WTT - +25YPCsErANQPLlWywRZv7NKtxQeUhC+GROdj0Y8YjO5Qqj57L4kV13BIn/kApzbQ4Tsdwib9Vuo - mTwk3QW5gsS7NKkEBhL+ciZ/8TE1VqTBT9scMGwMw11T9ezD7/1zJ2Gc/vTl7TQLVLhwI5elEAAp - 3wUroly4EeckkZ0lCAG0n0yHY0W5jjs+Y1idrzoqVH5ttl8W8PKOx8iupqe7OEcrgZ2vCkQn0x0s - d+8+wLP3e5C7uMZ0S0VUwse9q5EuNCwlPfOIj52S88TLvueGuupiyA4MNVJEupPzj8fLAH+/f+KE - m457ebXka2OW5DygI1i/xnWSyfp0kVXJJ5d7P/IFqFzyIGazS8ryYLAQj88ev6mTREv3vfJgOVgU - Kb2j6ksxcwM80ZPkcx8+z5fiNfOQP/8ocfJzn9PPK6vhSuEdhQUyXV5log1+PoQh581MKNUqt4On - 9QjQfUAPuvzMYIKaY9xI8Qw/43Jnzgu825eXL/bvOl8avTHk7/wOfZl/8/oC/csidcd7TYzPez9J - VXou4AMFccd7R+dyK0lAcLcVpDPvbVwSIkAYGFQjp+eByefxsFggmW89eY1b5m6fW1ZCvKAPOW+P - pFkejimBZWZYX6u/rb6+LjGGdrF9iV2Zz+bnMEH5j18XV2GMFgBODKh1Piam9l1zIgl8C3f+j7zQ - cfXmHP9SuOMNMmto7EsVTwF8Z+IXi6q/Rtv3/aiANkwWKW06R3t9T8DKaDmxPN3T//gutL/lC/Nf - rgErANiBgQg35D/e55z/vZRF3srBR4jqQjP/TFGC2XXykY+x4q7P+uP/8Snip7c+36ogNqCK4M+n - uErB1surIye88Cax+gry7deIE/ze0INoxp3k00fYMvm0zBD5M6cA+mXXQpYkSUFPIbvlQqttEtSo - ohHFw7O7fC/XVL7e9ykQP1eKPs5ZTOGdrBeky4Dqm5NUmSy9M4tcWZ2jS5GcGHnZVy36v1rVOUdX - Snju3JB4UeK4kybnGXifkwH3aJnc5dC0EzzQg4eU8bovefyaE7xWuMLLrCs5b0TSBlZXG3z2w+rN - mp4ODrzb6EUuwnxzpx8UF0gu1+xPH7ukuD03WD82hGx8S8dNcYwCHpksITo/3JrVEuwEinnCEPN2 - 7Ju15CYGDq50QzsfyrdCvvBQU7Qr+sOnNVtwC1F5iYgV5oO+Mj1kpX3nHTEsx482HbqKhGeuI+Zz - n5PvtoEC67Y8E8PdW8pMNmtgoL2OMt+Yon257QTv+OsjS32v7qLfdAdoVNMwFQs2/zS5BCG5RBlx - nvu5bbah8HLmLiEpra8fTRa4mn96g2QzVVx2QGILlyEVsJRnlruonwbDuqxdor4+r5yqDGDko1jm - 5PL+yvrCBC2EWtT6qBiA6v7Lt13foT/9MRp1vcmhVocYZtI5Zx8CMmCfKRCl8aUH+HTcwr//86Wo - Gd11NHpL6jMNotPzUEZbQzIJ/vKwxoyaBDs+VI78e/slufRi1pDX0auBWcoLMm/RT1+6ODRl5ihU - vrxq973+fFgYkvZMsoGrc1q4sgQyvOlYfLldvtl6NcBeaYw//Z7/09Oi+dH8dh6VhtPnSJPPAboj - LT7Z+VZRNoOL52r+zLMcnWV2LoD9Md7ochCu4Df6igKuvjRj/KvfOikN2RfRm153PIxyLOvP+l8+ - hO/8808vg5epP8nlO+XRP/z50wNOPp8Bm2bf4p8eVqLHQBdrtkMY8lhDl66C+Xgf7jzk5X2XW3we - 9L3+J3AZOx4zZ4tEmy0pE7AXJiWu3KyUqgxlgIKOGvL9aWrGtLlbf/rTr8ar2gjqlS7y4Io3FPEG - r+/vc4NVmcn+e3qlDR2QlcG/74evnxnxzAb3KWPCsuO5G7Ff7teLnS5TDB/YyvnvsKZy1346f/2S - wp0bi/rQLpYvSn5SHW2H2KtgdYWAnIAeu/MD3RV4fC6NL6rvq74+nK8B63N2xdIHNn94GMNeeRvo - 9GnycTGA1kPT+2zEqRZDZxOWiBB17wvmtugO2DYZ+D99RgzlGNC5/YQ8fNdajdcW5PknPQkOsK91 - iyx8rKLVuQYhzF4J8jtNuuq/l9UucPW8H9njy/398U2xlADa+aW7wu45QDucGmSeQhJNQy3GcHEO - Ouajt5Nv2SFpZXVjciwI4Y2uj2fHwu0QqCSolDaiv3lZ5F3v+XfW5aJ//k3dsSdig5Rtthcxyj98 - 9GuHXHL2B5cNiOdVRde3LI/b79aLMA23A7LlJQSbPlNP+suH+HdS9UUxYgsKZ5Ih7/770XXHcyge - auzLeDjqBB4uE3hD/EDa9TyOS8NFnqxMUPSb4y1qlvYqiVBzzBu6MEzYrBVkDZglheMnH7XR6Rmu - A9xe/AX571PbbNkFl9L62jrM18lH7xWJ9Y87HhDjRm2w9p93KCMQ2ejPvxROlyyE3+SRkvNK7+5q - RW9NruGm+JKqLtEfP5XfjfdGipXP+fyITQYiYfaQX20GEGq/qeGJucnEfymmy+WVr4G+TnikFisz - zveW1KAGrYrMzOujpcg4Uf57vuX3qY1LliYTzEbfxJ+/evPLUl7Ket7CZNwkfZGCpIL8KeKQU46n - Zk4YAqHqejNSMtlyyYstOnjlhxxzezzSKmCDf/5NPjoPwJ+WMJOtgeGI9So7d3rCSwHrXjP89T3I - 9J9/uZbtF6WPwzliy+fTgIv1PSFt96+oqo8QaIpyRVrmfMfFZFUIH0nakGcJD+5QA70C5kIbcoa3 - Td/eTcTLarUvSXpOTDMb/tDDXZ/jJW/ODTt8q1BO7vlMNHTzKLXqowfIRHzfC58DWKokzuBhEq7o - j6/+80fv7vdJtMfVynkXB4Z8q7gDQfiZ6vQjaB48bPSCVzbhxrWtaklm3u8v0vqDFvUfqpXgXSs1 - cZ5eBxbDGFq46zn/vFb3fHmAgwakU331f9Uku3j3SyHXowO5DMZj3Ea/8qBt8hP50w90rC0Lfvij - /If/+lbyJwdKR6wSDa8KYAFfKoAHXENO0/uYz8MkppDcvjFSp02MpkPTYnhjH9D/PfJDQ8dn6sNH - UPT+oo8BXd/xyINd3yBntGp3+GROBszysBD3eGCbf/WXcLpFFOfnN6u9KL2IsjFBnuvN+aINeQ9t - Oc1IaBhoXNxz4Mtr2X3364f53A7OArLY9HzmnBOdf5ejCIbKMElqvDCdFIn1jn/1yHgYu1+FNBas - Bz8jzidpmrX8Pp2/540uYseO0505b9KfX6G0R33kO+MoSbu/SZxU+YJFL0cFLrcBYOZO+uavXwCO - qjiTOP/0Edn9DfDnR50PdgiWDxzif3o4+HhNRMCTt0DaY8mfhTPXLI3kOlAAx92/L9tmHsq+hWLL - C8SM2MHd3F9vwffPKgjCy51uLauxUEsTB/l9Uus0vaEEDHVpIOvlmvmud1h4LLqWOCbFYH2iuQCH - 8RcSdR2FcXmiSwAECzzw8XUpdW5Y+xiah0/j/5ZMcJdxVSx4Yu4yceGwNYv84Yq/6ydPPBxdelbf - PbR/7NOXBk6LtmPGb9A22Ql5juLny2H2WrgcHIqsX6Y23B+f25ZS/esfNNS5Kx3ki5zgRrTZcQVz - koAzRZbPvE/tuH4LOwVOwfooHErVZfVy1OBRLPKd32Y5+fRSCi23UZGhRGu0qPdI+qv/fq9lSz43 - FvDhbyreKPbrKaKlPVvwz49Skns/Lj+13/70BnEUvDSreVV5uWu/3c6/nnpndFsFH775Q/bDOgDc - y0cLnl/qHXmZaukfOw2gnHgzh3e+AlaYnni4+0Xk1adHuuaVrxyzKT0R364u42LwGYZb3Doo2vkt - +QiaD0+HNyR6n2fNqveNCY9F2yLFsi4NPbt2Dff4QKg/STrtE9WQv8rrSZSiOLvcM36m4MC5rr+1 - pq4LneNogKnuPXH2fs9y14QNBvpXJ9qXNvosvfwamJPe+eMgZO5q+HX/V692v06lQncKzT8/fz+X - bwIfvQEOUPk6JZYvTIDufBOEhhgg9cixOWHMQgS7f4AuhcVE/dO5JX/+ks+798veX5N60YzmmfhI - dEc8gCqVl46XkGEtF7A5lRVCB5g6OrVy4S4yewokm8YJPo6D1Cy6O4ZQG8UzSgvjBLj09yrhIHgK - 2v0uun7cLBUIj85YCophXHZ+AvbnS4LoMES/vjom4GUIJfqrL2v/+YXQDBuM/vol9HRw0n9+AdcO - Rb581DCB2aCdSbATxs5yfjH8coJH3Bml0foL0gXsfpPP9FAd2YaLfGhe7wR5z/DUjDYnQnBeOGef - 29+7W2bxNdj5NbGrxzOn1cszQagmkS9nyWvcBlBlf/wXM/1PpXw+mCYg8eNGDGSNdPuUUizt/ad/ - /AM3w8CA4R2eEBq9rNk6xWbgwhkEw0F7A/JuoAL/+Llop77Lpi2K4Z9/YFcHSJePqYXyn/5PX6Wp - s+459aFFA4L87to0s6ltGqxr00b+e2zdRTKZAe71EamHmLrUlS0TkrFB/m/3I2lt0+6vH0jKpPk1 - v4FPA/htXj7+Tl/RnWRR9uDhRvb7g2rDpficQSGP7sR8LqeRf0wlC23bH/xF264NroLCgK+nfUc5 - W92ooJuuA/s65pEz5ir4py8217ziNnV7nez9Rlhuz8pfjzW7+z+H8K8fgZzm+tHXUipEKNSPEJnZ - y9IFOeEK+WEnM1GLtWz2/qXyp8dxw985sP7lk+po+J9+X2RR9mEvhis6DSRrZgPUrOwEqYcS17jQ - qf7qqVxr/W3vzwbN6jBp8c+/Wn9vCUwyewnBzsd8ftinuu7+G9j9FrT7Uw39i5ck/K3osut5aj0e - 8Z+/Q5RZVyLuj6/20kCIU6YnKvz5iXv/jdyaFdItv5sxyAbljKK1TJo503EqvQZ0IV4bNPkmvbpJ - Dt6siFL0nCIsW6cSdsqD9ym3JhE9/vAGlyWhxP8wDd3+/OldD/li+THp2n4yFkgPw0c3kND/+rVC - oMZ7f0HTuf15wDtHbOTv+nF7rOYGNlsMkRGobi68ZFiAdAoFfx3mB1jBXMawnzIJmcW1A+t5/pVQ - ubwNEs9MlS/Z4qfgS44BXswE082qr4q8mcmNKHnzHXc9jmEVbJBYoTXkqzpQHvrgUiNFaZd8+cFl - kXe8wMI2JdFffwX+1R/rHttR/ziVjPT/WVLA/+8lBdmrPhKbK0zK4s+5kl5P0UB2qmuUf98tDEWc - 1OSEZk0nbnNxoFOfANEyfIiWMHyHEJ6FDkupf9O3OhhSmJiaicfnl+irfAExNHk5Q+flyevbVBUt - UM+iT+xn4YG1/NJWngMxJqhca3eNQFrB9Ad/xH7zhks+x6sFP980RbmZn0ZOKydfqrzwTk6raeQ8 - x38MWE0BIjnunnRpD04I9etjQJdbmrnDXQoTqCHTJSd8/DXL0V9reSIh4y/RHY1LU19L+fodKFLk - topGOwoY+TMdLKSUMpvTw0f0wfecKeS23//Kx5EFbu7H9N9l47oTqhMGCAcGYchteb6UdQahfbrd - 0BO2r5G3WjeB8UNeyfVNsmblB2wdg0TvsBT4gr6Jix/AmYQYGSZW8+XwcTW4Nd5Aytum5ryg94ss - 2wUlJXVPOSv6mwLZ8j5gvnvV0WqBqJbRIN5I/v7OLqG2k0FtLjpSNIccCNribnB4XTuEvgkYp1T8 - lrC57oOznqmoLxfumEJpGX/+0tzd5hft48kzLzr4q9ToLpsfvA0mR9nGhJPdcQufdSWPrHBAF9ge - RjrYhgQrL7gjN8zVZnvPEZY33dvIy3PCXMg3mYXMsYiQ9iPdKIjaaMqXT3LyidW6I82TiwK97Rxh - 7mQG+Vp/pRbalPRI78+3hsuv704m0uOLslOhAaGf4hpOJGBI1vZOtImLGUBfeZboTMrGZeH45uE3 - ABAL3/LjzkmqiPJVvuTkgbkYkGajLOzzGGAxGaxmG7tNlLX1sZGnyKSUZhsfw4/iRShKgePyXfBO - 5a/hMHg6XVxKFY9zgPqVzH2/AdwHn/WljFHQodseX8LFO/bw6McZyRzOo7yyqoU8KiJE9hml+lYG - TQbftnpCjzffujzLzx1srmxAHuNvb8FsyAFvbgUk/pliTrwDx8DXMGrI5VUlEr6bxEOpjDWSO3kz - 4sbxTEjMokU6H2MdA77p4ONtffE8p6z+a3CQydzXPWHoZl20RD1Y4HiIfIzxivUpOM09lKg4okQ6 - nXT2BK9YvhqPI4nPc6IL8a9nYI2/T7web3m+KK+fJIWYXdAZCm6+dAd1k8+87JC00EO6zd2WQpUP - 3iR5XotxPQzjABvmc0LFZ3tFOH2+Ffnj3ijyvTYfBdcsEqB898GMoWxG/N8S+jq46OhhPBWXhSkS - wbspLii5l7m7Hfi6g8ydZZAeAE/n/fsJy3v98bns9HIX+6G28pk/OAh97INLsa1L8g8yCt5K+w1Y - brN72D6UCzG246OhQ6Jq8lN/PZHS7EcTl43lQLeDDspYf9ZpmKAKVj/94r/qtXLZW9jvR2edUmRx - /KIv4Wm24NnqBFxfCB6pyVedHDyCnjz3/FgfX9mEv9ZKEEpWQ2d9Epnw/LnN6Hy94nGAyynYwar2 - G2GW9HX8iiY0Ik1Af/WQttOtliPMVqj02ryh1oFnwB20yb4L/gbYRewZ+AU3HddxUjXs51Q58iPc - POKf3TWiinlP4EN1CLq1oUDp9HplUIokii7njzSuufEp4LdgenLh0s1dlly04LFMQmI/tdu4XljW - l2NT65DlD8NIe/uSQvFTL3/Xpy9mL4RweEz8Hn++y58UzgNvlReJ67KoIZ63WZLviDM5wfAK5jbj - IOwLJiVGfP6NNelWSZbvnI/s7++cc4YVYJkRWJ5cl+VNuW98t0RwqiziXi8PQD/HhwP5d3si2amo - KW9eRB7G7ichgXtfxw1XsQmSq/tCxkPyqHBt9AF8uIUi+1oEYLvPiQeVarJR2L8ZsNgPu4P99laJ - MUsm5XhhCKHxLMw9/iqXPfiLJres2xETlU93tcvBh1WAGqRYi0wx1d+LvLXsGQWr4+rjpeh4UK9s - Sm77/XLgQlnoNrOFQvn2ixZUlww8HBRKbtnp8Fc/Cmh7TU08sxPAaoG8gjm8vogbZXxEk2KK4YQi - k5z1kujLxz8o8LN4OrHNoImGTp8DSAzhTC49A8E6ZZSR+61RkfJs+3xrHMOA39uWE6fMSUOPr1yE - +QwMf1HbJd/uwZztu34Mn9teQS4o5j6kU8q/6LSdHq5wOb76f/msPYgzcof2xMtJ3mF8uMl0/JxU - KQXip1rQKY9MsKlxYMkOF3PIOhb7UaPSlZfNzG/RWb7WI+kSTQOX7aSjl7la+pYo4iQncfbGkfeO - KSe3ZixDXYx2/AIUu+drLevDJcZrm3gjX98tD3a4u6HifjjQfaSQKEeYr9A5ErWcZ2U3hcIWMcTI - IxFsUavEsqxLOspDdcjZJqfDXz0jeeu/3fXqmoEsNscIPfbTvFiTo5l0m72cBOxypezhoyswPPcj - 0goguVTz4ADlBK3EcxXksrP4ZuCn8t2dz0zgX35ajm+Qs1Cq7vQ4XELQfxYdPSzdpGv+ZVt5r+/o - cjg0YMM8McSofVxRPJ31cWlvt1j+i+9TFFmURXUJ4SH+TERfJZ6uOKMlfPzgA9lVX+TCsi2JbKcd - QoZ3dsdVFqrgL59ItH+eFqjDMv/aj/a9f4xmPbQXFq6X/krcTm2jLXXOBqwrD+CifdB8kcYhAX/3 - m+74KIgpY0Dzmm1IsVwt71+ndw+VlzkilW9O+qqwBww/+X1EyGJqQH/HwJFzLyI+e6mEcbtKOQ+N - to+RDX7vfDbL0YNKowt4wXKQ09+H9+DteHhgsRLUfDmF0wLHQGKRvuFvvrjcKsph/uF9OXflfPmc - KgveeSJg0XouLtakFwth8Lv6Ivs03Mn2LiXAZsEiZ8dfwqSwg2AZHz74ZkG03A+nDTomUxO9BaZO - 5inX5IDhAmLu+MJqr3cKvtwSkfOr/Orb0zm18h/ffUVLCjZHARMcXlFHLvTjj7RC8wQ7e2bwUi13 - MA6JrcCdTyO1a2yd6lFWQqbqf7heSTuO+u9TwMXTDWSo0kbpD43+P7wpubRy14iVMMQkKInfMh4Y - rFZPgOGyvx3PXu6S1DED22/akyJ+CNH2vKtYWswiJq97cmiIa8axbKXdi5jJibgL3vQe1le2Qsq0 - ULAuQrPAMCgSlDes3XCv9zOEUVCY5Fa+knze6y/0inogrn0BYPmNHQ+d6e2Q5/fwo4vFbZJ8OtDC - F85iF802fqVH85puPlceL+O0bLoFLd++k+ReApc+izqGE9QhLqwHyLE9/CyYva07CU37DAS7ICws - +sTwIaTtSBeI/D98JMq4VmDHqxSede28810t2pRVLeFlO+vo8kkTFw96G8L9fv3lyjTj2mYcAzcn - OyCHsMK4pJ5dwlu9esgq9BCwO16Bv+ej+faJLkO+9pBxTQW9LKami/LwDLDHL7GCp+/SxdYzOF/G - B5bttHTX9isZwO7ggDxuA9F2PQeK/FrQSJRLO0XTeItime+XcI8noNO4mP7DA1suDLAJ1aOFLnbu - eMSdDOjzcCyOK8vfyUVwuXwJDmiD2ZFRiUZqm3LbOwjgF+/1IDyuzZy43gZiNj2SiAW1u17ccwjL - pxiT11G2m2WwXhho4ueAwT2L8+3ADy38thaPns9UdOffd+mg94t65JQ5Gim2XfEf3/CwFzfLu35A - 8Fd/y50fbk/9u8G8T2JykbdzxN2NrgDZfIz9vhuMkdcvRxZefcHyeSJOOWUIaiE2S9YXXUOnFSix - B7pvau16rtUx5okp2WmLSPFSfu5y7WEIuAND/MOvSSL6p7+uRn4k4Y+YzRA+hwr+wvpIvKSjgB5t - RZKlU536m32758Rs/B6u/TqgTGD3KTMPGoCMO9XkD/+o9lgWmcTsgdzO0QR63t8qyE0z96dfmkXY - VEfe+SxJxFClC7YSLP+9H1l5jBHJN47/q29E0+EuAF63DNin+w2Z3nRyhSpxK9BxS4PK+8cYN1m2 - JMnJwPxP7/zxP4ApGrDQP0UXS8tlA2FQJsRn1sGdyy9ooR9NKdJGa2vGrFEdIAucSZyPpo5b2gkS - EPVjTnTjndAtVlYfnt65tsfvh26Z9EikVb9oO3/65mtx/ZlQqbDtS/LlAOjLRiKASKXElK9xMzfv - OIBn7L78DpSrTldtNqH0qQK86vDgfn7vbJFmG5vEf6S9Tj1PssCO9+giMikYwrs3wfebXfAhdpZ8 - eeayBfvq2JIzK8w59X9DAfUksIm74y29NMYAwK1WiMbd3Hz70kX704/Epj8957NnVQGPi297vZvA - GuJCkpqjdvOXKYHNZHkXRt7xx6d1HOvc7yt20Bd+DTqZL5jPbvnGUBO/B+R2qhHxMt+Y8gRV6K9d - Y7vsz+cVyB/gC6Xt03IJ1GpTjt/uAZ3SMAf7+2VhdTM1hOq7BVablT2JiT8QKe3CAbLnL3yg99Xn - 8NEesftsK3AMow6hY7NF//BuvvweyI39k7uhc1oBhQ9WkhBximbNunow5zFBXqTM7lTc7gn4wwcv - Ui6u8EONJ181w/VF93eIluGgbPJqlgbmgfEAuzjN4K6n0WVO4x1vBQybD839ls6DTpAZxbA9aidy - us+Vvl1bi4WF/pxxXdoqXUl8c2A5BcQHly/V6Y4P//yVP302zlpnyndtY5Ei3D8jtfjKkL82wcQV - silak/drA/1n033WxGqEu+CXwvh4+O18rwNbTGUNlg+dQ0onbxEuHNMEN43GmIHMfhCOdOXh1HL7 - Jny9oPP1ezDgkYkdgmIniLhNGAO460dkZQGKtqG6mVAXv8Tn0Fy7WykFMfxBqKDkMd4oP+nNAtEx - WFD5+tTN6qeOBBr/eyOK2ga5UE+JIjO/Iifq7s8sTs+EUFkmFSWCOETE+9UM+IbvB+aiqAcTeigm - iDdaYG6Ph/UnzAto7+mCj5beAWo1vgU9r9rwwXDifH0bI4QXfVowG0XSrqfuKZwDKUZah/OcW97p - BrivfSIX0/Mb3M4Zhvv1YWZiBrB+XGWD2e08IIWX/WgbHM2EfXo6oj+8HuiCFnC/+LpPB2znfUyu - HXx+zA2dT9dtpHhbePmnHAtkLsIhJ9fG7aXcSgqfv44CIBn6evLHOwSYPVZjQ93FDsDvFfHEf6ed - vpL1AqEgWE9i4tNP3/E5kYWC3IjqyFZEuVQwwa5viL3yiitMtpHCKxYUhJT2MnLOtTNhLHsjyjZ1 - i1aD5TFgxWVD+e7/8A/pwULE6xhvRtI2a+HqAXSy40ycyqcutp8fBW5Qif/TXz+xhrKGDJck+/3M - WJgCCZ1/OY76M9dsLhUqyAvO7DPDGujzYRh7eCt5hfzzH37iwMCpFYj/luyRUqNBDqApddBJHmWw - zozTQdeEIQofZGjW/f1AJed+yGMfJN/H2XZwiVmCrMhQ6f75Vn68nS/+QmHMJ3p7JDD9MT8s5j+Q - Lw4nZVAjhk5Oj0rf8QaEcHrgBDmDGkfzmZUxQBG2iD85WU55eJng3jUk2pv04+bcTfxPHzhGH0a0 - msoKIEd8EgUuhC5+WAcwXEofabmVNIv56lNIWFbArGxu0VKIuJQeJnkRv2AwmHY+LnPlPUPq+a6O - bOFZJfSKaiDF8/IBE38LYvn902Ti0YNAV5ZRWuhp5wZdwMdr/vGv3W9EzsZpVKimpILoEYhIeTDq - KOz4AaVpepLg03bRfLs2Bgx5jSH6U4L0L17koT9fkZX/8oi6ZhHDFHQmsZjgFPGZ43fw9KIt+fMb - R6q1HWg/1MXfXKxyWk4vDRri94XOl/FM10v59mH5MWqSMfl55EKDQPiJ7XL3V/wRy1EOATgLPCbH - Zsvp2bzt+qdF/qFtm3FVxz6G2/VzIdb4u+erILwXOZUBi2/Sy49og1oMMnNGSLm1TkRts2AlNzs+ - ybVfGkoUT3aAxdhnn1Mre6S3Ay0AbgWEDyQ5NpMF0wke2G+LRTxoI7vzB1hcRIiruTWiLbwbEzTX - dECe/W301cdPCSb9bfI/6UT1BX9QDUfzOaETDFc6O1dsgp0Po9t9rtxFe/0y8BbylNhqEVMhQ18f - kkNgEjWUzbw/PZwOioJ1QRfTw+MWK0dPevITIqny3Fxya5wBlrLokZg9q+NivHoJ+LDSiG+nk84d - M7EAhuRBhITFp3OCIwlOi1ig9IAkdxVWF8I4zlVyeppOtAWK5EMm/sLdDzi661fAITxSEezxu+X/ - /KV13bcYqum+S791WTiMSURU1TnrwjxFCkjW/eCDo2Pr2/3u+oC8Ah8lxnTWh756dtKo1Q9fqIdk - pMNUaADk5oKnl/LTN+1JNHjrbxAvlltHzTzlChi6F0vM9xiBpb/FMWyvvEJUHb70KSOpAaNOwSg9 - FgntP6fe2vfJmqi4XGyAQ2XFsD0qJ/JsPmEzNzhN4RfcdSzqxgeszKpCmOatT7QL8Rv2frjsU2aX - CP8U3QICQ84dYH5lTrwmq6JtquIW7v0ScrtWp3FxwiYAx/Ec+KV/Z0BzOggM7MAtQsp4t0caFDML - 4ZcrkXf9qvpqgKKGkKgjMlVTiXjUqgn441+medRH4XsMBggmfCG6XOXj4oX1BrpzGqBs4zSwkejF - wA1qMVFp/QC/fj1D+Ng2A/mXTY+4+7Xu4Po6HDBvHvVmlYU+FPf4QPevcaGrdE4UeLnFF+Svsjx+ - 0lTJoIutO1H2fJ8CknVw90+JXoH+P7665xtKviKOqDClFaz/j7Rr2VYVRqIfxEBekmSIgMg7KIo4 - 4yUCIgImQL6+F+f2sGc9PGvBEUjVrl27kqp7FgY05Crw2/krjxRgyNTT1bM7g7enwef+UNCzg/po - scphghu+Y+eSReOa3Z1AOQ2eh58H9GhWY7FKeEw+dyKtw9qwq3kWYbOI1j+9kXzYrMJiGGvsbPUm - 9s6rKxp255LiyvEy/nqceljDnRy0GtEjyZ/VFR6uX4/+6eciRHYCfsxXqN6+AjDNmez8vV8gPkYB - MKjVBmq+WhHQR6NE/+JH+TgI1Nr0kN+Xc1uIB+VGfepKGUvzJoYR8gD90xt/QOrXP30eX/fVOM47 - EGsIxf5Cfdg+mzk71gOUJccP2IXQjHh304N+M/VkTckzW9/olEJcmw3WDrd9xrK8FmGen+9U2+Lp - b3qdV4iKB4c3fQhIdpRwkOvwA5s7484Wj5QpGPekxB5a99lQ/yLvL/+jWc64kSQONsHzob+xZRWh - Ln1wQ+BL6VN8ySyxWZZ062K0f45ENodpZHb+EaEFXwMNq1kCEzvsErDpeTQArp5t+eisQI8cA6Ew - h2zhToUGHpfZw/dt/cjW0QeQxDhj2xYdV/x1SgJR538J2uIPvcemBrf86Y9fN+ufXvjyLid6ALXE - 1kUfQrB7qoC6pCsAy/dRDzTHn6jBfoNLTCXmwaP73Qn0HvttiyYx9vt3XdEAch1YnLeqKn/27e5S - J+OJ/M2htSROwHunsVlCckuRxg4Y39/jgQnLNR+U3FdgoN2oN27xNt9n+hNhrM85mHV4CdDcYAcf - 5vkF1jfCCbRKG5PqwR0aPjvW/V99hybm4DVbfh6C9MHZZCfNAWArria06fX09D1bjYiq0ETQfurU - nC8N2PJH+V+90BfWb7QYZ9rCsDYiHE0vjwnW26oheDwjrKdX0V3Gz2zAv3ilaNl9s69hgNb7XpA1 - gx99Fg9cCqtPNmOn763oH1+9L/YJBxufkt52kMC1ZylVlUZwfxGvTH/1SAJVxo9/egBc/OGMvZ36 - cufEO5Tw/AgTHIiLp7Nxyip4kfoMP8xQj9an4xsQFRlH9hG+6isOaQKtpH0SoPZatqSveAZbPW3T - T7Lsl/BLADe+jpNuMJrN/hOAwu+2IPFu/Kf/6EUZ09NcxLpkzO4F5uL0/LNHtlyMD4Sk+B5oNJ+i - Zhmkdwi/rRNj9ev89Hn31rU9v+N2/+xl07N4dC35EF+TVwU2vhD/88dqq38uBTkrSJSsHwG2n7H6 - i8zkTw/AfuYW0aoVHxWGn1H/07ObPvesHMg5PdLDYFPGDlEK/+qvgXh59tHXO7/bv3pbwELguZL2 - kGela10Tq8R+grna6SG8jR0XwIpNI/2rRwX2OaT3uRDd1VEKHqL1EhPpMiibfyo55NbQpGl8SLNN - b3cQw7sntZrvPqN/8en7PItYL5QcLNaZtBB9y5FQlTPA+ghbBX6yu/tXz9D/8pH9/7OlQPrfWwrC - aLen6tnko/n87GvlcLR5UnSpHa0/g9saAQoWtfjgFy2uK1zQLv0IAQNPoZkHuBOhmMgaDfhjmc2J - N/QQ2deFukwwI5HS2ALxy3Bx7gj3hm/tfQK8exlR20TnbHWus4GSDk7YNQc3W80jrGAIYxwIzq5x - t+epoMKjGMc4lt01TX8xTMH1ROPipbnClTdUJAXOgR6jMHR/4TER4dvpQ1xqAgd+FyqvEDTrizxM - dI4WXDANiXsoYqNUZzac4lcA9bJEBHTbrG1hf+DQKzbf5PPUSLa62iWEgUYEek4tpyFPNdVgeMkZ - VmutHskOVCW8y/aLMOIKgD30Ow+v8vGCz74ajbznnQlSrt8jLVhdRb9TZQTwuvQlVpMdZvP9QlWY - rs0Te1z5BVPnOiW06/lDr8mjActFECzEjg+XnkkJwLr8firYv493fKLJrmECZibyYajSq5W1LrEN - NwWXTgzI57bLRomHhoPUq9QQYIq8y6LwHMPYLF1sTbczE3pqt7C4nAt8VF+T+/P94AoKkMTYiE+3 - TKhfOwc63qDjQPpNzdr31YxE0ka4SF8+ED5JWKOPWq0kWWDJfr+lIWj7PjT7NokruMdZRtAw1wAt - r6cr7VugIb0gKUFf45uxU+zNsL0lZ3pwH2YmHGzmQW9KD9ixX2EjBurXgVJgHXB8682Rf52JDPOx - utPQya/REm6zqfYPwtMg/tyAkJUuB7OPCrBPxjij/duxoHdYNRpXFGa/nMiDwnTlSHUQTWw+RLGH - 7uckpwlzlWitb9up0JbWeLPfTFR2DgHNiQGKxS/KyPfhWzA8mSF16lp3xYOepuj0N5tGnp6NcPN3 - Vxjk7ZkmsmY0vCtULdr5kxco3v0RsUdTOTAoj3d8q5JPJnySpIZfYXegupqro1RcshTaci7TixIr - 22AJZ4aXqXpinAYfxrzbRODxenvSeArNaPHyLwfHzj5jG/EFW6ggcvA0KUcclNWSsfh9vqBhRA3x - 7GBomG6cVDie/YbsSPtwGfcKZ2RKvYmv0kGPpOPYruj3tGwaDs8kEsE0KdBI7QW73V52p/fW+Fee - PyBYsXdw52ZvDBD73yO9/WTMGA89C1qo+lBVHrRMqDNlVm4+a7b1nJt1NnEIZ/fgk07eSvx0f+vg - OjaE+oqnRizkogo+p5uN764RjEJO5h7q8jXF1++vGdcPeTtwocYda9L1GzH986ghn3oy9cevwZbf - 0kxIisSIfB7ZIZPCxBSRvUdcMN451+U97zEp45Pk9O955grtOFh9zik+mHHULILti9BbzQgbrbhv - 5l1AKhj24EPtXrcy4cAcEy5dtM1NSE+N4Kw2hKdI+2JNOO2yRXiKCnzWjKNquDXgv5h+CRdeM7Hp - nGAzB59YhXy0GhRX8okRcT5ZsOoqidRlJDLif2cNZRae8fETUDCvSjegYhFcXNzHo7ugtKlAVtgl - 1Wz0HoWd5RNYL7cTDU7yuRG/kbXCdtbOgaDe9EiUPtsgDvtS49hu6uhdl5CDQXHlcaqNH8A8XF2h - hMcTPV6jxuXPdT2hMVVd+oD+DBjoDBNt64W1MfPBbF5ECyb+EeMYOzRaRsPuFLIfLOzwUQLEahZj - kAA5xS7pHEAXP4GwrN2cHvqxcxfp90qQ75HL5u9dxth4L5Ef4CRY24W4q/SxOrjipKeRa1aRqN3t - C1weqUnVU6qBRc3PmoJXq6ZRP58b/rAfZLk6v22aPSVznO3A4WHwqlXsvNtrI6aqYkIr+rrB7nKb - IlbcihY+RWQHXCYu2YqvoYZusCMBV1bniJcWVYPnO1lxsL8+gPDV5ArydG/T6DyrGVFvcvBn3/hW - u4XOju8qQR4ZB3wUFjdaiuNrhWaLS3p8kFPGa62jAPQdNay2k9YsT3MVUdHlPY2Nio6rcXhd4GPM - Lfp0xyn6h1cbvgQCO43RvMVLaD/GHz0C1QTsPKJttpY2Bz/Fq6LvqXBUeC7djuq0U1zWvOsAXX6R - Fkin8J4Jal0k0PlcdMI32Iukdv8wYLAvFKqOhIFZbrsW3NihoVbR/cZ13z/6P/vEWjJ9wXofFQN2 - grxSU7YPQFSgWiO5XBtsTPdmXLuDq8LfLk9xpkh3xnxFDRHkMx3bv4sORF8fY1iaWoyN7njTV56I - W1cYY8DxfiZszuWsR8ZaW2R5NgGTfD2Q4Vr2R1qWU+qu1Q86f/ZMD77KxlX6qC2ifPfAl93Db/h+ - 7T0YSJDHV1vsowWIJxl+Ba+kSdXvXBaTJw/xVIY4itx25BXb8aC933H0xscfdyFakqNclBWcB1/C - vsUj6QGPW5mmb6/RBfC45P/wbk/2IRCLbbipNyUHqvfzMq6pzl/g3Donqqv9N+uvyiRC/StV1JAe - VzYbV3qBv/j+wjia53HeWYMFlYBjgRzPBhCmSlJhK/k9DqXMHKVBNSv0hzcBd5+atU6uFurP7pW6 - T8lsxmHryvJnb2braq44TFCDe5odsRFWfTZnbTsjGMWYpsMuYUv9khzU3tIzxc+iiebCVhN0/Kwn - wvFHLpqfzjlH+t5EQfN5Cewn5jxRyrxw8EWXdowql8KDEldeSCffhnFN4tQA90nLcJANfUPv0Ilh - uswQW/W3yuYSEuUvngXo5fpA9Faug14SiGQB6aDTm7IPYZtJx4BfuHn87Fx5hph9exr0auqy3+HZ - wmICOdbWc9x8pk8bIs1yHGzPljeKx/XYQoELNezUdaPPWdkn0OIih6BJVkfWaE8CFqNMgsZ7GYD0 - Wm6C/n19Yt+AB12KgyqAUfGJqHV72dGseF6K1mt8D64TvbnSGashVMuUBPB9Js3iPVsLXdhPouFe - iwB7N4uBVPniEkF9eS6D4jyjDY+wI1Y1m+i+6BSIbR0f+8JtBlNb4/1l9ZYA7vX3yPDQ9rB6z1d8 - rv3N/oVziZo0V/G9Np6A5XJlIva8fIL9hr/UV9QLDOqwIWJy6calyFMR9t1Ro5fTk0Trr7cmqPHv - Fw2K408n9XpKoLeKIlWxlDRrcE8DMHbumUjWmIE1Um0D8gF/w5e8OuhSchO2wRylTvXq2TZfOTmk - yO2/FvUvfOYyLaoHONE2o7cXG5vV3M0m4gPxhp3KDrP5xS8J2OwjQEiz9UWM5Sss0Yuj99/j4PJy - SzpweMS7QJxCM5vOPTUgoetIXWSbmVDOhwkhqw0oBtPsrtP9qinTlcsJi2gJ5tqtK1iZQRdcZBCP - P10qYgjaxsC6me3cX1JLIaRxs5DEzt8uk9R7+cd/sd31DVj1YXb+8Wtn72hA5D5LC6XsMFA7O+3Z - xCm7Dni//QknGvdjK0t8FYLwvqe+/96NU1b2KXypyTVg17TK/sWPF+UO2P6VXvNzysyA7jcbqVd4 - zpbvlBY8T0NFD/B7ZJLfnVNI49dCdUiWjLx/uaGk2m4h3ZbPsB/ILDhV1x2NokZ056UROvhNu/Lv - +0RiNqYqNDQuJTfIIJvQy4tBWfUxzQv1Nc6lONR//Ixa4kfVmdi8INziL1kRZ2dC7+4MCMm04GSz - 91XQ3hoUnJeNN74GFn5KrrB2ry3e3rfZ8iMVHKMW0lLaC9GSvUwHfkZwJfIu5Jq5l9sOKkEQ4iOn - ydl6Mf0cOD8i4cNz63o0q44M+zBd8HEm8kjls2fB9/21D6Q+DqL5rdwITCfJp4ajLe6SZfb6F78C - 4aGE7vAYVA65qBNpygy0NVasvX94G4GxjOZ9VmlIsyyHwOF6iFZ9hhX0eyH5L34+uiEGvee/qaaP - kvt7Fy4PZeed0Ls87UZ6mhAPH4duwtaStM3y9HYBPBiPMw33wcbPwpZDIqs17IOtS0NM4AUGXNZT - 871ifb7ssxmA8LYnAn1CMM++Uf2tHy7I89fQYXq2yoa3+NifNSA4gufANrb4QKaocr/7BQ4Q/1BM - 9d/u587axzfA9n5BU1+UiGx4AQmwA+po4wkIyUOelHcY15v9nKP1nP1K+JToRHGahs0sn/YO3PwV - Y7Pfj4tkpDVEvfzcJCMuWw5MM5V3pzFqfrsuWs2dbIINv+ipj0m0vqNKhMVi9PR0WV7RIr9OHLh4 - QUAtdFbdpU7mDt6Zz7AhPXgw7MeMhxpK7UApFX5kd82coa6bWYDEWRnXZtJVmHbJgxoKLsb1MR9j - 2LzFhp565920+HUekKlbA82Up5mtD3aq/+If3fB+nHuhTpTPaC34JAxEp6PimOjP/xTD9CIJt1UI - g1el/su/l5LpCkCYvfEJXgNdpFPEocQ/YQLmA85EnYlbF4mJ4nspvpvJ2bqICd/4io3V2Wcsetxl - iLCu4SMfn/Tp3bT9X35G1awds5m4rIScEWn09ImybGnWkVcun27B2sh20RKcbA4KgyHRY5WcsjkU - rAqIaWZRPNafZjLcagLW954HAzMKdzl4KN2j3T3C/l36gTVIrwmi14sVIMH+NauScBrcH1/f4Pt6 - Lzp96E/xL36Q3fM7uXTjB1AYhBSrTs5nZKCiB+p7MeBAK/xsSepdCDEbe6zJ1GejhIoAIqsLqF/t - 3vpSHL8rcCC80twLc3dJ8m2L2IV/4CiwFsAGNaj+8i16/ASYsQKfA3hJ7lfsXihthiVaZhieRBYs - tR8AVv2eBH5fi4hdNSncVYFqBf7uP0ci1P/yT3j38h+Rg7Fq/vHl5+Hn0A2/9cXa73K42RsOPLtk - jFy8yx9+Epm5aUY+KReCKOdnfN2Zp0ZqfVVF17ta4o3f6TM6nU3oke9AMWn37pyDG4+MRxYQ3spa - fe5Bt8IdbRqMu5MezQexmv7yE+oL9m+k15+5wmu5ze5dQT3SP/5avKcj9RL7Pv7D+wbpSiAn7ndr - NCpAGCPE6GnO1mba/h9iy3GHT1fvCASWjQPsqp1BNdxemnWJ9ivYrscB5Rd92lmDA/70p2NfjM3K - HSYFbPwDHwoH6v27qnP4dMMbVldVyxaczjza8B97WHaivq6zDqxzUWCdBf24Lr+3Co/4MdPTFm/n - rxdV6HW7avRQrcM4tR5o4bzoM1XbqW7mBLc82uJVUM2LybZ4waEtX6JYX0PGovhGoMLVL+pf+kvG - L500Q42OK9Z0aQcY/gw5EN+6hbd8Tl/ZTRPhxt9xcr/udEawZkCr8GKsOTaJll44Qvi+N3sCNQjd - ael2Mwi3riL+n35kMWagLl9kqjaFyVj59XLYhLKA/YdpN/MrmCb4mSUda/dvzOan88hh2LsGDezT - L/pRgeOgxNJDUG98aLmvFwUW51r542NgSZ3ChPEJbVt273ozB07fQZ4XZXJ/TUHE1K8zQDmMBnzY - 9D3m0TtEG75jtQzc7PPHv163WNv4rZqJ4FtPML3ggB43/if9QORAnjodtkYzdtfHYHHgbGM5WHdv - MXpfBGT940PGBBBY7jSZYNDoJplHJW+GZ3HKYdd9bxtf/jEWB70H/XN/wKf5A6JfKZoGfLsJoyYR - Dkx6Rm0OHeoj6pPnb1wi8yUjkooIO7EQZnxtVTHS8P1FjY1f9w9Ja1EBrT3VVX7V2bW1AoiT8xFH - tXlueAw8GQ5DXuCz+zAjsRoWCKV+PQRr+35nG/63iC2n3aYP6O7iz+GG/4lNb/33Gs3Zp+PQ6L7O - uDxVqv7HB2BwGhrqvYt7NO/Xs4nencro/ZG9su16CDa9Y+Mrlbv8lpFAPwIDPnmRE1EL1TWU3Tug - WsiCTDxOBw8x95QTftOnWA7qEOhynBL5/bRdyftGHWoEUyUfn5CGctuWHvfUXal1/q3/9YdVdTf9 - zQ1H0nHWCtM7eAarFl7YGh5WD47pTOgZCqQhRQIDCEoTB8JxPjU/xXrP4NBwO/L65EM0y6fFUf78 - zb1QPM62aw3wspQBtV+PPvqmRkjgno95bMNDr69idCbwiPKEsPOs/vE5DVaZcyUKFTXw+VuPP34a - 1FdrZDt3XuGetWdamE2gS9aXDfAhmhbG/dJEs78HIvSj/YCxvs5gurmP9s/+/+JTRFOUpZDtLYMW - z7YaV5Yc1b98hsQ2HXWJ3Mwc0ps2Unx4lPo/PfJPX7/cvyJYbL9L4EFWfkRhRqGTv3i0CC8PaxS/ - XZqD4QJ5anVkju2Pu/zpYX96o9FgL5N2Z2RBs54SqoORi1jdtyk4Fs6Juk5ZNyvfLxOYW3nAKff+ - bPx9dwHrzVSC9ctXbBWjBwF5/aNUk+mPzYndl7Ce2xabxT5qfnue48GGj/TO6wd3Mc0QQj9yT1SV - RVdnS+uo4E8/O8EqZsxHTg6eN/mGnSTkAW33DxPYBt39Pc/I+DqRYb3cT5seGI4z/3RCeDtzlBpO - 8GASuQU5fNTfCusPwRhF74kJyOPuS0SOHZplqnaaEkjemd5cdwSsqSsVamSPCdD5ulmiIoVgEhdG - DZ5/ZCy9B9Mf38X6ea6iNbhfAmTcZQtbAzEaMTyJLTxyu5Ls/c85m19BSyCy4yUQrlIRMZ3TOvCZ - jQrfvG7OFsxPJoxe65MGw1JmS07kHubSWGC/2h11KZd7EwQyvVPL5sVmWhrUwSMqE3yMjE/0p+dD - 7wdOgdwaLVuCCnkKfGgVPb4+NaNZoDroetdKajR6M864zXho1Uq/rfcUzR9LDVGzDeadG0GOftv9 - EN/rmnCPghup4iUivJZYoI6u76O/eAZd1IqE3+obK+bxANrY4TGO4COaD/tagTufeFS/plU0O2Di - YK9cfLJPwdllL+AEYE/6Gj+eXLPFry+Ems9n1B2hA8RvpM7gqhkzDgJH1fkt3sItH6S+eT9Gon04 - eH/6BFmgEIx0jIR0n4HAxKZR4XHRlxCiI4dKbBkHlYkNPQZ/ejRB2/E0dm1VD+6MfUtdcxgzqnih - COn4fAZLLxE21c9zAp7izsbq27jqG79L0UbcCdzi9/Z9A/hXz7EF+hgXfgqv/+wr0IpftuXzBNb3 - 53/9m953Rg2Jkox//KRp8Kcu/9nPP339dTwQNKaaSzXJqpo1Gy8aFHbqG/uH62VcfQoTQKhm0dMF - OS5TOzX/yw/xVc4/bJFfmAPy4JrY3OxZrFecwOUYgOBrJQKYnddC4FP6TbQ0DGVcUDpWULWmglpb - vkx/3O0K8ylUqLPla3/rBfK5NP/lI/S5Xxy4HHdlsPOU3l2/sQPhzWy9YPF4B8ytBzroadWbCNfn - CD5/fDHLU0D9RKnYnDr7GsRSvaNWczgDck6acO/apzRgkds2S1xO6r4TlDU4E3OI/sX3uwZqwmlf - 0SXZtYKQqibCpk1Hd/HyF0RuqVsEnqOACX96x7wcZlwsr53O8uS+QvHNxgCl+132Psu7+E+/wvjy - urmz+oYa5OS1xBpa1VE0jCaHhSv2+OTIb9D8fV+Krw96v3pvxnTOaYFeTCk1t3ole3T1FaHdLSIL - ewWNMN3nEh0auCPiRZVd8rnuZRjsn0qQvj1d/9Pn0VZfxYXvBzrfeqz708/xgb3IOO+FLIR6k07U - O7FO/8sv4MM6VAF7k0qn72Yx0YlkLtY/thHNQ2F5YNMXsfntzEjigKGiv3rq/ShE+nLMZojG55RT - /LV5sOSLwsPT5WLiYL1YGe/vAa+8Mi3CjnG56dPxHUH4EMURq7R2XVpCdkVbvkiUc3cFy8vSZbjl - F9Qpos/4p0+BDV+wPVecPjT06EGrlnt8Lpxc/xXPQgXdmX7wccO39ZikV3j9FRdqK9xNFw9qEsDV - nu40aQ2DiatRWqB22gPV2u0IxHR9iKB24xafqBro//TZc8xhaqCxyb5bfRGFvW3gdKv/THdhX8OF - mnfy+tPjzs+qRsMudTc9PdU3fS5HIo1FsheamW3rr8K/+mipfWN9Hv2pBX/6vFlDM+I7/nyFH/F1 - xf5W71w2/qa8Do6ET6/qOApvxssKyT4V9n0/cBfwSHMYn3ZnbFtt2SzbHhp0ojahNwHxLvnjU3/5 - uTmFXbThvQEruBuJdNtlzdiGWoA2fk6PVwllxHJOK7SCX07N/RwA8WBeW9jO6pnaN7nM1lP+7iAL - GaE6X7TR+jLel/9r8IH8v7cU7Nl9of79PLDFeYcQpXcYYm1Wo2a+FboCxTGkpH5LKpMEwEok/Z47 - rO4Lly0/bKbo972cqH5pXhmNbAOijtN+2D26WiTw50cFX7zfYP+p5rpY36McikFSUgcNViZa0IWg - 8+Uztji1d5e9SmQwO+JK+OHWgKm/FjGIpknED5HQcfFPvwEKryqgJy3+gBWRpwdFH5+otnv9ovWF - 1QB59kKxiubXuIDLTUOGOnj41ARJI539ZEB/99/5IXDpJT3HSNDLDntnW9Crz4/nkMbXMPj7fZ7z - QwuG1xugoYFA83kN/QAp4l7YVOlOnwv7FsD1CE5BZsjTyFS7DyH5pg22+U/rSuFQmtByDiq9aoXp - Mg9YBLqzPQRi54PoK9m9Cna/rZF7yJ3YfCtcBUrcN6ZF4KzZ4rwTiIakLOjDsxWwxJ87BI05/agO - 8IEJU/aO0a7lv7R4eWYmREc9hjO9XEmdc89R6PkmQAtPZ3p8wAsgv89BQ2WT7bf1qSP2sfchdJJ7 - hQ+n4zmT1O5NYCtbEFsvCYyLlq4dvPi3jLpDbAHSOrCC3l4l2EZZB9iZzRzarqd2UkrNon/ABV5Q - IdHSWIKMTy2Wo6vMm7igp8PIa/mzgywtjvjg/SSXted6hh/Otrdig+YulXWG6KMea6yrfacLZ48X - oX5pWxztY3+U7Pwhg0cVNrSkcaPPrdDlEH4iJ+COF5Bt93Mw7y4zkSOriNrW7a9/v0fj2YoB+8zn - Fp5OL5FaNvOb5RjZBmo706L3NL2xnzSmCijWRMVZYt2BNJ/kCU7UH4Pl/tNBR8uTDEMtOhEuF2C2 - gHkwkZT6PHZeUduIu8dPhfRR7WhUvvtoPWBlgvHD5LAFT4zNVe+pQDOLKw4RlwAhEaoQvu73Cz3Z - racvb/6Qo32pLjReD67OzNZNQRrEDrXtV+3+yGopkM8hpnfwhtkctUIKH7eniY806d0fmGsT/Plv - CsIOLK/wF8Dj97YSFDiXaD7jbw6UhBvI2MQZ+92dS4W6xj/jGM0wWq62vKLX/Xahedk0ER9vpwDb - 4vbEdnv5ZD+eeSko72RHOBrrLu/Yc41GcXhRJ3++wPxWMgWkPP+iPmdI7uqlCq90nPrDlx3f6LPy - ZTzqP2AkPfpdMjHgYQAf6/1OHTfW9HUH7grIZN/Cl5AcMsm9VgnUJdBgrP4UnWhALeH+M0gENJbR - iJ2ua0iNBIK9XyUDsmY6j6Qd/wvE/vEeCbnxA7qma7ntko5dYaouK8DvRKS+O4fgV7ixhgjij7ik - rRKxueUc2DQthy8fzovYLfZ7uPeklHofOXJ5/OwCMLTuHQezY+pCd9A8CN9BjL0cGYDfpaEIL+bu - RQN+ZC5ruisH9p9eoq7LFLbhmwJf3kvAuMzf7izk5xR+q3WmdltxzQTBi0NCYY7YX7XQXa30bKKy - rnIcDcpb/7FOn6AzfkbqndQ6EyxFd9Az7AzqLGLSSETUaoQD5RnwnAn1ufgMITyplyd+8o/TKNic - 3MFVsEx8b15BtiYgUODp1IjUvN3PozR/x61LCOCo+rrusvX6a0vUklrEp1bLxuXRZrKySw8ejo+3 - YZwve9pBLHY+tj+7JVvJDQ7wppUePZ0cZ9zsQYZ4pwGyoJ3uCp/PUMFFCXzqKcrHXR4I1LAM3W0W - WCSPa7lJivCq7ehJXB6NZG67iP+e37wNn2zhmZFCzuzf1Ls3cSSS88kDz9SzaRQZQTYJwqJB5Tg9 - g29qxLo4WJcACeVFwzojJ7ZU7m6G4RxTIq6H0V1PfpiiO35fA7kpUp23O4GDlZz4OH29MsAfpard - o9t1pXdg4Gw+PrIKhNc7wCaqjzrLFbeH3PEZYCccL+4n2nbB72+dTriMaa6kHGcLjaesxlo+WxFL - IruDwqsOaGC/F30KvwcT7l/b4IL3rmTrtzBS2O6IH2zfS+fdeO/9/U19tZ7AapBXBdu81ChefZT9 - oqN7BfLWxcb3zpzLZP7AIe14RgFiwMjE72vPw+6ySaIl9HVxIGuFiiMWAsWVsDuL2rLC9PipA6o+ - a8DuM9aUr/azgqr/aK7oPasQjYdDTw21XcDsqbsUqnkXB/I9Y+63OM0e0qfgi+1yeDVT1KIEfqbd - SiYiV67kJkEADSX54fyyjZOf9koCjtXewLn4WaLZU6UEbfgUIHDfseVSDhByTS1S43gsAcszsYP1 - 8NuTxX5ewFo5lxWMquPiR3s5RcJL8isYZsDDPr3JgG7xCHYNPlOvdW1XmN8viCaJu+L083sDydTC - bVCB86J3t6iyP/tBf8+X3p5XsJ78JIVBDSZqetqBiSerhuh8nc9YzXY4Y/XjeoG/q/gO2G05jiJY - Bxm+WGwS3l1vrG8j1oL38eBTvXxb0fyalhL9enPGJk+0TDAdDGH162aMc9Ec2QUawZ6ezTO+aY8z - kO5BbqGPeqqpyWdTw05OMyOK5T11d7/d+Kl3sINY3V0xbsIPmC3ZuYJnw2N8TfodmG6FLiOkfBd6 - UR/GuJZMclCyeoD6t9GLVlnJE7jwvzlgrR+4Mz+VFnwp7yL4Da9YX/qLHAN9l/M4Um9hNHpAndBO - VFUi7FUfkIiTebgdO8NG4EnRkuHXBBLNeOKndnxt/uml0L/vGA5SvxlXftpzMB4uN+qfNhfE2bVT - ftXrSZ2lP2QzmS0TrPWSUOe2DuNsdrkHk0VvsXthJzbtX1WLLMXNCdwfLoBfeNzDtzKY1Nv8hYG4 - 7OEjHgocGAvJGHzua0iM3QH7nm6ytWjCAahZuqNmc5nYX3yDTTvfaN66X/fXx7GDDp8KB4t2DkZx - UvsJtrvJx9rpurKZX/QWZeoro3H+FsDUVJcKXtBTImjVZndut1MA5vlQ0dP52OlLcCVXYApPDQcy - Z4E17IsQ3Dkxwof09M7YhHhV2a/lFR/2D6mZ1ZM+AMcMJxy52yw1ZqUlfK0WxWrnV+NaC1WNpsKR - ArTxJ1EWOg7mkfqmtx2AOjNGKCvXJRRontwf0QLuTg6Nj1XTcuNDDJlnBR4BqeixH8+u9I4TD9pM - e2HD5JjODMfRoBK4PtXcTz8ujVqVKAhFefu+HKCqoYhw81fq9C+LLU0dxegPrw97t8q+JUkqKH+q - jIbnSxJRnqwzopzA0cSdDoCP33cHqlmyC/bBzWCLIC08CuWloAVPTxm/B6q3HSGeqOe+aDYbXiqC - 8ji4VAW6ky2vW9rDJ04nfGwTEI2dWqbQyO9HbL53hjvPx6sBLwOeyHy+yNnmbznUmvv7j2+BudM+ - AVy3w/MntJij6B2yABwNldEj/5Pdbgl0Cy5fVcTPo4rZ8pZoCANELWqIgzpKu72igEdPz8FHbLTs - p8Ff/md/BA28yxbuPgXgBoMfPTbxQWds8K8QVRYmCjRs9sdf9hvfDrr7soKfWKYe7A/ZjcjDWGZM - GqgBtvhOkwbXYH425XYqqPhS7P5MJql2dQE6jhN86vuPTozwWsKe5pAWqBn095ndHBjUKqYXnhej - xexvGnj19Zeqah6M/JWEIZLT3sGx+vowEmkxgd5eIxhzh5/+G8xHAqXs4eJT89pOHfnfHjjDFNA0 - jaRmPrh7c7+PnxU1y9LRBeExrfAjLRjfqWZlYo3YCqpVi7CvZQeXP7iLgV6l0mC87Dr3t2++CRyS - vMDpfwAAAP//pJ1Jz4O80qb351d8OtvoKEzB9rdjChAgNkMGIrVakBASSEKYDLbU/71Fnle9aPWu - 188YXK6676sKe+sp/pxUYQZzWZ9/+W15CyZS4QwjnW7jcayYkgg2cuRVQPMHmfKW5b4AQ92ZqIsP - WcU+fhHDqHXC8fVabXjfgeUUC7J1yKnlNhDadlKgQHWT7tfIzyUlgRY83a/Kzz/xMesMF+38Eyf7 - dStWf/utnARIo6Xeipo2YzRzKcFL/TbHa9Fh2NpbOgJ7LvmUmF4JV926xlM77rvpQz4KeBmrC3Fv - Zgqmpf6BZT/h1/k551NrhW/0+l4p3X3WUU7zecqQHK9ulFTF3ee//XK5GWesaJd7wnbapgBcE7UR - VN+5m0+V6oFTVA10yzdHk922/hvqN2VH9XjzMHm3wW/1QLFGbOmp+DNZQxs212Am7q6UAZt2tx54 - 0sWl22P+4rObPAU4W5/DKB/ficmOqRqDE04edAfNdUUX/aAa2wRRbXCJOU/OdXmepklc6T6asx6d - e/gtp4lskTB1bBT0HpG1BkYUr0R/Ts9JgCrtwKkvsDnngXk1oEzGiGpUr/IhlwzjT487y36SrfgW - qvX06cZaKE7dbN4bA2apOBDX7x+8XfQk+u0nGFNeDfX+64FYCkosoemaT6EHNRXfvyWJt/mq4mKm - vdH2iD1Ma8tb3hc/XmEe9YykwnvD6aJvYOdcniQ9ikLHlvr/xyfMJf/+9B30e0PHm6oH3agGxhs1 - L0mmVtX0FT/ZrgJPwqwQ+zzHXJ7HyEDgtT7jCZw0vzcfew1eB0GnR4vzhE+P8ADSEVLieNuN3wmj - yoAnHA6/+OtGnOgHFJ3kLe5r//t7viMMd1JKt2tw9ZmYD/XP7xG3gINJ/VEzYEh3Zyw7nle1F9dp - VGtizTil5bWazuwuQCbp1XKxTpZMWYRHwGPtjJvHt86/7FGEqvP6LCNL74M/qeMjRv2h35FLXa46 - nm6+CvzF277J2or9/Fmf2ybBLyhwPnx3AtwDsvqrzzOTUxu+72iLV8UYVl9z98bwYqYxjVpEffqJ - rSfsD+OObPuVzds4TUt4bFbPf/yJ6bxStMQbcbjkm717QeEmUfJplNbwnU+CV8XAdGaH3NbIT/7q - 1ycVPHITrnPF4jR9qscGPqk2mbduRv0pRYL7HKi/60nCkX1RobL5kBFkem/OF+OrQSMVDGpvCMmb - aXu1lOqyUsYp8fuqPr3uLhgaa6K2Db7+3+edXi0h2+vX82ft2VtglQ4Xahdr2ZzCflRgv1N7YuzG - Qy7enAkj/XRQqBMlKKH65L6hqe0lYl7XO9BjsTE294vBiH0ubuY0vAesVvY4EPJod/kQQ0VTo5O4 - pQsv89nznF9hdGDRKO4+ks9Oj+0TvPE8ksU/+MN5YgKk8vszsiD3Oz6SNkBHGAz06OwP3bRZjdpG - 7cyCGtv9J+Hn/hvAeiylX/1O+BdlMfzxFMdfDUnbHGYPfu+flOpB4PmS4y56vFvXxNkUE2BL/dzo - 6pSRm+F2eWtceQbTyXPIAd8HczqH/QpujrVJgrBpzFmUNwLMzqsQDwWzwI9nwbjd98RZ+AXL+S39 - 6RGKL+qeDx+KJgCHr0W0bTgn/HF4C9BbyRIxC76upnHSbHgM7Ih6NebmYHvOCiqz98CbwfZMAZ8z - CBPpAEkyHN7dTAodo7V2cci9uL7MGZyNAjXJZC76Squkma4MuPACgqk5JKz+6jX61VPNX96S1fa2 - DUvv9MJw2k8+u8IpBrKSXOl+a24Ap9enAvdn+0QC6RPlrenu8M+f/6P/qG5cUXGPw3GTFnI3HdPT - n76jwfHacqak3xIOPr7T3eJnZO7GV/hVU5HYnb4yRyCHBzSm+4DsObASYcWnK1yvmy0xpMGr2FF9 - uehTP6zlauY4F26fZ4yCHafUWq+nnGfNsUR5vUK4iVXblHcGi8GJKzkplv0qiOKsId20BkKMrZ7I - ktZAuOQn6q18MWc6YT0SgZvQtO1WyaCf9p666P9RaKWQzw2UCiR+FJdcYmkGvHzxAK6d5eKT2is4 - OzkvFd54dKMBEo/VdAHqCPPML/GcOEo+yYQVcOcfOHG0G6+GLslsaK4LAavNwwUikUsB3cPaouku - 1ir2vL971burM5bQ8+Vznb8zdLvB21g1Y24y6eVeoTten5Q82m8+f7ChIP2pMzxX16M51vNBAjgU - lPGTakL1/fkXs/6mNIl81by6FzGGxT0M8WdTTLw/zCsLChq60m2/evPpE3gWWPTikm9Q1X3vewx+ - fsuYNw6YDLVuwPyGBpajrW3Ovtqr0F/ZImbN/VIxvpOvYOEDRDu+sMlt1Gmq5cURsZvLtuJzaK7g - YzNqNNCSLmGmmTC4h/kRo3Pk8XbRBz/ehxkCGMxoK1nwKVYnGvRrH4ydvGXwunkC+tP3LL1cNfht - Djr9xb80fHYaPNeGTL24tpPhlT0kqApdTdz25vjC9QkF+CTamtoLP+NP+XsC6nlOyHZmu4p9xpSB - xT+Obqza/mw3N01dr64j8Ryzz/npAya4xMO4eVimKWeDsYKxaO7ofn6YJjeUXFC9uzL/8eA5lzwD - /PiMW91Usz+zuwSPp5dAF96TzM7gFVCnK4SVlJx8/q1YA89ZNtPg2lKf/uqB2nr6uFr43WDrsIfn - CJokqzH3KVstp5ykRk0ca9rlvc6iDMLrfaD48b2b7H7a9BCVHqGO3507VtUHF6w626H++u4m0mcM - J7TwLqw85Lz79Q8AfhqEmsGuNOnNnwWwZVZOz1Fyy2cmh/byCt4bCzF78h61tze0xnwzitntDvjJ - 1hQItCb9Jx+5uWRBrskanu+7ezJpr7CHy+8f5TRp88ka9+NPP4+CVkecK/CGVe5gleg75nbSuW0y - mF9ik+Jz2SeN7m8s2OeoxCoIbS7qQowBX6kfPOHzF3x9cX0FHYacBP26A8PC29VkvdZHUHsF4DtD - jeF9uB4W3kWTeWbPFln0FY6CFkF/cJNWgAyU2rJ+j4p9X+cGaWvpgSftOlZz9dEm+GAepRY9I/7L - t+DoKSoNJeJUYiN0AUT+2BPz05eAPcWm3MT3cYfhtaXmdC2cDF5u2pmeUqvh0xbgDNrt90X3zg2Y - Q/bdHSDUoU8uVQ8q5kITQkMo4fh474Jc1GnN4LiiT6y2oDUZ362v6myU5Yium7BiNXmsoJ8kF7ro - GTDfvpWl/ngeXm9kn23WuoCW/s3I6ICqyS60Ffz6vkS93W3gk9AoB9WUNxUeQnnXyUCoxk3u2v04 - +6njt1yvMTzSw5XkC6+hL8W0UZqPNSXG9pGwJZ7Ap0eM4uE2gkaRsmmz6AsMjML3Z1LsMNRv6o44 - H6H2h8t9LMC2EAg1pKFd+hW6BRc+RPw033eS9NIKNNpeuvDAW8I0QzWg/Z3cpR7v/ekTGBa8y3ZG - jaV/N682Z0s9jNqXJMLT47O6pzU4weNubA2yq4QARSVyD8KNuEL67Jb1bX/7j25p6voDLWEJ4++J - UMeWBd4X8WTBWzDb1Fx40jx9HQbt0DWJYZSh+fM/f/6pa2URzObuHcCl34IVrT+alB3mDKLNdBjh - zHHFIvG4gsW28SnZapTPK5JCsKwntYA/dKOR7uHPLxMt8YOfH3DVHd+scPrzh857MqD2Dq40yKXe - /MUjOha7LWaV9+148HhYSLLlPX5dv54pHpX+BEWoT+S6dbAp9zY5qTonO8wTCyf81+87x3JJfv3N - MVlNEnoUSkXujTJ08+IvQHIpOhIM8aPrTrar/sNDwKk0J3DUG7hh1wPdNfyQU9kVArTwMerbs8bl - 29CPULU/EL8Wv8B++TnJWgOz9WPIv3Stv6GK0oCE4KSZUlmxDPXTxSTH12oDpvCrW8ipR50S3BwT - eoTD6u/3qah1E25N7QlMGy4TrejfFf/xfeH9PhJsnAMuvp+ihZKsMejJuZ583vZ75cfrsMKZBGbU - KDXEXXv49be6v3hCBZQJPn5Sv1/8L9QSeSS6UVuJBNhTQQzmN7oLdhnn69TV4M6CG8xx6Hd8Ms3w - 9/kWnpMnPbsfr+B7RAk5LTxnvly1BuWSdxjlJV9L68tLQ6r9gvTnD+QmuzM4eQKjMTTUaj5m9xDw - 2DhTIyI4Ee/LLXA/nvrj0VPmgiu4zvaeBhud8Z4ibUJzsb8svFcAo1QmBgzm240YQCuTOd1gG96+ - 3Zkaa6Hy65ppDRrv7Day85d0C09ToNEqEln0dN5vXjgF8uVwpteZjxW7uKSB0S1YY+Z/3I4/It2A - cfj6jEKw7cC0eyMI232nkaV/C7iR2ROE2iQs/NOrZlSbHgp3QkqzlX/MO5GXAVz0Oy5tiXI27r8p - HB9iTAl23JzKn+Vi12+Wj/KSL+ZDbBl/fESsU5BPO+3Y/PGmaYYR4Nc0ZerP/5yCagT99zYF/18j - BZv/90jBo2Axtb6rV8JZfkzRd15PJBi6jk/nUmOQshQSbAJW9VAJS0iL/X18SyfNFB3M3yi1vC31 - 9HJIxnwV4c3l7skjII/YlNZ4XcP4oxxJpKwjLqbBFqKrgixief6jk8Gp0qBzOEPM4D3w50882HAt - JD2e1s6j4rnWFHD1DTfk/vI9X7QuVQPc1Xoz9rL88flHihjo4eTTvORdPtNv+oTAGHUsC9W6m/p5 - zmDASpMYDfASYbcyGVJieKfu87nq+Od7LaH3fclEd05VNxVe2aKXPhjUVVUxZ3nverDfPGWKz97W - n9WErmBUBHdSqOa7mnxYXtFzMC5Y/DxsX0qESoPUvqjE5uEzl6dzr8Ki2SVju/euOVNvTQ3q51Ye - i1JW+UzS7wTbB7bJTosBr3TXvQJ3hTY0p4cjYMrdVFAuWwJNve/QcWOWUmC+1sX41DZ1NVvBO0N+ - UJyovXvHVfdqZQme76uGmGXw7MTifC8gn7IX9Uvu57w5lh6ayWlLXOllm3MjL3eTvCGie1hugeAM - hQEv4V0kPgmegH1IWSB60rcjRZXGxXnPehhfxZzoxzjPGWE3CWL5VeLzKO34pKH2BDrDxTTzFN7x - c1gfoDS5DrGDs+7Lt13N0Ot+EUdp9TJ84U6NCQaxotBDd005cwpNQ+3e+BJz7UemZOJlqpLEBdkm - O5ILwtgeYLvXvvRCPiDh/W3nwXNdqoTconMudWe9gFeIU+rbqORDDg0NxlE+4Nk5VdWIwbNGWIor - uvVHI5Esfu6RNO4pdSzZA0ISrk6QEzkie50MHa/GaUJM6ilxZvjp2BrL9W+96BbiPpm9WvTQ8xgI - JP9Kz0Ted+UI365f0W2yo0l/qeYYXu6uTNzcibrJdcIaLvFFjkfbBeLxJBkwVHWTRkQ9gHnV4GCz - fF56Q9/WZOVruVtrn3zwyvUOgPlpNymVR/cUp00KZn1OIdzBRCGaKe0Sacg2K3W9vx6JoWUF7xVT - a9Eaz/G4+r6Miu0e0xNc3qsbcSy55X3Hrz3UVa0ixdRpidh/zBP65YOzG5+5XI3LXa9LPJM7Nzue - fOFKHVF0Jrq4XftjFVMbntZaSSPvqidsf3YLmLNnRb1OAB0tGmBDsrlN5AbOeiKPCUyhHC1DjM73 - 4gvx5pJB5/wJx7/9/ujcGA7P8EWuRuXmov38rEB5VQ1yZ9WUcHxzXdCqh4Y6+xyaI4qnJ4JrpNDd - 15U6pr2fCgr15ETM/bz1xe9qaqEYKRqNxM3BF0PjPkHhUjmjdHBuCWtlYIPUMxOC75eP2TV7aYSy - 93qTcxi0FRPq0kXe3TtT++DcchFJbwalhIXL83xWdXiKa3TTppZszbuWC9cNk2DUfNf/rOcLdgWs - r0FDzJP2MeW3pWbQPqQmcVR/V81dhi1IcgapP79X1fAMPqn6ED9fPE3AzsV0I0joe36GWJw2fTcK - 56eC8vPtSx05y30ZfUKG6De+0O0+WN7JEp0C6lh/ELdaDjYXvFcLPy9rIMv+AqLZBBiCXKhIppf7 - RLC2ZobS4lPjDezTnJ9XeQAnPDHqHcLMb8Ryx5CSMQuvqvGUs2W9wadXYnLF+3POaPEs0Nd3L+S8 - V3UgR8qxRMNdD2kcYiufNsfLCNhQB2P/uu74/Lz0DSyvikGC0Jt466cdgx9P5+RC4sCXPp/tCT48 - rNOkGq6VDPKVsBmMb0btDzAqqftmJSyLYE20pEwT2YwCBt3LvaT60MY+s/h9hI/O3ZGgG+NEGKtU - Qt5klVRfR2o+449xQLftAZBdaOu5PJabBmzS5Z73YxCb83CTakgPvUtu4ebaCfLXttEc2DNxWCTx - YW+UGB1GZUdudjrzvkDVAQqor0Y1AV7HKq0wYDUqXyxKxgQm+zi7qJJ6QgpffOVt7zYqHFrLozlO - 90CGDbQBxiKjWnSLwF98hyg8L/U2rsTzMevh7iFdqPW0WDcHqtRDxFlJnYlXyWA/KYTaOfBpVMY+ - EN+8GGHQ9jdy9x5eJ2vjXoHn79Yn3trEplicz1d06FqRGO5h7iYyKylQhnw11t/VNpfOMNDg+gkp - Rujr+eJW2azU43Eoqc4/fi6NwSUDWWS6xDrRmPeOmoTwJGNAdH3cVFP++TLQXtKS5hCsch7aKw+K - RdORPGxPlSRsL9LGwdeBnM5sD9jHWWuQ19pIQppcTUaL9gpv6ZtQ99zX1RiucxvuVAiIs9Rzts4F - Ce4+w4cchPtkTrbLVZgw4BJLuIf+8HDyGvo8GahdXa9AiPZbAcFbz8n1mIi+9KquEhwdtqLn9WEP - RLuNUsSeXjGK99gy6dn82GjRD/SmVkHO/SHQYCO9XUIAOHWiZAMPlm/tRXfzOe34+N5f4bYMPrRQ - VCOR4zi0kKt3AK93g1hNcvTFcP9w1wTDI8nnjV4oIJhe/bjBuw+YJZu7KL2FH2J63SdnQt24CB9P - ObWFi82lSLIPyHk2Htnr9RVM+tGJUQcDhZgJSTu5to8jJJv7RLwqbPOpPjIXndZGSe/Rx83n8zEb - 0bBVRrqTDzOYU1t1oeTDluw2UZe8XbFW0Kov98QMGo2Lu30aAvMqAFLMGqnEg0wb+CVju9Tj2Z/P - wsOA5jdgRH/ZJedqe8+A8ZwicnC2FeDfzwbD9pKVxPiwF5ibGWTAumX4T2+NRmocUBOnPcXve81Z - D6o3HBzS4em+gjnTl7vrBWs5RWrRhxOx9BJ9ueJQrWRRx5b898sf9Bp6IWfzRhagLZ584sex1snt - +mTDDqsb+qdv4rE6wFr36dgeFcvs8nh+okXP0kN9yhNONddAvogtsheiCoiffRQiqxh8ah/elcn9 - TIWwEbr5L/9M1AEabLoKUxJBuZtKPVHgC/UmMYs6zefdPoxRybLrb305e0+xrU5yWVLDPUQVm5/Z - Ciz5mjgCDhPmCbs38PKNSW5BvU/EfnPNYEHy11hZI/Y5D6AEdw/hglFvPABXHomtLvmXJr52qsR3 - vpFAI2+2xE32xRIfJITb+VFT424VPntVh+Vg21uO84ebdaK6c08guH8rYobmwCf38m0hlsKK2tJJ - 80V6zUOgrzczNWN1l09L/odPra1GhiOPS6UctSjrLZ2c5U3J+aMwNXjcqJCa5SMCw/OQCmDJH7Qo - 5YyzdLc7wZPeP/Fp0cOzb/kl/KbyntouQx0XN1qKKsUMcLl2Hh2nmmYg1bx3o/DZS4A9TqWGCLZd - YtiGC9jACgl+vu2KOPdH609xf3V/+gODr2Tkc327ecAWDz45uezWTbjmHuLnVsZzpm5zLhsWA8HJ - DehR263N8WBDF0QAJCTYW4k5r51DDbV8ui6n4CSApfjmqZdkuRtvHG0wnz8VUxvbELGyEhqTrzZf - CejGh49PQpcp8ELTIE+RQLCainwGa1CCCoQlwY+T1sme+1WADfYXuhNuUj478FlAeRd/aWD2QSdJ - eZJuFv1A9tbRT0R1px2gF96PeK52n4S7rAnhXoE1vTyGXTe17/MVdoaHx3mH8moqbdrD9UUKRukA - WELR/hRCnik+OVm3MRlX7TFT0xWmxHfzQyWnt0eNrlR4kKuhyBXfHsQYgHptE+sKxoQpsd0A0AQZ - TcIUmfOx4jHads2R6M1jD+bv6VaDVQAMosedmUtHJSlR+NwXWEXqDvRv51LDWfKvo8Cep45FEj4A - ejK3Iwo3sKPJV/jTd9RWO5r3/bzJ4KwOA73A887sl/gDwYGINJDIzeROK0noOFRbQuKprzjd5gJY - BRuDnEjVAf5VvRCKkaoRIn6xL7iFeEVynAfUBvc676GSlvBdtD7Fb21tzqLQGjBJIkS3tq0k01iF - 0q/e4snNVNB/ZucJlH6rj/MxBjmjlRT++SMDRx6QPgchhMyoEuJ88Z0PSekxGJzvO2JnStdNt4se - wKfkwlG13r453a+bEb7QaFK/WFowcZzaMHYTj+INiaphFT5OMMG0o/YuMnOZnXZvCBqcUQvJp+Sn - F8Gix6jbvcSKwcfFhoufJDs1IxVPoK1t5kQ5k6SolZxWBylE4fVA6F26VSbfo3mCe795kbAoXS77 - nwlDbGwdPH0UavKjU2oqtXOVEosY/ow3eQr2h9klfsRV0DS+YYEaeRNeYVD581o0r2h3ix3iGlQF - 7Jv2Exxa28PS6yLlc9nsMRxWTU53akYrvjt7BXTkIKeFwXA+IWpOUNyWO1qcvZfJokl9wpdaULx6 - nMqfPrbREj90p816NcNAWc4Sr4ff863G3/f//MlBndNKfOnyQb3tqyOxl3hgNzG4wsJZ3GzZHAAv - V7ABrV4DEsVdlXOhNz1IqBEu9WoLeLA+2rBpcUTM1flq9pCgAt5RLNMdWxtVF3G9hy0+v8nib6ph - F9c2UlU1/9Mfo3Z5NcC4Jg21BK/kvC3qK7htnmeyM1GfTCmLBFW8rxsSmH3fcVCVIXp6vjoKnfOt - pjyrnwgVsT2W6+sExtYLMIja9wkLmbfm837vSFDTaIVRDS1/BkNbgIA9TdznL1RNblBnQBucy6jo - 0ScZ/MhlwNZdSo30ZifMGk0F2kP5IkHl6T53rU2GfvsnjvozmLZ11KNxKnt6Vv1vxWtdVxGMk+3P - r3TzNQ9T9NxfMNnKa89nlzV8gqZ7YLpb6l0v7qcRWu/nPCq5E1WTIdze6lB9nmOXPZ7/1EshOgwY - JqKezC8s1CgTg5qk/ZiZ9OdfvK7ENGw9GUzJasCQm9abXDk6JOyiNj1cPh+m+s5K5EHvTuovnxf2 - Pk/+/v9Mejzosn5+G3g+hnFoT8TQtrRiUYVCMB/3B+rluptMt+JogHJr3zC6GVHC1+kUoF/9I6jS - gCCxTIBH8dThzSby85k+qAV1q/Soby8H7RvzKlWX+kOwvc9zcfF7wLLBm+7uecnnQF2NUHADD0tG - KfD5eUglJX1ZexI2fZ0MSz6F83iWiGd8o4pVWViiKEM+3Qf1kFNJJMWmIklB9MPu7Atu0KfQNeuY - 6MPRAIJiui1ceBoWN9CsZBkqCjoGNaJL/auGdgptZKerA9Um8E66gWYBIOUZk2CvuCaLikcBpJFQ - Gvz01GXoCvDTi7euygE7dkUIa+RO5AhxkDAn8tif3ktZl+T0VYYYtdlwIxcTBYmwBdIbUGm9x+v6 - fPTnea+O8H7r+nHzhX636EcNSPPdIq51Xkbq90oP3dSr6C+/UChuDvAhxD3mIm85+/kRNm52RH/l - kzn1teABs33QkZW9my/8YwXHZrDHzLy9K/l+Hw8Q70uRhNioOf3U7vjjUQSfunsyd8YDo7X80MZ3 - dYV8unVxDLXqbRADnJyuBc6pRvmwisbZujf+UN+OHtpoYUGskF06YYlHcEgvD2pdxKmbdalnMOL9 - huiZ+kqGtegXUD425VJ/RrOtZzGFPz5kZd9X97d/W/0NiBa5RsX31ToEdzPY00Mt6qYAJmrB0Cpb - cotSI5mlSxAAoa51LB5zxZyrlc0g7PLPuPCsjkq3Z42Oh6wiTpFugTyWc4uW/EbP6TKyd7+/Dyhs - Rps60XHk7PxlEDTeyybmVo6TP57meW+b6PzTJWzZL8AwdzZe7ZONv/CYEKh5ElKspkfA8y2Mwedl - DzgMD0M1sXaWUA+ZT3T90uZtccgEII/coFZwa5PZdOIaLHyUmr7QdY0XHlSoroue6E4Xc1Y8QhvV - tYGJGabIb6ZNnKH66cjjpqy3uUy9TwNfz84bWXp7J7z3FBvshTQhwSiEvlTe7h7k171LAzcs/AGZ - vQWDHTuSffx4dxzfNBftk8Ine/a9VLPxnFKET106NivBNflT/Ciq5K9aag0Xls9IGidQW7lJCFmv - zKHaKiE0QyukelWcKt6bdgM3B4HSS0S2HXvAVwHhFmBqPPRzx+jEnwB1UF14j+MzQDQDWePhRDQY - 2qb8qz/O4QhHjTId8FeSrVRz9/oQPbOnnNEJPKG0jz6Y6Tjhf9//88/B+4X9XpLHFqqGO5LAUOSO - XwyTwV98OpjMZh8c9hlc6vNyih7nc/R426qjjwZ1zPGdyLOplPAyORrdzsOj61OrhcAwfRvTbD12 - vD/ee3goifPHiyfLO2N12Q9Yuoovk7ELxj99i0XbTvOR6d/Tnx/3jO/csZ8eEj8cj4J6/Sbzydy1 - YNGX1F3qUeMLa0N9yvcNMexzarJZqA2o1coaK8m+4Oxw2QbwGdgRnqe8rKZz6U6QVO/nKCqHS8Wv - L6OGphu2RPftNZhZ1AWbIivuxO5OpGsejIdos9F8kp8+hP/qLfxs709iKpumm2NQvv/80ZI/+SRo - 4Apfj9OeOmHQdhNDhgqy++gR7avzal6FjwN6brJwXE1B1kkpPi7+33iNioO1SgRDewVJkiBqudjN - WWspKbiEN5EaDzHoqDFLGWDLxUfOOXZ98SRZJ6irRoUlj5648POTCw8e+dS+q8l10vqPNyz+PGdX - OjXw821WdEe3lHfdhJ5g4bl4A3C9vNITZfC5SUN6TU6gorZgvkFU4DvVgTQkLEB7FdrxradBQE0+ - ns5fFU6YMWJEZ7ebw8lu4PZsWyOXIDUft+F7hT/eU3QozflUPz2k2v16OSVm9ik29w348f8Y3gOT - U2706HQpnXHRe8m8N8oAtKB7URcFK/8biK0KctkWqMGdVzekNnP/+NtepHI+wEARYHz46mO96Ftu - 9O0b9jV808OSP6bLCWpg8ZtUN564mov60EMztMPfzyd/fnfx67j9xZ92GVr401tk1b9M7srQgodE - Dsf8Ga343/OqjCenuAiNRa/WDEa1M5Id3VhgbqtYQF+RWCMLcZ1Mgk1iWFUFwFyCxORQnA/wiNyQ - Oqr/7bjoX0p4W9kN3kTk1fGVz1Zqfsm0UVxnZ5Me8N2DwP0Quj8UmvnTQ2DhyRjKsmOynbPSIIHU - oqajKn/5YLm4e0+2Ax85UwImQfc6CpQotAMDswYIynsFibfNNF9aeAJMGdfHVdqknNu6pqjUPUXE - WPLHX38pV/KZ7rPJrcY1fF/Ba61r5B4Ulik9To2hLvod86FuOOv3Qo++vnehhvDaJE1BhALRqBCo - pq0HPv94erOXMqpn+b2ir3YtbZb9Oi5+j89Lfw+ev45PjHtl8nmUNza89p89Fsy17cvdJJZgyZcj - L2ol4Q9/s4KfsLwSgqqSz2fha0Atrdyl3/YyGSmtCbhE0+iujTLAsrunQngbOfnxmbmtMkH9KteU - ZteVzmWjf77hT8/Jp53J2TZ+W/C+2+bEKPsmZwe9PPzWi1jf+7rihyZqkSzVDTl5mVNJ+naOYZFd - 71iJqzLpmzbMUGq524VvP/j0PB8L9ONn9/xwA8v/q0HxM2OyfaePpf/1PMGo6dbUpMY1GfNe8+DC - BzCC5Yv3p0dtodv2BKgdnB/+3AvuG3ov/U337NAmXPSjEmWNMNC9E7wBV96jAue0aMhS30xZfflv - KHzdmCTG9ZXTpV8IG+9jU+OucJP96uESP9RyMm6OwPDYH0/zRf9pzg59BbAiUbH0h1acv169BghI - HZq363fHU8oatJLQQJzZjbvJNhsL/nigGTQloJb4VmG4eh2IJui1z/fLKYHLz5Nwe0DmzIvyilAs - pVTT/JT/8gFaKYpF9ERwuqUfFsJcPbnjZslnXAO+Bzf6Kyfp81lU3TnsDz++Mb4KXuTTkSQaIlX9 - pKGg1+avH42W+kIDvJcThmLlqcJVA2gmdg6Xs0dmw/GT7cgOnr8mhw20YCe3H+qN6iYfi3eloOej - 7kiWgLaby7A8wXvTvxe/AM1p9rsnXKvTgd4HmufDMXoGSDsmAp7UJOhovoUh3GwMn+wvnzofncib - fjxnTCQ3M2d6TUIYtfWJujel9MeD3pzAfefk+NW0Xif6kTb99Arx1+zCWb66BBDdXybde3G99Ev7 - E1yP2Y3apPL5nKHXAcbJySIL/6/+eBdwwpi6qDM5DxOQwSo7peP0ph4QI2+HwTe4nYhxARfAr+0p - g973I+Nmqa/8nmUl/Fjui576u+D3ey3S4D8jBf/6r//6H8uAwL/fza14LYMBQzEP//k/owL/kf/T - v7PX6zdY8O+xz8ri3//9zwjCv79d8/4O/3No6uLTL7MGSFXEv3GDfw/NkL3+ry/9a/mD/+tf/xsA - AP//AwBmG4DdugUCAA== + H4sIAAAAAAAAA1SXSxO6upbF5/dT/OtM7Sp5SZIzQ97vIKBijwARARXlkUDul7+lp6u7ekIVSQap + vbLX+u1//+vPn7/6oq3K6a+///z1aMbpr//6rl3zKf/r7z///a8/f/78+ffv+/9OVs+iul6bV/07 + /ttsXtdq+evvP9z/rvzfob///MX1rRKy1HwAFrQHE8wn4Y7VjWMnAn8KGthvxwPJDSNI2G7r5fAc + TjscuHakLRJyGoSStCLnQ7oWa1I0MYQi2hP9aBy11VzlDvbCssHB+eVpXKItGaze+wLrOvfUPsHo + j9DqivO8uSX7QWQ3qENnYx1nJp1aRiJ7H4PHoeKwFuupt97pRoaDMrq/+xSLgAcKgfCWQvp0395o + 8X4F9fenxNjfnAcaeXMI87sCiNk+dtoCFmzC5g0xPno9G5ZEpDIawXqcOwUJGp1eq4y8CevY7K6N + t6oI+iCZyphk72rwpuctaaASbh4hkLh5WPf7vYmsi2jNT1NVC74zohX41pLi89HaerSj3Ipa/J6J + GR22jPLhR4CKpjpEgcDXOGMaZBjtmI4tk9skC8/XG3Tc7l0SE8Fqp+piK2iXN5QozjkdiLSqKuSR + ecPeXZCSpePVBu03ekou6TnwZs7xXbnOPBfbUWMOQtiLMvLGQiSmzp0KeonlBnz/sdn0WitiGSsQ + qvsjDvRkYQtlbx8GW9XB/jmrPK5/MBcdWprio7LFgO6lqYaZwkXYC0nsseFSd1BORjYPSXtu2chv + T/CS9Qa5nV9FIfJ5EcHOUAqSZX5biGD3eaKMhwT7j2EDmKqqCrotfUUOVfP0hgP39CG77dC8ehch + oVex+aCKyyRcyELt8fXttcJ5tnOsbxypXbp0tsHtmeyJPuDHwNlGPCPe808kF5CQTLLe2FC6HlyS + H0+wWKuxtdFlkAviC4FeLNvjNoK/et/QzvMmuHUi6IIUYBUkB2/dFbGOxKAryHk44GHeR6dKrlPj + RRwFh9oo19KKuLFr8W0/3xPx8fEUuDm/KdE1eNWW4WDoaBTHlejdZR7W7Nqo6G0pHo5ud8MTByfO + kUdvBbGeV9fjdto9RMhXuxkacQSWBR3X3YLtmCgacZKpMzIKzBfckOvU2cM/7/V9bUSiZZOkLRdT + NgG9Rg7JtWujrX2wxmizlgHJ8KyA8WwHNvjWG5uuYAFqSYcIxWpm4cPO5Bn1rbyCzcO4EU2leSuq + ceYDdgMIWxdPLdYyrjO03j4h9rd9qbHscH+iQ5aLxFx3cSvIQx0h4WNIxPbECHBm4czoSIRzSPlK + HTjUH1K08scZu6XWDkK1GxuohV1ElLeiJNw7ySA0nm8e35pUHSglRQn1Ktri0ydWCvG4k1e003xx + Fhk0NHFqry5EOJZxqNaBtyYDLdG3/2ehu6oex0WCgNygOeI9dOpCsCI3BMtEDewFYGzXgRNySMcS + YiUI9Za7qZGJnvhwwWn9vDOWS48R+ljO5+XyuRY8bk42IK/TFesKOmncdB5n6I0XESuptC8YHxxk + eL1mmCQGe3jUVgMZ2k3lEt+2e436p5eACko+JAhACbq7LXKw3fWb+WXxorZk708J4JQt2K32C1hH + Vfqg1DcNHCca85bSMwT4cF15lqTHUogvjuYIHpMhFG6rn3BVusboPJ1HbOebszamyvgEZ9yaONrp + 0KM5fswwl1IOlzQzPQEpaoxABC/EFTfYEwZuk4HB75/kjIo6mRIrPMFI2orhBnvNsN7MCcLtVSlx + govIY9tQf0LadRrOqae2S8e7Nfj6J/GVyivG9TKWcj2/BWImqeut7otC5Hv7D7GGA26XqVirX37g + 9NcfupTkCNaDTaxXpTIer+MJ5NzhQHQ2vcCqVtEHff2X7AfFTijd3j9Ih9JKTjAL2Mpf4hSkibdi + 7Zsf43zMZmiJwxQ+j07fMqSdfdiYtzFEZVwDygRORarcTMR9DHPL7EpvoBkNBt5r0w3w3nRe4Wc5 + uCTl7kFLZWraEAQ3/vt+tWG9yLsOrhW/x0fplGqC5vIfAMN1M9P7qR2Wyb5VMFIUFbvaVdXE8qk1 + KLJkQEyBqgNhrSLJh3ZNibbxGm18TC8IIw9W+LwCv1isDHGAR/pt7jR49WjLOR3sAwVg9enuCoI/ + y0cOkn4icaSPHp0NtUHd69rNMv3q9QaRgq7d7JDwbiua0BZYgsOzeIfwhmePBXhjwhHQI7EKJGjr + Kwoj4G7zijj85uWxSdt1cMFuTAIoNZ5YCpcZts+8xxYqlEKcIxlCe7dqIbLdO6OCd1JQuiwPHPgb + q+A/6UFGeXjuwkW4LoB88waoWd/hy7vWAZX4J4RaXeUEl/GiMQekOuJUJSXnrpDaZYmogLhLGoQc + vr7BSt6QQvPGi/gM81fL3S+mgn55qOrtrVijdD/DB9Vf5CCndzYuMOVQWRomvg7NCXBcdxHgfQAl + yYgpePRw6TNkN6WLK/3oDaIaRyEYyWMg6SG2E15PG/OffrVfb38QzwnqQBDlZ/Lrd/7TvuJ//P36 + 5aGVVcxFdRQdyAWwR0I/dXxCrlFg7PfzO+ntuNTh8w4pvkFpLdjz3As/XsKlEVNAg65RkGHHGNvJ + PWiX+7WgcjAvMPxclYvG0rINkTJ1Gfau+Okxw7yuQJBTg4Rgn3ur8dj5cOI2GUm37pLQAb1lRNft + mzhXtWnZ+7bPkOQqHPFLjTE6SXsdRUmcEV/c3JIlOZcNPKvsOi/adGP0tjoc/PrRTLNKZsPh6H5g + DM4w5I67vP08HnyMqqvk4YI6F48+5n6F511zwra0du3wvjnZThNpQnwfBi0/94CDnjlm2AadVNBt + 3KTo69/EpV7TshtaI3QBRhjeoaMk07HZS3C3s1vi7p55wQwB13DmyxSr3kUoVjHZ1fBk3EWsTpyg + ja12UwANRGd+GIxPFqtUP7CWhXqmL2/P+EX59FDRFAfbd24ufnwIHsf6TM7ojDzGUTeCWviMcOhZ + 22TU66ZGIJhVEqxZ6HGZsdgIh7NE1LdCB7rT7j60tivDThHo3uSc3hzE3OeB7e5jDEuc31OwR4lF + bF3vCvYZXQo7BUq4QuKSLE0ebuD80cUZBsgsxNqaZajf7yccPqAxCMWBPMFmcJOZ229mwGjRn+Br + rUYSfuigMU7JGvD153l7TRxG8v5c7/g70Ygpt6SYhJh2UPhYEgltOyuWe5TnUIl9SDxZUDRx38k5 + PIjqZ+bi5O7RR6jn8GokTrireVJMEWab3RvaH3LY2q9kid3Chcuillj/6k9v1VOQ6zKcSFBFWGPs + xukw89CNVDQ7FVzMb13px3Nwbq2WWXQeIe2OAvnybvERk6VGk+TPM3dtxYLMSkdhfBkV8uuHj9wX + JTzjuzlvrHRt2eERCdDeUY04SrkvWPn0GtjJ0Ap552MUi0htF/76TSeCCMZLq8xQuN17fErSj7eM + mw/3m2+IvS36ZK3gckK6umtxJiBTG7/8CK7A58lhA1KPOYMhQckV9jOfw8n7XPKjD4sTfGE3nKRk + mXvGweoRGsQ3k/cwoOSRw/QcHIne+UWy4BhvwOhIPj4+yr3HH9dMh6i6TaEoPxxtejR1CsXNcCbG + jcbD8ulqE/IcuhBXP1hMdPLtCA9kpCHHphdb5aGPAVEeHfbiZsNmVSYZMI2kJ15/g8WPv8FP732/ + OQG6788pfB8vC3appw5Lsb9E0GRpgc/lAsCXB0b44wfuaPDaMs5pDydNx+SW8q+WeTvbhHQvT0Sf + JKfltVasYB+oYOaFOz8szpOqqJrMTbiaq+4JP72++Yxxyr8GalrPEZTFYRei1ZNBLxm8vxvrfPet + DyhobAY5fIBACHfl/g16bilCiPjwRdJnoXhCPPslOElBMEtJKidkp0Yx4lQ1DeVzNgGKQ6bIUxhU + +CbpPuC/8yisjosxv2dL9PrGbDn0QcGT+C+5HRbxtoOwWWIH+55FtKXWLir88UOlH4d22Yn9jLZi + NxLzVb41li2BC9Milogq1l2yepx8ghqbaciVzWYg3/yUa3LVsAOe8S8fR2hr3JlgjKqBDgF15UgT + M2IHIy6YeWo3gKdAIMassYSVwmGEnAgVnCzvsp22J6rDdRPtcR5OUkHvF1OFbSFkxOyjkK1UE59Q + JjomZ/C8s0mz6hGCUuKx7Q/Cj5crIPosxEprbYbZ1S0K56Tz/sdfi3eWwnNunYgaljX7vo8TbA6i + 86tvsfCPfIXfeQH784lLOhwyFYi9O4TwLsXa+uVDeNkbW6yOYj0s6VFpAEu295nY7qqNOZ5mcG7C + K7FXRxnYT68LIQvxrbQppsOkNT9eJeb99QHMos8RasaAiOY8D2C875oMXkHIY99xasCuUdmg5wR8 + sseh3/IKWSS4nCof71X6KWZgDKb89U98jmqfLYGd5OirR0j1lnhsp2YRVN41jyt1qpPltL1UcPeQ + A2LpqjtQZ6WlLG8OKtaPBu8xpEcq+uln47kGa+utNdS6hP5z/36TCin8zmfY0cKjtvBNsIFD6yUh + I9K9WPpdFQFD90eS6zrXEgeUOnBmucHq7qgCBi5mKCd0fOMole7FKmdGhM5WH8ziJxIYS4iRo0hR + VeIH6JmwibUnuOZLRULXfQMqnbwMfudRXN6l2FvmnarCu+rm2JIfb2/dTLWC6CV8Ymu2nmy5B8ET + toXmEQs872AhPPKhtAczMQsAk+VtRQ26u1qCbQrSQdyizQmw2vb+AwAA//+kXEnTqry2/i936q2S + TpIM6aSXINjgTBAVEGkTIFXnv5/C997ZNzpnuMvXrWat9XQrShWjxPrs6IEA+3jzwl6SKqW48g2c + o3uLDcJv9Wm5PDv45AcVKyP3YUu+G16wl58+deqHHE/TEHSAyeSODeGZstUvT7DIq4WqSAbxgutS + QkuxT7B9d+dy2QUhgcEXbal+3S0xq3yQgV/ecPrhU3WqbYDHU49jKr3j5cx/NMjr+5CqW+gDLkVe + BgdH9unPr4p1LQSgiJoLPn4RYn/+UAIyok6mtmyyZ7GBtZW8sF/s9yn7+fefnlS/CIF5n18aOFu6 + j/Wl43/5yQuUdqWRwdmjcoKeOkF0vaukLyUHrHmKBnfjbFJd39T9kL9BI+vb3g82nrVNu35vdH95 + 2J4ag872N2kB+4J7Bslsfxn5Tl0Df/lIMN+oN2NNrsCbHS7YEumRTc+cCLDfvCg2V78zh1NyAp2e + VWt+c2QTjXQJofiSk+8ChnhqPsCGAcgKmnvWM2b681ihe3CusAO/vU47GG6Q1lsjDpB4jFe9UYG1 + PwKZXAxv8VS2QFnJHtjryNtb/V0BnlcjwKpVUUDkZB/BzyCEOBpEpZ8hAQYUrg0ltLBovEgPYsDy + aRKMuaPiDaLEJghdmuK9pjT9LPoXiEg+3om4q8J4GV+KD6UtfOG0NIx0ercnH6bFyaD7OArj5Tgf + Q7CedyDvI6UUdmlkykB87qkzu2rPpYfjALqcU8iAwalf+PZVQNsyR6wT0S6F6+QHUL4ul+BzPBX6 + UiVM/uHTuBEOXDlvzVZCj6R8Ym3uTY9+TycNEit9Y1/mLv1yVe457PIvI+I3L4BQl+8IHraKg4/0 + K/csfxUEDq9kFwBefbPJmKYBQY70K/5q5ZKeYAL6lL8F0yGoyuUj6NnP71EjgXt9CcurCYqPPGA7 + Pt3T5rwJX2j1Y9hb+2u6JukFZpll0n2r3ctFGrkQ2ZM4/T3OFc7UIaNtMqqdd106ZvK2gie0CbB5 + jKRyJjtXg2iGR5yteozvqsaA51MOSPWYunLeXf3Tbx6IuOoDimVLgdOCWnpCvu5N6/uBybzzqfvU + unL65YP9U4L4avFXfTxIBxve9l5BprcTxoJ92yzwmkOTPss1/5izXQSibfoMZFfu+8+neF2QVikq + TuUFMqpprgb316dGzeBV9fP7EU9o/XuqmYuhs8tVS9DXL7YElFLLqGhUEYqlbxHI3zYDwyu7C0Cq + vgYNHOfozR1DGSxLO8J6u92C+epH0s///fnn5SlcCUSt6FJnNPN0xkVuAzvC6JffeQs470K45l8B + /MplOevlNoc7FJjUHk5FuhxDKP3me81zICNiOAxw5Uts9Fr0l1/Cc1LkwWa5f9mvv3axSW8BZy6n + eIAyKEAtPTOsZ1XjLR/zOMDXQu9U61QnFm+boICfV/v9y2+HaxKfoD4GOj5oOUvnSPYliEZ5pPtp + EOPBtAiBBjZ9quaF6fHqMBrgazQm9qyoKcVnoBTwfYjb1c8OJfkIXiY7abr94XsvasfrHf7yoNv1 + wumD8eoKeCX2Dkes5WLyFJ4DRJeao+YxSnq+f8cRqPzdidpdFPaL0ex9mFrvL9VCY9AnMn9zsLdD + TJ9b8RYTdZIFMDmsxsEzfver/+Xg9mgo+JgOAVigloc7cQiCoPuOis5Vqq5AhZMiaiwD1ZcLOyqw + 4y8jVZ1bkDKRuyjwtnVnAsK5ZP3qj+RfvzvWfq/zX9ibYJ3ngAswAvPPD7nbJKerv0vH/p2GcPUv + ZNV36dTq7gI0Ch/kp3d+fh8SPzxih551jztcm+Yvz84/8FOu/NdA0XlJ1BaQ6bHOqxOY7cBAg+Vu + semDBPf3fGpVaVJOyIIQrvo9mENtiafDKRVgm58MfDsnH7aUfW7K4+XyIcR674EoD+8Arv1BFcmq + +xH1dQQTRQgDeEB1yq4xqqETv01sMtlb8+3ehj8+yF23ZcsGoru0pvbUC+cS0CI6RdDmdjG+r/7i + Dx/ji3sLOG1r9cuaj0LkKxXWv4eekc1B75CgnAT61HoB9M3R8uE+LT54b3LEG6zGM+T3l9+t/KDq + QzqgEH60SMXBTu8Bc5OewMUq7fXzS307lan2qz+1nO7cF2tegxzjEmNrxZtBE44veL1LJVW6GcSD + 2jwvUGzsHh+y6MWmb7JbQA6PM/7ps1G3mgG2kx/QyzofcyQbEjxnlYpx9qziaVcaC6yUjUQPY2X/ + 5Ul/+yAl7Xh9/OV7l0eH8K/+S6izFxrU2aRamXxi4rhtAtbzIGT4tP189KkLfvrM7DEPfvsEuOr5 + gCh52i/utZhAc+BsfOVnvVwU/WyidV+FVX0uvQE8yg385SF6FRiAPx/ZgKThgbBGhW8/GZNEYGyO + tz89N/Fqm4E4knRseqJS8laCBCgIYYEv4bn0/vZbn0carvuQpGT4MUXglnR7GhwV1eOg5yxgZ4V3 + ur86SsraAPigTxQd56VJ4p9+ka98zshG0mJ9xrEyoVVv/OnfWVEUG66fhz5gH7AJes4En7v3lSqx + XoDJrwUFNE2SBPPPLx/KmyHr4hJj15W9kqx6DkB3TIm85jedv6klaD32D9Ku+R9/D0kHHlDR6F7Z + UkCCXWCAQWVmIOshYfNle8zAI/tqa3+kbJZP0wn+zsuXNI3N3tFRwHz8ZFh/XTk2XNLGBr99yf66 + R94kAGuCP3+yfR4lb07aIkO7y/NAwJr/szgXA6hIY4Mv6FaXk3+hAhzKFmNz2S093RyPd7j6V+yo + oQkGPW5d+B5IS7iNI/WztiM5lHtloOZocPE0uOUJ/vjA+4xN3P/2mflNaALYECddfv5YEKJi/ftT + PKz5CTwujkz9lmoe9wn8BDbZgWCde8aACl2bwZWPsC+qDhOX/XyB+ZntgxpUjU4jrcnhmvcGUvTi + 2LwQ5Y7UjXmiDrGuXtO97heYawXFzg9fClJIaKk3NraeilJyqx9HX6UqCVDDq77cujJBAcgLbDoN + YM0eLQZ88kTFPz3BquGpAbYppyC1TRKPjpk2cHLmGsfQmUp21WkCz8wk1C6amC3WK0yQ/OzxWl8M + mjU/gxE4w6Bb/ei49j9Mo72IMR/wJZOzWJGTPnliBcEKrPmLDJ3ns6CGxUZdIDdSw81zEch2/yb6 + nM6eArFEbOpqmROzwTxUYN2H4uMubr1xTOUMfJplpHb0OoHZubw5ZB1hgK83r4ipxVgBt85kYuts + bfV2P+86qKmnnmoBHvuxtKoJSZC4WPcaPZ3scyPB531X4f1jMeLZxGoEIdvl1HCavhyUvnLh/79/ + A/DXfpOBYFvssVYm+1T4vk45bAS2CZ4RO7MmRXqGVn+OY/m0eMv7GF8Q2FYefVbO25txbE/w6ATG + 375t3l2NE1Tfuz4A8gLBfPhuNnDNq7ApTEVPVNUx5SQ+3rB/qt1U1GY2IfNl7KndHkU2HjN0AY/k + /aQOg+d0uYvDBP/ndyvgX//7H9wo4P/5RgGeMx3b3U5nwvkOI4g3eo7N29PQufyKC2CGOKf6MEIw + z7Tg4FWI9+R9fxZsFpHToSWbTjQ8uUoqjvhVo93xcKLOHh1KQbsvHORUwJNiO6o6DzetAKS5C6hn + 34x+2qUcRH5kjdQF3BXwDghCeGhrIbjsBFaO2vjN4JWbQ/zEHennG1GD3bd3Bmod1B6wt9z5cPuS + BGoM3OyxOgQyKB4LpHpUpf34BacKfhp/R2OuCAC7FtMdkQZ/sXF/qYCVZiND/Skd6emdd4xK3/sd + tkrm4CwgX4+E/JQDoucuWXqse4NlggX6HWmoWbqWt3ThM4JNClt6uT0Nj5vYeAKSqTb4mlwjT3wl + ZgGlg0uoEi8aE85tfYeRMpzoTf2EsbAtLg30ct3Ch2Xc6uyYJjJsh9NAn8Wj7WdqWRxypHyk6vXe + p3Tv32SYWpyNH02Xs/nNeBOZe4FS68nVPe2jzITXe/KmVrM/93zSqDIqou2J2hXldXbuSx86Ogqw + 8y31mM/pO4Fcc9IDechn0HLWy0aH4jnh4JEOYBrbdSOyoVusaNGBTd/3wiE5IY9A4MoRLEE7czBX + pjAQPtPCqjplBdpeCoua2KhTvr8dfVSl74Qep7AGwq7ozF+9g0YpWc/APCZwcJIw2M0bVRcm+Z7B + rvdlbMR1Es9v7Ruh9qVifHknfD8XWeLC22EKgu0he8VM7msDpg/tSb2XWPSCHb8C9BbNibrU68Hs + WgaEVlSE9KxvW2/q7CKEimOLVBFrSyedOtqQ6JlL08iwyt95Q+e9vHGQTm0/Cdd3iEAsO9TxwaUf + feOY7b6f7Zna8vebTrN9EdBViWd8cIIrE3ysGmhTKA29aS+JjXdtGRCsQp/io4S80bX8DbT1j4cf + 8/2Wckum3H/nSw1XeABulPwcPpyjSTO1pumC1Lr+m0cvDTdsIvTYwC+bGpr3+eiR8pkJULpDlT4j + aupCPpAFZsf9nvqxWcWtXnEdwkpr0nisPmzZFZ0Bj9sgpzrWv2k3FmcfeUvxxcrHa8vZweICt6Mf + 07yZY10g7hTCx9W8YU8/Dv2cv7c2dLr+jvEgWbFgF9EFlUe+oPt9hHXh63sVpDetot7u/Oq5zVYS + 0PMxkrUeHhDn5rPeIFL2+NLrSc8dHWgDMWkxdqVe1cXrObCBhy4Yn9K0S+f6OiswJa8TjoSPkwrr + 50Wf6nXFF2dWSi627A7e0XjFahDFPReflwWK+/6DjY9ge6L6LF0kujwkUmK2Hu8uaQYBe2Cqbvoq + nuu6d+Fd5TjsvEzCFlXRTCTGmYTVx56Uc12XNvwWIcOHtV7C6QShvH2mSoCkU8EEaT4FyMinJxGS + EIGZLvkFYmvy6enWSmApSbCR81n0qOnMr5J1aSDDdxs/yO3x0nWmCIoPn/WpIytelcvePZs7b7fr + qRE+1J7N6Oqi8ZW98EnTSjZ1dhfB4zi0OFjrz0nS7QK/GuqxvpyUmHfWGytxdd4SGKoHb6FHMYfk + WKY4maAR8+x5MOEUkRSrS372FkxnF3nq2AWFsovAOj8+atJNS52slfWx2ME75F97jzobjBld6wMh + v6iEle99Sh2V5cD6MAnbZ/VY9vneHuCheEz0oHti/LlrMoFaZnUE0EjxhKubvyA6Nh/srPMxlcmX + IFGE16D/xM90aoQqQugBNfo8n49MIK4UwnUfS/eWofTTto0XlBv5Qv3zMOlzda8KdL+qHk0NiNmw + vb8buAVxhbU50vspD+0TvO/LSyCHVhGv9YCwMwpC1voBdj2bLjy6ZEvt0jiCudoDE7ArVPApucQe + fzyVC4w036HHTW/E4o9vOrLLcMDvXDapXTGhydjZ+ETfnr72OwfZdaMQpOSPdBE4TOCOH9iaaHkl + u7ZijUTQ7OhtJ0a98NB1Cb7erws9gMetp9diSpCx8wKs0a+SivfkBuE7+hypdYCnlIbnWyUfxMTB + 1g59ARuSOEHGwE/0/nw0KcuysQP3q+5hf/c6pXNt4Aw2Y5bTWD7MYLg9ohB9J8PE59O+8+bN8wiB + NDcBvrQHq18kJUhAUE0F1Q6m5vG3Vw7hdjPYONCjvuepdO5QJGxrahUar5PFvLlg3i0dtt7WUDJ5 + l5yQa7432LHCOBUs612j20Z0glc4ev36ehs4PyTzd16esJ1sCV57+ULkScA6/w5vL9RbVk4tfcfY + JEnHCwz7VMR+FgEwn+r3gLbgWOHLlXsxPjg+IXwPg4ovzSXv58WNOzB+xYrun5s0ZW+58NEcGzmO + 94mR8rurnEN7Vz/pir8xCW8nA+37XMGh2Xkef7noG+CptKPW3dFL4Wb1GrwA60ZxRGuPHZ6SAjcZ + F9JcPtre3GYGQVfhuKe3624bd/fN5CLNBDE9yMXRW1DlRvCqHGcyDc5SVhcvO0FU2nd8GT8VmCLV + ucDudYtwciVe35nLZKDPQXCpSpDCpmq4hXCROgm7aFOzWfSYAOTS8on4toaeYXyPwG++xL1/A4zD + Dxu2V/dMs9g0Ym79/9F+ahJ6e0uvmCH/4qOdbus03r6uJev1FsJXAu4UdyRJZ7NRcvRWrSyo46ws + ZzURFJTz7xHjfO/HsxE8a7DiOQ7C5cUGnt8XiKvAEwdlm3oz3LwF0HB2TxVl23hMuZUChNF0pevj + uvAJRAO+5TnC5utx8JZj+A5RZg4Xenw/ejbj3QJRIvE8PsRHyVuG7CxD2PchdUBbecvr7HDwnUsk + 6DCtAIuhDSGQqzNWmvCtMyy/JogeGy1Y+1tnG728w+FgLljV4CGenI0tQSaWJplGA3jTnuMXdIYH + j55lC/aL/wABoOwWY2f3PKejfS0G9NOruOBNwL2CbIC+oWTU6J0DWGJFf4G5ifhgw+9cMNUHJ4Hy + KHPB9fN02MzUFwc/l9GgXpUIjIRN4EPxHXnYWus1XzM9QlObfKkNCgyE7x0RWLWnHpswe6Zkxvpf + f1Pt4RdgEh+vGq39GyA7pjEB/FeGnybYBfPs0ZScN1cOqrCoCLT9VF/K54mDqsRp9Hi49t74Do/F + umEgQTNUls5lhkqgQ84wqB9KkrLBaSO4wRoifXw9pBN/bKF8SfaUngu7iyfbZybKTuxL2No/8+4q + Z+D7MNOg8d4wZkYpCDKVPh29bJ1durxaEMJiiTLCL0Hv9b/6aHWQkm2ymGVTeK0PP8unwUFBlp4k + TwvCI3cXiJQJer9w8bMBpT4dCTpVuT4DqSsAuNY91Y03iLvs+YpQmWwa7Ctx29Mdu2kQ8pOKL9v3 + padpldTQ67k7joKbBVZ9UsPHAhFVZH9hy8SlLtRaCeHbGJjl9L7HF/hKdneacI+knwyyyaCsaUdq + VNut19uAM6ATTALWbjTQOSdaEuSaofLXv6yoDvauF6UUe7PkMVLwswTtB9ph+0r6fmF+ksHjumMD + C+Pi6sptfZDwTkwD/172sx7qAXyLxkT3xcsqea9tGuh3Q4ONke56Evd3BXxxbGPX3HYxbWzHhDQW + DtSQ3Gs6rvpjF+yfd+rfjUO6OHeawF6/Q2zfbgFgxtkfIH+7b7Dd+A4Qx/w+yD++DuSjra96wEa3 + ty5Su/FbNkuvMYKnupupU3rmT5/nQBOH8E/P/fwFiI1lR3WrXnoWN9cEdje6x27J7/sJsiWA2Wn+ + 0sPjlPSEbWoXmlL6pEE7gH5S2KOGrsZnAeMKApZU3AdQKd81PYvvCcxq3YRwCM0HNZosBsxHWQTF + 53Jebxi1/eo/G8jdXxN+Oobu8Y/T1KFV7wcIPG4lPW64DB2TV0Sj5TDoc/4WbTBs+wIr4qaKlyM5 + FHDIeonuM77q5+N+16FQPwiEP4NUn9jpkcPGXCLqtPPMqPN5atB8j/GaQM6A7TQ9ABvTNnD83Wm9 + IKOI+/OTltQVHqv8lw/dTaYSyB1I2bkkgRAu50cwa2rF/vxJFG8hViUnWRPhepHbmM7B7mZ/WPs0 + IhkqzYjIjvNxyYbvoYD4LD6oOns0JtEnGqClaim23Oezn17TdIe/56PcU3vuo2oTdMrwEmw/+jkl + weGcgZX/6aMKNF2QX5scrnyDlemNwdqfOWz33QuveogtwaaM4Csoemxc7KochjJW0Kr3gg3ww55Z + Rr2B5/DS0EPuvfvpuWYd7gB9quQHpV+Sp7WBoyHK1LtSt2RcPxdo6/otTYXQ8ZZzSxJ41L87esi/ + ebq4JNkA6/AR8EELCZg1cCMovX0BKeZovc6ytwl0ssrBp9knKetRUYGyPF9xGnwjQByPj9D2eVMC + btXfU3l8vVD86h/YDnS7J3P/uiCTYZuq92cB5lXfgNonScBwWvXT2N5PwNuBnupFl6VzTE+FnPPl + GHzOIPUmv5IustBHAja8sWZ/+lELlBsRelntF/Nz4EDZZQ96Sy+cx97DdgOCRWTYX/GYefF8h1MV + hH96avruLxnKksDDP3/AX7e1gNJyGAIxf7/YEgd8B8XndMb+6eam85N/DXD1n1gl6MVICMUOjgYv + Y207vr1pxROYtdtNwFvGq59r/hFBjTsO9GA2vk6mT6vAjEhXGsZLwdi57wO4P15DvF/nbXkfcgn8 + 8g9DFue4qy6dBtd6BZzwPOnLIMkhwJELsJ16r3g6BHGECj+2sObjm85A4Ai/eaA2kA+68Kt/Yk0y + Phw3S0zosx3gID886n/uccm0y3RC9/37EryJKbIVb3OAN2r+02/x5EyXBn52hGBN33Q6O4VyBoe7 + vMdBMzN90rZZAKf0e6KHHfZSTgAGBxxu8qhtBpd+2l+PBVCNS4mTg/3Sp3t5q8D5LTwCZtVLya5i + y8mG0dNgOzLMFtbCAWaJ7+HLWk/OUmAGZXfnYnXNL2ZJVxXo2dyEtUu0i5lzqSQY31BIFU+zU/Hz + TTbQOnwF/Ouf5qfvltt1ItOeFv0EvGcAhk/I4dtOXPrhkS856kLOpw7e7+MJ2eUAAXtibOVvBUyP + hLnQOT917Bt9DeZA+wjIq8ZTIH26R0mfPpZBvnEbvL8lmLFGvkxIuWxc7N7dolz79wXr3D/QfKo/ + +iKElY3WzxN81X5fLtahkeGVYyE+3JgRi/TAbYCKbY9IxwoCmvjpZXc43Z/YP83ffsaMdT/9EmSr + v5io62bgZrY2/uV1S/LEEF5zSydcQqZ45esXsP3ADKTxiftfngNWf4fjNU+cwtfNR7ONRqoFty9o + 7pKu/PQbdqD6Lv/47kpriVrmxotH37hlYBMWDKvFNJd09tQcAtMUSLg7uimfBfMF2lxiY6vDVcry + 2+LCc+qG2NsCXxe38lTAvIHHYLtzBK83KcqhkS/P1V9xMV3riYRQtrE/fzUgdmIf/fgqQN9rAtjc + jOSH12TtF8AncZgj93Q94tUve4u95yEc7tIeK9f4qlfNzVagdSXfYExN15uq4RjCH987Y1CX02cJ + K3Q5jArWr6fL//mxX387OWvY0kSahJwyugSvTTV5y0lMOniA1YseV/4gtWJApDezh+93t+j/8oU+ + CCqCVv89mI+QQ0uZv+n+qUfs7zwq8QbxD485fD9KcJEaCdtmIJTjUk8KjJ/eN/hiLHtEeOYhtJb9 + hebqS/YGa3HDP/7iZp/Ek+CI2g9vcTYksJxf7t2HffKNibAJQiYcyqVAx/pbUkWLRkY7/zQBw2gp + WUQJ6wtnjAUkd/eCHaWz2OAmOwIJspVfHgsm6YwaGF7wK3iv+Q6jW21CvERMapN74i170Ml/+krL + zjtAI8Fp5JUvA0kp436eaceBjcPV2PS+cz+d92cN5nJm4uM5hD19HEABvYqeqCWmab9oppNAoug1 + NVc9vLi6m8k7qtXYbVWkr/xwgeHjUlO/PkNvuYLqArTTUFNFuqiMP0CSgUghJ+y7l5YtavnpoP4x + 2pUPX+XsgCCCkfM5EE1GdT8WwUeGv/lSreELpnr3nMBU+SGN+YcYz6CV7lAfniP1ZqkHbfDUArjd + EDuA0qcH01CmCsza9Qbuev7UYWoE88O1J83qJ4UkVwz4OXAuNkhdlDyf3ao/f+ZVyYUtjociYMnD + ET/G3d4TVMU1ZbGCI31sZBKParLRoH/zGU5dzJfkcLYT+MTNg0aN6wH+RlQfnqxrG0RmdQZ0xR94 + EO8O+YTNOWafGxmg9fq+6U9/fsMFCcB80xhbYf7q2Wm9EZCc68P6/rRySuyX8DfP7H0VSqaFswY+ + sVYEpTAhnW242Yfi9pxScxNMgO5TX4GuAwvCRT1lI7ZHF2D5BPHPHyzC8xLB8bbEeM3fAfu4sAKh + J8zUakVLbzBCGaDe4Ui25/MRzFJd1XC4Pt+BdGG6zqf2osB0s7/jNY8A8wHWGXjqZ4XG4rfWF89x + JpgaafXnJ7uduR/Amv/hQ9Nt2J//VyVBwz89PzV3S/rDc7eVap3y4uSiz/1WY/Vi7Uux808LyuC2 + Ca4ZxakQZFYNn/pVoYfXPKaUWHwD+a9/xOnaD0TpwxrtdFfHzo9PPC1rgKLDF447a9ZZO/cQfL2q + pv6QZP38HYocrvyKo9zy4nl7/Wq/PHzFw4veRp60gb/X5yfwSccPsgPIvyyP4s/mwSbnXb2Afo0v + 2L2MI2g/3nIHUT5XOLgmfrrqHQgnNaixKzgcWH75z/NoxzSMwA2sedkCXNbc6MoX/QDgR0PIhQl+ + xpaesqdvSeD3edX2guIlhNsOdsaLYLXSryX79U9tsW0w7a/7dKocvoKTLGX0uuL9/P64EO769Qaa + ZSgld33tF6jOA6T5qY/isbHi1Y+GGVW2Is9Gic+JrLUy+u1fvO4mTRwqNqK45rsam7E92sA9tAbZ + mFRJ+eUrSjDG1ZsqX6nsaZMtBZTuG5VIqafEzPk8lb88LadCF5Pidi6QEEo2Dr+SXs7a+M3hzlcg + mVU3Xf2TI8E4qn38269NbJoFWFx6ATtvSUl537jl8GIXbSDNos/Yj6+8XLVwtOYB7N1LJtTfdwur + cmzpv/0YVHz+RtDaL2whowLCHXapsebpbM0PYdaiDfavuVqK2zxz4ba2DlhtUo4t2bMJ4bqfIbJp + vAFb93lS6HEzfTYv11v1og/a/H2j2jr/M3vuTdlbXt/Vn976lT80eHGVHOvC9PDm9Dq4ADeiFQjO + /OoHYYgGeVL9mnou5vu5sdIItndBDLpsIvFIZDVChV19AqE9fMtJNhIF7rmLHGwOoxMTV9fyX/4a + SO9AAUwx5Du4ziYJ4FL08WTiuoJb8atRxfqwfrnwHwV6G87A2DFKb0rfI4T117II5++rdN5qfCW/ + glePj6oL2HQWOgFkU3LAJjbMVFz5BLIDj7EbWkW65jt3yPnjg7A1T13nR4HEcgeqlffZewunuvnL + /59L2cXjWl+QhC1HQF3se9r0QwPXfJGAnu/jcTjWEUzh50OdYLQ9LtcuBvQE7BDGFQEb6pS9UNIt + FbaKexSLN34TAPfp7oKF9k9AW/ORQ/t4z7Ei1l99CnVOgDcx2xOnygdv+MY2gcoFujh6jaLOuByH + oL6zNhDX/HY5lMvqj9oHyRqxiedwu4RIDXdbAjhTTqdlW0Jo2GYcbFOFA/NwJBFY93sk1oNzTLP+ + OcHr2Xfx8f3wAKMZNeDXvGNqfzOsk3wgE1z3I398QR9b9SL7iES/+Slb6fWJJDHOJXxQz3U8JXYj + wJfLOVjTdbWfptBZ4A8/3OO90Xn9ohXwi492sE3BI176yuagLXiAWtC7xGs/hXDV0/iaZm06dtPG + hddeutBEG4uUfS/MR52NQxzECtVbNRG03fk6DoRlxsT6t9wFsLibd4pDzfdqwH8lNAuGjePuGcTD + 9XVYdj+8/ell7i55Gvhq254eEnVh3RO7f/ka3q954pzESQ64sbhjc83XxTX/h3fltMVeJxeMjaPP + /e1DzvrW8fhB42xp3c/Q3z5rqjCUfvyJPc6U4yVZ5gJKL/tG2Ax1bxFGpYCsOFF6vTtlv+KnDFrE + vfFv/ys6TA3Rul8Oxv1Y9mteQKAobq4EXS64XH5+7L+4USD8840Cx7p9qfdtv/ES+1wIk8GlgXiE + UjkNFswhel9HqpTBNx1q29jAN58E1Mnts87UkXYwhqFJ+AosYLrmOIeBnFb04NvB+h1CewHp5pBS + vbyFugDGwYSvl72lpvka9Zk8tQoJ9a7COvnYgPuQ2wKTq7wL+PYx97S6sA6MTnjAV3PaAtZ/iwK4 + iIbUnQK5H47n0IX17kvIcs0EjwR1L8DzqxCCKXdbMLj56Q5x0N5p8pCKlCx67kJdcTjsHM4UzO9J + 1BD//p6o/5UcJijn3R3W32QJ4FdyAM2nPgCS9q2psa2VWPR33F1+LVcQDBUSwdw6c42yZNLo3jy6 + PS84VQMR/yrwPQmGdEq7gUATMpMeHlkRT/fioMFNwySqPiTEFqZrBsDa7oivsuezSb/sfbiJwj19 + 7B9VOpdqlyBxc6XUapNv36zfkkezbWY4yAPGlog9XKj5KKeOdzj1E/fWNaQ3/YsGtLwCEZufBc1u + nBCxTb4luwYvCTppleFDqRPG0OEG4bf7WNR51ELKmjKU0Pac3amV6Hov8n3ZoYlxNb55vhFTF6sS + GgVjpm5+FXu2SLc7APONx26CYcmmfRrBW9nDYJ5CnPLqq1Pg3n5daVLc3x63FbwCHUuuwPFufvcT + ZscTmphQB40SN/o32aUJvNFQx4ckMRj/SI8bNDrnABtyoQHufruF8CjoOVVtFegEjIMBBtJ8aM7V + n1Sc8+WC1seDPUwij4AxVJDeVE8aXzs7pr6mGOAZRSo9HGnqMVLayV893IOqx+LjatjwIfQKtniL + prPuKS+EW1+lmTKylOiO3kGHChHhZPWU8njXmAhHXIgThTcZ9+2uE4wb60iVdncsFzmeIKpDqFBH + /Urpgl6bC6SNXeEj6RbAzZ+Pi4rIX+i1OnUe3/fTBV0890HPe+oBVjXYhARcFBzvuTPju7u0AclV + 2tFbhV8eHaOHCU1vGOitCsN4SetcBrK7cbDJOKzPUDoR6ILiRB3+w8UMXfYDevWcRfHjJrElqEsO + rfODzeQ66czZaDkydN+ioS9cdE7MGgnazJmpU7R6P0d8bUABePdgydutzqJpclHL21+ayOm2XKzz + S0K4DVRq8nevF013itCwSFkwRz0HZuNjDTD6aiLWi1ORiu1e5MDrWh3JO7L3TIT74AS1MsR4rWfc + Oxs3B0VoilhnbZ3S0LwRRMBJwUcXHnRuZ6U5VK36gFUv94D43K0b0HN2x3f5wvfzzVQ26CbuFmq3 + X9fj78GrgdeoanHgxSye51Jx0Wb9xY2ZWwKd7RRIYNRiRjaPgdep17wgCmpzDGoSRGB53M4mdMHr + FDA+jHX+ewF3uVdAR/1pePbM2eQF1DuWUu8iaB7LuDkE57upY++mIDCYjpcAvRvuNEgasSfSvNjQ + 0g87wjGpAczXFBOu9SPivlOBgBVtA63tNsXBMQ36YWfFOdp42xMRW3DpObaZbODIXxhsZKLE/IeD + NTAWtybbIqs9ouZHEznWpcahLwg6GyNVQ/rp1BLeE2tAtQ1VQFHnTTBV0d4TdvqhAWDrSzQt7YSx + FX9RV7sKmdd5Y1bVJ7K3IS25u7tGX8i40+B31mWs8iIAi3XmNn/4b2yNd0+ZsnOhP7Y2dROc9Uzx + ThzUjvaJnttMTaf3mytQvHlqgeCbbdlG/F2D3+bpB8K2qEsefNUQXp6PE1Vk58voVgldlE7R5Tcf + TJy/xISfwizowftuwXIDSQRfepphw9Rsb+E+mfTrD+qZxkHvX+ljAtvJ1LCpXN/rb9MwDXmwJhQn + p15vdwchgvt865Dimn6AuPnuTbQrypx6LS4BGyNHgaNlR394yO2s7wv98DSnSsOYcCgyuD2XKZG2 + +QBIlUiF/OqBjRVyV7xhDBUTufG+pWnl1enyWbYDuIiyQg1l05ULd1IzdG02d6onvpUumuT7UDGy + HXa+o+oNLBET+cjDRyDJ6bb/PR96m7mjEZE+HtvkxwtiEUFY3WYWm6mqJujEhojmZXSMp2Vr+Ih/ + RFnwvvplOvFy99dvOJtsJRV842OgoyHp1Pc3O8A+kpxA6xyyoPBI3vPTnSvQ68YOQfv41Ct/uxVM + W7nChlnVbFYT7YS6RxPjS7IjgPPql4amq6UTXp73qVB1HoQr/uInVJVe+Cxlg378fmg9V+ccow1R + s+UuNN7KAxtONyTASnM7GjyGs8e2yuD/8BdfW3ApBebxHOIWKqzz9QBT/3lXiICbStPKv/Qzl8sG + 3H6rM05Ib/VcT5wIfgqnpLnHR/rShfYJXXvvgh2PspSpFZPQ/m3tqbF/tbFoXGUD6pe8okFx0Hvu + 8RAg/KRkong63dbzumkIqieOhu11AQvCnQy/kXKn2VaSvGWyBh/k8aMKwNasy5mnuwxKNLTw8SEh + sOTvF0FXJSM443oaLxqtXoi1BqF2Vfol902m8Pfvv36e340XwUY3OWr/6r/iA+LUKsVaFfQpoUIy + wPpzlmiUPMtyqd5J8Jsv6pOiZI2Mmf3DY5qq6pYtQohzcHgtjwDI1RcQKOgLioK3S02/sWNyf/Q2 + GvfKFZ8fvqcvh9y3YY34Kti0KQSU7r8XxJ25Iw5vVtbPpinncDDdHTWSTPbG5rssUEkGSs12OOlL + SooXkli9pUY7HcAPv1Dfv4/U2i67eKqtSULhMtn4sdvQdJHaewZb07fpTTXalHH3KoLu7nkn27al + 3iSe1ACUqhlS20Uq4+nkQJiomUVtqHjg93pQ/i5jsJEPRzbtaeiD9fzpCexnMPlKGqDPYzfQI2mL + nm/VzwZ+m8SjWL3LYLCKzQs2t+xDc5m80llwwgpmiahTNSWFN31v/gkg/lMGc3Kc01/9gXE+aThy + G6WfvjfjAuJYTMl2gwowhfkVwjajAFvVyfXYliYE+en7gD1B36XMwY8NNKUcB/P6ftZ6TPDVCxbZ + 8jLfT1A+1jB/ukMgkIPWz+Pz0kFJ+9QUt+ZLZ6d0M8ELPEpUNy9cuUxW6P6dx9q/5d/zMSokavBP + vmTzlxhyeU4t7LP6nS47+SaAQqpLup9sANZ6ZrA83yx6jJyLPqP7t/6rp0/3EVikWbaBk7aPlf+2 + JfOaBsLOSR70nHR+ujTkUUHbcI9E7sxnPOxp4su1WwXUu4hLOnujxiFkVjp5yO88HY/psgHPYO9R + hWy2cXM8hzYa08Qm8/XASnJ97wL468/9yXmw/hFUOdqbz0fAlElKJ7aRXHnVy9hRv0lK4T64QEFa + f/PleHN6AYvbCNyj8h5sI58y1k9uAN/3qf7TV8x4fTigKyaje96/xUNPnHD3vUQhNVc+Itdwx8GW + d79Yu2lLyXjYK/BGI506rTD0w+n2ntCYPh2yI7KrT2DeScDbsC5YbtrSTxfDXpeA+x1VV/23SG2U + gfPOKqnKiymY8Wzfodm8Q7o/PvSYs+7aBE9zm/zxW9MCz4DN3qfYaQW/JBFoFvgRTgkNy8BKeSjZ + HXzsq5qmJH6nJLS7Bq7nhy2+28RkPBEFHnZnFwdldEz5hD9X0HTqmbpfqJdcXmvVX/+nahHE88ON + ajRpk0/P8nIuRYxm+Pt7srC7DgRhwzbw5+88r2vT6WU7idyaR4dwJBpKluxoJt9MMaH7/Jgwtkif + HGbGy6cnrzFS/mbaG2AFOxXb6WR5bM0x4OV5j2kAomc/Tw6yf/Wjd4z2/WScZxf5Y22RbedvvJ+f + QQf3MeCo5a+Af/IHE95S5UA1vtqWbLqQAS5eONOUySObYru4w7Vf8U//MveKOuiG0kif12XQqaK1 + 5h+fa8prXy5YFEP5Jq6JWrExAJsuNYHWVr5jh2UNYOhw3MBNlSj43D6O/TCGJxcOqqARwBLqDd8w + qeFdAh5W5aRLl9Le+/DZ7Sj1FdeIFzFJDfDsAMUOfex0ljfXWl7PE6uRvQdM8ewFxsPZonulD+L5 + onkJtAeyCQS45xlxbGCDm8knWEuR0XOO8Y7gsxkYVo47PeX7shpAhJ4t9r2dB0ZNdkwwLHJGNbMN + mWD0eQ5dvxECedVzs8dvavDsBPLjfzY5h7MCXi93i/e81+p9NBs+msacC6YLUoAQPCYD5i4Sg+0U + t948PvPuxw/UfKRjT041vYM5u0TUamUzHc9NEkBjsWt6vNJo/Y7mrQa0i54U70Gbrng4QP92OuJk + +3x40xnAGj1yM8IHv0flJJ4eEeRFycAxjwvQh+ZxAGv/4315qr0h7cIOXRyloB638fppEcIMHd/D + F9/l8z6d7TmUUUKiju5lbPbzsbp3MNU/XLC5lm2/KIasQcQXBdUfoQH48VLIyNkHPdaOvNNzG+FZ + w7OtOtg1k1vJ7PHqwrMgfwNIjaJc/ckA+m9wpybjn/ESMdWEze1dr/yO4+nbPRfwbwAAAP//pF1L + l7I8t/xBDOQmSYYIiMgtCIg4E0QERBBIgPz6s+jnHX6zM+xlt53L3rWrKjc1XWaChDwYJH9cG+RV + corjZgwikcXXCj1k0cZe0zvRyH0MGzZG8ME4vWbRnINU+6sP2HvulmhdlV8Mtp/p8Y9PG0XKA65Q + fWzZ6A2Ikqc/CI/9QKQmtnXm7rsYfCqnplYatvqosTWBxC0qfCb3bJhdCeRgVn8XbKbKTh8vbd3C + 3wU5vvzcrwOhYrNCabQZxk3zjgbXOSkIxN8LdvgdYCvCHAeFs9pi7yYlOv98chzE6njFOgZlzaZz + nwB4HAZ6UMA94jE8Gn98kszkUepzBb6/Pz3uV8n+67D6WPpgGIoAnzrRYlIbTg2smnjCKkFUn68s + VpB7v4fUbdAN8H/jW4URI/wvgmCaz735p0fw2fwda8kurwnwTFsgSrVPorHWQQKCxzX3pR6IQz2F + BxVxkJuwfrP6YY3czoXYb+/YUZ/lMJbW4b/8m6Bp11K4H2SIzN4gSlNUw/K0Hy3kH+bJB/1SDcsd + vX14EMvRF+tDD+Y5vo8w5ekT40bThuWsNQ9kaVriy8+krulnb+ZQMHcjPsyMy6a/fBLDgWD7yXfD + nEphgez9446xZ63RtOl7JUi0D9aK/uWsSt6MqEaIx06/aLXg4ecIn/IKqG9igc0ab6bI/t62HV0Z + ZJue0YC6uDk299COpGo8GLAxX2+f9e8hY+i6dLAZpdAbdt0x+8P7P77t92kls2WoGwIvhqL7s5fy + jAr8Lf1rL+HhmdZjfBf4PzyiqmKnzlDx5Sy3hbjdAWpKYMbQM+D6qr5/+sxZhmGO//Thv/leFece + wJT/5dhpXHFg5rbDPB7cDz2nVQqYVPQidLpExqebmjgCO0YarM6dga8HH2XrVXoQaGSSgM/PT+vM + BRFjYH/DAqvV2A0/Pkc+NAO98ZUvYmDMmJGiObsr2JgfX7BiafBhsZ9jiqE2g3XUSads80O1Z/12 + xN+binC+qZqfKg+aTRH2fHh5FvO2FeuSrS/j1EF1OrT/4THWMhkImfWmvpuUjB1y1Yabn7bF52eY + pyC3lWeup5vfVTGCpV0AN3+MOgwUDn1nZwJ11WD04h3lgT4T2YDST5VxtEt9Zz62cwVlYQFUV6Iy + mvenKEdikK80TBQp60rrWkBLUxNcgHBXz8i5q7DjDW/Ts002zQ9YKu/H2mLN7sph/ItXkEwuvc2f + YBh0HD7AW3hi6rqorxd0YSJqkdRsd25wmx+cNfBdX2PsOkqu81RRWlgPs0yfQBvBFERRoEg4xtgV + 5qfD/vyh63HvY1xxDSBc+Qv/4o06l+AD1rilKVyO3BvrDpzBbA229U8/HdlnHFauP3CwYZZOvUw8 + goV5K4GbX0Q4Rwid1WWXZjumrdANrzK6jTf6xjjBboMk9nuBTIR/+v5os3P25x+AY7561GmcNhr3 + HCDQ4G8VNr91Vy+n8tMopx3KqBFG/iAKE2zh4JOJRDfrXC9Q5XOI3tdpw2sQzUoaiuAj5xE9M+5b + 0/05fiArCV3ypweHu00UeCSyheP6qNfU3XcJlEaL0efuk7HZZ9MD2sW8/Pnv0Z/egWyIflirOh8s + Vu8F0LnIJk2ql+MQTR3g/rSTHzSypdpZftlRhZtfhI+XZx2JGakqsJS9TZ3D4QVW8pkeyj07+Vhl + rwnMfC+u0D06OcVVbuqCtTQctNL0hJ9zynQyrF8fBuaxpYZr69nM5UEKA/PU+pJ7HZ0+vqU8DJsd + IsLElfpy3dcd3OoZtdxPAf70ipBTl8fWIb2yddULCz4LI/SXo4wHUgepCMc04H1gHlG0JhbxYW5O + Fj6klyViTodUsPBApe6tY8P0fVFb+Zx78S8eaioliQu6W/yjNvlOjKqOuoIHcg7Y7eC3nmdnVf/8 + aeruZFkffonkw+FqvqgdHktGXmtngmeV2dR3hFVnd7tVANsVLwKVyzAw/iJXMLTdiAa3km74eVBR + UE4+9ZhQA9LGXAVWxcL4wLY7Fj6SV0GueR58fvOvl9IPLNQwz8BWXb705TOqIqqjyPVB9TkzSRiG + H7w/vTM+zfoF8A79ioDrFnnTF+6wvF91Czd9gl11rPVxd3ppcKv3hKm0c9Z+l8N/9TaxTns2nLmk + hC6vKZsfvdQ9880Zrh/5jrMwrqO12n1yeLdQRN6bf0fE4FSAi8A9CXT2DltO5b2C+ZLM9K+988av + 4E/JJfxSssaZFK9yYf0tDgRcGA9WFywBAuo1w2eXLfp0y34F1DkY0IKqFpu5aRAB+Zo2tS915bBq + PJvw2dTHze9v2NTbXgdvyA/oKdl92Fy0dgtbdzzj5DIe2eKXBxXOtJ/Jvo89xorXwIP4bv6IlOr1 + sJLPJ0V/9ettomc0G1+3ha+k39PAjb56d6q4CiRnrcJqjaW6l2qHgPKYJ4SRdq8P/XHHw2vwlXx5 + i092ud1NuC/81ue8nANz9p4h5NoGUqPQkoieOXu733ZJfIlvymh2CjWGq6zG//zBXlRnBc23o04P + FQTRaF529j/9h2+Bl4lz8IIAaM+E+PZsZAI9PLctrp2D80rIh2X0XyGIIiHDfg+dqIcqLGD081xs + NOd3Ni+fyYaO98O+bHOrPi/E4MEkmgvZ/GlnSTQ9he4i72jKswpM8rDLwQ1FF1/2TC/iWbp7KM8M + 3jDmhS/7az+aak70JbVtsm39YFR82e1ofjs2w1Ie5xwon279t55BjCEpIPjttA2fA7AIs1cpYSND + 7DktrlduQaNSnX8G1vmp0UfQk1C5Vr/FZ8+L4Cx2NKzgz+/f9Ha2bGcNQEzzjEgk/+is4rsZxtq4 + Jwzci2gyT2b1j8/u/vzDVq8NmI3HEltmzqKNf0JovriKevytAqtrXFQAZz/EJ/XLD2uyU1K4uxYP + ah8Fu14jI2///BF83/jMKkxdqZx0vMfOZf3rr5zDKrww7FdUywRAOw62BW/4i2dY2SqIqovsSOv8 + ncJFmz9CG0gPK6NHM1TYEM6y9eeXEHBLSzBZywjhvJCB6n0F6nn53E1YRK9mOyt8BPzveZbBI3w/ + qKMWM1sv1WFE2/iRk+mW9bwT9fLP/6EHE6GM5Lu3An8tPvzxh3oRDwb3xz/xwXyQaEqFcwX0JG9w + 8J1bnboOlv/0HtY91a//+B7Ks8OOHgXn7CwyFPm/9S/qWF46sL/2l3wq/De/dx8SGHGPA7bN2zma + 7SJP4en2otioTQZ+zwClkL9tO8oFU6m7u2oGf+sn9DCzIpvlqQv++aObXgBLHb5n4ODZ9mVYK2yK + X3OFdI+TsONYv2EbHwP4Tmr8rSfV/ON+CVECI5mekudXXw/Fx4K7nl2oRhIzY+n+m8Nt/WKbz/Sf + vwkpV13pnx4Zc0Pn0VI2Z3xR+dWh4+HQKc0ohPjowhiMaZuZED1PIuk3P3iSeceABGQHojzDM5j+ + 1r8o900INYs0Wp/W4Qf5G+duem8XbfpohtJPk/3leC2HRVOeFvirh1/nQrIlPygKNB0y+lxze0Wr + 30oyTOrOxseD5zniZ5UIjK67hHqmyjZ/nrOghLMAa7Xt1ZLq5Dy0mDHTQ3V3o0WPYAjXS1fTJFlY + Pc7xtELr8dUJ6bMcLN0cFmB9fTpqkeFUTy1SfbTVCxoem1pn4lGbwf9jR4H0v3cUaPfv2d8tR0Vf + FrfN4f60Lj4vPH5shbxvwm+qD1Rtf7Mz0uhtImt4RUQQBY3NwF8rZEMUUK3uKWC/R2PCpuwSmntd + q8+cW2twjZPFh6g911K3qivsHIoJUI9+tIoHQ0VCkkyEjVYAeMMIQpieWoJP1ykETFlCA2pGJGKr + 2o2ARV36g/r+HVA76NuMXe8PHh7aXU69s+sxtndONkwr9sDW7ddmXZuoFnTI26TPdz5Fy/3C24j/ + wtyXdufeYddnFaJx/GT0kCErkjR1VOB0NGNskc/iLB/v2AKjlX7Ud49QX8yZhsr299TYD9YwC1gz + 4dIoPT3YJQOMLIuLfPp0sJNK54zvnfsKtXwmNE5MreYjFNqwJdxET1n0idgUexYQ6b7H8R622bIH + FoE7DSvUHFUOkPms5GhdJ40+T1IK5vscB+iAkpaMCz3Vwo5oIgJTadNwuWmZcHx3P3gZzzy1YFQP + 4tV4J+im0o+/YKGrB8sYVxgfgI8PDP70+X4IDdSP1MPH0D0CyYJHHq6ap2NVq8kwK4v5QHbM2dhd + L7ojkZLlKHvyJj3NR3UQ4m+qADBVNpGmTGQLyI42fEzxiYaVmAzi172UKOqVE1WHXQOk/HfWkJVe + CLaeQABrSz4pkhMfUDtzWLQG5YeHqcPb/k6Qo0i4fAIOGe4o4HS7A3j5wNMMls706eGNHg4xclQp + 9/5XE/44fRwBfEEBx2vnEvD8aYPof90ZBokY00L1FX1UFjOFKz486YmTnWi8vokKi6xtqfpgRF/a + 61js7Y7y+KBQwVme/TmALXNtenE7TV8LzQ6BGjRHetlVfiY8l85Gvu732A4UQ5dKgBvojFlK7Wf0 + rln+WRpE9XTElvrdZX15hRp87dYzvmWCCmTpt9OgseQXWmTwCaT3U7dR7oU+vaaEOfMLAg0+Eohw + zllHnS9DK4R7yd3TuzW+dcZJ7wKRYgioqm9nMm8HzlLK+DNgXdqFA3OjSINNUX2p31sxW/zHaqH3 + +Wb6ZUQ/0ZKcrjGS+7TEaSJN+sotXAtPc9DRO5AGXVTyroFWuX6xs1PYwAa6DyBcGI8d9Xtm4iFM + COJb+UPTOT/UfFPsUqhwpkaxqu+GtbB7G0pOc8KW0N8BuwYAwlM7bYjrvBwRqjAH9WHd9pzHLJoH + 2cihJMtvHI7RkK0P6lb//p+mNEo9qeP3gcT1kOLzqTsz8QFWETXPYsbmbd45LIsZj+J7jHHwNtDA + 0hAocKpSQqS3ds/ECbgWgIV69mc+1WpeUt0QhlRIsT1l72jl89mGL1BNZP87p2xRR5rCCtsp9d6T + 48z42drQQ/sr1uVgrmdDVUVIx1dPkCTk2foO5gqp9UWmp2nkhxlohgtT6/fB+v5zzH6pLY9Q5M+m + z06+AMjP1lQkPtQL3fKBUYk+bCi9bovPHQ8s+8M7YId8jtPCZTXRj4GGQks5U5+4DhAnvTahGcRv + X7JPfs0XdfIAvpn6RNrzfMQa30tg8agojp+jyebvx1/hh8sJPo+sqvs/vJnJ4UVNK0uBIIRIBOcq + eVLnpsps7ESjQsLh8MB6ri7OVFa/GHDX3Q2fD2XGWJGwFTKpeGIVxU9HSl8/Hxq6qVI1MxzAnOWV + gyZ/7L21zM/Rio1ZhofuEFG/tnSHmTiy0V/7joV4cNjwDR9Im/gP1uK4r3m9ykclZk9jwzO97iJb + rZBFR7rFp6MLhwP8wf0DJvT2N96daJTwKvsvbGSNPIzFY1fCrb5g/zL49TwMia100POxocd3Z+m0 + lw//8Mmprq+M8PE9hFFUoW2+PhnfR/MPwYfYUOyVvE6MT57Cfa56+PqbdF3IcdMhYzia+C5bZ32+ + 3k/2xjhuVH95t4E1Z0EG928p4MtOXdkSF4oGL9pBpc8Kt3Vng34FR8q/aXhbPbAeHqiBSzB4fl/U + /PD7HZVWuf/IwyfCO4wYB2YZvnw3wuZjaIflTF4zPO8vI73YyzIskH+viMPqCUfcSWXMt8YOxkK7 + 0pOdjtH6DUqIvFhMyedwGcEqekoCX56V43vk+w6PySDDUwj9ae/dEFjkd2OgT7PfUf0tvTPxqLxb + VCefLz2qBasHMz8XyltefBwN7dVZnE9ZondeDvgeh5+MN0dWIUOFoR9v87E8mz0Pg0t92G6deIK5 + Ol1k5KkNxPqyO+iCvbuWqDEPlJ5/j6T+4uciIkhNleJQo8Nyh0SGZpC8cSzxqS59ZotH7v6s4A0P + nTXJTR7a3tuiYZn3GdMfhxJVn8OCb0bAZXPEs1CW5+tMk1EtwBzttRENrW9g21iNjD+hfQCv2465 + +Dm2TNyL1wZORyOmt3cTA/HwEBp4QkeNHm93zlkL+22jurRu9C5bvbNqA0jg991kNPH81WFHbRTh + Nt6+fBySaIm/gYyMtbTwRV1URzpQasIvzUccnJN7zSpiyUgzLiI9JKasz4nIXLRyzw89GeueDVe3 + qeDoY5vwwsMGK3pcTNT/vq/tFi5bn+/IbuBjSk70YmPRaX97w0cbflK7LfeMPFgE0UspRHr6IrXm + T2bgQrcOK+pv9fFXmBeC8u9dJ5zy6SNWfX4qmoX8jbPvL/7jP4Hi/C4/8tbzwfn6xtVHv3fRY70Y + cmc+M1uB5HxF1H5x7rD6al/AFpcfemKHPlrW5+jCt/DtyX68nBzB1icVhlLwwH5luA5LfkGDyjI4 + 47tlf4Z5vfYqtB5ZTtrD3hkk9GMWdATO8vfb5yNR3BRu+P+Ht/UaXaUc/tUz+6Fc64V75yXMFKMn + 3JP50SxElwo+rsCkDlsjsHBPz/z7fzS+NF9HuG2Kp50UkR4L8e2wNAtnROO8pk/uZTpCs6QNaKrZ + oAHTvYGtMFBhrAo3fGKHczZ/4JADLRslHLzab0ZLcGphSewHNnKTz1jSni0Y39w3vgqLA8awFiq0 + 5Ru+fGt34JWOVlA0xRGf967qCAf/B6FlVAY1W9VzBLzefrBOvl9S5MW+/j0Xt4BlQu9kH4efaA3N + mUdE2TOqLZ3qjOd7GwK3ie9Y5U5iRmdVkkFNtI5a6vcVrZcGbSd7b+i//mrqKAM6U5OqfK9mop1P + HLgP82Ubn5POUOGKcDSaK8Wg+IBFuHkBGHF0oIejs9PXuEXuX32k+SexHdFRHio0T0JHCp7cHfaQ + 8Ag2fKNbvjuCfPdcSIo+oM6FqcN8jBIF/sU7pl+dzQbYx/CWPzSyLweNzR9V4SA81heyWm4PPuVw + 8NHl6H986TqtYE1yX4TfI0D4QBJpGM+/UYN991zw9VDZA38/zxx8pCpPfkHfRuyxIy1U5Y+Dw+VW + RRu/CcGfntj647DYepowUD6cvy/Pp4xqXubCYs9J+HwySbT+1XN7Z3D0FZlmPV/v2IIqFL/0kHRR + vbS/pQMfrLbUJ8/zwLszSCHHFZjs5XsL5sFQeOXUSS1B+ww7c3uZCdyxZfbrF410/nwnAUwGRadO + H2z3o218qRdck4i3+aXP3mHxYfmDAg1aix+WN+tMKNVfnxrJrczmk6bOaC+eNay+pKM+bnxnfxh8 + GR/sMgLzH/891uoJ23lpRaJ32bWgMKNow4dyWGij2ygJbzE9F3wY8bkCDGjus8JHV/HsCBBZHag8 + 7UcCrfaHFZ/VGFWo6v2tf2w9eRIBQUxaigtk1UtZVQk4Bz6lPg00wCci8OHLs3OsJURk69uwfejm + +xuNJve7nVG85Mjw5pFmzXMa2Pv9aKH5tMHGH2qHha9lRks4Axxs/EOwvrOG9vr7SuCmP1ey7ciS + zvmdxt1rYYzleQ6FW9r4HNl99Dnf2RU0pctML9XMItKEcoEoPmOKmxEOYwLs3z/8yuv5FnW2oRII + VY/zx0f4zuY6Vl3Q8sEBB5xCB4rbgMDriZT+vPHPqXK8H9xla7/pFcVZ/SF39/dhvVCncTEYO22V + oSVoOlY9+brtAF5cSL3DG5/vc5bN+C20IHuKJjWCxWNzdFyM7Q69AR/Yg9R0h08qbN6jhzXreRrE + 904Z5fVWJRgfTuLw1z6YHp8qNgxlYFQty1xxUgfS056PI7a7TQo068rEh9Q3I3pBnLvPgF1Sr100 + nTczYQV/fOLi3ppsbL5JgD4olbZ8+GYzZ0UNNHy+xrjIJmde1EiE77waiDBPPBhtK7XAVG7nQeTV + 1YkRYB9WvvGm1x+ngrWx7w3Yp2JH3aXoAdOvigGQl19wpnwKMF7v2Ea91ty39jtM7OcpAcOL315d + DAy2PPMHp+Tgt91Sbhq1eKoNBSl7sd3OxAZA4qQ+h0XWtPghIT+a+nFp0b98pEEFlp3YE2iepM7f + 3/0dWPv5kwBJVt4eiwd7ELn+RuC3SAWKb13lrLcl16CXQBNnLJCjpW5+4R+eErQ7HIb1sb3BtYQr + oLr0lPQN74jywoGNM+Fksdm2Akv5Vr/Q53eD4szqEpYo3dsNdq0G63wAQh+d8NxhLXzetzsRUxc8 + xjAg+42vj3e+JuAirhne4rP+N79HMv/+8f9/45fxLPFXcGNsOR0mE/r8+prkCxMdKkO1gM461zSU + 7SmjznLLFV+zV3zC08GR/urD9aMpHtqPI6MX7UggctMHtrvO0hnYzxDmF33vL+qi6uvVmlf00Ogb + Y8mz9DnY9T948JSC1FZtM/HwOmqw50Sw6eNGX9nOVZVdLpb08K3dWjhklwD1OGUbPyf1nz4BG/8j + nJ1YjvQX36t6uuKz/DNqob0DGSpIdXC013tG1fyi/dMD9uMEszmcaxF+aTFS0w97Z4XebwXnly1h + U0NVvdKa5mDzr6jZXmxAz8X5AVXpHVMzSlR97Xk4wyhueaxq/Jix2/7lwh3hfILWWxvR7P2z4Isj + IdZPvsDmA2fxEES7zB/UxHXWyzK00KEN2vyi3GEsElp4nEbmc9vPqyb3HXTb4uTn8UhYv9tZLRSu + ofhPr2+7YbbP8xMutnqx4Vf456dhbHItmIOVJWj7fsJnTTqwRbYa+GZPgJ20HYZ+fbMOBdf1Sag5 + 9fp6v+9iWH2dFz1v9VPY6amBvKuMqWeBQGdmGSjIGt82GdRvz9j5khlQ/uU3MuBHPLBBTi3lRxMF + m4fOA4JQsxbZsyXiw67yI8m9/QpQD7KCi+Ar1dszLCn0BT7Z9HwUjRW3QugI0MLW8awAusUP+mY4 + wBu+OMKDli7S5dedesTcbrYquxx87MX+lz/LRPYl3OLL5xTdYz95Ekd4UFWPuty9YpSUoIDFS9Sw + /m71QXRPago3fYLtzhyH2QbvFd3u7hNHpxcb6OSQYH+YKxefy8fHIV/LNiEI982fnqqnsyh2yINS + gQ0jnTPif40VbHzbFza9xIgSmLDVV22LtzwT+84sYPqeaqyu79XpXyoR4au7WoSVF7L9fmrAtvvU + +KAupbPcj0cecL0NqXqnkj6bTf4DUv3xqVW/rWxtUO3Deg2O+E9fMaUZ5n/zdwyf9UBiGpt/9ZIo + /HwCqwhhCZO2mfGrGG0wN4X0+PNXqHr6fuo5V5iB7hdnoDiNds5vwy9QYSvF6UWFjM2PvIRIWbcd + UwDVNOrSDhx87orNlpkZn5/eOdrigV6gYeu//vVtwU7YF9TzVzXi329fgaIxcvjZlkY009tcordE + b/78kRImxPW5gDnoXn/6SO9v5R4CmCmZr2j3NCNX9aIgtSgSfw8kx1k1uDfhiIaQunffzujmj8JM + gmDzfx4DJUpgoAEcPr4S9GYm2K6jwLuXqviAI88hEDYcuH+yk893Mx02vy6A56ZwyIPzEfgF5STC + qXoQ7DTEyVb3ZD2gaPIjzdLrBNZH+/mBTOIAtWZHZ8strypoq4Tgs5XV0aofUxX2h7KiN/1zyESL + Av/v+6itP3G08mk3QnFiwBflO4wYqvIQ/PLzlbrjI2QM338PmO21dXvVdY7IhjcKXXke36CnZgId + fxrY+Cs9W+NBF7/x/EB/ekOPHyMbF2MIochOGHtTM+nTPC855O2ftunF1GHD8BaBfto96J9+4Lln + N8PZgNW/9ouPKnFhEj81sh/VPhtfxzsHlc/HxgGfaoO4+VeQCQmlmmxPEVMjxYZI7hCOsQP0CfL9 + CvcPLvFfkdkOM41648/vxQaexOEzqKcRdpF9ITz/Xep5kN0cKoCLqf6rOGcSQsTLdjfx2MbxJWLw + UpRw42fYfvQSWLwwC+FT+1DylLsr47f6Dza8w479zaJVmE0Xasl2YsXvX8NS0rQD6d5q6PG7gnra + 9CkIP/aINXenO0MaMgXcDkuOXUtw2ZqpWgyiXj7R++s71CsqulIxj1ShNstCxozp1UpsYLsNXzTG + z61kgY2PUSPTkLOWUiRCvhrO1NDjvT5L7CnDzR8nsnAqMvLbGy4EpDkQNb+XjIWv/QpJMO+wnS+t + wzb8gdVZOvo7DycR+YvHwxjSf/VTgEj9IWv6HKi53u1BmhPPVHaPcaXmp7gMi/wBFURvDH2AYeDM + 6+XSom9ZNYSVzM6YZsD4Tx/i0zW/6uzcdgGY7nth45uUUU3dVns/QbG9Ci3XxPm4IghrjSP0d7hE + 9FM/KpiE13iL3zxibhNs9X16U4uIBIzNtwj+xh97wTuO5mhvj3CQgeRzPfCdf/VyW7/x58wY2Np3 + fgGZPu9p9r2L0WTHvxlOz+PD/+F4ycb1cm9hCsIQH5tYyqbfctAA152OG18c9eUsir8/PwMf4PXL + CNe/CNj8en/v7ffZ7x3IJTyfpYaaJ1/NpM3/hnIa9/R0daRolo2MQPjgG5ofcFfPsjVY4G89ARfj + j9EsZiKk3OeG1U0/rfOxVtGfHjneA1Jv9c+GbpPcfVGzz9nqq+/8rz7Q0/nDHJqQToURN3XUYCGs + 15tQF398DIcJSRhbKvZAIEKZz/fhoJNfWCroYgY5PbpXYdj0UAx/j8OXyDDSh00P+1CIHAtb7lV1 + Nn46/vFh0jr7pz6HncvBoXUNnG719E//IZCczkQQSqIvQVp1ykkVS+pfHgFgmnyE//j2n/81RaEz + ApGC3ld4343EQx0XECTHM9ZH8NOXeChjpLpx9zf+DvMlwoNou+xWa7YdX5T/uFA6F3d6eiw9YJmb + c6B5NQV2hJMFNv1pKKGcXHxh5sJ6kZ/xDzp6nPnKiUzOTM11hsYuqf7Vy+VR7RXQeSLy+c2PpY1/ + TKDyHWXq03dZz/ezDOF6KxPyb/wvAlPhcpkMUp+TxmGfWRUhbuMrqVLxo2/rJSrUL6VNi2O4OPP1 + IxRgmz/sb/G5tpIbwLB1a+qkRqCzi+YRwP1c9udXRvN4tkOYndsf/sPTsTrdFcBNj9RXXpMPlu35 + O6gl94ZUoLvU9R9+gYCJ/tLJ73p5yViG8XHb8ZfcrqCu+iX/V/8MxWsc9rd+tq2v0UuTtPpcre4P + Fi9eo/HR6YelMjkXaG/VoYftc9rDHfxbP8U4MtuahlmVAHfvKOTH+U+w5M7VVVJHtPFpXyc1+1s/ + mC3rhK16NfU/PxJ4Cp3/4et4JXkMT0vywhbtLV3ox6VBEfwq1PTrFqxlWxjwnKHwHz9ab0uswo8j + HfBpq0+jmh8TIO25FGPxvOjsNacpBGMe4Wi8+/WSnJ4x3JWaSV2roU4XSNqMqH9K6dGpcofJUM3R + Vm+xvfGXeaGJCitYrFh/FUI05/pDg+bT2vTC6QcWmjUB+Anj8d/4Sn96lXr6m55fycRY9nyM0NGT + jKrLE+iEz2cLWqtyxR73MvWVT0uC2PsYUf92eeu9874YyEAuj3OxKsESJZkNs/dnwQZ/TJxZLfMV + apSLyNC/m2HiXBzDzY/FuJ7fgBWZ7kNBO16w0wctGJPTXoWbftr8Hja0odansE2eAhH9g5OtTIEt + aKrVoMdGDMF80qwVbtdJYa3M+4imNyeGORwT0q7WCGb4mkOEK2NPE/kOs396ofLUHz6GT70W/Pqu + wmMp36mj1+vQmYvGoZg4Mz3O3Fqve+WjgVjbHX3BlS7OYn1nFZ5flkT/+PdYhmqIzvtoJIiba7b8 + lrP6/7mjQP7fOwrUWqqoKTlmzYLo08LaFFp/5vd7naiO7cM54Q7UWtoo+8nyRURAf4z4eE53YDxp + ooheMzapWZuqw5c3N4AfzxmpL0yEzaZw5KH9Oqq+gNCtFoJv+VDk2r+QMQl2rAnJEqAbMwyqrsgA + vFkvM7SrOiDK5+pHy9ILOez2txKfg/PLWfQ3auHJUk80buEjI+FJ5uHlDa6+uAONM3mxmIBbsFOx + BidlmNliJiCftxWp5TXpzEhuGjonxwJby7QfeqLFPoi8PKbqr1L05SuTEHKw6akHugyw2JJEyE6t + QPUx82t2eG7vdu+sGpvAKKPpCCYFKiPX+sshrsFyEe4xaHcbQ6tp5YjhaRahC6MPVTW7rBdT1lZk + cMT2v/a9j5ZKqA0Y89uezepiR0tnTARCyblSp36fIvZ9flyElTGn0dk6ZsLwUGRomfjpv/vxGUmN + JBSwaPBEjzfKDVPF9hU8cbnrL/34zKTTT/mhhzgS8pmfcGBTwfFKeMs7/Ix9txZ1/qlCGIQS2aG7 + 7sxlS2bw2q0jdgPvM0gjZ/nod5B/OKD3J1jbnRmjVzm8sC+uL2exh6GAe/rTCEuTTl850YrBtiGF + 3lWQZ2IdnyFcdvpAzVd1dwTrAmx0OHKtD0B6yHhPnWLY6NNC8eWpDdP5NRowUbvW34VVyCRRe5qQ + V9QIp4plZGL0cQMojopNgMnO9Xqv1hkWwVLQzI0MIFA/ahH0IhUfG6YC4e6/V9DT5UOv19HI2E+o + ISgfNaPeQe3ZsqNlgJ63W0VV1Is1kc8ThPsaGThjvJIt5WTyUF2rGz2rfOIIsRfYMH4mV4o/WQVm + R7wV6HCELY7Gimcs23UqZIu2UIPdPvoSfMsUHWXLpJGoUbB4kbtCj08TfAPuNAhf8xbCmM0ZfT70 + R8Z/y9VGbTqONJcLGSw7FaaKY/xibEtFWbNW0xM4vJOQJrJm1ystgQqY83oSIE28vhyunAtfNr5j + e9CvjInrWiHi/Qx65s5O1qwvJVSuBVLIcr3/snG+nxok/XyCXXuyI37LF6TJ/JMeteJdC0ZeykjS + 48CX7+KunrP4YKDvtZWopTKqL/1Ba9EovGP68rZdDP2Xqei0KDmR7l/Xke7fdwCOXfvyeza0zizs + fw3MYZPh01qLGRPqVIPH/nWh9pbvEv1mBgQf7owD7WJumxpyCAGa7vihq9ShpVaHyDomAz7svrou + vp0PQa/zolKsm/qwvL+rhZ6R+sb4k2mAb9ykQlxvPbBqoXSQpvG7wr/8A83lo6+gOLTo86Jnst+d + hGj0kG3DO6KOPxbDr2ZuEcXo2Wo36s3QziRym1tEcdST3XLkamYcbQgEL6+wG8QO4PfDncCg2XYg + VONlmLlCScH9RF8+e3oDY7s+ecDOsW16LHU9W9F+yOFN5MZ/8TxSOeCgtKAdPkeGP/Di1ajQ+gxP + OE5v2KFS4GtQ5D2NuiY/D1J6nxPkk0nH/uhFTCAXkUAchzd8lA/1MO1oF8Ldy95u+bvb2Vp/Ty08 + ZQrFx89OyhYl4Hhlw0+sXl7nYetfgzQfWjR7yLNDlA8W4avsXz48iu2wfD9dB59tPmOdPo2IPeJb + CO8hPOLjR744gvBMbJikd9HfvfhDxtyH7EOKLz11IP5ki6rEwb/8boRon80puScoLtcPNvTKBoQZ + ex/C+CtTc61wJL2YReA+QP6WT0edqq/Mh3j4+DQ+a6Yu3itlBi17Meofdwqju754KFFQOPiIqKOz + U5ZaENnO1pPTm1FLuVqokcUBu+DeZT8kLQrq1CtH7dPs1pK+d6r9F+4JNrJycHj9eTL/4aujKZit + 8aJ3cGfcFHy2XnU0azixEOnuDj6PUs5W1wpW+JWbiR7zVHTW+goq2LXXH375/V6fPfWToCrfXagm + ebuMOcEvBXVXXqhldjn7xrzaKtXKcaTXRYctw2OVwXX6UWpacTIsf/g/fFwFa/fHks0cyWXYjhag + 97kPsvV2ChT0rn4NNotEG3j9iQ1Yd/BHFl6H0ep9rzMy21tOdomnOmLmSS7IJKD4wtZeUo7lD075 + faX6oSky8aH6AZzRwyRQLlIg5sq+gu/Kd6hvi9yw3k6pDGXjneMHGz2d54o1RdfsFGJtuQzZolrH + EFH+0VC7dUNnPgV0BnLtXvDt8Un0bqL8iPxfqmHDuPtM0DS5QUb+NcnewyobcaJUUFb9jPBbfIgJ + uOTo0HE5ToW0Zfzp4AVQZfczvm/4Qr294KJQ0Y7UXLPemYOrClHhXX0c/Vp14HkQW9CMbu0//jBN + 6777w2ec9OsCGMunGOz2e4/ar7KMRJEYGlCmx47ilrwG/hr32l+9o+pW35k3GiHas3Kg6YaP5OtK + CfxkqUWL97vS58tbTVAcHme88QuHtZcPD94vN8a5m4WO5JSusqfCJcEJ4rhh3v32M1JMw6LbOfB6 + /Js/kIiASL0OoqZ6lRX4XZM9Ps99EDHrLBF4nG57Aq5K61DnLeZIqJWORhvefA+ZbKKVjR598VKo + z2/+NqJXqvjU3fBtvs2ajEan21FnFYNsvU5dCQL/a/zLxzkvrRxt9ZnA8luAOa/rBmiy+PQVbW+B + 8c3fCGrPn8Lf1oEH1rfnAqY76GP1murZku1bG37ET0e9c3/QBbF/lvB6GnTsgQ6AJT+9LPg75Bdq + SnemryV5uHDPjBBfSUfq6Uz9Bg7+ym+OtgF4YLIOOtzu4POypGbL52mkUG5/JT2fn1O05Pw9h4E3 + hvQ4P/N6reRSg/PvEVBdMI5MSENXAeR6v1JXrJq6A9LdRGZ0bf/VXxHZUgP11wgIC7syWmO+ndHr + OXRUzbyLI3zufQD+8Mz+XEk23V3ZV04BXrBKw9vwO88XCMlVItiKdxno87YsEadbBGvqTQXTX3uv + yXzBt2P1qSfG6yFSa2FT2ObBEffXKYGUF5G/BFU7sOthaUHCZRU9sstnOwRahugf/+Dnga3GvMhK + FC8uPvJWz9jDJDH847vmGm+nZULNh/HnvSMgscJhOZjZqBAte1EXJ+963fAP2q/3HZ+VmwQWLYxM + WHnZj+x4KXQWdnylwFmlH3X4oYjW/fWTwNf7KP+r34SZ1QrPl/VJuAH39ax7YwuU4rLQV2boYP4c + gwAYmxOuKYsZSUE0NfCTiW9SMueS8WrrBFCvzw4B9fuUEUxXFTxxeyGzNyXO7IOgQc75Tv5+P1rG + VglhlaOLrww2dEa1uRM42LJLvnFfOSsclAo+9X2ED4V2GMbHbfSBci9v+CZFEeDHWojBuPgR2anh + I5qex6mFG//HedUY0fqGjgVZ8Yqovgf98JGFWAGCp57pySnuw1y9uhJ+fZJiPaRtTfDBt6BoJxM9 + P3tFn//60+GXQ31VN9m88QnF7VJEj9roO+I8X0ugO2JE9RS/wXqe7xBu9Yhu/G6YyXhpoGgWR2q9 + ozISCgxSyA+3gqCHrkS0yqMG3rlzQ6jcfwbWYhjC9F6dqfnKQrCkEVeAu54WNH1HaiYKldv98Ut8 + w5pas31ahUCI2WOrf1YmxMXoghrAEjsb/xC/7i6RfymzqPGZa7a1p0Xi23P/y58z9Vtl44PUoJ9l + WO5BlCiXAhTY9+o3INwpz+GGD9hPD19ntUmXAja3KbXE5hnNs3ngwFaPaPxWzYwX9blAKT/1+Jyu + STQzmq8wdaKJHk+5M0yzLRcgndOOZp9EyD5a0Fdw45fUyO4GW3/rV4XIPzB8z5/6IM1Lp0CrS95k + 3PKbldoQwCUOPvTeGg3b4nWG4+JGONrmbxFcezuT8H1Q/S/fy9lZkcEAR2I9a+oVgasGbeL6NOV2 + nT7vetUH9J0SAh5y4HSoepYA1pPp80J0zxZVrkYYyLpKRhOIgCXezEEzBB7Z+/HiTGkkFmD5Bhlp + +33qsLNgFVD1JAGflqLVWe7dVUDtElN9z+uZOL8OOWj205NMwTVkizFBDsKD0xMp7it9rF5dBW9e + OWP9mFzAiqmigRORP1i/b+8yulmS/ukF8gv9hf3FC/hd4/2WH+96yvbEhu/aQP73e/o6S/sNfSW9 + w4psb4Vk48cCD+BX3xFjnpMjSnqjQxjYgo/e33f2pweh6mW5v2/DJVsSOS+B+dIaqjo7PyMl4oki + Jetr+5lkIwW8iaQkNundaM81den3AcbH7NE0XXA015BB+K66BrvfrHP60+Z9LMfvjB2p9Rjv+UkA + wS+ysbbYR311vE8Bl2+Y+WjwtVqy+oOJquFnUsNXA0fMYG1AJlxXnF+NPlr96mzCjV/4+/xZD/Nz + 2qcgOsQI4zAbB6piedxv+E29VNKB8FZ2K/iI385f+s/NYVGvzNB46i9fEn29FocpTOD+/EsIU9s4 + m8Z2DWBv5YQ+MoHpTGkjF4bDLcCn5rhkw3AYHgCn9g5v/ghgL34NEBSDGmurRfWZm/0CWsfFoKft + +4Wfd+YAuEUx1YfGHiSJW2RoCuoFZ3yT6mt1LzogBMqKbfYx2fzPTzl3FjVDrdDp/pGJcNPDVE2S + KVozLu+gUOeYJg0gzjCsqoh6a3/C7jbf7PIaIYjD0+wrPXesJ+mjPGBvNCZ+laszdLH17qCaGxe8 + 6Zt65UQ1QYOfZNjpD9UwbvkMd64VEOXUm5HwypQV6AuvYpXeEdv4QQ5PmUypHlKzFsb9ToZmWPC+ + curb6E+PQbcTEmp9LV9f1bwI4E65tdj339uLT/TZwfAnSzj+fb81E9WhgqF1e1DT9eaM1emcI4Do + nZqe84hYcOFVOBm/Cp86gbB5KroOvmzvTrU1ATU19MsDmvtb6Es7ODhD4s0QwRf/xNobatk/vvK7 + 4zc+tuZzWGGeagp3JY4/VZ8hmvXsWcItfnGu7jTAv2vnB9TcvFA/el1BV7btCqE4Qqx7cgVoLCgW + pOG0x4aeGbVYf3ELLvzeweoL+fUifQcIx6ou8PntHZwF8RDCLd/wwXRO9XJ3Zx8922L2v1chHRjf + jSM8jI+B8LPf6/3df8+INIZNdaDe2TLcz/F/eqoMRbbptQDdmgxTr7889THiohWBzIFEjvRvveDs + raKND9A/f4dx9j1V0D2448dj1sBa3yYTRkHu/ONja1OPBdCJeMbPp+CxJfs5HfDd746wuNlejPup + HDw3c0QYNu7ZxsdU+Fdv8m9mOeLCmTna/EaKiVNmNMwPPAwaK8XhcnGieWIvHrpfrsHqw1IZq9zF + QKv2BPRk38/Z5OzzByS+8aS2U5WOKFTGT2nHT4y3+HfW/a1QoHLnZnw+N1HdvRxXVjY+Q8ABfhgL + H0GIHvF50yNjHq2T1FlokIcz9lLu56zj/k7A1l9qb/4De+iOC7zi0RNFW6tBCBPMKeXp1Gz1S8zY + P71KOw3bj7liS7Yn1h9fIrv3LAxLGrqyks/giVV+f9dHVXolAH9DD3sFkxgbDkMK1JWbsUl6oZ7t + 2yOH2/xQ/SPWzjifPyZ8RoVCcVTmYH6d3jP6G8/kyi/D5jc94EMMrjQD6TtagFNZaO/tbgRWTRPN + w03gYJGrOg7rQ1jz3W5nwU69cVh9ajt9evkHEXLzfvBZig9g7WujhH/6NCnDBPzzh3dVmxDhT1+r + b2NFEfAuODo0RcSe9yBFqXOZsCHaSF9H4ITwrZ5OFL/4Q0Tl/Jjuf18lwTgqIRiyXamhLCcPjPfk + yqY/PwyV3wu15rfuCHGudHCbT+qYYx0t1/FpQawEur9eOwSW83OtUD49PV8o7X74bXwf/EZ8o85j + OQPhkz14SPoL8tsvqsF8W2Dx1z+sZvEtY7JbKZAh26InO9Qd1nKljX4g/tCDyDms2/Q9nKxdjb3z + fIpmkGICtnyj+AW+w7TXjwo89ppMD+upc4bnWGjgrz/+/lVFC8567Z9fK1qxWLP/I+1KupWFkegP + YiGTJFki8xwERNwBKgIOjAHy6/vwvl72rtdPeZ5Qw723KlX3fnzAgD+BeTk/7YYW0TSCWEg6fO3U + otiU3+UnCchrSWghsVkTP7PA0mfhP/5OsM72cGBTC+tsysczFy6ttDCRSHB5XClJfZGBauheyF+8 + WZzfXEHlr+OYLRrKd+0+ackFPNEst46ny3h3wFKQAv877zN3S8GcMHDn949hZhs+gO07K//hq/Uh + hxJcVOgScytDl2a3faZIGsvY7KSnu2YxX0pdJl+wEr/VeH0XESsp0T6wF7ezSyz7MMP15/rY00lV + fLI4C4Xz9IlxUK7aQH8F+AH/HVvEGnmO/sMTWOYtrKX1SaWOcizBKrMpSZ/FBrbJYkMY8CqYGX47 + uKPkpBu8uM2AZXEYm83MCg8OqT5iD13Kpiwu0g/4dxiSUBzGgVxnUsGdn8ylzhvDxA9Yk64nYSOy + ZiSUG8YAgt/xUs37dniwmVkcQP/oLsT/Npd4iU4MhJY9jOTEC/qwNMSVYZOfObLHb5Vb7owBz6YT + EPsKtmL8pGPyFw9xhCmhpJLXGY1PM8Be07HN6sBDDe0g9QMBK/LATZq/Qf99toKLedGLLVndH8gc + Idn5oTHMxxhskETnimgfKO27aiURToP2xY/gF6n09u3Cf/xAT9ekobu+BIOZqMFR5feGtNZiJQV9 + hUBCuqJut5cdQPDJ6llKZT1ehlTL//FN7+KS4YdTqZJW8C7x6Xerhp/+HhJYk3rG3q4PbOBhtxC8 + oT2/tRdU551PwKAgPnGOeULptegkac8PxGr9x0Cnux+KOz79Fz8n+y5VINq3mqq+qFCWmUsJ8m+d + xYabjnvHb5Ydv+JnwqptvYtR6n7WX/2FKOaZAXPy6ixYHb0fdmZIml0PDyD+hj55vutOXRIn9qAa + v1us++qkTr1/glC/fLqg5g8RWLbnFqK9HjaTuCrp8qfn8tVG5++pGwC9Ce7y93kSvEgw7PxzBEK3 + XLCBD2qz5NZphD/uIWKnY97Njr9zNARJQXS1F1XyejLzXz6eD31kDJx+hAmcW8PBTgGPxY4XA7gw + oYjv3PgFr11fAJyCUUDGIKf0+PM2+PoWDHY+3uaOF2Mx/sUr+fzsmrnwhQCeH3c9OJjILIT6oVsQ + H548CaR2GxZeFUvoO/UJ29pE6Lo//08Pm+EImni7vU4eEuDmzlJJUbHYdlfBxybWJBqaZlhZ/A6A + d6qfRGPNGiwW6jUAIhiTk3JL3EHH2Qb183wKhD0/L8ZajzD9/KK/+lZBH187+csf2JuUbljtu1RD + v2JMcoJvP54/qFzAojLuTA/CvVlS7tr+4zuLz5bFnx4Fr5UWYC9XaPzvvNZkZAJufllFH5kLC9EY + YSIXiVAsv6X8gb0ehh8W1QqWrkECpfxmk1P6yJt1PjMzzOVJwQ97neNdT8rh8B5ibBk/COaCSXp4 + Q+GGTfHMuFS8MwyAJ7vDJ7z9wCo9vgvc888s7PiS+EfkwcBk3ySPgvM+A5yt/uJjUDVEccdLGrWo + sx4zca9G2ayeqedIjPuenLpHCKjo9SLY/WVm+3mif3wIjeZ2/dPnG9YCSw3L1Erxri+r0+srWXBf + OLLrtUw8S69xhvUGmV2fVFRiicMH7PVUHHxbWMx4lkuoVU+Cg+ywqossXBMkLQImf3rdnp9KyDur + MQNFImDppL4ESxErgbg+fZfb8SRINfTFjnXT3I2rYg0OYmdjXTxMA/llYYUkh6uJB8MxHt3mzCL/ + aC/kHjbPgo64TMCu92Cs2w93JuesgreeXLByujh0PR7qUfrzLyuIe3d7V3YCNtb5zCgxP3s9QJ4R + Az8dUZnNj2mK+wo0S1zPg0UQIIcuzaDxPqp4z+fqFvp6DR9lWZJsnW7D9MfP1+/I4uuteoPvXt8E + 5iqWxMxHWEzRKdz+6TP2Uvfq7xW/LCTMDQkO1yiMV6pfM8gsYAiWvR66enrM/+VXYkEta6b0a5V/ + 72emMUDudmHgByyb+wqkY86CvR6Uw4N0+QTCrn9v1aIuf3wMh7A14vXTcylS63Hb+XE3LL950GA3 + SxS7Xj6oC3OXWbjXv2Zp5uxiXK4PBQrq1hE1Sy139FZngw4+bEHZhakrfO+TB2Mh7fb6fOUurTMy + oKM+R5QNc8X4dDXx/+koOP7vjoJCDRWS+fSskuVEMhilCR8c3OsMFrA+H3Couh57t/HbbEf8zeHR + ZRTs3y/fePs+Wx51AvBn/hWfgLBxYAbGUzWJLN82upHunkP/rl2ILD7MmL99jwx8FsczNk+Spm7a + 4EGoSFAkeoE/YOnvfAKuijXhpzwazfTCfAI97Hs4I3AYlm09Oeh6mUWCD3UZL6GzyWh5sBp+6OF3 + WDJ4aEE7aC984a/3YmGKxwM2aioRR55BM32R/kCKxIg7I5rp+NtuhkQcLieqd+QpzVxtv/Pl4QDe + 5fewiLoUSk4MchJIkkyXR29sCAS5Ox/1CDbdmhQ9DAonJOrzFQ38YZ5YmHz8DscUsO5Cv7MEBN/Q + ZsEdu2aDqtwjjkvuAT+XK6VsdHfATVt/2GoHKaarvE+xYGqduPFbVrmH97FQEY4j2ftgChpuoYwC + X8oCUQjthm2kUy7xB96bOVffhnk5yTkqt3Qj+q2vXXY6th8Ug8Yk/tn6NMsm6zJ8ZfiIrfl+oMsN + aiUy8S+bJz84DCND2QpFDa2wFplFwfGuGCAbHjhssVutjgz7/aHz0WDmu6zjQRiilYGl2YdEoR1D + V0/zK6hZ/InEvR0MvPk8JzAzKkAe1ygvuLnranTXZxerw2CAv/MFU2QwBPub43akMkPoHcFMTt9J + j7k7c88h4ooL1sDLLNjQkWQYAlUlqjby6jpydwtuYtaSx4GqzdjaeoSqbslx4FcsWLyoToBpTx15 + RvOxIG/284HLx/ZJVtSOul4Vp4TlA2XkbBqNO55viIXENO5Y+0HRXVYnytDf829XwQUcESQPMqNl + kgAS6i5//89ndAfjj+c2HM/6Hvyh4k5s9pXT7W6lIzw+a5+on61VV+3F8LBSfhrOTaN3uaasNmiy + +EZkPboM7HEqHbhWP0Tuql253FgeNGj1jIs1o1Kb9X1UHFRnfUaeFowBtcd6g5mR2MGxRbhZ7p4U + Aon5IKylJ6VYZUHgkWC6F+JnZTus3Jut4ZKNDXEus6HOj+r0Q/WDGTCWPr7KMZdqQ63YuMRPtQsV + jpsxQm+MIqy0ilms2Khb1BZxTJTVvcbb/ZjzQPx9OuKAYFCpK8kJunH5EQeufhsEP+22Y5dKGbaF + t1usI1vLSO9LE+tafx04v4cRTC6yQmzxEcR8pIkeaJZcxkX88wZuMRSI7E16B/DgjcN8YT4Gqnld + wfKQNUNH7dhBmQTsgCutbh9YECcwFhbn7/zBMr2MGsUGY2J81BLArc31AdhvVBMd8J26LM3wgV/Q + vrFd10m8hQ+2hhnQ991qju7y/GUtUbbiO/E1oIPd3zJIkvQScLNTNrs9V3Bl5ZRgL1zBIknHGRrY + P84v5z41203ODNiwFgokKk3qYm7iCENwUmc+Z57DItXFDx4b7UZ8szzS8S9ehRJ7JqZBP2D9ECLB + 9bM8cKFdi3hKuCsD73gtiP2TGpd37DBFF53XA35h5Yb7mLkEs5uUYC2XdHcz5/t+H2JzcEl+r2Lg + Z76Gyg2qOEMKKWie1Qo8B1mJjfenGHitPFlIcS5fcjtsozpR66dAjkvv2NK0zN39p4XZKg/YCFaG + 9pf0ZsDg1KUzmNgYrDzNDRiu1ntGrVrGVIZqjprYsogjLuqwoLSS0YNdAJa/RejyfjGmCD+rR1CX + 6wWsHJO3sLEfBQkejUv5Qotz9CT3Muic9RevD+/jwPpUKeQc5CeVr793B5j9ayTRcDsPi/hUS3Rc + 0jOW1XsTL9rhWsJDtd/iZY5dMQOukdEwiiM2vHC/432cUwhv0hKUmVnTTc6fHrCPikFMBr8Bv/sH + THhZIKq49gNVVkUCpl0LWBmjpOGkmGeRR78FdmXt1PCyW+TwJfCX4PAQ/WFVtTqF+k9vcPnZBneu + s3OKLGayiGudlUJgexAAGscikfPL2NAPBSX8xDwTHLqGVxf6oRss61dL9nzpchdfgeh5oct8NNgE + sI9CgYisy4GUgKvdzTjLPQr2cvzDHZRBaIloweSDO2xoqqOu0piICM2GR2ThrRVcfJhScO1iFZ9Y + /tKsepW18Lwd7kTXw2rgutsswpEVjFnM5TPgJ49V0J5fib3HQ3Z18gxind1wFLacupYvWUSqsxk4 + q3nLZS/98IFLnYUk1Q7HYvNZVMH+4up/9tZQixctxByAhgPm7Mb8qvMs2v0/YN3bp5it1tzA8rkc + sPIDvUtv8kGDXfXRcVZlVcNqpKqQfM5uONnnKBDX1jyUin9XhYqsWKWY4QE3/BYcYGVy54m9S6KW + RgN5vIUOTFlYWCg/tpcADoMP2ELGPPjLn9bv/Yq59ohCCLaDh42vFQPBIxIDNVuhAXy8+2Ij+fmD + /vwx/BaLulYdrqFVXPc7uB2O1zhTHwitfTbTODkDyj+lEVqOZQXS9IzcZbirgYS+cMAPSaooKfyu + Qu/OKWfB8O90VUfPA1r5YYgBai4e+Kc0S+D53bBzXqNhIXvl6nJVx0D8+NGwOcvmoT5hYhLiXlPp + nCoOmuMjT56q+Wq2xLIypL7EO4mVs0Snc6NCdBsmD5vZ5scbirwSauhNsbpWN3fLg9+C3s/hNUvP + amha0ZgymIwXh6i9PQ8zf1kf6Exu5wBWeTnQfnQtcLo17cwU2KdLff8pYLBfMbm/32yzHoV7DiZq + UizHCAGKSn1EE9Up+a+/WuuCiDYdcVSIEV2/yC/h7RBfg+PqhMUS89dAEtZBnyXRkYZt9mTxD38S + e6JvujWBoEH2vn6xe8m3eDOftwTij/AlJ4qihpOFAw+moN6IQ7QULEv7mNG/+GGHV5e34MTCg3+d + sV2Zt3gLhahFZysEJNvtn7uTcws9jD0c0I8ChNYXeABv4oKd6bmp4yhdR1g1/RHLzwAXC79v+Tj4 + lzlYssWk2ykTIfCr/oXt7siA8fWIHTRqqrrjLVDQa3v/hyfxqRawS0Dm5FBix2eQ7viavT6HfWYY + 9ojzAh+6HpDzk+7PfYvPW+joIj+kBSCZvQTQf37orw+2GjIKdyDucMuaZeC6EAZb+CX4O6tU4C1z + geI8O9h+BmmxJRaoYQn9cD5uxmGYd/wC8HiwiGe4FqXVbASwSY860Y7GWEwwyj5igs1oZhnAxCv3 + hhX4fL+AqFFWD4t1skto/PZ4PcqHeDmvvwXepTvCeuamBW3JYsH+Vz2wR36neP4ZcQ9ODT7P/O+U + 0iXmRg2+L+2ZYJzUMdWY6gE/EkqwtpIXndH5lkLWeOxTnAO2IN19KwF91lLw3fMnKTUcgW2LVWxv + 429YGomtIBSsH7GHzBm2483u4Wa2L5y+4hfdfo91hgcED8RCyj6lnAopuFpRQJRIrcCOfz7Q8oGO + sYDr4ZNYVi45xlAT3W6keAXSu4V1xjkkc8pPM/62swYHvr2RAPChu2jWcYPB7yPN4nFowSRpQIaN + 2ozETBN9oHflpcCTZ0hkx0+N8AjXGf7ZOxq0qliHzzmB1jeTiashrdgOpstIV091Z+60XyU5GCEP + C9+qdvw9D2tREwve48sXG1IXDeNYZgZsB+OFrVNXAuFpPksAhWtOLHyxYz6/jx9A5MUhj1Jv43X4 + eg9oX4Rn8Nnfx1rdshbOKF9mCDjF5dO2W6BVXAiWD5vuLjpaPZiMVwebgdmCdQNKBs1bohM5sAa6 + nn6WBI94PBDz/lMHwZ4uEmRZwMyX12lsJk/Ta1SE4EFO+UkENKBMCJVVy0n84ZZmFXJLgl8uiojv + 4QaMHHtO0P6+cE6lab8DURrQt2uH6OP7Sjfc2SIUwl9I4pB3ivX2GFhofhaC49fxtdvrKUfqsAAS + PgMS05fz7RFyjm/scbnpLtkk9zA9p/3eMbI2a3iZc8guEBMnjh263vR9an4IHoHwFhc63cmtheMr + AgHa+RQ1CluCgnDIgsPXkmhvGZYF2Xi+zuDI/NzZsbMU0i74Yq0kQry0C7HAUA19sKWwaeY8+G1w + tevPjFg/bNabHvVwChKZlJmD41nT9vlu63bARlcpw7/4oA6tPX8zUoHN+7Q8uIE6x7u9N/z0jgzQ + xHsF5Xu/NJTtaQBZ2fJIcZJDuo3MEIHm7mfkpPhVsf6S5fHPfpQj81KX6di26PZ+D8TkFV2lH2ol + kgtKjE83vWuGJDr1//i5n0ueu+n9jYf40svEKotJ/bnx5YF81htJprqcujSSnUHkzHQW70iPp+Gr + lbCrWh2XCW3BKxOQgjit2vdQVnXDMWkswqR+jNg/qh8wK1+7B55tDgFjzkRd07yqEXpEDLHOSzss + b2JJf/Eey1dpjf/yEZzz05X84WNOyC0RhnJaBzRzrGI1L5kBYW7We/xSBu6FmRRGuU4xvhg/d8Hw + FcKXqURzh/tBXR60U6BjdPVurxld7d/Tg398Vp0NRV2COfxA91Aw+EROajFfkMTA9Fq6OMboW9AU + fVj05lcR+0t4d4mtswocY/aMPUsG6hLfA1lipw9HvA93HVbpfjOkHR9g9fFu4jGvQQS0MveCLVbg + sPC9CtEgXdLgL19vdpP0ELzr+h+fpt1deoAwFidSBkXq/uExIPloxJ4gzgO9mGzIWT10sXUxiUre + jMXDe+NwATXcE12K67aBUnzE2PTe4zDv9oR2+8Qn/nKKuauiPNDJlawgdFwxXr2B5FBm+hAbOXNo + 1vaIInAooTMPe35emjj6odtwZIi++/94HF8KqpRe2/WPSu0DpbBAgvUI33iVqqvzbTXEPQIDOyHX + xGvb7/hjx6t4UF5ghVHYovZapST/Lhldy5clSbveEfDRoFMB55MG174piOOJmA6i+2T+7Gd+vE5x + Q5atqZCQV/M8Rzeh6f/4HzSaK3YwrApq8YsFDvZnDepKj8H0ne0fVKYqwMbtJoGlHsQZpoVv7fxl + oOSVnETwWQ0+2FqGH6Y2KjLw7qwymAEfqq8o4z+AOYwRfurvLp7OoFbA07oaWGfObbE8Q9SC87ui + +MS852b900N8u3LwvQ56dwXDa4G6acxk17PApFvTD6rBS52FNNEbHh0/CZReVvJfPWWPx+jdXYPd + /t8qCbwkR9up27D79K50K19f8Z9/uOv6LRYh3BYon/Nb8LIAVyzkEknozz8tp/wMG4wOLXw4Zxcn + wbR3mMsqhDu/D8Lf9dDQS5Un0s4HiXobq4FmcJ/J8PAMrAWTVvA3HIsoTr4NkffPk4gvUmk5kgzj + hTWHxcaR9RdvsBonK3hrL3VEamRiol8W4E59BjbY/0hIMAHtwIrGlMNAzCwcC+J3WF+YT2EqDhs+ + hZjGZQYPH1D+Bp1oKVqbjXnWCmr3mS5uwfnFusVV9S/eXK5RXMz1ge5bKz79vPG96gpU00rQqYlP + EvX5LLgDcnrwo9NKZNy37o6/gz++Fox3NVLHIJ1+sPnM8cx/LQroIMU84NNLRJRYKZv10KwPkH8U + B5tRzjSEVW8JuDnzldjbaP3lmwyqBysh2OfSZr2wIw/C1/VKLNXl3PXcuPBPD8DXc1GDVSdlDte7 + sRJ8+l0AsXVLROBd1TMjXzXKStI6w5v24f/xPe7QHEv4x59uKNGGP7wL3Sz+YfnAnZuN5LcWZs1C + STwbiks/xT2HHeuE2MjuQzP94YPpKNf4en7gYgrOjYbifNKIzKujug3Zt//TG0g8zHGxmHneg77O + UBC/Y7EYz2u1oXPk5gGDlUmdDu3Ywjh5N8RauGD4Fx+ms+QF39VWYs6WUQKhfOOJo4QxmEFgO9AR + QvoPf8zZiU/hKDFf8vc++ftZhND5Pt8BdTWtodfLjYfRccTYtH43dWFacYaFiVei7Px1htHh808P + /Pu963CoK0C+UjUvv+uzWf3eduDZek5EPoHB3V5rXcPHYAbEP50edMKz8IGJvt+BVAIu3iJNDMDn + +wZEP/hx84df0Y5viceyjPrHR4GtaDW2y6kupqviPKSdL5Kg1LWYG0vBgNPBUbEilj/Q/+kTbC73 + WDsaXjHrldDC1+v4+dP3mkXoMh48RXglabA+wPYz4h/El5+MlcZuY/YS6RVQi8NEMDf18RovXQWI + qd1xhi9dsd5TUEM9748zd0pvw5oJJ+kfntM3rRl+41BI4BkpNJC0nzJQWvY1VA8XI1h3/XRDfV+D + 1me7nT8d4zG73Gegh1tB/uLLVJ3ePbCLJcA7Hxzmd/GqYJ/AmHiuNjQbZ1YLiMHLJMX++XUqMh5c + pJseCAzWwQYC24JfrTuRghEcsEXa4kHRfTXEKZrMnZS7nKOoLK8BBFytLrVuM2C332AVHTqQn8As + kDyKN/Haa6hORqp60q6/zEQ1Tw293e4ObKp2Iw+tfzRcwux670PC2O8f12LBKMnBeP0GxK8DR11e + /NGDy+e649khVKfu9hHh95FM2Linc7xWnVnDX/nNdz1eUTkx/PykIpxHrPIpjpddb4B6m3xm7pid + Gj5/PGdgXJwuWHf8Jfjv9wf+2Y/lCScw5eMpgy/wjbAs3yLaP4zlgc5BXmKNszMw3pK+heYohjjp + H2G88EqtSYm7d6Dv9ZKtr23pDw8G/JO90HUxHAidZv4F61Rfhz/+AMJvZBA7Yjp3rhy6/ellJAiF + Z7wly33HayP9ix/DxlR3CwzPUtn1m6Gge3yEvpT62LXOdbz4VsnAi/1ViHo968W66w3wfIY/kiR1 + Oqw1doM/f8O7Pu5u6p3kkHstEVGE5k0nTSolGGzPG9YeCVTJh1op+MNH5W4vTb9v+TIWFf3pEc38 + VtUSPS/rgt11NWPhYrIRRLUKiQGLLN5geWOBhm4nbDrOOSaMcsrg9XbncLBpfdM6vCyiHa/MsHn4 + Kh/X2gx3vSzgafRz//APXCp1DL4vJR/WPrN+sHfvGdF+8g/02e+tQYzJ3kEKXw39hYmE3lZ6C9Dp + xNCfbJQzZNkjQ+zLTSv48AErUM7bJ0C7Pr9x6fiBaoEmnB/JM15r/m1Ao85eWGZfMV3ns/uAx6VR + dzx+cqllfB00WcX5T5/cZ59rzF/9IUBnyxg4A7018HBil8iX0qbbcIUVuAXPBJu88lZXVHURqOta + IGo6lPF2mKQRHu97x3Lh/+I69dwRdKmYkUK7gmJt7rEI7578wCd8g2BbTlYG+9NHmrnoFjadGH56 + OA72LdjQxW1mzipE8Gd/rqy9mr1+tkiJHrD/9MuxifP+T88IwOtL1T/8ArSyZWY2MkFMltM3A8db + NhLPfh/o3CVjAj5yRHFgzlilZ8F4QO3Ya8Hau5NLSZuzcI+Pe/7xXO7XsOHf+8f2fWTcNbK3Bf3x + n13fKcZidRnoxMccX9Pk3dArBOMfXg+45sm66z2lFXweXRvLznoqWHeg1R+eDjbp5A+8vKEIoC8z + BK/vsgLqSlbyD18q4csaCPRtEex6dPBXj1wbjWPRjqf/8odKoY8U+EoekPzVm8YDtTN4c8YrUdZV + jqkZshUCBcth60t6ur0c+QcyuchnKK7rMMJrYUE/5OJg8T5xs5qX0ED797Efd9Kw8ZfjA6TM54Xl + jLLxzBHnBx2U7VulYk8V/p5f2yqcj2H1GqjZ5S1k9KAhCmc5YDlNagmmApXY96KwYI22UiRKEit4 + n++nYv2YkYie75bBqkpjd3WwIaP99wUXu5GKGR3nBPp9dSDpHm9Go61kyGomCCbVrlTKHVURSoO8 + Yb1iqh3Pyf0f3yB/+grRPkoOx+s7wCqXVyqXAz2APXewiC28h5hSTWgBdwgAkZ+uQik4jBEo1umF + vcQH/83HXT5ciK/askvWW55IPe9KWIfEc0f6ARtMrz8UbLu+PLT+gQeXitwCVmOG+E8v+uMz2Naj + spn7+iTCTDra87zUWzGKT/Uh3QbikWDnn3u9uZT+4aNdb1n/+KrBMWOw1O8jWPF8+MBdj8XWric2 + j/A4/jvfsEVWM1a/qkbmUpbkstRusYnOAmH78lR8H/mPuo6loIFrwd6wk9mneBuZJkL9Frh7PTRV + FzOPevSn9wWT+wXCGY8fcIKzS+zL3qszRc4o4Q/3JVaVyQNdcr38fzoKpP/dUXDxtY6op0fXULNb + KsTKao6d3m8GalaAB4/kzBHP6g/qMgpLhIDVOMHU9Wsz38E3QPgsH0nJRB8wTCJXAQF6Jint4ExZ + 7xktkNnKCVuEDRouw+cRMZVfYyVHeNgGBi6QFQ5gRgf1BUYSTCOUV18OtmTw48U9TA7YThcTJ5vL + utv3qczweeT5+ViJDfj1bymD+iXFOBhz1V2/18cGl7rbdwnV34GOg53CFUkq8fugjalSdg7SY13D + 8d0OCs4wjw+oJtkaoP3vc/0cFPh1y2X/fWRYQ7fhYUFEd5ay17dYSDDN0CMnAbs4dsHitf4G++es + ESu1qoJdbGmEkC45VlfGBbz7eUbwlVUncpPaSCWmUAUoDrKUnHF3jBce1D0y1gXj1EiBur6vUYQW + 5ceS5+eXAOq8HRk9bhCQJ71XxZbORXq8SPOZBPJ6brhvFT+QHc0c8WsWFnMWWAw4xc842ET14/La + BxioGaWaaD/vDlZLdRjIzWOLNS+Y1G0xbx6UANKD1/34Gxb78PvBMYclLuckd9m7qT/QzZvzfYoI + cZezdGbRw7UH7H2+ibot3HWD/XWlxBzSZzM/KsyCA49ick7Ws7tlgQz/7ImcKndw+SmUZnTzxhyr + 21kAywCbENX1zBMrmLN4ycMPhAkT3+bqPNNmQZr7gWNpezg3zpnLX20hgvdMDIk+9h5duMDPwfSa + g0CUS80VLD15oN8qSzMcP/1ANZorkH8uJsnNsRtW4cKxEOtDS/ystlRW9KsWtV8DkzNO/WJu10pE + YbsXiD3wBtu6jMu/7xeGyxY0OVQLDAxWC6TeV4elMC0GdeMtxfdi6FQ2vKwhas5NQDT2zg/Eq+IK + hXp1JdatfTbEeSsKYuVTjh9z8RgEVCwzNK3BJxZ91QP/d56F7dYEI8ICKvTyjGSdb4h27pZhJO/I + gEy5PEj6eUfDxOZjCnVzIiR4yZ06+WGUQBmt2vzdPJbOVfrikT6XGQkLW1A3pud6ULj5tO/NMotR + sFMRTd0KcX7KvzF9M1qKpqzVSJGXT5X9ILVF8bWqiJdLs/pT5ZOMbhw3EksmizpLmP+gRiEMUY8M + ovTZWAsohhs3owoHLqeccwamp3eIS84h8So8tgqFj19FHPVwGQRBWHJEYrYkN0PDVLg+cxEeJSnH + CSf+XFqOfQilTyjgnGhsTJzg0qMUHsbg2JW/hvY39YGmSGIC4XiUAG2X0ELjiY+Dv3hCZUhrhIYR + YPOb+oPQ3ZkSSOCgE10Vlng1L1MPr+e7iy1E916v1fpINOkR3v05Xq6XewkTylTEYZ+Zy7affAa3 + mZmCWTQ7la5iNgPOWF2CPd0EwiiuCrJ0Q8cqGbtifZbvD3SrIJuX0/1HF91WAkSq/EWUMa1cGqaS + DEtB4Gbx0k7Dyh00CRbppmCTcU7D2nVJj+7bqcaPt3AD1Iw9B37ywp8lTuoGVpVtBWZ7hwbW60ez + vuW3hIagLrF8L47NaKZMDm529MTl1/2A7axXBmLbWsQKfZ5cehKtGsTXuiLyWJuDkBx+C/zVuCdG + K7fF7y8+NddgRyDrWlBcTLKUZR7ESnRzwCqeFR4qm/XAuc2MKj0Eei1980gmemIV8Spb5wXMKvOa + oZGVA7n4d/nPn7AV7Xiu7sQHill9whiKqdsrQ/eBrzTkSaRYlcpd76ccfQkTBIyxV+Re7UORaCpa + 5FyoNF7Pi5fD5VxqJBRpVSzDmxch630fWE/GwB0/yP3Ag5MZRK2FO105j/2h31dciGfoy7A9t1OA + +ueokZOxWQ3XFS2Ubs4d41B1s4LrqicDwu/WE9mLQ3X9XtMFzLcfwSUvMpS+OfyD44srcHaK96nc + +x7oywBOc2iIY7E6S+VB1D0XLFsfqP6c9hQhW/oF5Hy66i4nr1Mi/bymILahYUAGo9qQcj0csX5n + 9YZ7XrcWXq/WeWbsS1psTtZoMOIin5ic0rv/8nWLHY5YHN6K6ZLRAOkhd8SG/HMHTssTC+nCp55X + TjBjYUiyElkPL8AXWp0Aa/MNA+a70WPHH2SX7jPywd95GGxbuKxs9xV0+9eZOEgtAVdm1wwMFpdi + 7/mQgbDF8AcFc+xw/GlXutHjBCFUZgHb6uYXXO9zEcpD5bzjCbVZ5cNdPnZP7oxvtr+q62ArIaJN + 6RM7v0gNzS9rhg59ERBrwlW8Hr5FDoFu4oCq3tGd41534HRxbPx8/GrKY2xoSA+FI9a9w08dR+da + wSlNj+TUKQCMsfRIoH0/zTgunCvgYiwpsFIOMrmYbVuMCfOTkcEFDva9My74pz85kFTZi5TF6lH2 + cskgTMOsIkVqn1xhHE4pVMr9jl/0jQH7w6ca6fgnk/LqS+pY3881+OprT6yfKdGJzdsUmd/7Gzu2 + ORXbWVhSaIyajEMATwUfC5CHyTcvcLznwy2gvYVes4dJtiFMV1EtLGiblyo4PPYpbTpNa7hhHWB7 + k6diMad+g/XxzQbL7r9bAfoRrnb2JgWOB9C7hpUjub4t5IqzGcyW8fYQPfsKeWZp1azIfLMI8M42 + 8yBf1PGiXj/g0wV3rF5KK958bLeI/0lnolyw7G4L91xA/p6fwRYyx3g5brYDE9/nsWE+qoFuhsfA + S/iaiG2vDe0B+3Sg9h2/RFk6Rl0Xq4PweI+lufKEGvy8Vl8gMv37LNpxQqfxCSw419sRKypPhlm/ + uRnkc/2E9d1eOU4VIDxmvTmL8w25RA3WEo56FARLxZ2acYBDCCIu9HHylkC8hAePhVaB9l6Tk93w + 6zJukN/kguRVMBWUO6UPxIReTnb/dDdPzH6QWoaINYN28dw3mYjiyZtJ3J91wOqyXkE/Sj7z0d0O + xZKaXSh12h1ht2jbYb1k1IOt0q5YFqkcT316hPD+XAOsyS/TXfD528IPIw74tvvHAtsLA4x7tGDH + ZkZ31S+dIz2vnyZAbCXuHXKsA48ROhEv9i2XlzDzgXFivIk135C6dU8cwBF5hLibeabzZ53yY/VI + E3Iyu29B6svlIymb8yB4t5+lo7Xxdz7k/nmFMfsYPgqMtKAnbl4+3bVvX73kd347H8TTu6CKQzZJ + ZO41sfBbUKl6Om3oYv9m7Imy1kypWG1Q/9GIBKnzohRevwq4dB1PHlWZFkvowRaIQP3+yweLzTcQ + 2a9an2ktILCEHttCxtTCmfsMaUG5zGGl+LhQgpNubLb2fNinSovPuZ/Sls7JO3cgz3yewQGKvDuW + x1sA2FVDxJB4VEypkdVQJYuOQ/njuLyQvA14fsErjr+WNiz2ujDoldUnojU/Eczvw92Aw/lQYafp + pZh6NnEgB6KOqMRKB3rj1QUeKuMStPgauPRn6q2km4QEvO0tMY35UQOviAckmA9rvHKqwEDx+2mJ + 9RmvKn0n4gLkFcv4dAYAbIunBVDJsTZfCC7cTVXyCrjnwiL61qkuz4jvBMwN6oi9CZ7KMk9Swv5K + 6bzeLxc6W6fNg3/nB0TDikecjyFUOiUh/he+6J5/K6Bz1ys5Jf6+5UVKE6AwY42dGCnxjm8l+FsV + CVuXdmpou2QOnIS8xPql8Si1Sz+Bf/FX405dvHF1FsHuUmUkf++8RtQGCToHh8Xqmh9dKghiDlma + WkReb2KxNsFNg30FUFDdi9uwAfZqAUNzvjPKw+tA/KjhASasFYSn+w8sQuVGkJ6xEjCXWFXpoUAB + jK0pJMU9YosZZsImavojIR7n4HhZ5yKC10Ax5wUZTPwuibrApu+u+Mm5oSuooq7A6DpMwY7/G2IJ + 7Yie3++w42tlmISHVEsxa07Yh/6DLlOZiWC3DxJ7J43+nQeSfxqPd7wAlkkfaxhVVCDuY3rT5bD+ + eJB2VReIj/Gtkq08JoBO1JiFbzoN28XeFqh8VpuY96tQTA9RY+D6RhvxqstK56c/WUB1o29wEegB + TOajT6DT0GoWf8PUUHq6MSArfgL2SfcFG1eHEWS6pCGRYe13zg5yKbmCmRJ5Ra5KhF4eoevOx+Bo + rw1YJe4rgYfMbzN1PieXzRRpgcEWvP74oLqIk/CA8iKH2J2ZpVlgOkd/eC/Ytp9SkJ3vw7avHeIR + VwRzVog/2HN5jDFH/gMAAP//pF1Lt0M6G/5BBnWrJENFUVS0tNUZqoqquiTIrz9L9/fNzuwMu/au + VZL3uSXelOz9+736WCpYz9WjO2fxM4Yqy1xsHZCbTkebJIrZJAo1vcupGm554sAA5fI68qdqrvyT + ua5odlQthF3P6uBjwNX/0nTFz4FIcPrV908fhuQBqI/knXyl+7TUdX5TzTZQShFiHPo2m2+RR0A0 + FW8crvnFhKuCQwd9+/ang+MD8TMoMZz5WcNJaOoVv/Iz+rj55Pes1FNprU9IB+6NVTO699PE/DO4 + yA+T8AfY9XPqVP4Pr3yef1x7Br9tDCxHibE51AddWv0SzJivYfNz2Kd0NtUMfluU0ltcmBUzSV/A + m7kXsdoKYTVYT2CspyYybA35O52dO+NRLw+HP70w98tDhMVB4la++lZkDJQBuKxPV3zeuJNsVDJ8 + ya8DjlUa6JPfhhw83xWZbBd1DId+X6joZL417AjKoRrSaOp+fogeb9zFXb7cFCDF0Gqq7U67cH5A + aZ2fmwWbgNOAJDnPFjZZF5MJwFfI6oCakCfCjPXHgaQkK/QrHD7lyxce/LtazmF0RtdbmP/5sSkU + +qtSr6e9o3W8F7e5BWDZhq0P1/k/3yJjgK4dcNTH0VDNonKX//KE3Rhq1exd9ldIneFMc7I5pcug + HCbgv9sMPxGNmIRSeYCv61nEB4lkbE4arYGLXp/p3QSk//PrLxpviHLFBmvPuZID8LmUWEt5PxQ2 + 2iaCP71szRdRp+K+tUF7twoyV59Y/5rKYYCHqz1RvMNqL9D6EIG3bCsrXnDss80epfK0WUjmztmF + QnuUp796CnB2cv/043t58nRXfWSdzjTTlCD13tgYHkbPtt3eg+1HmbDGXxd9KW2xgx9ROuI1n2ET + 23sePD2pi+3w7LrLSZIjGN/TAVtUD3v2Gg4c7Pkjw/u8r9PlffR4sD5/orTL4rboxAIkLG5LncIf + w1nwYAdWPKOZKOdsegSaje6CNPhKagrVUid8icKTkPiv9GPqv/uFMvcs6coHoM21cwb5NCEY41cE + puRedUgRDAubsrAD4j6KE6WcSxNfl7NcNdumg8rmudtiXf10bLaGs4p+/PHzk9N3dxehlH8+P75N + l8k6eejpajk1lWoOx829GqAu9gY+lNtNSq/1UYZrXobPwjFg09sBEWg1v6RGkxOd7RrsQK26+PR5 + YO90fT5Qcb5Zg3Pu3qez33P+Hz6t+rSaaX24QvFRwpXfxWqe7BeHnn52x3uJPRmz4W1Av/mW+9Md + zD//yendBe/nF+rnrIsX+ITmjhSvoUiFzRSbINCMDD+s0Ql/egiJz8XCx4KpbH5mYw2jvW1TP87q + dFAXzgAdPJ2wXpxptUhlNEGv4Q7Uaz68Pv7yAjUt5x/+M0YxySDY7zFBb5MDf9cPbRr4r8TjK3oa + SxnduneEbyv+CtpT61CdDiv+au++jRIdoo8oHLET8SxchuqRALwufe9xfQ1FGmw8yLZOio+ffaVP + n9fgwffy4P/yYKrvDms+iwC9D+8vY6FYmzAffJNAD+yZIConBVXEWs8htg8hzbnCRnpnbEhvaUz/ + +QGQwM+D6l4UsGXNiwDwvQCbrXoNyarP0E1y79g4QKei6/MHPz2hPfDiLp1OeXiexTOZW0rZ/PDn + td+T7vlcZ6s9s+GTQDLXB+yw9qMPugE14CcnixomO6SCWI0F9CYzJFN42LtMcp4dwDA+4kOyPaat + k3oN9C6AUNXZjf1UoF7580977vr902dwS64XIraS4A7a4aMBb6809GA9X+lgXcUE8Dn/pZfhpjLS + W3MBJ63jsfkmjC3pIcnhLSRXbG12RchUpzrD1IIL1u4l59ZZhGyY7NZzsD3l7c6HT1+Ay0XTqU43 + l5DHc9wCd1gyuk+4IJyzV2b+8gxsJb7ozikEGfzlIc7H0NYdY2IG+btbkfkEUsCS6mWgrRlDglZ9 + KCynyoanS3ymp/Xv1PZPznYfWga2C+7Tz8ftqMDxy+CaJ5xT2t3dDNiv7xlfBP/U08kBGdC+akS9 + qcn6eTTSCXxywLA1Xmp3vjMlgIcIqv42+vR6q6VtAoRy3eEq8y93OA2lA7mNNmNDR5H7V99HWeVX + /267QxEFV6i2pkjAuoN+0olVw1PMH0m00Ab0gJkxPPLN9i9PngL7UCurXvHvG9sAi41fCjwSpcPY + NOeQXa73QeE26oz99L1Ppx1xDbD6IX+bTp6+JOspjIgX9oQdaBkSQAcHtHUm+MKaL4vaYyuDapt9 + qD+fQiCZN8mBi6UeafbM1R//1PDmqxYN3ps8XNZ6UpTb40PdiOBK4t9KCQUQfOmRfi3GJqQTuHFr + EbsAH8KJ28QFOF6mF/bjzAilHdVFwNyC0Z+eEvXA8WHoJ9ff866WU2ydQfFisc+HoAAUSoGJXv3G + 8JdLObiL44AYXpeOYXUJJH1RPzcZ3gZ+PTUl6as1L45AulUvOEDd7I6KQBWgZTn2+1Vvzy3YXEGQ + dwXdldM2ZNZXLtFU9pAeUbue0sHJAczI2OPdypc0mrcG3JnAx+onwYCYlA8g09KF8D5LQxY+JQIb + Ezr0Etlp+qcXt6/lRP2cmH2/ZNsrXPNc8hE0x11i8uTB6nfokS9kRo13d4VJsbtjvMNFNS3f4gzo + 6X3Cf3nenoMDbJbresqcV/bsdOWKXz3gZ7S/Mybvhw5K0LeoPnM9m7zRycCa1xGAmxsbzXmvweWm + X7C/5vHL92l5yGOlTw/l9hku8/ab/fQ7dubrFYzld8rgp4qdNc/f9PPm3hPlpUwR9Z55AaYG6Q2M + 8GOHf9+fDpuiQ351P2E7FfGP3/0/vvr5pxlutzWcrUNCuPNjBEu8985wWeIO57eIq8hwGQnUbmhL + /YbE1Vxm6gI/WyPGqed0YIHxZoHZ5VNSVeEBWz7DksCuFX28g4cUzM7U+mDNW6iRtub6tu/a8+9m + +PhkfT/hEvrrDlkab6j3cRs2Xbi6QJL42uHjtzv16/UnENQRpTEPzXRKOcMDvPfOKV40AiZBvRDo + qbggQnzXXDbHtJUrCWdk8QcRtDMJA7A7BxUR543X/34fONBg+5e30hW/wZr/rfz6qNY8tQNmyW2o + 0/qbkEWbdlGkQmQ/f51S6eWpkIkg+OWJ/fK5+pqSP2LR36x5Fjsa0AZdsUVEsNS5n8/9KYZHr7th + 01eeYCG6riLlYY+EW4Z3uJwI6MDApU98vNwbNu3efgyu3/Lr1/v4Btb1hzP8VImDne83YEMT0xKm + h0Ppbwpln/I//3Sdc518xVrVf3j9wzOa5odQ/+XjwOtig4DC/vZ0ppGK1vVKauim8Md/8HJeZKrx + isH+1qeMfRZha75cXVpc7gZMqeL+9GPFr3r25w985bX33MWjKYR5Ze39dvVLE2G7Be2fvU3qXlNB + nyonDmZ1vGDv8uyqP3z+4e+qZ6qZeZP9l+8Zwu4QTtVusVFXHewjQLwEFtXaqUB+bXOs4UroGa6/ + w3pqz+W33sHG1oAGVL3xhSOfgXDJRd5D6XXS6IW/Lb/6jWDtgY4Iq74iUC54NHXNcdWPL7acO7WD + O5AMWEPzpWJL91VBEKOEHqKP667rg+ef/yRz8xhD3gTnHKmNYlL9O4a6CFDKw3L74QkoNnY4S7Zp + //QWPr20L/sGUVFC98gZFBfKO2wTl0F0uzknrDmDAaY0kjsIDU7zN3mrgaVVSAOlMZHoDz+JjBUD + +u5D+tP/+VwKBshn5YL1LfcA5Jd3X4JqpNaQ70Ox3gQ17KFj/PKxXvKPMg92XhP5919eO93K5Icf + vpAKWF+0CHlgzTN8Ts3f1bCZCxFVojrQR8sWNjSmGsHd+Vzh/QKpSz5XU4UN/Ba/+d4zSMIEFZ88 + p7+8cc3XNci95RbrG1NPxblEBlS1uKXu9fByy+h9tkH5UD/Uq2YOfNc8/r/sKAD/vqOgzW8OkQTh + A2hyb3hU5tUW707zI50pijSQH4Qeq7PchvPhfHDgbvmEZDi/rvq85eYSXT1eojdXzfQ2ViQCe6+X + qffa8fq87w4trOCN92d9+bIlveg2mi8X0efO8gGwY9Lxyl2PDaxlT879kvs2AB1jHt4dLpYuOjQy + IOeBN/aGBaZTSC8Z9GHBqEs55E7u52tDfkP3vhiIO1cII2YiMZ5zX9iXhrvUHfAA/uKKmpnJsfHR + bxqo99fal7UT584k3Q/wsvFbjHVQVLP8yQl8aPjtB363SxehKhJ0ab46Nt5EBbw8nE0UiwbEp7by + 3ckFjEA0SobPyrlNxeDhDaANCMS77fLql3Nv5/B13TJf6LZ1yN5BIKJb0i3U9RxFXxrwFGGTjR42 + Xe7E5mVLTKj6QUazqKPVYl/iGAWXYE+TdNyk6/O3oTjfDCLsPwJjt4aJaJTgB1uSedarZ9n6sDa2 + CdaCb+1Ki28nSA9Sn1pa/QZfofc6OLzvjk/pG7HF9woT3R5aRb3lck9ZoIsTlLPc9OXN/uHyOBBM + dP/4FnZZSF1GlDSDftha+Op7D3cMv8cOqB5eqP+ILTAdhqpA9fn1pfevYrNZoq8IWfxyoVpZvXs+ + JAcNbQdu6wsk3oIFz88AmleYrP/fMnZYqgge9bnE+mbtekWXooTKS7Zx+EQFEPF8O8P+draJJBYC + o6/2foXXbfUhPOl3vRgn+xI5xXimWqRbQPq+zw4kmy1Pj9/XoVoiJWihcJEVel+kQ8XHymaAZXjK + 6DUQX+60iDkPpHEYcFjOdipluV4g/xVcaWalALAhPtprV3yNLP1b1uc2uXKIK5cQ48/BqiSEoA2N + 5L6nVsdvUhKkcgCvnihhXdeuYNC74goF6eLh6BZGvSA3WgBvE/+hz0SKgOAIlQI939vTAMZNOh13 + tYLC925Pnfymp/wpn3j4ugJG/QM46JTjLwY8JdLLf3rnfSg02ZRBWJUmPUx2pC8xPmvoojo2NbVr + pU/Zq5zg8/Zt8MFxb+ni1G2NNLyu4GsdCuf62J7RbjBuNGp3D8afcplH5Jts/erW+zql2YtH36NR + U/exObDloJ3PaH/WPYoH065466Au8Ft9Crpn4t4V0DyUcC8IGJ+2UrjuiCYTdM2tiVXIlb2ovKsG + zqDqqNYXTTh3zPeBWt4/OAFZwMbLWEZoYzZX/HjgK5tAWzvIeF8zspnJLZzvnrag3/PCC94BPiQ7 + Fan+p8Jm6Zgpj8jjDANxuNFbR489vz5P8IjNMz3sDjUj87IToWQJG+ybr3e44PkWwONzt8Fh8hQq + Ir18GcqJeaGedXVcvoQXHzanWaTOJSn76ajGGXRwsKEGfOupUPs8QcsuickMm687g1vBK9ODUoI4 + vFRsUr0OPssaUZfbvPsZ+LsJNUO8p7sofaVs3FsafG2cE4GD5aeMKGGOjBs5+vOknPu5qvAZnh7H + MxECrXR58m0dEHt7A69n3IWsvH46tOIHvtbcESxP1pewfmQbfHZnHrCmy0rI5wHD++kVpoOzP4uw + PHMXfNjuebB8pjpC8SH2aMwlVJ8QuZzR1d5fqLWJDbDe37BtdXPER2Y0/YymwITjVcrwPt5obAEb + GsBc/uzpXgpaNglzlIFXzD2INOZVuJRpr0LzfnWxXzULmJURi1AiOsO7SSjATE6kg8un8ej5jb4h + 35OuhCcthH5/PKlMwl+mQbeLNapCTqvE8aGWaBdKW2r2y8UlOXfT4IndLfz4NmnKLsZYwtt8IFS9 + fTR9pktbID4/M7Ixaav34x5rUL25B8J9qRdKk+q14HkfAnyueAzE9w2ZcK2fdUfAFox6ss3hshuf + +AFSV1+U85hB8/494yibC320vFhDWswsonAi3zMULFeIdZ1iVRG+OvXqnYLCD0XUKO8+kEqXdyBu + yp5qs31J560ddKAvhRGrFWdWUmiHOSD5s6RO2h6rKYvdAS7ZBv7qJV1MU/XQ9IY+ve3iMR3Ol9OC + oKo7eGc2p1Q4nHc2kuRWx26cDYzl6l1Gm0Po4yPnrKfCHG8+FJv7iK3d4+kSPbcJzEUc+dvyUPSi + adoe5O/ViTB+fwS8qhUKLCTpjK26iVL+WvAqmN6cj8/bpNWn7wUE0PrYJnZzA/Qs0LorbD9YIkv2 + zHWm2sUAhlzx8fONqN5XO7uFeQdFn6rqUjEguyosz/BCvSX4VEOAOAWmaYmwtwChJ5UV5IhKL4Cf + 9P1g/LULDbR5PjTsDk+LfS0vUJF2NTANYbaktHRXh/EIAhyvfCaCzeeMpJEM9GmjMJ3U7WFCm2Fx + qI6jQy+U4jGBim8a9Np7MSM7oERAg2ed2kNx7HnyuhRwPiynP34Rc6Q16EPfE01ZSPXpYk7XdYUg + IcuKZ0v7aHwIZ/tCs7WeF+X8zuFekDA+LrmTziNxRdDN9xQHpLqmncgfVcRxN4n6TaKES3tIW2hD + Wvpib310YjFNQ+AUTvgoHFWXfzoigYKzqbC/mBOYLS/QwBOVIQ0DGFe/+kfTY6RU3S9LOjUjmCBO + 3xFN5PZQSardDmh8LYyE4lbQZ/lzHZQsPBjY3GDGlsoKMtS1JfnTE0yqdgM8TQPG+j186BO5cTk8 + LgXEjsCX7mwpJABC6Gk0P6zvXM29okGO0ya60yVQMeOzM9D6/LD5+gI29aQsfvhDuCZJQup6HxMM + y3DGiTr36bLJ8QCc7YfDmL4fgEbl01bOV1mnoU/G9DfeShV7na/EfJMu63hs/df5ivW9yIXzFcsD + xPu08JVLolWS6yYd1APDonkhofRt3twS7U/Dnpp1fOolIOsqeiSzg7Et76qh6OUa+cpBow959+mX + 97Vt4bsc1z33G+KOaB4KaH15DmumfwOzpGQ8gDBeyKtqRr3LuacKz1F5JnOiTzpNgWBDRX8K+MgP + l34p35oJMz7A+LlErBrxzvThg3sfCdgZTzB383aBzaet/K2cmEA4z8EZdpaZUb1xPV3wc0mEx0xT + iXQ1r+lktiYPg22KsfO5X9iiJJMJIiVMKE4kHkyvgPKwj5QbvY6BWkmjrjTw9F5kat3TNp028K5C + EH5fZGu0StrNoFXAd5sdCZfUaij8+PbswgF73ziuZjnrfUDJ1aLq2Xi7Y0LfJYjp1qLR+yimY3i1 + SrBvsUrN+/Hdj/k1qNEltx4kfp62YNJ7OMFtZBzJGfI9WMDppCH3YShUk06kn89LPSAY19RHj+kV + Du6SdVAoxBO2gmq76qNBBhn/vlLP47buzIWKAnl1M2DNPJiu8FHDAMyyuGC1vbgp+zzXLrSRi+iO + nquKnmu5g3tzIdh9uloo1EAs4e7k7qjhll5Ivw1pfnzgD8vlHi6ifetATBsV+94hCr9pvajA2QYS + XfVGuJRvxwS4KXrqDs8PG0t+glCypA12vDLspaF3zzAxP9SHuZz0TGbNVSkiHdMdztVUZBopQBZk + 3srHERPQFBjwmaW2v5lt4JJu4GKYCJcDdg+QsNE6Dhm8Og+TOpp26WmgldEPL6lGlM5lfOsZCnL0 + HTa0t9uzSvqWP/2MsZ6I+nQPqQqcm/jG1tubqnnYaSoS4fvl01N0Y4tduAr86d/8jEBFfn7meesb + f5Gk9VSU2B22ZVDXGH/PO1cCu86GaSzuqfrAszs9FiuGVbEE1G9ADRb9whkAkFrCWkAuoM9FZYEb + oxp89qvXB+/4cHas2Pe44QHYa54SUH6fAd3BPmHUNhEHBzP60mM6bHu66m3AhNHH+dqVXWyOhwZ6 + tLv5n2OnukvjX1X0ebXp3/eHQqwNaL+ee2zez1LI4vPrDNWrqNFHfKxDsuI1StMCYb/NS3dqEtTB + 7WnIqF7d6n6x4MsE/S2w8Z7Ed0bcdFfAb6G0GEvS1LOfPuF8DmN99Sus5w4x/MPfrNZ1UhRjAla8 + IBs8K/3IhYsCbTiWVE3SbzU/usqGYmM22FU3vssXvdxAfp9YVI3WrovhZ/agbpUvqkay138pgxDy + avfGeCa3dKmFZtUHCGJDzL6gVXUhgm/U9UQ5EE/vcY9z0Cxgh/WeHHRJupcd5Pexhd0GOtWi5ypB + OP1E6/WHfrAeYQTHWDZx9sEbd+Y5bYI+LJlPHlztTjtaDsjZniWfM5ubOx4y2CmKuiDCIWnrjhL9 + XmG2lyDdIe8dMvWAHFgMNU/ju07AcDsiGc7iY0eT8JowxmDewi+REMZ4sFn3bCeNk8RgfWcNwmqq + 5hf55Q/YtvhUZ65HTfjA5YC99L7XpW/TNOA6Qo16UUf7SWHPFkRXO8CJrI3hEu4NH/J13mK/eu1c + cYfMBajKxiP9ztiANQ8ggIbx7MOfH5aSzar/bHudD5r708dg2wU7fH7fjjq790H5xxdmZuZszjhh + gJ0x9PShrF1Qd5tDDfmv52CzxLE7RNkzAtk3kvF51vVeWP8frXhGtVmvqlnt6BWu9UQzbkfZ8NMT + a33Qo4pTd1Z6EIOV//DJPvj9kp8uPjSR7fvLqlf7A3RioCrIw6rqVBWTwcShvZEgsvU2HBuveBpQ + FrDQX/w3DMeFKA3UOAjwMU/p2qV2lEG5qCI9PeJy9Y+J9ps/vrgT5J6lSjvAbF8K1H3djxXzJFtD + gJ8Gwh8nqVqUzCuUd5n4GM/fdzW1SOdg3e99vJdZo1P64AIo78rJfxvww6iN7Rrlh7LGP/07Dq5Q + rj1rCF3Ha9Xv7wKu+Y2vnPuBzeZNL2AcdR122H4IpxLYC8jFY0TTBjr9tNhqjUSjjag5dXXIhqtM + IGx8DnsoZRV7zXIMtHi2aBQ8j+nKXx68vbeBL18FvZrTWlHhKSkS7B8SrmdSoNdyD0wXH3Ler374 + Cd7JgRKgbnxdHD5QU8TUxdiQrBsQpK2dQKyRlvq8IocDf5wJUu7XEntpfmXLqu+g41SP9fd74Vw0 + yIfdbEZYpYdzNT96qYZlGGbYGquLu+jRq1snUoNdI1JdAYtJC2AlHPGOzFuXge0zB5/7HRLIDQ82 + a3rewvJrH+iZ3DfVmDZ+DiG3VNRILKgvW03l0ZRqEkEg7XXW2TwHm06NqM8LZiVMVz2Cgv1Z6FGd + 3tVS3MwIiliZ/WX73IIJ7cIc6edl44PX/dgvTGtKWFXODmfcZ3BbsSkgXPUA9pO6CIdXeS9+z5ea + 28/elerUuEKBzA1+hIH+l5fBWDQh9YE+VxP5Fjb66SFdr3bhBBbX+/EltsqHAr7LlhhQrVlMnQGG + Op0rmijFMxzo7s3L4VJvjovyOfI3HIp8lc5VnE7Ad+8t9nFu6pNRPggUtXNFj521Z+xoDQQevy1e + 9XaSMrFeT7HLHyVW382lpwXsFcgOl/dfXrkYmsTBW+XFWE3SQy8eZOAAp7J0rM9XWa/3W7mE7sNU + sOtNYji3g9pCsC186iuPS7qI9opHp4QQgYS2OxxGiVOQOM5UO+Ei/R7Xd8bD7PHEuhLKbP6oaQDx + 3rzTY8V54YStqwZPD7yeTbOV3W9mZ/x6rvMVr3kbWPMnB5bS/km1vbZJx+UdFmjNU+nPH/G7bKjB + zcg4bB3pifGFOBg/PYxPqx5a3q/Mhs2Q7OmuuWjgD//l91eh0SaHIUOBcgW/vEVX/I9OhKA8I8Hp + MuydMyNc8yYV/fDd6dh29R9VAT2Xj+jtuqurZYyQDIrnacBHJ9T6ReT3GootLcVqIz3Z8qjTK2g+ + XUVNd1u4gy1qNZKnz4kA9X5ioqxfAvjjZ3MMin5pwE2EAsmfPvJeIxsvhJuAa1QXbNf8zZWsYfHg + T98fQjvWaaoUBL429okwka/CASyuD+nV+lLLufiuRCY+gVqcqfggno6pwJJW/flj0j6lqz6LPs3A + L98+fl/ffs5OTIHBWY5oXNN3+HGeowcjqSmxejb2Onvedw7qHucAexZs1vw3FuG7UB/Yv+yqcM3P + C/jTe5GkNe58VNQa1W18XfWdz0R0c2z43Dk9PVxLwHoaagtsv8GLHr3XEUjnk1LCj5s32Fv5uY0n + wwPds9sR6Tqc177/nA2Zkk0UF5ciFKbvLoN7cyI02x0DMCns1oEXXAoyrHqUkgnG8r3M3tRV7zNo + 783bBuX+e8QXePyyjkiGD6fncvc/gnKvCHyhDnazEeFwmgCY96wd4H1KAZHYQMLxQsQFuJPCUV3c + Xtw5rRcNbrvzzhdvxuBOXu4YYJ0vWLs93HTZyl+i+BI70Z3yoNWyM0cZTqkqkc2qrwau5jzY2I22 + 5nGdu9QCIcojyXRsCeu7onOZQHDTrCP2z/KXLTtkTsBWtM7nxewApvPlvsBrv43xTvq2OvPNIEBr + HkiE5/nZv8PP1ocfqMj+u556nZ3Te/3Tc9T7chHgtdNs/u6fWm4jh6znywis/EtPPK6reXC+JhBO + h5jAUFMr4TgLHIRxQ4kQWCHoYXJPIIvO0F/KVgrn2jh4kL52a8+xqNBnddlCgPanJ5Ec4KTSsyx8 + BEgj/emn1c8ZUDhqR//S10s41RevhNEWhnT1LynfbXNVGZUopgejaqupDicTJkQ8UnwSynCebrcF + JEOeYdwOBpBWPt5Oszf4wv5zAfOj623wzIwdDQp9zQ9a+a8+qRbZ2+p1ir/qH//u7AOpRpSTGKx5 + Asbp4+SykIMRmBio/Xn1v2STWwRWXJITliQVmN1uihHZAJ7az9MdLF+uNaH2+vLUgjpzZyyeO/C7 + nyS/VSGjjSrDcyTdfaV4+9V8wgcI0T58kk2yVHprq5yjEB3vqccy1ZVM8R7ANU9dN5ye9OmC7j68 + YZoSfj0VeGn0soCJGbTYYoMfsluICPzlQzmuboDa+1eBtNSWqZezlq38EgOxzW54Z9MOzDr1VDBf + VPrTO/2qj1RwzAeZmkZN0mntRgar4ymkh/CrVbwszM7a8ozD+ihp/dznoIM3LhP8r+NK6eLrOxWJ + XOf6Mz1XPZvLhINr3oAv2b2pltMm1eA2SiOqb9uODY/9sQH8Ykj4Ll6f7pqPECiE1YEenJlVUyi1 + Jqgqe0dxxV+q4efvvPEzUkceQcrW9T3YPdtVv6JDyK/4Ct+3TKKmKNNw3vOCjeT3ldEfHo+vg95A + m+5Deo+bqlrmva3Bw9zOVK8yMZ2gsxQwALOK7aEYq9/9wNfmEVOHm0vG1IPgQDWVe+qmQeQuePtS + lFE+EZ9pt5bR1ywn8FFwG39a81lp1dPQpIJJjW0wh/NTTzK4pWuPuJXflh8eZoM+4YPRJunUVPb5 + t57jw/zoVeJWfhGw6WhBpFh5ALa5SQoshobHx6JuAZt7RYX1ufri/THm9AmNtgiJKkT44u5f+vSM + LhOsLuKWbL+bpGfPiu/Q268djItk0YdvQRY4RnaN7VcSpsLUXZTfegDWssQL+U3Qd6CQCpfe3JdZ + TYNNzsCdZA7/6q+4ea/sN970eBibdCZB4gNe167U/6hi9Zf3BZePR+S9GrJx9f+ov+AcG4mV6cKy + bUy4ERCHXV4cUqr7dx7yjXin5qvu9DVfM1HsWQaRjl3h0rvoab88E9vdjddZulwN6B2yCq96I2RG + +yjgntm3X54WEsCdeZTtBYh17daC6ftMol/e7M+ToAIJkB7C/eP0Xf2KXpH+OEUoE1sVP37rG66b + tHDIygc17+zFmOueW/Q93vt1/fcAJnvzaqEdHRA9zmjDJi/qtd/6FXav/qtaP6vQufFvanavDvzl + GXBjdURe/R7fVOoZbUzwIEtk3yshs+wY9t5XJtu1CdzybCf1V+/r/UbuEOtavF31ErViBbG28yLv + L8/cRQVz2eXWr1tghQfZbnzfna+1fobrdga6P27tnuTma4ALc2dfCeHNZceTO8FU28Q+QDIHhqj+ + QrjmsdQMuzZkwaXNwC+/AHkngT+8/WKW+WKJZXeR9csZWsI+w/h7OzO2+rW/9WFxDIqqW/033HTx + ncbreFX8I65h27dnfH19UzZDoxt+fIHtwN2w8XDeOX/8oErpPp1esZLDM9CPPp9Y0J1OV+IBRbcJ + tfrLgU33d0CgNfiUHkISpX/6+j/sKID/vqOA3xQcxsNurOatcy2hsDcU6tXiN5yc3DUh1AuV3k8f + Ws0q1zQweKtP7BuZyKYjv80RUWVGHwfH6vniZi3wsRsmmvqzHLKDNAfwtUUVtlKzrGYk7kr4ukc7 + rB3ydUV5F06IziQgik3NlO9NtVNuYdtjHVmmzuT2JMNdw3VYpafenW6BuiDjuOT0OHm+yz5CzsPp + bA/+BR+PvVgILxH2BxT6nfjC/TKcPR/UQf6h2lV8sRG+DAVBUrr48CDXnr2s/QC0xfOo3oVjtWyW + VIOPl5j6qN5bOiun4gyHd1RQO0m8argCz4Ttg/o+/aAbGCvIRFhs04xw963riuf1XKZ3uvXxJVy3 + pZ21uwMtAxi+9AIzmzzhLUKe32C6m0MULuRLOLDnNW/9fTsm0nZp0FyKOU1MA/essb8TOtpeSK95 + t00XpkITukOnYncfjiGLQrVBez3b02DesJQIcc7LB6h//U1TlakEL7GG8FZu6UU3zYqF3zcHAXkC + X7pIMJznyagR8HdPash3IRwLwGWwlWmC7aW7pIL+XTg0W/wZn6xXCKgITzYSE9nFKo2yftkDlIFc + CyTqjLrRj2Eu5NBJoU+zgvd7MeOPE1TaR03P3yV2xVpSzmht54p1u2tc9kzXUy884UpVcUd0Fvea + Cjf7yiTA06dwPi08Qc/YtLEax2bPd+srq+C76/Hxm/U6c3whhhYlh9/49GKSVRryUCnTo/YQ3eVb + TzEMT+eahrM+9TRq5xrpo7ClSTXe9JaDdgYD/P3STH3DnjX5eQLwftphHUw7IL32S4t83+toNFw2 + YAmuQQLz1q3o/rBNXdIqDkHVJZqwTTdctdReEKDb3QTUccwupHDXZOhtOkfqH6ZvOuu9r8E2Djj8 + vNst4GEzOvBGoj29LUbYC71aJGgHaU/tj9C47KpmCaTzEBDIb1y9XYqkUA6mjeh5F71+9XWGPb/c + CeF5pxJ4k2lwrSeK1+vPWSVoKEz5kD5OXhmONToXUB8jjfpB9WDT5lMWiLucJnzvD4HOD4tAUDTu + ILWy56sScDaq0NdbgDX4qtPRISGPusj4UA04qi5576MJETXPVN86t0rM2WSgWYs1anYsdcVwZA7q + Dmbql4J47CXX36nIfGo37Lvay+X1BJ3hQGWMraiQwwm7Ow9eRtP7/R532eGrASXzaOMLa2R3Bo4t + Ir4zCXmO4TucBEk4o3dPbF/p4iPgQ38YYOpeblif9aAXur4i6D5Zoj/W+48rdIO4wMDBd7q7Bqo+ + 16epRJbgJHhf7hp9uSZJA4TLvccHw/oy+ohVG320x0hVTdwDabt5cMqpsK/YavuICV/1MCixLu+w + dt2ydIkMR4G/8cMUru80r4SYTD0iMD9IbAL4ZSK9Tb9UBQ8uXVAyBWgA1suXZbVkzJaSBnZfoSXz + HD7S5dgbGtrzqodPuCL9Hz4XOhV9EZWfVNySQERvt3n40qE/6EKzMc7oGX82vrT/+ukixFcRbjUs + 4Us9f90FJfIZGqFP/U35+vSLEYQ5+tzWdwrbJuqlFW9RcyIFtZ1TB8jW2CloHpMjmaXtp6emCGRo + xO0G+/Z9ny7JQzQV2VPvOOzXPa3iGGbwiTieWh9spOPVjRSAlLAmi9a/U1KKdgGdFw3wsZyjcGzQ + 1kdx9Krw8R5+02m0lAQ+ZelCj0ccMhH3JfnNf5oR3OqzGj07yO6GSz2pbRjDgOUoCdSUpo+i7smF + 1jLYze0e226l9ev985BmTkQtnjqhePzKEPb4XmH/eQHpVOnUh9xmMaj9kaVqmATTVnp+uuNLPIa9 + RLfuFdpv8vrDZza+2lqR3G+Mc11tQvZ5vnl0UIcRp5cXCJlbKRrc598r9sGHA1R92ATK2c3Bu8/0 + ZqPemxpax4Me30/YTxF2E/jy24beLlKWLjDbDL/P+BI0Q/8l+tuHgdHodC96ZT/7+wKifWR9sP3Y + V+n8rJUYhub7QOOTsUnZivdwTLGH8RjuU/GDHwa8+WlBtoZ31afgFcuoPYsEm+v8mRs0+9D9jOv1 + 7IiNDklFkPR4oFp9tYCwLXABuXea0uMjvvQSDk45WvnUl3a15vIaUW0oBlGGs3j8VMt5aA30sT4e + Nvb+6C6a/yKIe9/TtStVwgb0cUVQpxcLr+PpsvFV1Gi7MI6MwttjIn/TJ3SnzKDqzQjZdPJNDebW + aGGt2VQ9a5ZpQMqZVPh6wk+24qcNW8RvcVr4A5gs+zOhH//cpNh0J1k5DpA0OcGqAF9AlEfFgZOs + xzRQzCSd1VaoUfmMYny1BjvlNygsIPds7zS9Tq9KdKJLpwzOK6H7/nlyJVt+tzC8xjoNI3GbztZ4 + zdGKT/Qpr+/4XIFhooX7iIRLA6zP4lx0qBKYRxqX6K6wPXQ2zD2+wWet36fCbrMPlHIz8fgWpJ4+ + WIs4oNhHH8K7W73i5Tob4MxcTLjoLVeLuvWvUP6ob3w8eVoqBEuugucZfvHOkGV3sc+VjJTxo9NH + Odj6fH50CQqUjNLU5SowCw/JQLuX5FI3tt6MNespLCdV7eltxTPSB7MDl2q8YrWy1+6U0rP+6Tdf + nPMTI8KgJkA7hx8yvx1Q0XQn5wiG/OxXjf9KJw5CHpwBIHR/ko1wMU6WCGf586R6mNiMP5U9hE0W + YBx490c4MFEv0FXjttQuX6yaxiyIENCdDT5ac7t2YdyqsBcsh6qcfXHnzDdUeIzXni5lZqVzd9tP + sFf8LzbnfGYM9kKsmMme8ye+c3SxxWBSzu7jTA/nrRUKafmC0HbIhdrbRE7p+GobtPXqgt7GjZUK + D78boJNyPjkj2Q7nlS8RT/0jdTJFA0Jc3AsYjTok/cxyMP+u5x3NDLvHJEqXKSwCuNWOEuFr95OS + a3Ku//jAVsGjom6lqDA68T2O06EO2/K6mOghfTJsPgIdiCOcRZSquYQPxzcPCLRMAh8mj+mxY9Rl + hqA5UF+WkO4HVrGFclUDY6J42LjfD/3sGVUD+Khk1A8KL53t2LAVIPNvMjqvvmeg667KT89c7/5B + 533p2QBywrU/J5chJVqdEIXDJcFOeTLBRA7HHBwKMabefot1sfvkJRwdOfVZ4rhstna2CVZ/QLhp + oWw+P8oERt67oBm+Ke6snmMP2B2vUjVLXuGUnJQCPm6P2RdWPh/OUlvDlxEiX1bmLP3Tw9dj0fr8 + qre6sU1luH6mnnt89YORqArwWqPF6rwJ03EjsTM89aqINWdUXdFTrwl0pfKFjyl8uyQ7iGsPHc/D + 94+hg5+eAew7jvQQBG41ydWuQz/+fp7jPWO2PLbAK9t49TOf/vtuVQ9uy8eRXOL2E1bCWWwAu5su + PhLhy+YM3wyoj1eNqnfaVUNLzz4MaO1TR79aIattKYcP7/zEx6QbUzZvO0158dcjNXaHAky6eYvg + WOQ36tn1G8yRHZjwy6QT4YuDV4kPdopRDbIF21/PCZcLHWQwvpUPxm6rMWZ5NQdwrmR093bSil4u + DYHt8VNR7akmKdvla+pzip/YeoETmyybTuCjORD7aUBd5m57FWrW3STb3f1VTYRlMSyfVU6PWlJX + jAdK/qsv6ixPnk23QHDgZAUutc/hvpfebDSh2FgPfyuIu56vdOoBHF1HH5Qw+tUHBxOgNnTX3F9s + 6peb9qfH92h3AlO3dp3MzMAmE6e34I8Pf/ibr/y8JEukwhXfaBTtb/qMyicHD2IcEkW/ftJpWFek + xvTo4UANQD+f83yByIcfX2GizNrrdlZRNr/39DzzZ7DATBpgHuuyv1TaRZ/rcMPBXIIPGudPmZHz + 0JqovCs2xtekqNj5a52h+F4G6nCVEy7BgBZQhOWEfXl7BcySfU65xqPi36YFgCnaniOF8caNbD9G + BSb1NmXKZi9I9OAsRTi6910JR1E90wPAajo/gywHkrrI/vZBrtXqnzKI6qLC+0039hM57HPY6jpP + 4BJFITMc4MOVvwmaTkrITuE1UAShuvqwejjppI7fHErma4ttPK5RfvBY/dlZ8rewqSumO1EB3zuN + kOWpKuFkLdygNHDoqS+6pF/sz06E7i0R/eZkle7wJpH4h696MI/6+AyiDK2HK5ETg3d3kbTA2Zr3 + xlr9euNOoT8Q6IebgapTS8NReYYO5O8bne6+nhh2qRUQtBH3R5rM9gToVL9juHE2V7obDwZbaBR1 + oN7XJr6KS51OnYk0dIwFgR5W/cJnGzOAgaOGf/6TbtupBk7Drz2jrlif3mORoyOLHHrIop37xzfv + pv7ipAl3fbkxtxrUH/6NupdXmrIt92rAPdF0v8jKjbv6Dx94rdlS7/Pcuzx6yxO8xlRZr/dyl9MY + ZZDbTAYOwbRj/Ge/6WC1x3ufprPRTy+1jIGVOD71MlqGzKmbBABycLAXNEU1RdvkCptZdLHTPRJ3 + OV5CFaV7YPlitkPVvL6vjHrjpa9r4PdqKq+KCbtvIRE+UDvAGvs1wbLzt+v3FXeMi3sJOIoc7PLr + ubWzUPPIhdyMtfjY6FTm/u9Hjq0TpuxlHQcovXC0+rdCZ6g/qCAUxSfGfiqlk/8iDdCyLvBFIVXT + buk3CTBY72Kz1uVwhqLwP/z54Q0jct2hRT8rZEzhXp/0qTnDzy02sf0UIVsaOebgYid3bHubUJ83 + xzqCgXO80520/VSzSxsZnRLg+sJB/FaTcGyukDc8jcZLdwmnDUoL+DYzDsdUKthyf9xiiKlq4fjl + 4IrpfJ/Du6BimrnHXS8AoePhlXmYhjgmLrmbiwbL7tXhtA63f3kSUo6PmO7SYQoZp+1tqKOWkeLQ + 2GB2KZGhf0+hv/WhDOZ+0GK4jg9WV3yhwedRAGFvKj56JVM4Ff17gNIcbQi6h4dUeMjbDorg+qFm + 8h5dssNXE54Ssqd+dT6A6dLgHPz4VTWOjj6l57sP0RcyrDf+K1zUsoVQ+0gl3oP3LmV+w4lKYXcY + H1LVT+fxOpnos57r62wUki45m0wYKDnF+IVX/s2vExoC60oPCNk9+zqKB161X9LD9AEh++URal9q + /lY6vqvZ3T85WLs4W/X6UV/5JgEJVijhQHnuR+iGsqIzy8A/Pys+nh8RHsfFx17Bk562TliCeeEO + OEYZ0+dYutTwtUmZ/5lGXP3YZPscpQMZ55ZLGVIXE+7g2GMv6D0gWujjodPedqiRC3c2DQsa4L1W + amytech3Nroavg7e1Z8+Tq1POSfXW7qbe6wJ8ytkxdrUUpYuV6p9R3dF0pnAc0Ae2NCK+o9fFWB/ + sL+FfcAKz3FF8NP/2N583HHVxzD87N7YiK0ZjOv8RLlFLXx0auQu4f3h//yjT8uGgSEJj/X2q5sG + 3fmnK5Ay49rAx4tPcextmLs8Hegrr/t158viR2fTJvRqmGfcadVjQzpRxkxYN1rpL6dHpbO2MAo4 + GLKB7Tk8paQFlwkOHRKx48alzo7KbkA/f2c7Jwes9S3+vr/6KYUNCLwmlPYzw9dVP/KfyW9gA0lP + sYZrnfjDzUBrffz5CXEPhByOfSThTH1nlbQ7IB7OnE4xTp4eG45PNYNVwlR/ql9tOlu3MYPpfmvR + 54pvTDsc8m0wHWeyZLhgaz0p6KdnH3N11qct5iZYhNKLzHpm/fkniO+Z9+enxn9Iu5JlVXkt/EAO + pJOEIX0PQUDEGSgbARXpAsnT38Iz/Wd3uMvaCiF83UpWJi1swM//o+0ieyuMGFf6NK8cyUYXeqv0 + 0bh//urvZtuAn/wWSpo0UByE7yvdnnHow250lYUP1ku5nn3xABvkzwixhZ8se94BUv9TL6yCm3HV + 8UmAe16M0MNtR8pKQQP+5kHb/aTW4vbxKCDCqoWD9VyU5G6PBMRl5ONixBsgonGHYNAgRIbfbZQu + wjTAdKoNvM93bxuzcwHf/t8Fe8MBtyvjlzE4An9COrAeydTOnAsRc8+X05cXkrW5vit4NJ4mDhf9 + 067mmnennT+QwbfvkbxOQQpYfXVw+T5pCRPtpw503DXBJuPY7SrfjgKoF99FfqauYD21dQp//lp/ + 1muLf9cXpQITftMLD6hMFx12gLah5D7Hln8a4nD6XX9Es2s5N6Am8LxSAaF3q5bMrs/BYypcLO/+ + mHTBmIkgiQYUh2RKltvjrxDzLnssdDroJY/OUwPmUjWRuj5CQM4KuUPXnPUF7M973fkXiI84xs5B + TcH3FpgD/Mfvq1945KQ7AiC0jpAPZqotHU8iaOqphC1Xkimni0MOhy/fL/SrsJRoojfB/uANWLHZ + 90jyTUrhh8wa+tUrJkUrGjHhvQj50XJIyCesp1P3lhukSlI6brt+gfsRVNhyxq+3hp7UQYRREM77 + 818Nk1PhrRM6HOpXt2UztmUgdzmS5agi3WO6vGVgWYMEh3nz0YjaFRP059AKr3o8lHjg7j7c83ik + //z7rb+KUFC+K9bXeEnmGtU6zJlvuOvxjdIQ3Ak8suSOtOViJ9z4Hlz4y6+8uyOPzO0dVeKH5DFW + tLs1ruM29OCXd4SJY//eNwIVsw6R+hzP3hqyuQ0ndjwj2U83jdyrdIXp3iNA7bIP2LqzUANv9nik + UzlLSMsnb3hk1zsynBPwtjnXXFjFRbOsU9t6a9zyqvTilhT7ZaYldBMlHQ5Vn6H8Yafgpx/gtAZK + SDaGgIW5rBOUjYMV0jvbtOTxhzn41E0em2xZlzP/+Obg3Wjnf/nXQmXGlAKVaGjXd97KcEMI7Do+ + YzfantpKmLWSlDcckLrj5XIqPhEkh2JFvv+NNdyY5wzIY63idI3DknIf4MPJzVKkKaKm8ZZgHsCt + kDV8p6OQ7HrhDsv6lCAleTnJ2s0KgbHnPn95P13kk5lKwy00l9Nj4cbZnLwCNM76wD53bgA52roJ + DvrhiJ2r9gfo4BsRQGk6L7/8ebY0qz798g2luEwJ6YI2k/b8KZTcTtLGy3hdoNqUcQhulQOYvwuc + 4DxmPJJFUyzJw3ErKPY2RZWnPrVpz+OhSkI/ZJj0q+31jEL65UW33T/s71slHevUxz/+3vNLFzZH + wiyfQ8CW1GR7RjyWloI9C369lW30CMYrY6OLZysJS8plALveRC5qipZciy2SXmZ12P1JnSyKcD78 + /OO/et7SCu8e7PWxZX++4yY1VwhNfLXD1UYdHT/snjdPixees/xBsY/uuqjnwzHEq3kCZIw2+1+e + r3ytwdv67+kAc01UkBm4yYj5uBdhFXjXZTt83ZZ59LUAX1ukI1uX8oTufAUuakH++ZHF+fQ1uHtL + jva8mm6TZtbCTw/owJLKNTudZNheshVp3FXz9vpNLv34z4LbS+tFcSqgKcotuu/6fNOO4wEyDpsj + JeKVknkvoBY5kH5Q+JLqkXzQxQT9wRmQ6zNkXHtchCD6o2k44e+jpW635OIvP/3xLwlleRIvPnzu + 8/0+jnt9S0rP3LjQtnXbWaiYSlIlc1okIWpHUtxbGRo3WV5WfPY8Iod8Lp3IdkD6s45abpMfBXCg + 8kX2Tw8Hl0QF7+uFQ3s+RfniqhL4q1dY4BGX0xcLIlT5fcUf/krtL9+AxmlskMGdF0rbxyX/l7ca + n6IDy/Cp6h8fhBB/pXE+P7QJjrc1QKZ66Upam1gVjTB9hUfoopKctaCGfwGukNFtjvbL5yT13kc4 + yF6Kt+cZukSWs4FvTlto6yN1IXzzcRkeP+I7WYn7bGC8XY7od70/fAR7vRGbJa8Dano38Vd/Wgjz + 9235zlxVafcvy3h0fG37DO8UVr3Thu+ryCX44yER4GzSUQyfeknvhfWGfzPr4IhTQo/88pTCuMgo + Zd8ypUqVEJA9hiRcutGmsz7c+tPFas447FdWm2Q9FKDUNe2/8f3lI2DXo6g6BE5C11CWYf01R+z/ + /Kf0Wgn4s88h0iokeCtqgljkRh8i6+qkHnPr/0SoVwZC1jrjdrItkEMx+MuR5Uo12J4RdWGfeH// + 8JIavhnB98deUWBxKSUjsHUYLPoRGW/v0OLk4Ikw4Z0IK1mytYugjSFka8NEWtu6I9cFYwpPyiJj + /04onX7+Q9kGAxt7vZx4x2P//6wokP57RQF7tgtsXKSmpVGwTPAcpYeFE91vO9vJS4XXUJuwKqAz + HfZtRtD5mveQz9t3Qi/6d5CsZO+Kq3UeWIPxBAG+dhijWlkoKbzIhq+LlYQ8KpSWO52dCkqX6Y7U + hzeXU/e95VCMDG3RTorncV/q94AP2WhJyuFY9mNR1FA6lARZcN8HaGTyW9I9x8UWca2RR2vbSVLZ + 9Nhz5Wc5iTZ9w6FTYAith5qsWxa8IXHNEjlNpWpcpnJEAnf7i7xV4cBqxs4AIelwCFKJJGQ4KwdY + fUd24W3jO5Kr4BMAX+cQXxuit6t+dWIQUkFZROd1Llc//YaQ6Mq0kAFrgJWNnoEuzBmUXbMCsLGZ + qFLAeTH2nfMCvk5xruH1b2JwWIqStiy74u2dyAoZiXYJ+cOkgFwQyri81lj7Pherlo7JLcF5Jwnl + Km7NCsv7NixzYcaUFS55IRFdm/ZzqtZ2ER99LFqVqSNP2xrAjie7kmaTeNjiP0M7b/HKSX9UlZCj + 8zLlGtXrYPbgFeR/ksZbn5+phiMNInQ7HJ2RhSVbQAFkBlKSCJWkud1T6Pq+g5zLmQHEJvFBKii7 + YZOJ09/8WeBDuyc4dV/PkaXV5Q4Ny9/w7c2OJQ/2jMgjPUJpfNY8bvLVFJqNXOHbGcJ2Ey5RLjWE + cbFxt/OEiaM0luLvYqAUZs+Sn/O/4TeflslN/ig1MruD6cnUF3LQKo8BqDfhVdfvuPBFZ1yOyVeG + 2eg2uDCjm0czt4RQMdYU38UPLCeAel2KgT3grH2E5cQGdg2/Wbsii7ifkfAlyCEf1Tec+rfF20Qh + WOFDC1bsJc6LTqSZCin+Tgaq/tAl4SS85dKEdA+nzXjViCL/TfAYvMxFqN/II/4Th+AvkA2UzcrL + Y2hfLRAt+zlP2oEH61T7HDz+RSFW69oYSf7pG3AyMVhoOfwlNOJzHbxU38HX1GZK6uW1K+3XGx7z + iRtnyMiZFHBOjOz7fu7Y2edUKYo5gtVPMY7LrOQ5eGdHE6EXC7R1lpAAKxn+ofPrrSSszrCqhK9v + jM1WqBNm1JwVln3/RtehkMrpT4MQijZzXoS07ZKBu4Qi/FhFiu1v7iakkzwBHjtWwOZS2R73jDEH + Ldx8kVEWr3G9nPY108bpD/lbdQUcT3VX0ujIYa23YYL7M+nhIoURSphBAbypNzb4M48ZUvhHXm5G + TDJJWNRuAZF31TYyOG9YsrjbPxfK9RvQSao63cdqFVQlvX6uqpS9DBqCV4m93/MBPzyCyNEohdy9 + gKTnnuE9j/uW3nyZk9rnZUZ/4uLQjdvPfdbol8N+rLkeU72OvdhwxxA5TXFLuPLsVnDIby0yRdcZ + udaSRHhuVBNHUJRGYkq+AGa4qVjWE7llRcEgUgTWMdzE0kq2o68xcBxhha0dX1hRCAg8WkREdqMR + DT+dnkiWvHYokg99gqWX4ELnIPZYrm+Zx8SfWYVDXrYYNZ3XclcSV1LGEYAQORzbdXjpFYQ1+KCr + 25vlFpyUSno7e88PI+dKClT5LU26mGMzPp5H5nUVIXT3NanpnR8AdcWGk5JU75Cd/pXj9rGJDuvI + AigMWSVZfSkvYKvHGBlnzyrX1Lv38McHehwU5WSzmw/fR+GIg+rZgRW9SSrdPMnEgec86bKpngkP + XHZBIa+6JXfKKJEsyLg4u24+ZXF/X+BnaBQc9nnhLWd2DuHx/ZQXSojfsup1O0iqNVi4MMfRmy6i + kMJyqQhyp8s1Wf/KYAJnqa/C5Cm927VtJgGWV1/BcpSN5YYoGuBeXMC6dwCUboJDwP45Sj5bDLiH + 73Lw2PHCsl6jLaHtlLngAO0nust/ybjaDC9L9UljkA5joSXjo19PvgNk7PPZBGhX8BP8e3Y5srhn + RPH3qxXSclkgdqyMAaQSuwy0AqvgXLGEccrkZoLexKgovz6GZKV9NsEAhgoOC8H3ts4KfKiwh2N4 + WCKkrYB/6PAipxzOJulekoIargTxQ1nANB1GilW6Qn2JeaTK74e2uvm7lx6T80XuMVsBuT++MczM + d4QM4+9FvyeSVPBUBQj7UXMoN6LEObzoy2ORLtgZmYu4ZlKEAUYhWCEgLEo7yB+jCpX1N6Hbyeki + SVmWIKSLfC7Ji5wPUh+UHjJx9wTfg3mrYXFJQ/S4YKfF3lfPpWG7Ppb15W0JUTDNJdaoFZyFvV3O + sVmqUI+Hv/BCqsGj8ZZFUDs2G7qmdpqws/6ypdB68cju42ikdhSu8HWrROxVrFUyQ1r70s6XKK9I + MzKXE2fDqPrbex/N07i+jh8o/d7n4OpPI5kon0FbLRnsm9e+JY0tmDCVkL0I14dbcnWVQHh1hB7L + N9scObtmGumkvnnsrLfGWxrVe8PD2jjh1i6+trnhXECYcF9k9Gikw3ZLGCmKGYJi+S15VO34A6xy + FCF/cI7jKvNXXZJCZC2gbU+UiuAu//h5OYyZTZfLCwywBCRBwTm9jhit7RuuyjFEIZ5jb9VOGoQR + ICNO8INJJuYqVlLe7RX0xTVaNniuk8R6aYDduTxrxNUnGx4eRYlddJN2fSBwME3PCDliXyfEiaII + Ps3rBQefwUmGvqQCXD7eE6mRatOtP8imNL+SBVljffU2Ic1CQHrmuQhB6Hv/8FCIc3857vjENPO+ + AvTxeiP1JfUjPdr7ufM3IcJJ0S/J1vj+3l3vuCDjezHatbmL3W88kW0e558eW//xi10tJzrF0T36 + 8SX66YWtYpxU3PUZMoTZbrn6JVew2RNOPjzidr1rbgyAu+jYm6Zq3MJMf0tYXO7Y+DyikqPp3Yd2 + GGPk7/qRWT+dLL0v9RPflVdQssXlnEsnKhs4xDPxVnTQdOiUBISssa+ACYV8BStHNKS8j2U73YtE + hu663sPf+H1Lkt7BDw/OVqC3zEFABHyPk48uB3ccSeE+DvBM7yMKWbiOhEpeAZSrf1qO3FUe+XDY + YnAfEg7rtqpTur3HDEiuqWGjbt2E5kaaAmhJM45maRpnMJcMRNnm7V31Tvv3aTkw9UkKWRAZCfs0 + iwb+8MogVg1++AYzXDtIxWbgrX3+GmD7Ke7YebNewpFaziTxSTxkH/omoUN1vkMU9xZ2vM2kfOw8 + I1gIQY5TmCkld2DbBb4EJCPnymztFGnSHd646wu7V8cCW749V6kX5ADpcSAmOHae8e/9XuAlb0qi + 5EP/41/kMobSrqKKTBgF8gv5yGnBlhdnGdYl5EK2bt2SRF+zAKV3NZCdyZ9yKw72G37qNETFZdIB + Uz9JCG5JVe56yGs39RzcQaQUAbov3bldq4PaQQjbIzZfl3bcvpdIhOcgiPb7VcvpIq4pTCPbC49K + T7R1qnXm9M2eK96JVOvnSyzAXV8v5Kzf6HzuLwvkU1FGqkiWkZwtb4IGjXOkXD9Cu3wO6wrlpv/8 + /MXIh9+jKYL5Ey4w1lyNod9IAMVJrJG96R7YXsFpAfkDyVgD9Z+2JpnZQSNQJYw66nprOZ4qcP2E + DtZXNAPKUcj89CUK2+GTTA5oazCFbI8uz2/nbctpbxzMF124KXsCfDwwESiN+oTLirUStg+nAqDO + nLA+X6yWGbc2Fh8aWheeRkrJz+vwhq58DZH35RSPj7cqguKBtZGWnV8eZY/1AXpvmoTUyLNyPf0W + LbvxEnIfhh/JgjdRyka7wZ4DhREDJSwgvA0s/pv027jp4FnDalHuv89bEhoV93veKGBdviTl2b3D + zOwi9JtvvCTJAthsv8dOdl3GUbh2d2lQbIIz3Cl0H78J7vo7pOe/LyXf5xJCe+winKTrKdnMv7P7 + 80sI5VPWjn+SIkpTlkn4x9/7eLkAu0mI9IDbvI2B8QLvlSgj11OZkpwDwYd15g4h+RTeyIW+lon3 + jXq7fhG9uWkvb3i3igkrx6BpaS/uPb+aYkJ67bcavZ2pCyPLvyErOLFg/aPRAOVDfMRWjSxK7hlD + 4PoyAVaPzpWutYNj8d0wanhkz29ATGk/NWvXP07y6Muf3oKKd5WWvpPyhBw6IwK8o+jYfC8S3SwW + LwB8Kxc74Th7ZHzUBN4e5Rhup8u+B72K7+AxeV+k6dkr2d5FVEuv0VV3vBVKktzunMglcoACoE4l + 8c8qhB30btiaYjIS8he6MHod/rBGrkX74ytpNlcP3174PO76AIKjAhesHcGmdce963O3PhVkPL+6 + tz5s+JbEIuLCgSamxr+igIjfRdGRygt9uX2n5wC+KDqgm2wYLW/M50ySmq1Ajn5fwGowegp95ySj + fOQPydxZRgh3/EOaPYcjb2cgAhZHS+QVxaUkvT7aouOm2a5ftnLFbn/4dz/Kkib7bhOr/6c/fDc5 + UvpIalVyTa/Y0cjwtqsa6uDp5zpO/7IDJXveAPz+ayJLuL21TZ4vHARm+kB3cTQ8+hf2uUTr5rn0 + aasnbMLAfc/pM8cqkZOSKPJ1+uEN1h4NM5KfXybMXQxhe3DAd+dzELdjhtTTxACcSpIOrfWIkIw6 + TPuvZYUQNWUXsrTTAPlIhw6OL4CxHLN/CW1QYkoPpI/ovvsx/vv1crgQKi6MgqWWtvrTlSzgqCgM + t7wlhsUJcEz/XKT34qWlOSOov/EJpemu0zWsDQbu/LScvLnScCK4BPKOpiOn0iINv6JghX0q1svJ + t9dkdm5/KTwKoY0cpGbJj48hL70ybNbiNi4GH3fifj3INLhZ28ZPI8NCQDlSChjRTb5vHazLA7cc + 40fubRb3FKR7Jcj4PqJTSTs3qSAr6glK5axNtseBRtLUDhV2orZJJt0YOLGO0grJXvAet/5g6/Ay + 9xmyrOFabtz67iDHv/+QMoei9/PTvzwEKw/uqtGbF/agim86Uvf8gTWUUoTHemFQ2CkrXe2qrmAv + cbdw459Pj/78m9xXFFlxagG8/h04qLOr//O3ybbFAgPK5U6Qn7GvchU1JYJTyPdhmzKqNkV3u/jl + VUj5u6qU6oIWn0B7K0Pmpwe8vLel3T/giLLKuJGvlUPIwQzfm+ebbkvT5NIw6CMy+3fiLVqHYsg4 + 9yJ8tEmt0fQSCIADuA1Puz9ZUYhzcecHpDLibV9F+bhD5yD0yHpenu16gvdJTPjwjFJHv+w9L70M + sNGJR/52cijPt3kHsmQMUdCtWrlJZ68CLiwY5PIDLrdo38PWcZcAW+CQ0A1jxf+n9xRH2bTZJymE + v+s5kI+QEFLbKVjC4LOsMXtMsG5/3hAz3xmbpnDQMH8WbXCWhgpZ+nouN0E9ErhybY2CuNgSynnG + ANWhPS+nV24nOGDHEJ4dfe8RujQeLi3Hl7okqLHKM3/jBvRpgEXAnZB6dHiw65EBoiPWl/VQOiWH + fUmFP/y7nKhacopyE398iXzrdmpn3N8n2Kg5xOr8HTz8/XoFAOsE0W/+7HjjgsP1Ou35TTYO98cz + gi9bvSB/buQW47GBkm5kh18e1ZJLegnhxFraAnf8IUVTC1LcfjPkDK42MsG4HaROTjO85xeA9k0m + SN8mn5B+yklCH7ci++WX6KbTfD+lsxRgW64aOvMPIfmX74X1mi7WUL09ciXFHfLp94HP0pSBiXlM + BPAf6i50ND2N/Vi8KJ3wyKDAYr7tFp2gDf2zR5bX5XSihCG3Ctb6ZOCk5n06F+k1hHdpMMODLU3l + tGhMJY3FOUPmrBja8suH9/vHikrIuAlp5UO2iyyckKvY7v7Ch5afQ6w/Q8ajXbmJEgegiXQs6OU6 + pL0PhEXusIWK556f1bV0dkw/hPt8/N0faC9zGvLPyQWUlqcCRHl/wImiBNqWDu4bhPVz2/3R5i1W + qfqQzQ5v7F/yJiHPgRB4LpoNW5dw8dbWu7sA2n6EC35AyRoUSQMT/4WQLMp8Obq+ksEXfH+WE24l + +i9vGPjcR3vera3w4LzhT09bbv9Ohsl301/eheWhTxNuTZ6NlFTRFRsoId56XCL1Xz7mksDf/cit + AEzAKAtTpQGYTvC+wMuVcbFrhL33y8PgyV+H3Q9/ElY9LlC8XD8fjDa4tKNG8gMUP+8r8hJD8n74 + AXjam7gYDwFY9+fz08Mo+AzfZL692B782UOFvVsKRkKCzwTSk65j9bWfA/39K2zIKVcjPA5RoPHX + z1U+RV1yxXYYSdr21zQi2PNgVIZLAgiULxNQlGJGe76mkVmJCojLmS5Qec3JOtnQBK1rglDUMkKx + kckdPBLvtvvv90inL6fD6XQfkLPzDX3EMwPk0ov/5ZtbEMUxtMfLHHJJ0Y7b4ThB+Ms3kVV/fv4b + Qi0iE5b3vG75oIsO5bOvYpmyz5at5d6HIvVXZOdiMLIdZnI4f78XHIrXpv35TfAPb/e9oVT4ugLQ + kNVimy1ZjTTrbEILcu6y3vQH/eH7L69DwQIESrPntMA54R2k/i2Dtv6VxgSWNLpiLzivgP7ybpgw + XxSULUuX6Po5QJAZInLtVi55v4oraa+PLIfd/xOjVhipT0cJaVKeJrx3Bj3QFtNfmIipvQ0ydga5 + wJdRxvtFu2nYXWDJzl148GN9JAG2Qyg9MxYbd/+p7XlOLCHPJvhPM1it/+WDu/9A5nea6Gowfgp7 + J7aQzncvsCz51/7NT+xx4E7nfPsSmNUQ45vanVrMREYEnyL4LMe/931cXgXad+AsRvirt2CtCFVo + fZcHDo6M1dKjoMRSghcYTv774y1S3vfwfUA8UphDl7zPwerDKFBfODhcu3FbzUIWf3gQ7PkSB9ri + DW8dkJe7Lhot751pD5/uAhcOfPxx+gZ0+Xf9ARSVcSvSqy/t44ENo3xoqy9FOVTQ3GGd00SvAZ7V + w12fYs11z+P6AU19WsK7G2LNuHj4fcAxeMb+Gd3JsR3xzs+S4r3rJdj10farv7iPYcFq/HqNmw3v + PrxX4yM8Vdrqkba2OXjnP1cUPAlTzmMtNadvcbounBtwyRZ+WhUahQWQq6YKYBGjcBKfCjLSk4TR + tqZ9dOBf/eeW6yVPLr4IeOmTYW2vp42PpJehUf01yNlKqpG+pCLvtFGEg5htE5IMIILP83HZ+bEv + 10xuFmjOPYeLqqo1YtQOA8Mpn/alt6aGf/mif/WfSOv9l0e0ZFShpwnOP3wjcixksC+WvQeGTimO + Xqde/KuqIZTqy1aS2xxzYJbxPYSnUNUI8NAADKqwGClHkKw8Zve8qdCxk3tA+5zY5yT9fs87Tw0l + p77wYSXPELni8dOuzXKTgfh89lit+iihpaX40o5vIeO+lHE9u18IVxwvyLx9VY2ZL7Eo3ZWuRrFD + h4QmgkrgdqjUkN35fP0Mvg7Cut2QetZvYIPNV4T4q6Xh6/NYy189UHRmVC/whsd2FbgmF/1r+MTy + +W5o2z06r3BjIoTVZSy9WS6Pe8+6zxsrMrpQilVAYLCMEv7xxSyoxxVY34e4/OoV044HUAHUQ9Yl + DDWm+CsG+HUqgpDSxx5Vx66COeeKS5TOTLvN+uxCdzighdv93brnHZIzBzXyQLZQKgWzD//UD0bo + cj0k23LWoBQksf3jO23a/Tk0T2f0r/615cVNPvXFNO356jr+0x+f675nXzx+xvnIABk2fodRcjjJ + GjMO3Cr9/Lv8+EN0zbsigjrbfheYsUZJT75YQzXFRsibAZPMsGTzvWeHiM7Zy2pX+S1yALB6i+zE + VDzmzRxkuN6qBocX+apx/tk9QFNfJBwIf6hl7Kq/Qz2/j8vmZ99k42o1+1fv8N/C6j1hKRU/v49L + dfx6JFnnDratzKK/ffw26GYQyP2dYuV0mVsSw9sCP4k843/+Yig1XxJi77tMv7yfMCoDdj5G14VF + yaLBwofSZblj+ftuE9Jy1xxO7tItc1xsJWU+lSoeuPSCNF81wV7/1IGqxTXScmMbl+OwrZIxUg15 + ONG91YlhBoXcz3F+4j6//ARKEV/qSGMGhfJYBSu8PW4jtm1eBYy4NUTa6yF4z1+0Hp/cCtpqf0WG + +cwA/6xPNdz1Sdgbjdvi6cuZ8FePUsTyU25C6U7/z4oClvnvJQWlAuLwE8ylNh/rbQHG1QhC/kbC + hJfqPxd+YHLGWobXdr14wp54yR9k6L1H2ZOUu/umfxcH4WCUGPxVE4BL7SKLVxi6Whcjh0HGacht + c0mjafmqxYZ9m8h+5au35vO5lpLDucXOCp4j/YtyG0omi5D+vqXebBsMA7O2O6PzAgWPhlfBhZl3 + s3AFmgdYBWkSIMfvDQZfJw5s7wsiYq/fLshC0zjiv7MeSoA7g+WQoUuL8Q0tMAm4ElkTICXFp48o + nXyQLqeSgISOZiNKOpks7N3WLyDHpz+AkZgBTh13bklHiwwyhy1FZh6jcnDfciwBMTouaxrq3ka9 + twD5Wj+g+JnqgOs0LpM47dFjd7wtLU3HRyEekuqFFahPlJh6Ekn3A1mQdlk3bfWtYQVr/jzjKPY1 + b/u8fFmS06eCLyfFAkx5VGMYen8R8uPAatdqjTlpAZOIb0el82aUkxzcZJFbUtUuR+bF3N/QSuCA + Y9+RvW3iFRe2Cu8g91SrlD89Gh/GjzZEyP40ycrd8x7GtxyheCi4cmPGRJWK5+ghN3R7bX3rkSCJ + RvpCygR6sH3S2pQ2m6mQUq4aeGnUe0svV+qxP1WVx8vKJMCbobDYFZt45Fv160rvI1bCbf//9Z3a + BHjOqcZ7Ll+SwyrfJdYE+QKPTyXhqGcQaWq6El2PRjZymT+68AUiFt9DP9NY/vHXw7Xvrsgnj3D8 + /R6YVabB0XJ3Ne4W/vVwkAYZV/e495bb4q0w+ys87A83H3C/8V+sB8b3LLoCarPuAKIVnJaT9bFG + nnFPMnRy6GIftluC/6LcFaUGXpF5jqSSnKTRlPCVU5GbBN+Ee+C8gyauHzi7xpW26R1aIWxGN6RA + /mqTMEsqzLTURX9XnI4EC7UogUEWcPS92YAnjvCG96HbmyZoWkIco9dhmHzSsE2XZ0Kf5/wNm8tT + xtc3p2jb95UX0vOZsAt1RokOTOmq0L1VOQ5hgzX87lhOah3iLUJ/W8f5w2Io5t17Rr5QPzUyW3kO + 20wLkYaBSdnrHdrgKNgCvrTsOWEF6chBjMQjknHpjFv+sGv4sVgD6Yo5gi0d2w6u+tVfuPmReuss + VCnk78YJa2iuRvb7igrJwDJCj5r5gjW6JbWE0OmOVOE5jLyywQM0Ss3Divxe2rWSOQay5nJFjx4A + QKvoyEAobgEKk/DicS8mLCC+MmpIJ9FsmXy+NdD9fm/IuzPiuC4510k6x5rIalg0Ml3CFJLejApS + BK0s+d/3GaXiYSUYnslsdXUNV4YvkO76j4TgHBI4V0KL0kPjeIQZXxCqwe22L8pMSt7sigxYjL8h + /Z21lFHjqJL+BL9Et8sqtnP+sBsIw1jDxXZXPL5rlUwqlFBbxB3/9vF6S0CMj+FXeb0B6TkUiYBz + ZaT/nZWW7Vk7BoHKHFHYpDbFbPnNpGsvP9D99Ce3xHp9aihHhRoCTl4Ba+pyJn00YIXs55Ro/F/N + mNLv+7yCnNr5gbcFStUxRmlfXrQ16NUDzCHYkP0ujoAswr2BJ3u94PgWaR5DBzpJ+/uEc3JvwCor + CZHIZW87GU7iuLC+6UvZp0bo7jovsMTDQQdrmsfob5YKQO5/aQo9VemwH4VXjxyOQgolFZyxd6OF + t7H3qy/FSuTj9IZkSnq2DOHzaTLLtuMHl/mtKyVvp8bXBJeUczJfhd+TvSzXL6+MzHU2XEk95xXW + dctP+Oib1idd3HT8N5xcb623MhZN3DyQd1K2hMC/ff5iaOA4Cp6Unqoqgtc/4YaUlmfBJjw6FVJX + AcscTWbC8o/rANOwHZDi9XXJBfymQmZ4IVzgQta+gRAQYMSHEGnK5+4t6ajeoe2nDLqXkU0ZFqz5 + qbjkNi7Ak3ib2qIUnGxywWGT9rsDflSQL0UBu+XZ8zZ8uwjgdNFybJtW39LiEENpcssz8rbjfhCb + 8RSkvw5dsd7nHdhw/mSkzv0rQv7NPT3akI6DmLE9HH9uF8C1NDjAw7Vol7bhU49764cVMk0dL7mi + fxJCwYOB9JCYyzYBG2yLoLylkPJleHydbhp9KvUk2uumYOsrnulXmEtR3OcLtrTO9hh8yog0Oidt + x/sWbNk0yeCYGyT8Uviko/I8y9LrY67h6ckGgN9OMIajs6jISnGgbWJoNzBR1gLl+Xn2sMdrtVR3 + TbcIbJ20//D8dpNP+L7j7X6QXQYHdjlg27G/3u/3YKM8IbpuQEt4/vFg4FwcXsiT1AaQb/ZpwPnl + 6PhRkZ6Ojz/aS+1bT9FN0l4eVyGBgcGInH/vJ2ux+l16zvupkV1+GVnepwvc5zOupkdJGXkbOUCC + vzEkXc6Oq7hI1Slr3+fwreqOx3y5S/XTJzgV6j7BB/lYwOL2tLCntrpGLndzgFnSeki5bElJ+dmY + JLZFT6TrLhxJWhZvqHyDFFVD7o70fkxy+KAhQFq6bS09rEkOJjOK9yU6CyVhr7iQUWMPua9rAHim + vB+AZnADcvz5VH5yqaihDJd9yYTlJ5zNtkQ6lG2D1WvYaBTf0ARxrmn7fLPbH16C997Oz/meUFvJ + yu1wWut7ihKgnZKtfqoRDMbACUfuuCYTPmUrhEVmoLCIPtqXAdwBRv3Gopx9tCUxDZQC2865kLyv + 5r6EC+6bLAeI/ctZSOgdHQvRvL7KRYiCsdx4H0wQNncH37cKe9vVj3zpc1fc8PXhGkDfHcv8xgdr + T1YvGW7aCxiZ3CPTsG903ooqhcO5OSG5jJl91jcy/LNOIVJdFyXTSdpi6Q/aN6TzNa9toRDbgLAD + i42c/o30h6809o5YH2+Gx5cV8EFIhwK5psO15CB3d8gCu8U352uPm3PZdOk1qsvSPtmupCk495IR + rvZyMGzSTrE76TBV4z4UmGfqLawf+gALuoN/fL+dXRcC7q/9Inu8yi2zidcQjrFiIdP1gLeoalHA + RLS7MGGVvN0OkVTBI1pn7CsG9dbJNmOwffUXLmeItTWDNoT7+4jD0zMcl9nKC/DW8hPW4+iorf3F + 8QEVXWs5hl/N2+hoDtCg/gXZp6eh8c22Esk8kg7ZVTLveq43oeVrn/BNHi+P7nwHP1CP8GMGPuV3 + /QqdFwqQ2uWXlnB+3MFjLbMYWZ9N24pKhlJwVXQcr/XN48CfRqCVW1+kjIKVEKbk9H/8YJVUGtfx + vUHpZXLfhRjW4tHUc97QCImNZbGFHhGCRIUXbB6W61fc6OPDAEGs7fIeCtdwHOcHPi1w89f7Arbj + X0n/zr4PjjXiwrtpdB5ZT+kBfq6Ch7Ixb8B2O9wJAAFYser7a4m3W13B6cA+ULo8WDorxLMhVEsN + m/21GYkYlnf4Bm8VhZfgRcfxajKQ3Np5AV/waNchc3rI97KMH9H0TmiJrzY866KEjaNmt7zJuCFo + ueSCghUG5da2mg0vR1vHZl/EgLLjOYQXVzjh8843hLurlQSbysH+41Jouz9qxCKIdGRoL7ekH6PS + ARsyBXYqZi6XWHwdoEmnFlev/NaOrzSo9y2yEfYWEI5rBiUZokR4ohQ87XZ+UXCHQcZo6NyL15Kl + ZbbCyM7m5XjFaUtMvYwAbL4uzsB+DNUt3LebURqHJ+GoJczlfud++BSy5hd4hA4nEZo83yBUrqbH + fS/0LjVKBpBnf990vh1SAqsy15FvWRTgam0PQO4bY4H733T3H4Br6wXb800Z6fBWB2mx/jC+mr0A + tmvgR9Bi9oNZD69bQoyWqtJg3DYkf289mD7dpkseF2FUNhwo6fbNM3hjXQWbU9mVJLsn8v8AAAD/ + /6SdybKysBaFH4iBdJIwpAfpgoCIM7BBQESaBMjT3+L8d3hnd2idKg+GZO9vrSR7y15tDCRqs++4 + QiQrf3weHn9HMuJakyWoOPcDSR7sRqm2qZmcw+OK3K2smk18MAx8XZmUaLj80q1ab0/YPJgIs9zr + C2hTsxB8nswU/uVT+rOyCm7BY8TMtB8pGAQbw3p+aphXzVOzz3cGusfpRa67vl5ZwEBIO0/HuL1J + OmEUL4OVkr6Q9UwXb4ulmQF/PG3KRq6vRzlyoReILUnQ/GwWEL4HMD0/WSh4/Q9QZVUkOa96gs5A + HcttzOg//YUf3AE327t+9FCcxoBYTfrWt2c0SWA7ZRNmX+mZDvvzHrvDrIY8vRvN+sePCpxcVET+ + Seducj/Balm/yLKcAfzxFuRK84HXO/0kv8v0GgAH3IZ4G1Q87v5SCxlNSktOvRT98TQDpLXH5MVo + 2NuEwOrBPt/DpKBbufbmFIPxzFrh4UX5Eh8WWP/LX7qknhquWrEPrpFdIjWY13G5Ph4RJN6moEQ2 + pQQ/DmwtD5efiMxFtjzuT5/sehLpB8MF285z8o1z1D8/wqObO/WQ1SIPRZeI0vlvfIu58pBTxkG5 + RD/hCVcF3In6ZNOGEmdc4CcWR2Q/uGezQCJLMBt/IT7uv2+9TNcetvH3SdBwHLz5rWUd/OpHGxn8 + 0y7/xTfupZf//IP1w34rOaCOjyvXeSfbS+E0uTlLCP3lu6VLlQ30RnkJ2eK8NLNjOguUzp8+PBa0 + BOuPYzP4RA8ZBb3ojWvsCgqs2qpFD9lYKIlu7QALToiIe6xqOl+mVy+hF1OTEy/XyTpmPQMnpr// + xYeR56euAALieeKNUqivwXVlQGulJVLWqqDLMfiFUjaO4e4HOPpmtl8LnmQXEau7qA0biFgCZ9mw + yO1gsAk9Sz4PRZaeQ0m1LuXo8roFK+PxxN05mPXN5Rbnzz9Byt7yg+rJY4Bt19WhxL3WhL6UKpZ2 + /wQ9ZjDR9XyTWMiXxYCUNvs29PgYQhjPXRquFX8Z+fdmVvL+/zD0vQ4srlVnUnh9xygldy5ZDorU + QwMTjbifgtHHn1nfoaWXGTpdiacPVwh8ODfWLzzc1ss4OR9ugrQ76ci8rwrgHspjOop9FRKkNFWz + aHF0h/PodeFx5wO+xJEr7/ocWe9L1KzrrY5hr0QZcfMEeLihJgM/jbshfZQuCWa9woWwSE2CRP0x + TgU+MwAEx4UE5/EDhiJsNUmcfkEo5ufAo1fZcqE5WueQkSqs46QMfZBuG48ptCRAsPi9yy8bB8Tz + p6tO78hLoWceamIvh1Sndlrf5eMEC3SS9Y+Oex7F0F5iitAsS3Sxjd8TfhsmwEudWiP7rAYIhrmT + kCu9tJJnS8b4i8fIPpj8XsTmZIC/eHAlxzqh5GZj8NRjFSG9rehyKatFPp11J9SdX6hjbtxSIFP/ + iRS+GsH22W8hZN8a4UG1uLK1Wi6CSedVyL6sd0B2Xv6bX8htLhPom1oM4bVkyvC4643tvZk1xN+Z + /+cfbOciWKQ/njQlxS7XtzrUsOmsFNnB4FIe99MA7UiZiKl8i+Rtf9JOvlBDRy59LAk5mVSROSH8 + ILtilWTx7XqD+/gjdZb2ImZqh2FkFISosgXHzUiYDSbqViDtfb3ok4TVAipRrpHA7mk5Sc9zJT/1 + SCV39oXG3yMKWilwNzXkcnpo8MhXCjTch4BXDHN9KxhFAe7je/03vl8pxDns82+BAp7B+rb7jfC6 + XGrMd/n6l18XmdOWG7pbpuHxPr90ssh20T+9trlW6sht/Hniv/zN15rKy1CiATJ2/c3eD/ze1iLr + 0Z/+3MKe82F+f/7+rR86CUSBXKNU5FUunUcEKLfS33y9F+dTstoGW8jah7Y7330TEjpO9Ld+iN0I + h2TLJob555/98ezg83sbH6ZLQj9wrZL741vcdAJyaFmX83x9F/Clb3sRV8b1eJLDBVLmbBH7xRKv + 6S9FCr9smGLmfTmVKyTpJt/k22HXfxpYsDhgMFtbhYHxMb3tmwIFGsPMIOeMSo9O18QHqVV+kXcm + ebI43KeDqRb1JKfPuNn9i0wqL1JGVAxFHS/9qsB985KEcl3p29/4vqB7I956OJSL9LzVx2WqLyQo + V+fPr7PA7h+jx4vNmy2DmJeedqng1wV/EtpznQvdR5HhQ831yaKccw3u/js6LcwZrIxyrkCx4jMJ + L4FJ+SPzcqF8CG4IbfJIB72WOnCoAn7nb27c7A+p/vwcosCPrM/J+ArhejHfRPndjx59kLHijh/j + GW7eCVNO3XQXHNA2k5CUHl22QniC191OEAqGZlxn+1gDi+KG6DWrg0V4+Pjf+vP74l5urnV3QPFr + g53vjzuffBhpz0+Yb/YiPuClL3DX03t+0RLeNEJJelVGTnL2nerU79EEFpHmyHhe4nJaCy+HVtnc + 0Mn4XZvN/yoTOL7tInzPstjsz1/DzyGkuEfuiY6aeoygDKyC6IP4GXHi1hEs1JtBfMtsdarH71Z6 + G/KE3FcKEvJ4gQFmnm8RRTGJR2NXdeBBvB7JSVKTvchED8Huj2GzpuooDFmxSWYm+ZhdXhkV/vRy + y9Mm3NcboBB1LHzfvBUzidfSVddABfXaoST1PewtRsPyYPfTkOF7oYff718HLRRnmMnPWTPNXykH + e75AwRnz+iYGpfbv/Ya+2zYrB71MWvIswuKup3c/oJD2v/8b38VmjxUwXdZF+RkBb/eHpH9+ux7N + CCw1RQtobgcfGZrpJVx5eITAIuSJWduZRkqHfPvzE9CtlxZ99zsXsOdXzKyPCSxtoqTQnhJM/uIz + iV3Vlc+n/crbNX56/d/+AEPmb8jdliqhblf6kL/eJ8xvD1P/9zk4hEF4yLfM+ze//8anEJ5vSnmo + VrB73SVyEg96uU7fWwwdcdLRna1fdJuEuwUfMcOGx1Gs9H/6d3X4Z0h3HsIcqMO/eIT+/KHlb/5I + n24ixiPRRgEeeElclDIMj092Tnb/fQO7f4SXJIzpsvMJ7NvxTpzQG8rZSpYQPCxxCydyx/pcvZkU + Gl17CJn14VO+M1z89/x7GfmBrlc/D2G7DS1R8H3wNm7cMphuC4+Ma7R423sLKjB11Q3FRRxTLKMq + luev9g3XYHiXY+Yz1pGeGQYv7BuUcyyVCjTpXmJ7Bj6YIykc4PPQnVDoOs24gZe3CFcY1n/+FqWQ + FAwc5hUgU+tcwLUpyiDf1BhZtj0kAzkZIrxnRYvliPAjRWKUAtUHHjHm0tr9X5cBy0QyZL5ZTafr + YBRw/xzSgm7JeoVVJO/xLJQvxB4pCLdNPnLnFykrbvL2fLdA6/otMcT3h77t+VT6VhpCPr7L3jpf + fwVwllZBz+MbN/iXkQrs+RfD+jJ683nINhB6j+iPn8ZVp3oL/vKv7Y2SNwuP1wDPLdSJhUKYLM+l + YAG2Y7y/37pZkjItQBMc3T8eowSQsP3TDwhxzJTQ8zHa4HC5C+T0ohPYWK9wjpfRU0LYXCVANW1O + oXb+vJDLPvYrznJjycs0ZyiHtdlwoRi7svw1M+SJ2grmSeDC4/uibShg9KXc9bQG9/UQHjuReAtg + jhjmUd7jJsGRvlz9YwYOCUMJypaLvux+OrzX4xeP3F7kILjm7D+978/FnOzruYZP9JKJflu1kX8t + Z0WGWqghwz0FHtW2Uwq7b8ugeL07CR/dbhju/g+y7zQE28j3GtQez1e4/fnbf/riW7In4rGM6n0T + 6RzKz+/dQu78PNClfD0duN3eMwrfl1PC8pNSybuexDQcMR1fUeTIe+E0pG1P0cMlwxoQsZcfUmKU + lGsyXkO4N/JBFtMKHrlOtS/X74+GHlBT9W7gk16+jCeFqP74pgv6eTkw4g9A5h4v1rkPMmB5aY7s + /aomtQzsS+/baUV6MKFya+LNhah1+794OC5DN7cwVmOf7H5ps+o66eAezwh6rl2zFuHN+NNv5HJb + lIRdTokFx9OkoeuLRR61WD6GH/fQEyv0p3HlPBrJBt+bKJIaqPdftmLg6h8eofAT3s26ufgJ69uT + wQDNQrKlI1/Ju/4Ojwe11dfopFVwmaoLen34nq6pJ9z//FhM0LjR7dsOovjtbR+Zylcq8c5fUK6Z + K1I/xwwIn9SswR8vGvRh/Zuf8GovGbrfk6Gk/ccN4fvoC+R1+m0ePbxfLRzUaPu3f7zabJTLaTZi + LNFHtPPHuZZRb3TE+eSRt7zPtPrbTw0/FaeNe7535D7Pb8QSaz75y/fQasYH2Xk++RcP/p8jBdz/ + PlLwuI0mcUFYJYtt1TVYDM0lpjaYOttUvxBeP0lMLL/JkwWXowRvwTUJ2eyoJwK0u06etIqQU+mL + YDi8TQgq9vsKrdeiUi41SxFMTTci+2JfdfYxiRFs1+qEQqBhj4xTuUBHeJeYc/nZm4PuXEFujl0s + ulegz3f5XsGV/1oosOZ5XJjQ2aBURR15KuECVvklLTDleZ2EGshKuj4ZBuDu9EXI2ci4ptZvgJPG + esS3Xi1dskrVYK+mC3rpyazP9tZ3suNdp/D2/X4ofZfpJm9X5on8k03HlYZ0g0l4OpEyzgN9ja7O + E1pHxIZHID0BNVJG2jvRxMjr0WFcEeNaYHqoP3TlpNQTjN/nKY+TqJI0OzYJFeKvBKshV5CqfeOE + ql1zh/4xjZG3ioQu+u9eHC9qypA4oC+w1lvpy8GiQFIWLedtQxYrgMzehNyuZpNlnKOnPGk1Ifv3 + ld/4cjWAL96YkGuFYORo0Gly/i1dYrawHRdT72togOCHjKOnUbarH0/JpI4eLh5lwRRGTAQe5Lwh + BSOt5D1fciFidAu5sWsk62skEJ4eq4KBwyaA4oKEMMOSQRQ5+Op0Khwsbw/XJp5D7kAYDrCFpazE + xIyifORPFGxycKNZeJwtp6TnIehhKWsxlvETldxlBQocIw5gjkonXVjf8VPu+kOMLG7ySuF7/oXw + UucSub7zTF++oFwgAyMQMsfhDvh0MUL4dpueWO7hSdfmKeXQXt4ZeTovArDsLSKcU5UQNXqrgF29 + wIDxjE1Sur6pr0V3nOA4tR/kPUoHCDpzV6DlnMTQbt0NzMbh6YDWTAtiXn3d46XyxMjxPJmoLGGX + cFdKImjexQe567OjCxxTVTLj+YeQfYJH+Tc+sO0MCUVSpZastEgDdE+QkMtQWoCVyCSBp+VGxCNW + ouNQ/mmQnpQCKXrN0RWbVg0Z99iQTHw63uY4dSEHIXPATOFK3tSFcIAXtS/wMS3uCT29Vkme+rtI + 7qezOv6+LZ/D13yWkXm8jSN5zmoqB4bzQ2n7yii3CroLhYE5EuuZR41QAn/4G2+kCyge+1j9+FC5 + iRp6dp+v3n28qwatAN5IAYwtWWsiTFDzvRpvRaID3i7kJzTc7YPCO8zotr1BBVFf3PAAwqpkA6nM + pe06akQdR5xsN7GZQORwD1RUTOlRQUlZKKUNQMo+XsInOD/lU/+5IjWUnYSrtzKEofn7oeBU0HIZ + 87co28b1i+efYXgcKwUuVE3vEfJLXHnC6XWUpBY1YqhhTgVtcAwGeH94ErI2CTcL8353cr/ZEfIV + MDZkNvwc4nKYMD+0+SgUiMbwomYMCpoyafg+dmOwPz8Wg+QDaGzcNriOj4Rcn4tdci43dPD9LizM + f+GP0rUysFwMSY0J+jXe8pUsBQwHymB6S37JehXyGqDckENpHx9qDCCUUZ/f0PXZ3Up6nt4OXF1M + Q/6ZLyN3C2ghq13NIa/c8oTrz48OribCxFOeD7rbDQVUbomLruAZlIOCSgbmZ++DzPwtjEvtiANs + X0JKrDnjyuXxQ7vFsXxIersDb+3Pl05W16EPl/M1LCelYUTY3581Mg1jabZOOvdgyr07sgOl89af + EkVQMEoRH4o6Anixv3d4rfAbb3hxAZe5ay6L16dB0oPoJJM5t678ddOBKLcmKxcFKIw8k9ObFAS+ + Glb9GL00p4yOVyeqAeWYqpZhELLEjRU+Wck697ybrhY54zzVF9u8b3DM9Ba5X8lsOLLRQmKyPiR2 + m1b0mYe9Bbb7G4Uf4/Qdty2MsbzVC0ee7MVp9nhgAW773vd415Z84y61vMcnUjzPXDKftbME76yW + I1NUpZLc2jcr5+MBIP/xW5t1+IUOhHmvk7uq1ONyvGkWTFo7CUX++qaLVZ4tGeaDTizPuICt5VUJ + xAJoieLJNf0XX/VBMcOP9sH6ZhlFD2P7WRFtfiwjDYHkQ/74eRP1WFlgkRapB2vUy+TGAGXkX3Nd + yMpN0jA7npNScE9cCwcdTFhi7zrlfjKcYN3nHvGY8AMW9zTVEFcHBgs/PHnELgcHNid3xPUhWME6 + kTWHn2ltwjlk/JE7q4YrHzb5g8JGVMslwX4KG0dAxJz1y9hn99cCdf1hhNLzfClZ9Vu5siStFWax + vuhU5n8h9MoHQffNypu55S6+nJ8fKvLYD9fQbPs4MhTXkSTGlCb7epZky9kWgq6S5rGDsqbyBR5Z + VAAjTlg+mVpoR0aMzk2BShr4QgtvjXghl8uxB/v7nWQ+f3/Q+ba+PFZQ9AXyefMh5+bVlduT+U7y + JZNHdE22elze1sUBWXLnyePclQn3vPb7kYAtxoyuBKWQ86wIrJPhE33U3ZHNK1JDvUUtsZNN2+tO + 3Qp41OYXZiT5qk/DABk4NZKNcv76BvOoMAtsI2dF+i2vyuV9vz1hv64sutoxMy7LfgSCyfQMr8fK + ouwmHuHet7oOmbUZKY1k/ITepqy4uSvIY6MptyA47/l5UjNAj9mhh1qjKaQAoZII4YeTZP0pxZiG + F2McT2x/h6b6QsSg9ZYszTOYjk0aPYlvXTKwqcdXB9VxeqL88gro9mPeuexMZR+OSu+BdcyoAaXP + Hf2LRz/GvzGQbyCLbsOtHmmF5Q4+0scdab1ulkKs70eCcMxgBq9Ep7C0czgsdkm8/fsWri8deJXA + gew8AgRYohwmgTCHx+/3A+iJre4yN40x3hY0l+uV1xbYHXwBqceqo/j7GQ0oXt0enbaKjuRdIAWE + noNRcLrck80/nmP51GodMl7mmNB7qiugLX7jziPiOKnf3pXBNxpJahxYj2qJOxzNrw1DscpBs37e + MIeDwSrkolWCt9zj1pdBN1LMDRkBf/FObrsiQ3auq3RbbHIHJz220GlA6Thr8luE0VCdycna66iG + IKhA/aUJQkcZNpSN1UKmqRsgbXH5cp2MXoPwaNokOHNVOWmMxsAS2gyW93y2bZ4Qwjc/X8kdkJ5u + 5NEskMmyjWjmVwCT/AoNUbsmF+KWLWmmshUiOBTbCV+z4lwun7eN4atedRR//LVZx1zh5eTW5ch6 + ve+A9oyTwVugCuT0fVzBurLfAYrefCPP9ZnSrdIONVx5qUb278fpE59K6ZFQmydKAexmvR8WRUaP + TiPpmLklz0UhBKeDmyPVsVI6BeDtyGArnkRdzSOg9Umd5Dm9eCi4U9PjaAgWoKT4RkLbbMvVZVMW + 7usXf8EtSzZ7WTewuhNFPmkUSoWEGyCJVSlk6aMsV6V58PDGmJTY2asvt08g1fCYpFeU3E3LE8Yp + 2f7G82++01Vpx+6PN9EtBje6tsKy32J3LuSSj5+Rus6XhX0nP0Lu9ai9hTi6Ib+uvygUwcTrWw8D + UdrzOXHeXEPpc5hZcPH2qjb3wtX5R5JlIAjhAVknfhuX5i5ACDZbI479Ycp5Hy+whEFP7npTeBsX + D8+//EwCq88amt46HnQamUMvfrT6cnUNDGGefUn4cZ70p8ZRDeO4TUjGTWOyqFFmAY6GKXFtbR1J + 9uBbWKuCi4LweGnq+PbL4V27tkgRsDHy7sv0//QUlh9wTdagu1UAl9Ah2dudE3p9+Rlg39ad6CL1 + dYHf61T6OHzt87Hd6zKGIczYakMn7mqXnHRfFlk/MCHyGEOgWJUdHlavaN/CGBVv6btPCC9yPRG0 + 9H25XLbUgBhOfbg0Wj6uJ/ccyl8OvEkyL1G5ue9+gmqHbiTAT1Liv/xmfk2IkOUqYBHUcyVXQ6Gg + 3B4uJa8rmgRPbaoRfalnb/3jjZSvvqQoX2LTtoGTw3g2A6TcL1Rfq3Ip5H7DDtk7NzTL+8YxMu4e + OgpNQdVZaVMK6Jy/MbFLxh0n2noF4CYG424up3LnuQn+Es9H+uioo0Aba4LDp6vwsZKUkvtKEgbs + h/mFgv3WG6pFxIUMOLyImWgXDwvjXgXreS6QqVVXD5dgxrC2M4QCfMvL9fIw7lCb+Yx47OfSrJD9 + ZdDrJIYo4dA3y19+Ecb4ghww8d4mKrIEPTU+I1O9umARM9xChQQJMb+/QV9ddj95K+SQmNon1Nfw + PEDpVT++RDWfnf43H2FqbjZBZz1sFlMNNDCnUEdpxk7/8gVc2leIwgKtHnU9PQMmdXV8kDQ6fi3i + QsgWTUFOct/tdVkXXv7Tf8WJDZPpoZxd+W6zP/KMHcXjrkJewc/V4bEYb4638z+Gt4DxCHq4r3Fh + AWBkxqtLouJE1je/SSHceQ49Tq1abvE1EEHGBhl6kGlrhiOuNzmOuwTTmdv5myIDSsCA6DpVPZj4 + dMvgI13EcMWP0aNm3juScekgMrLhuR/xKKS/fIuPiRIB/MKL+y9eoeVZJNMtvD8B+7msKIz1n76V + 59qSn+XrHcIqu5abqHAivB0Umzyv37rc44MEisgyMBcV3c7bywA/vq4ji/uy5T/ee0izGk6XWmm4 + y0o1+f54Zcik0slbDqJRwOGTGOH7xvP6pIjzHRy06o1O+Ssp+2iKDOACbcRdq751rPVxfGwXcEZa + NCTjXK/B8996uF7OH51e7HIBtyZ5EP+clA0N+3Mhnx6vFp0S0wYcKwo51AfNJP43GOjKpbcYrpmr + odDsoTe6zpf/03fIDPofJc/5lME4joVdv5NkDeNlAt3zeSXaIVgpjXVDA2p505A5O1PTS/jqwOj3 + kcNmdNRGuNjJIken+wWVccLrFJPHBpW0kMOf6uUNZRqngBExtV1fWwl/730RFi+PIM14eg13qOEi + aqLKYfppnZKb/qoEMuYnPJigBPOfnt1k8YvSl1snq5XfK3hefUCsV5cA8i7svfNq34bsezvrdPdP + 4Of6jDF39RtvdXkx/eNZpGioHFf+UPdw90fISTwZOkeWlwhT84Qwx9dXIKBk4OHT5FkSdEGU4L94 + pEhDjdf2eAYfXrZdUCp8i1RtrZJlXqsQnssuCFusR/qAvu2+vpaBqC3Tg3HnYdA9XYAM86R5u18y + wFu+1Mjye5KQ+OakUB48HXPfn+vRWeP7vaJKiY/gcKHUSHkRJuGiknhJ22S9UGWR6/tYhTdb5vRt + 8w4hDIy7SYLSZZt10oz6j8dCvPMum7fRBvicU9E1aeRxLZNchOKbOSBkKTFYxWsSSdlDXlB0f6n6 + Au6GAf29b6YmqL+dT8YFPkIeh+zMHPVpYB4L2PX/P/9he6p6JKvm/RhOJztpqBJKIoxOzws6MWvc + LOM1df54NCyUotF3vTlAe3VDhB63tll8H9fSng8xi52v3otXNjvu+YA4THMC29bst1xD74RUM831 + P70O09HMSSjJV48WZ1X7yx+h3AVL8sencsfmb+TG5lxO8tZJ8CXOPnInzwCCzCVPqH6OMnG+qeUJ + pvq0AF47HunZlRnnlLxqIFWthoKn2ic0/HCi/De+Sb130gZmN0E1khxcfcgzofdLvknN7Wnj2rMk + ffH9roKUTTjkVYHZ4FJ6QTgU9xlZme+Msy9OHcx+uMR/vLP4ARvJ+m/6ocS73QC7631Z9DWOnHZ+ + xs+DfIdsF5shs95kSskzf/5bD8nM2Qmf6LMBOYGayIyKrlmHoRQBDPY69J/Dd1yxXSvQSsSGpHRS + SgysJAfie2yItTibvr1yyssH2j5QyVZMM1fF0ENzfxusx9sN+5iWWN55nljeyadLAH4OwKsYhzFe + BkDtIi3g8SGc0UmNSPPPH+27w4Po+3pm9/gmH+njQGyfz/XtPGs+ZD9jgEV74EoKH7UkZ476Rbab + KEnfetsAFKmvd33cgfUmFRW8P05S6O/xmcaXlwXsyIrDZjjCceZl24GOgA7E/3C3cbn6lb8fIZzI + n35YunPu/PllJDi93GQNo0sIOTtTyR9/cI3DGGDXx0Q56kcP34c+h8/um6KT6onN/JNZDN3TRQib + 0Do0y7z2IWwk/xtKv/SsL3JV8mD315EVKtXYd5FbALtIFnIaENtQvB5jeO5sh+jqIWzoxbIUkQXf + DNngOZdbL5c91PylINnwQ3/PH8q/5Nnvzw9LfMTDAmZJ8sM//cUZyt6HAFUmufBfTHHRcM5xMOoW + 6X/50l5jFpyVZ0lOT6dptqKR3b/xRg4CbIkP/rWQ/vwK9Bn0kf2It006MSwktrh+Ab2nngKDRYN4 + 2flkNZSRAX5izKS0iz6Z93wHTg1xkXrvY7D6RymFNGFXFMNPk5Da6nyQb7UcVgeOa2hCRheiu+yS + 00Vom3m+5y08spZAUGUN5fbCogN1lr0T/QWulH7EmoUHG7vI9cda3xLtlQF1ZQx0Ui/WuJo4YuHR + CVuCiIHBwn2DHDzCd0ysjRPGVSoeEdh5E3Ox/NS5v/j/53+8g4/grUdT8f/8EhKOhy1ZoH2p/vQ4 + yZ/Ho7fxB7WFoZA+wgUjLVlcJ9tgv+1VQrQ43I8owhYq4ZMiSyVqwymfYwYJtvY7V+6hWa9CVEOB + e7G4fSlsScWxC8HMlXZ4eNzacVnepxwERR6iM09VT7inngbtTilJlmnFiF/zkMOJKfcqfdaabLxM + +b/5HZ6vp6XEswlC+LjBNyqe2ZTQz17lcmNCnViZ349rGIsY/PlrDntYmu1xWXlZLe3un3/WPsa6 + gvoP/9CJ/A5g2tczXN3bFXngftLbrl2gHI6fDf/AgQOr0lx4GPLzh1zF75FSeH84x5MeWQQ90mBc + dz6G3a910e3BXBoSgi2EDX5AYhxwkSynZ2JB5n3/7PM9SOjF+dWQ/jYJuT8k6WufrIYMRuG+7z/Y + npDgRw72/Y5QUgpdZ33kakDXvb2qZD8nS3a/btA2Rv2f34aHhKlBa5A6/PWwKJfW2/q/eBXCb6xS + 4VrFFjwr9zIUv4h4LXE8C+z+3x7PJrA1p3oD36rd+7is7DhH6QTB7h/sPMkkv/HyyWStNqeQbduA + UkVkKpGzbjPR6pcHptSJ7vKlLiSEhEsAlsckxtC7Fzpy0/nuLUi+5BJW2AzLgig1tEAghi5IbVR8 + JXNk+8/rCc/dpKBXmPWUXv01EtriYGMxPw/jH1+C60d0SRyRoflN5FgAC5cP9Bdftq05xX9+C3LZ + 4Ln7xW4Ov6DoMDv693KpyLb/v8wmuU2m8us4pxRGnO4TxVTzZN/PmMC5w0rIq0QduXpLQjinOkGB + xJrJ6Po3Axju44SMt9B7q1NmNdj9Y6Jg5VEu4O5bYOf1UCLwNa68sjzl8exdMXAYlQrjaGlAu54v + xEqKkS43NPjSge59qff9iInxgQYYBZsoEMSiWTX5J8EbM+3b4857xPPtrsB8Q++QtufQY70KpXA+ + VSzyHALp4rpbLP/p//ybWjp79fsQ1r1BkJ51TTP5SNOg/BocFOx6l9q3cIDFIBXIZjzq0UHLXYjL + axS2tI6TtQuTDr4Y/0yevfFrxvdDjCCGpY/r3Z8h1iz78O/3wdNZbVhxsAuYT8mVnE6dOXK+sFfx + bLchFLLinOBHOhlQCU9XVLDxhbIvvXShf1T4Pb5p3mKkMw/4No5w4zVfOnu++YRKar5D5vpgE/K6 + HGLonn4Jcujno688cxchobcYOfHm6LxdcHe5zLaZoE/5bBYfucrf78f9Y+QA/VtPu95FHngr3qLt + TQW1a7cis1ZudOdbUb4F0EM3QgM60VbP5U1TLqRIkqjZ9xsrKLMjg7kLkQA+Hx4x2HksBN2h9rD2 + 6zWw+y0oy+xzQ4eLCP/pK2fX86vyOabwXPyOxKQHRWcl/HKhe2LI7l+bVPjzE9/v3CIP+SrrWxB2 + OWhudxvllyKjxL6FvXS3m4Bo8NOUyy2wJjk8GyIq2Ov03/Fqlw8Xsu4zS2i79028P7btn5+z7f6I + /MdPf37sOpcuCz5iFaIoNVh99fzgefzb7/G6g6azXl2z0HBfJ6RkfDRuQpph8Lc/bL5yzxMCabqD + 7hAKIVcrN7DR/QquNtcScstfN66P8fSE1+pmklslVSW91WEKjg/ujNl7gv/2rxV552Pi/aYv2P78 + AgbGgChSuefDnPKwNeYaWcZ1+dPfrLzHJ7xSIUv+7X9fkToR9+2c9HGfz9L/c6SA/99HCuKtk0hw + TCwqNAe7ksZDZCC1fGqN4FwcDPPDUBOnUFVKRP7hQtx/AHEu7SHZjtE5ht/k2mGg/VJK50ORwsvY + GbiDB6Kvrlem0L0dC+ReKUfX0L634CCkIbHDyh/p+NFbWdeilCDbrj0qOk4La2UZiDL1OiAsWR14 + uSg5yn+cOXLJc4qlhDyvxHEqo+RjYBrQlHtEriJ66rSEQwwb7TagoKY3r5feWwbpwHvE2OJfs15S + tZYh0zEhw0do3O6V+pRdQaPI37gq+bX5wsjy03aQ3q1sSZdNDEGeMQopIkZLNnOgPlCJaYTddfO8 + 2YIdA1b0RJhv/bKkTSTtt05uF3QzstfIZQLI4PVzW0nyMYpmSXzsH4fnq8PHSRb0zWSfEayrmiCr + MdRy69dSg2J7H0gkndRSuKj9Ir+LiZIr0M2St0xNgTF7GLE0XOtk8xW9k1+TfyHP6DB7sxUWBWQK + 2JG03EogOM9xg6m7dsh5ncA4tZz9hNtHi1AY/ER9geCUQ+/m/ULOG0/NEGdlC7I1V1BoibrHMvrE + w2k5mrjRA29crmVcyal+OKDwdz6MFAatBOVyuiKfX9VmbZoEy4vWbuR1fcce97ECEU5MlSAtM7qR + x/ZoycEJ++H8PHvjKtWBsheMivHK3aJyhdnQwlVKehRM+aXhvtnayfPt80X3d6oB/v5ra9gVIkPu + Y+PqNM66CBaC+UT6yDYez4kqD1ksQLw22ceb40wR5VD6lCQaPymY2CVh4Wb3EANNd5plobEoF9V7 + Ixk353S7ClYKmXeVoFJcXU94XNZc5uJNxn3veHQ1c84FD7uwCPr00KMv4jzlw1J90asjv4a9sb8W + ujJbkDwbfcrX/Pku2yYL0amscn0jVlNAYwhMdL3h1uP4kzzAu5pG5PFizFK4/w4h+FtfRTOKJXkY + lgbFedSQHUhKwraWJMFaFjVSvs0GTI/sbkHXXlrkLApOpsODdtCC4hO/CUvpGExRIa/nr4VhSbpk + 5TpvgdBJAtzIAk5m/iT3sL8qIyo/qqkLg3reZKS/jyQi70xnz1XOwCs4PDAvf8pyof6gSZenvyBl + EzyPQkPlZT29uSR7qnFD6aXO4fdbvUnWO/dxG0g5QAJVEz2k1yuZmkZVZMF9UGRP13Lk1gAWIPj5 + Gcl41kq4+DUyIFxvOrpMmeIJQ/oSQbvBAJUUlx6tz9uwF4ZlELqEvs5yqYnlXgRdyLPKy1u/2drK + N9F2kZ+Dg7dIViPJVsKomIavNxBy5tfDBMGAGL/k1lA3VTX5xxzuKEgtXaf5TXSh4aQueoBuoiuj + Hyroox3YXk7l8UR2ImAegxuy4tOiLwdtdqBCeA5/LA2P2wKVTjZ5tic3IzuM9K/VcP1NM6SFvqHz + Eqtb0Kx/Mwpxisvx0hWR+P3W77C2K0lfXp1jQTOqBfQXD7f1d6llxEQVir17mSymJVj/xivdxAvg + BuIwUDd+Jp6dsGqEWK9c2Q07j6gNXJOtZO34X3y5T6ZAF/+OCng6Pykyrrw0brfocofOyvxIyDib + t/9+B8oeExPnzl9Gyh7TUIZc0aEQHIdxs4M5h323LegEPrVOWU3IIIYLj5ziG3r8Mlx8UBmSSE7Q + RnQybrUjkY2dScDJZ0DO1w+EmdTl+6nx0WvU9i3Jw+UcIkW82yN7DxYsz1efJzFnvSk3YjUSz0Xv + EDM3b4BK1mlHVtYk18tWU05Jch6GA5eRx71dwUJuhgueGnohW459yu/xEfAOS5E+ZRGg1mD5kNGU + EyrAlRk3Cd06eNdnleg1sihvG24GTwxroejOVh7PppEmn9H4IScSPbwluxch1B/fGlnZKDdkUM+L + /O4NG1213tVH7czzYNCdnFzB7zyyuNBZ+Gk5ByWD/Uu25MkwsF4iltz/5if9ineYl6Qm2lAIgN7q + stqrbryIHy98ssQ9TCF7JxbxQUL01YIYwja568QmXk1/jRNEkNsSm2jtCsEavxpGXlVBRafq1ZfU + sFMDhg5TklOHSbPdxlGEt/xqhvDHL+XCXoICzilvhrKOolJgNSGF8+37RbYs3jwec4cedip8E+f4 + cUfudvvw8j6fsND5G/jEkpSDWDcWdLJdC9D8tjjywfU55Eh7CdT68OblJye1O0/UI87tzfq3vp+T + 6iQrsfJJ/mzhHb/ELaX8ueJT+UfzhLw+PdTnv3w9uZ8EQ+Xnj8Jw733oYuuCLnQ9UGpLqyi3U1Eh + JUm0kuulMYdhQGSiHloRrHWxpHKbPHX0KC5DyXluMkD8Gh8kjXEF1qPNR/KhOSXo5lmOx86lXksI + VyXJz9qZco6fKPBM0xH5pid5m5TDAV4/5UrsLEce75exBheCXWLL8QQWKbIYMNywQZRqUUvMK3MM + pK+jo0cjWc2ifoxW3uM78n9R6y1cGkwif17P6HZ46+UK3mYq631rEjs1TzqfPBkIVVWeSNhYPKX2 + q3nCPHJuyCWvu8f1q5LJ5Cch5GeWVy4at0Ty5XsKSYJ/PF29hMcyaayeGAIwmo32DxY2s3MmOlna + v3hiwJJCiJ/9SMsFc0UMklwcUTQcnEbgHqEBjWXbkPOQde93vL17+IPdiJSlNfV1VtAGf864Hxnd + arCIB8WVOdPDIZxMAdC3MPLQ+LIpUqTTu5zGu+fDU5AIWFBAVC6vo+VD87hbOEuslst69RfYXngW + mdvnWy4lfYsyYW78XoVFLv/mF9RtnccSPhIwifyBhWj5xaGs/QwPf6D8BOcgYpFfaH4zp4+pg+Tz + uoVb60XN9v58NngtrJq4kmfpeOct2XvJEVH1c+mxT29NQVawCUFL9E3W1jZbOU+PezOv181brzzo + oVKjL/GULAT0bu6tqX+yjIX977/FvCnwW2EJaeBy0td8b4yjgemLB/vRjj8fm3eYCqOBAs/e6DLe + vRDm/N1FER9U3qKoxQYfSvsiun3ywbjAJAaebPyQKgsvj6rYYOBffrn4gZCsVD8P0u0CU3ITnEMz + vzwjlZ+d+9rnJ/G2gSQ99KlTIctpKaAXT2fhyaku6LLzHg8zOYbLC5rkodbZOP8WZYDRY+/i9VMA + WMkt4+HirS45G+mg04e0W7hZ+Qi3zOia2ZFIe9x5IAQXGozTizQOTLz3lWStD8qF9eoU6jmr4Kmu + QElYcnRg1KZXkmvABsLze9gtQN4Ij+nYjgsnHkK4tI+ZoLx9exsNUA7ZZbAxH3y1hnJ4fUJJRzpS + yDvz8FthY/h+x1V4kLlm3AzuwsDDER+QCnphpD/t9oS8pvpI/YrxyP78awjYI/8iBhBMSuP+3EM8 + DMrOlzVdmmkyAChLQgJ/Cb1/vLZ6+g0LInp6q/cZDLDzOfLrCiSLNhMIu6AZiGKoUzK7XpLKZ8nZ + W5+egb7s/PwvH7h33gB7vmlhfJKuuE5SGWy5LRlHwLtXEsQHrlxG98VD+1irRDVSVxfgK4qg+XRM + osV4bcjgQh6EZ/FInuml9hZOFEJoBXlK0i0+NdQKD9ufXsGyzKXlwrlDD696xaObZoseER2lg0tK + eoSYEoFFskYRLnEmoHD6ps3OdwrY+ZckyMT6epy+GzS+fErMm28nPNdld9Ay7yxsn7UxcllyYuGu + l0Ko/KZx3ecDhMhiQ5m7mk3jK88IdM7iEGuADcU0QIV0s3xEckv4eeuu58BXDZeQ/3FZsonniJE/ + X3QkMXlYzWjUQwXDs3Qk1lumYPuEe1Uv3r2Ggu1eR+yfcA/brzygVLH2Kj2FnoKMP9XESOW+XHBU + LTKTOgdyKV9z2e/6BSbpg0MnIzs0lCWrK+/zd+cNlVKxtLAsl/iKQQBGff5YpgQP03Uk4ZAH3sJe + zALQrrwg76OaHm/9QAXMr9GgV3wwxhVsIpacmc7I9vdC6h4JXNB+DwMWeyx6RGIfG+AO0oX4sTt4 + s8l6LUzI/YrCfqTJuPMo2ISTRXY9Na7Gfremmj8FCQqQNdtbOLvQ4xONuN7tQ5fkeeukoOQ0ZHnM + t9w057S3bh+cUPpIB7AazUsEwTOgxE2EtJkDJ40gewGv8AOnNdkU8aFBrnLOmGffSvl7dcUi/ekb + Z517fWvZwgDCc8BIl963sn+l9wkKzx5jfqwXbzVz2YHs59cSN+jnchN59w4P3/ZEtI84lJTURg2y + tVCI+v555frdFO1PPxKDHvSS5+OoB+vLT4lPy2ncwBUykq8PWbikJUyIpz4YGc/aGkJuSHV++Igd + tPK5QV59huW0Bm8Mh+t4QM77aCRsMFFLfmdnOZSz28lj+cRS4PsdVegv3vzxxz/96rxO5Yhpf2Gh + yw57FSXz5K3gHaSSLTwgMjaRA7O77I3omlPyp49HAsK2BTsPIvedb8nmCZUrP+pHgTzUG4Cuq1iB + 2b6vJLMuU/LPv0A2Q1A45LOHv9U3A3/5wUjSwBPiQPflC0hPoSy9DskiycomQx/reHnDG1jzs/aE + VpZuyNHfqb4k6xVDtU8e4TdXh2Q2OD2Cet+ZREVdpdO56FnYBe8BN19RpXQ8cS7M6LKG1LxTfbFg + GkHul/7++QNDJlqa/Jdvw3D5jMsHRob8hl9MrBeekr/8DnZ+Cjm1UnXsPm455IvDD+mg78C/+fMT + Pe7feBBi8RbINz3F8u4nsaG9twIXZoLMY3ZPpjN9GXAhk0vUuxIl/EMHKdz1IwrSCSULzUwLhq1O + Qili6nIpwyWHN1gpKL29LpT7HZsJJn2/oHP5rPcqjQMPqodwIfbOE3z05hX56C4lUZ3IK2k+MTFc + FF9FeeUPzdRamwQ0xsyxkJo/D+/vD0h+WeK9IM24fYG8AJH1CZYbqRsXuwoduOsHLOrv1NteKoBQ + TsUFS7Er0fUzCDlUJ5z807Ms24kb2PUYMaZf2ODvVmAoXu0Ms3duAPSiVhsUlmbYbzWGyRavtQY/ + 3+CIfOdNvP71OCxgf/8hx7+dcbTA2sEyfW7I+zXbSOmy8HIUne5o999KwnxBL0lVdv/HW1grbV9u + TuiMhWM2Nktbn1JgaZ5AFBN3Or3OMoRK1z+If1R++hYUcSZz3uFCkOg7zfJ4CS5YjENDLJMonmBa + aQ7JlCjIhUUw8nXbWZAZphFFVrol63mwMLCBuKH77v/wnHhi4R7/8J7Pm4V50ghurjoTJ2WoN80H + ToEFqFJUDicGrBqvQdkNW4/E0+9QTha8R9IfTz3iA5fQ3Y+EZOPncOfFZP7jL4PZ48n+frcMDwz0 + eoDD1stHuj4vxALG8eAi23zIgN7B0MFOjGKU/4e0K9lWlVfCD8RAGiXFkE5EQIKCiDNARLBBmgTI + 09+F+wz/2Z2evU4WpqmvqUpq82pr9jETEcRU+WK9xDTrhyd5/+IZ/vmbs204jRIR8iYdDF02rNNv + DIdT2xJY+AvbdHIKn+Jp0O0+MTqeK9AJDl8/Xkosovovvj9r36aepKTuHG2WEqzFD3N1o+mmW/ye + //SBWZsnY+JHUqLzc7xR/NIpGyt7DuDDWQf8i/cTf2sScONxTeRfvPluuFRe4jdVvyeCqIWmp3I4 + GxnedVjr+OHYFPDK1i0tlvM8/PSPuI4VahhMYtPNKBtY1hd7LPNqvnPuPMiO2mJPHnQmaSexhNJc + r/HuKC63tqP7Gi5OdKO5Hr9Dwt+YCRtWLK/G9cDm9fNi/fbbb//X0931Iih6zqL6yd6G0mFVVCCV + 7EXVQl3XLa8/W5RUISYf6Mtu7qSVDs63u2NPMHdstObJh7ZqKhrL466TRHUFYPPnlDz0zkdDIiBA + wfXCk/aRzNmYw/akLHzCF/ZJ3Y1+lUSAy82Buv7jkk0BTKNyncKaXKvZD9n4MEWU7gSMd4nmhOOC + Z3Ivb2/0rgh13bP4YCG0ftj+RuH33fggdf73vUKy3bC+kZMeprauCZorvROzh+bA1wpkMkyZGTIv + e/Y//xYfhnttjEmtyGAP0+A3EceM2RnvFfTG1OO9wU+MNDJnoVeVX/ARv0uX0eRboJZnCd3eSMRE + Pdv5UPRgUcMULdR8C+cN76Q84O3Pb9LtvSnT7xovfuvs9qiUW/Bp4P35x9MptmW00Z4GxWe/N/jH + y07Q4n/iv/h07WoZ5DLK8aXJ5Iyt3gggN6hGd1PqhFPNtQ5MNQWsR8rGHSfEnaDXErTs39n9838c + xz37s9ATd941iIdIOIV0n9c7Q8xNpqInV8d0NxR746d3UF+MPj7fbLv+nsxbJZvS++orKYq7qV33 + OsplfSZDfP0a89296+DML+UXn+uK7DoTydsPT7VTFqLROz0j0NhJpXr/vYf9/W2bwIclwZn1io1u + 8bMQy0zrz8+lCfdo4aevs299qgeZrRO4fUONrGL0QuOn1ACW76PO8enXQmjceOgSCMkby3YnXU6f + ClWSldFfvuCn5+HcPU36y0+M0xx66IvvJ/9OD+us1IcPB5o9hdi5HPbdaD0OPFi2UmCcPDVjrlZQ + /fQ91p4rNeTb9TFGLLMs6u56o5N0bmwBFkfjcDxl3Sg4VYvmlxrgXB50NH8LykGKqojioSy6bw4X + gFNZmHj/to1QCrD+Bo0F6m+8enZu13S97A98ykPfGNv3CyAw+QN2Cl3Jnud1Gf/4KFXvu7fRUz59 + w6j6GrV19EEk6bsnLOcN33cDCedik5Tg3leB/y2CEpGVe+KVJV5R1/OP2cxNng5ac7zRiMRNOB3q + tofDWcuwWn/D7pevkQ/73sN39XKtf346fDbdhUyf9Vyz8fKYwb9XO7yvvMoYPrOqwrCXlpK68mz8 + +Ts78igW/eVlIq/3DXh2tva/y+8XQ3cUodrcPKpxiRoK3LiJECdqyysJrt/Rn99rJKLq89e7sOix + 2VQIexd+o/FyuOBB+9MLdLvsV1LoqAE+jc90y62kjImnOgbqlYhqnufV9EHsGXw86vj05btu0ldv + Xfnlf4w6u4e/9QPuOPv+/MOf0Ht7kD6hIevz855N0+VSADXiGtt9u8nGk6mL8Nl8L3S/4Cld/HaI + DGWFNebYSCj0hvv5G/jAB4kx1zVJ0Xh1Cmx+w03XdLnhQTc1Ir1eGZcNpy/W0TPBL+yap8AQbgeD + wD4JUnyZVbEet0mVK4ufQyDV+25ci5IIeCO0dPGPUa9SGiFnNz+pccoMd8gYPGWLEctXVGiziQg9 + h9yn7eFYSueaBIpZIKeIAqzdBscV7zcn+Y1H1r15MIjjvnW4BdHTXx3ifT3a4yQqy3r//NAFD+UA + /eZ3t73d0LTwP5SgQ091795mA73GPFrmh6z7dhPOL1DyjcecktpR8kZjdyptefH78YERJxMr8ZrD + 5hjZPtB7F45yd04V3X/5+PaqNSYu/p68+Mf+go/dnOHbuHnEoYL9x/Xmjvlc+YoRZQ621eaB5tWG + JnBdbx3S3xKt5il/esI1OW/pKbp4yxWgi40gL2wyLfg15oexV1AzGXS7o3YosKK0FNQwYzmfdTcV + egMwmYeZGgH5hiP4+PmXj/qNJxabpIKziELsWi/RZSejtCFVNlt/ssVLvej9FlSd3ohgsI/Bxi2X + QtSGI/Z/fut0ueTwMPc7rA5+YIi3Q5GAc0Up9RxecMkjd3o4VCklm8eW7yY5+QKsu9MRq+7l4c7x + fioglp8JXs5bOLIpK6GSzAzf8fKqtuUPJnzymiNz8Y6M6crdI1j4DREKQc8Wvtij+j4rf3x5uC6v + ND7zJsPp7mbW7HL6lGg7ahreS/aqm17tKgE5eF8oBhIbgim4J9iv1Tu9lLXEpmzbqMB7ikbv2S0M + J8q/Alj0409vGWNg6f4mPhQr6nV1646VZPHKondxWEPZTc1kx/CcuYP/l98jvSYrwsYkhKnyq66+ + GzH5+QHYFHa3kG2WEuRlvX5+dt0MxyZHFmZb6pxLymZHdwDWUf/yhR1twubov55grULsr85LI1jx + lDRyHt4t7LzkO5pvBotgmQ8fHaU+G8TsoSss/gb0bB9Fd7pThf/FG7JZTzJb/MQcsgdv0RvYabf4 + oY5SVaik/vG1yWi92lVo8Uuxve9zxA6rooT1s2jJ6xCZaP6eTRn4fqnJDtxbyL76sdj8PyUF0n+X + FMS8u6H7jc2HbMuvC3nbbikJZXUfzuqW+KBKmk13n8tgTGYqnJTEzwSfN7ZCPX/LlQisf+p0O+hF + xsrIaUBwg4lillqhsBrfHkpp4uDQPV9q4ZJ8E6RJ75Cqd/WYTchXTeUhmT22g7vbTddVnkMit9gX + H37tjmmyLuH12sf49hHW7qRntxgslO/o8VvrrijzT1UpyEmj7iRjRMBbi5CkY4DTacWhPkzXM1RT + 0ZLgrh7DWS1CXWFWKWL3ZE5GO+PJh/TrK2RFrHfN5s2DU3DVvkh/IyQbOaeKoNBFgSZT54TDznZ0 + 2D8Thl1uW6E+G8YCJPN2J9z7ICC2Mnc8QHM44WhzDzsBbx9EuUTClp6Ol7ImYvn0QSnsG7bqDtfj + Obyr8HiHd+zH5RfR13JL6amZH5p9HnU37ejZViLh5dJj+kCIsfJmotf2eMFYaJZe6UFtKXffVmlW + HWrUP0I3RVcs++Qt6lknPIB3lFLLasK3G94djfsxhq31drEaJUcmvpXNE9a+kGOd57ql6zuJ0Fm0 + Y2zuh3MmvCvqAPOIgXcs7OvxNAajovUQ4iP3PCCBHstK4Q5bn5yzuWDDsAmJsswPDdUhcYXXSuUV + XtRnf9Red1c6952uhFOaEe5lfbPpGMMIw9U8UieTrExAd+bBXrV0rArPoBbu2t6BggQaPmut1QlD + SdZwzpoLjZ44CsfTds0DE0883Z/aMxKh6DgYJRthWx7jjiS9bAObRJ1mQgfZMJzst7wbiy09qP5g + sHMoekr4KHN6ufhyON/OGwDX2FX49z38XLcz6nYrRC1bVrJhd1WWlIYfUM3VDFc8GXKqbFcXgp2S + 3mtxPa0CuIzBiZ7BNGuhV9SnQteR68/142owvAscwP3tgqMx/WR8mqwrMLpao7unrHaSl7op5Ovn + mh7Fq4zGuW5HgK96x+aD/7ApjHPy22/0zhMrZPNzz8EpPh+xWk03NsZNzEHOzVu8Fespm9JBOynO + tZyIrwVtzVRzeRjTmmqi+J+rOyuPcVQmqbdwfAEjlBCLZmU7mQ5NfC4JhcOQy3BVNhM+fPdrt79+ + Yh6W+fClONJctsr5Fi74taUZ/8RsFl3Pgw1OPtRCs+6KByqX8h3celnPsZ6ea+rBi05n8hjdBxKD + 7vWGsaOE7lpfDcc8qp+geo89zkPL7/iYBg1EVpPirBH+zoMDq3lMsF/l33CKrt8Kdmmypmry2hpj + 0hm90ptWRB7KTcskMxFFJSabjV/vnq4rLusrN2f/Rn/fw05WoCt1p6UYP1BYz44+iHAJ0hAf9G5T + jxUuSrA3uw/d91s7E699asEY3yk2m3xXS/PmC3Bgzhc7b2OVMZ2IMkSrTKE6gNuJ59WQwqzHFtYM + BeqRirEK82yZ1Ax9Oxze1ceG3X1ck/qORTbAutSVdGmC67KAorFAcausHoqL042xzcaCq3Mk3bcF + VferVyf62kCgY8cddY3iWAtN2MwwNFzgo5EZoTB8miega1rhOH3X4Ue65xwUt5zHdyf4oIkP1Aji + u7SjmneuXXGfzb2SprZLgzEY0by5Py0lRIcD3nnMd1nSxCYowwHjuPvScG5hU8jZd7axrcYJ4j8H + MUbcOkmxscw32RzWAHXmZhRD/3anC9ESRd8VJ7p1uHc22v2lULC2uvrTJiAu08vkDWtaNjRf7cpQ + yC7fE+TfyqIut9XR9P6WohzMQUUzcz7WIvAurNXjtKdpXFvdbO1SHu5hqmLz9olqMdNSC75s4/nK + ie/D+RgfntB+NcdHbj5lk3IodaUEQnxBrI+hdJwCHfYrfcbe5nJFfGok5W8/0ps2qRk93BIf6slr + cLA53wy2K8ZEyeesw4YpuyFbH7QZqoAV1NmGu0zczqmIkq+kY4uUes1yVReV+v1s6DGwaDdlunYC + K3va9PQhfUgH5Nh/66e0fRdOibFPIBuygeK3bSFWyUoPhcQx/3WzCtZmnazC3r+8qTdT2Z20u+4r + upgZ/votXjJBzZQE2CU2iISOXijcu68J3XyTqbMb2W9/NajUrjX1pmboGHp8G7C3xMR79fhF87VP + TbgP5kS10dUQfyVBpby6uMbuch7ZpXcAvvdnikO7uzDmsCBQhmrpDfWUDCSs3SyGLopjbB67s/G3 + f6rea3GObcImukaNku/bHQFs+4y/fgoecm7c0pOtpO7okd6BRHWO1FzvWTcNn/KptCa54pxwh1ry + 5rUHRWPyuOCiJpw/orSG08cuaNp3K5dxFPOgwzvAQX14duJFTz2IWpej0Tr5uNOEmkSxXoGM4+JC + Wae5SYOW80iz9VQbYnCdc1BLCfkjgQAJ1q3SYZ/2Gt2yzZSNjvk8wU4lO+rf7G/Xvl69COJ3VVKs + byM2+uf7Cdxq9cDqcp4mY+/YsMcn3hfm2URC+/ioYNdCg+9dbnXSQRVLhQW4oX94e7iatoLYLqJ7 + rtvVzfvj+rAjUot3xqghPhh6HXq7tjBWuWa5tcOPCgkLTG8hStiMRslRhpAcqXWBOmT2PkiU2z7d + EmHQuXDUnClX6OxwPqmXXo2t/2zlFbwcHK3kFaNzqdjQFyQkTX9pOzY9WxWFvZNhcwsNow20MVjO + iLC32pVL/ONkIFWt+bPmH5DkaFwLM5JFwvlVawzpsA+gH9jWR6k+ome4Tcbf76f6b70t/f6E9fWe + Y2skGXsz8Rkoqaw7+OA5XrfgxfPHN7HmavVy/tYJnFXsEtgwtRt1405QG70T/9XbW7df5gedtPUd + 7xJOM6TDLfDhTeuQ7g/1Ppwnr08VbphTv4Dp7PJlPAYgpjLxp29E6qk68rZyqTcSTV0SLlX/D1NZ + +BOZB9VzZ0UKRgWR5vHjg4wc1eEtD83ewPpX98JmW0ynjUPG0RdK79UteNmAdukjHMuYsLmFqVDu + 9qji89a/I4an0VLq97vxx+Y0udSxxxiCKqnJqh/f3WzlsghE/+o0j1JST9+m6UGMhgfdlcMQDgX+ + 5HCbOZEesk1ST/q+9REo9yMRR5KhqVS/JsTq8tBa/9AM6bUR3nDbOAZVJ/Y0Gv0+pUrsvGzqxVLm + zm52auHHj26vpKsneaNaSldwZ6yCF2Sj7hwTpM1+6HOU2Gy8X5IIvsrA0UvCaa7kxtwb0YO+8ley + brn96Xs3QbrLHcU8sTLBHx+9cj3bPnW70+gyba5nuXlZORmtTYHGjaeXcKhPrV+kxzgbtFGJQY9r + EzvdZeX2B/USgRHsBBKc0cudKv8TI9IQH1t+W6Np81QdeIzojq2vt7yCIT6eMGeHlur+ccOGFNE3 + iu/CDh83ATEmN1FU0MrPhm6xuMr622WdQm+aka+oWZn94cfCJ7GtbTyDRpfOhN3101F70QdS3HA2 + HPu5pNvE3zKxf09LCel5omoeTx2R+V6VzfNuJtXqunbZaehsMMdyRcPxLmbs/Ty/4SOTgjoP1wrF + X3zXei4kAfcFNuQhpGhZP3oU7o9uXEtO9eNndMcq1ZjsmwawOjRXwmR1nwmNR01wivWEw3W7D5lw + F3Q4t8MeZ8jHHdsXiwUvrZ9/emJa7UMTZWEPtOgFoR77h+jAe2uciSyFXD2qs/mGgcQB1uXtOmPt + QcnRTj5J2K7WUjdS7KxB2MrTwgfWiEilZ4NWvjY+5IkfskoWCHD96kC3iju5cxVdZ+Ad+vbHPD52 + 37otOeU2EJHGC98ml8vsAYNco0EsFCE7ZaOubDveIfDaaOGUtHkJz3ZK/sXPLzgndPeuL2pEHymj + 6q3jf3+nZ6dadWQ/DDx4nNPh7SZ91rOcrXz4PB9HGqcO1HN1NDnlpz90VxzCqWjyE7Dl4URvz2Nj + GjZZjy7765qIYQVoSiK+/K0fzr/twPolfsnD1TpiLQp1JEpC7wATA96XZq90u9WctyDXtwvdtdrg + zsVnMNGCJ34/U9kgkXGKoSEbn+7FYYdEVCW8/A6KirreeAzZt74VkO9QT9UxCNjM46sD8fZg//hq + x55KW8An5e9YjQUum9N4tuSFL1CnFt4Gw9PaQulzdunOvRNjBm8UwR+aD9Vk9ggZbHccIoXl093s + qQsfC95wDa8Mm+cvj7rffI5DsfdXjsF3zNLFEb5OnPnwZnLHzn2tQoujhLrR/dZN2ijE8BK4mjpL + fe0rSB+tst6qLU2Lh5XNE5MqYMvDvf4pjLsRuVUuL3pl4ZvEoERuLWUw+JOvRLYXCsJLDYDrjZUv + krLqplYORcTfVy+sIfnA+ONgcIoyYExALXEm/b7PDdcUB/b3VZNnuCHQ74sI68Vhk82NK63B0AwD + mwLZGUPURQ3I/uFCD43edWPJGSkYcahT7b3cCj7HHS/fJTItem9Vz4V65eCW5BJ1dsrOneixKVFX + uDb96TVq3YMcLXjmd/Xu5s5OchA3C/4s3zug0crMRMmoY/swnoZ63l6JDvb+/PVfijsZ/VMNHFl4 + jSOZWduhYT2/c1gzJcNmhfhsWFlWgJZ4hnWnPGTzT3/atdRg7an67GtubydY4iF1Ne1lTL61n1Hc + BRGNaZqh2bydZGV1Wl/x+f2Z0J/eWfg7tbIBs/nnj6DmHmFv51Dje8geI/DBzHxRxj6a+/uKwHBU + RGz5/s398TP0Tb2UHvEGjHl8TScQhWQgsz+U9R9fVrWNQ7dxsTKmm0xzuDqVj1V7uSXnmP0JEGkf + RDrKadc36yJApQcjjj72rhaUQ6kqC7/DC78zplJ9WHDbfVt68D8blxVI4JUwu/gE5ZunMaYQz+AM + qxpb6dsIp29T9iickozqW2/oBuq8xd/305+fMwhyGSg7gd/Sw2Z76f7ifbzvZJ+toq87joIAQN4K + o9u0m0PCiWOvrLTjCi/xHgm0zlrQH65Jt6fhVDOp+s7IkF8Mb4XDFA4/PJ7RWsQ6QFczmYGIWr64 + YKucIWzkh56DKvFn7LkXPZs+kcor0fGUYn9ObNbtsu6NDrdtjk03aLr5Di8VaKeM1BskzZ2Yx0pl + v811aiR829Gd5T4hVTpKPXOo6vkVmLyy6Ff/CbHF2PzUOGXRS1QlELD5cNmS3/xTdTufMrEVpBFM + LM0Yd+oKjbLY5ijeYhsves5g2bkSYTq9bZx2l5UxZ9rJBPXUX7A2NyRkGQgAi79IQA3B7dXrfUSv + 9BFj76MekMDxoaks8ZQ6++POmGnV58AeqoCNWd/XjNtBD8kd69h3u5iNmrPJYbBD8x/f6UTCQRG2 + uv9RJVLPxjzLYL1O8p8/N+0NxQJYb49//gYznPUb7FYXyMVy/XAUqraFuby32NffTs3kcQdKnytr + 7K2DQ/a8a2P8Gx/rcadm0u2sj8CdLj495Jbn8h8wHNjQ0xsbbB+7U322OXTZZ2uffQ5i/ZnEmw1R + tFnR7ZpT0B9f60PXItP5kBvfH18LYBv5sODHWMWJBwUrNewdaxT2gyiawLsloxqRNCbS6pnDKn5w + f3ptLlcTr2wzXcGqvA4yaeGLyuJfUXfh140oVc+fvqHOWpwN9tOvfXPd4ky3j7VYoX4NjfO84fvP + r/3xh/051vwx+LyyaTipT+WrUI66KNPRjKSRhwwHe3oPuij8+U0KKLcjPhVf1RhXlpJDcJlrahP+ + Yix82frzA4/K7ZFNnfgG9IuXevEtXWbMLoEdv2ux0aV71kte9YYzdRHVJPBd3mKTpyzxkyCyN8J5 + 4QNolZyuhPsujefy1ngre8FXyWPh60PztWekXUhEHdGb3bGIjFJZ5dT1R94Puv60XYsgmfe7L1en + E/uNB+7XJjTPTBL27rX3gfg+9vnvvKuJnbzWaLudOVJnRRuOFpt8+Xfe3M0ad0xzkxZIHfuLPvvU + TZQGBHhV5rGZl40x4Uwj0EbPhEiLvyVYt1aHuDtFBI4r3X0+urUPXkXveJ/vbTRz4kgg2ZZHehTf + viHQNWv/zpd1C+pwauVMhLm8tVglMCLSKNcS9pRTqSXqWd2XnJvCLOUmPflD2U1uIqgg3/UnSW5T + Z0j+WczhYKQd3UrtjTF/Dpw/f71wOxFNKH8vtz7FgaB6dzPID4++3MPF26fzykhkpPGPLxBeIB93 + Mllr/fmNO3T0MsE2bzacNTWh245w4UwPZoGmm7+jFimrejputQYt+I8jZn7coa7pCe2cauPPFi3Z + vOAzyvQNpbrmD2zM9XUBr6B//vlzfXIq1khVvDM9WVRF8+YwAsSUWtQuM9dgI25N9PPPjLKOGXs1 + To40PT9jf5XxaCjjvYWiCK2oZxlLY7NqvQbtWO+oW7ZBN67ubQDlbNFFH1yZsNmRHDxdKLHrh2Yn + LniH1unpS6ZZ0GqmXTlO1j/RkSbuoUMT1KoK4UvxidiJVT0OLwfQDy/0XLpmzL5w/Y/vYv18LkPW + B5WvTDuwf+PXkqOJDXjSqiDjoz1mU6Tyy6tyxeyjG7uF7LaqCPqoXokD8MZsXgueBcDaO1Vjocim + rrEbkHh8w9uh2BoS3iUOkhPpQo2XJNYk6IY3RGhOsKN/P+EYpuMIHTF2/pjXT8YGT4lkuDol1Y7f + itHFr1aUsCqoutrW3dQ+EQ9+qDfLevfhJOIyUJbx/Xmc1jXJwoMHwaBXZDw+uO5fPsbPBLrwrXBG + VcDD/G4kMq6zGo1mcm9R0Vg81pPN9V/8NnvLowc1K8PJG4ADMxYPZHxzR3dS+dZHqBgrnNV1zSb7 + tgfgbuuMGrhykMh5wYjKkzfihb8a0sIfwRA5nzrydRvyO3vygBxCjUxtuzQKrM1qs3NjC1vdF2fz + ej2CsvirWPcMlQnm9nyCtv46ZBMc9uH40IIA7u/Nkx6GuMuGT6SKIK7w3RelF2HDmTxypF7cPTbb + TWRM+dJ4l2r3mbCscJaSppsPbbiUGuvdtRvvlyD621+7yhiyBR8I3HZdiy1DGNEQn6M3eJzdUbdQ + x7oKrnPxt388r9Ozv/wSHYhL9R+/mp6VDs8S3thp5FM37rZ9gkYltqktrhx3Gt9lDtwwpjgqiw+b + MEc59POPvKXxLr/X7jlY5xT53wsndJM/PghY/LmnebOTu7GI3PKHF3QXTQMj8WobweQlMlV5TcnY + 4i+jOee2i3+6QeTHH6XnpfBXJjTubNgpgCn2nq9sTg5iO8t9wzOO3mQG6Lr3jy+OUCG6K6Fk8/d0 + rdB1U6zolryOHZFK097UnZH6Y3141lPKQbL5+WkJ09pwTK7JG4QWV4QrsOgO9VkF2JYnBdu3qXN/ + +lg5vy57AofZZ8IleaTKqB1GHGivlTF3jjT/9LwvLHj9Kjc0hlsTiz//0p1e71z/6XO8ewdqJzlp + nUOdcQ3W8mPVPX7z+6X5laZsetWzN6ZPtMw39ZZ4P3KlHilwe52IuKr9WpiOaqGYr/WKMEuT0ODk + 3zVo1k72j97ZMH7+vFJcVX3xJ3yDz6P6reieeMLW0jZpfH664M9P2Xqnd8i6wy0FbzgX/pytSoMI + z6OlfLnaxepXMMMF/z205DPwdt9YofBCvKr88qlnawqN0c8DUJo2z+l+8Hg00k3LwyQRC5vHtZ2J + yt4F+eI6IV766xj9cTAAqpjr8EGIXHeQxDBSFr1IViqN0Lyy6/WfHjSb/NMRfpYStMQXvJ1jzuio + KHjgh2qD8+0nY+QOg4qKI/pg60LHZb6cCI6PQ0h9eXc2+Fpd+3/5vzNvmYzvH5yN9qqp00VPsfkR + bUT0cosn9mrdN6byw/tAbBFT69TU3Rec0FP0+GHiYMn/UE7cVxBNzpW8Fz+OmfexUswp9hY/PTXY + Snjkim3KEhH1+8jGIPFUUG9RjIsCx8Z0PkODrKs0LPkMK+QNforgnR4jrC75zpHdhbU8TycJb2/V + tuMXvSe7a1ziXXg7IPY6tTmc4ssRbztShMyc6lbZrs6EplbKEInOhxz8JGn+1neJ9+byqnZHxAXv + ux9+LPycuvVOcYcYPuSXz6XaK/aRkLRRCYbGB3/4MKLb+Q2W+SHUjdAznJb49n81Plj/d0lBuqpH + 6na4ZbPij6Dco+aIzUwMjfGkGRwIl/WTNIKgMsH5hJXSBLmK00hx2fR+xqlymWOb7mlbosGxn6Bc + 7qce70ash1Ka7EswD4caH652bgjLw1lwM5Yqcm5ju9JZRT262uMJH+ascdmT3pd/cShZF2GNBhBv + J2TmTxFHRU+7CVe3NwDxfIqP1w9itwYHcBbYju7661CzQhtPyjb8EqzV+SObW+esK9P6dMCu4Sa1 + mHDJW9Fl+0CPF8F3B+1xjBWHiR9sg3yrnzXiOeXOx2t/1K414tF6tGHYTYhe9YcWtsv/B5uLK+y5 + E8fmnf3ywaTt0b+Fdt+N++s6Av7sVHif2E9XCCbfgtLWVHr7lpY7Oc81gS1WXv5ad1DYYv+ToL3+ + TbDKJ7t6NGskg/s5xDQ8nueOXfdXVVnJzo0GqJKzWZsuEeqRTek+PGiMN7bbWLFx0NCLGliZoB/D + E+x1vSPfVXvvJG7PTsqkYEq16h1lVDQmSynkeoONel56K8M3gE/Vldj4zseOF2ehhZ6OCnZfBUJT + /NEryDZKTndnyUZEJ1BCLakttp3pvdzyLDllZ/IKde+NVE/6MTtBMBwleh2pn/FDz3Jl/zItnFwT + DfH6evWGb77fYvtxE9FsR/PykKGwp9fwoCHGx0dQur1S4v3NeBv8wX4SKLmxxtfSOCAJ3b49kiCv + aKHptcGst5XDDvDBX70wytiee4gQBG1PxoNThW/dtSPo2c2i0VGN0bxtHhFspbNIt+H7UDP1ujEV + 5XCyaXZvLjUJWuSgzSlQcX6+XZBkxHYPH/Hc+Og4s+5zF6URGL6YRHoNkDFDSi0lFzQBWyfvWYut + c1PBJesVvc1ZY7CH2vZwlGcO+8+U1ax8gIlGfI3wUbGvrqD7Yw6FI52o+ao8Y5Swlis5mBO9S73D + xklCb/TG7z3VrFWV0TOXiEuvFUyTuoKMTfnLgTFlFrabfeP2xf1RIaWEI74P4htNrX9wgHxfEpHH + 9FSz+LBPEKrnmnQsujPiHvVSwcorwMt44XiW10Q5XLUTTQ6fOhQfr6cPm8uh+juffYihQOeTtSLi + cmtVrIOyUiQoKrqr60c3lkXGoR16ltT1QXLZ0hJLVo9PguObUhtMsMK1ArU7kf6SnFy+4XMfrvw9 + ob94MevqTkaDeLBx8PpomTTc1QCqa11jD40yo2tVJbC9x2si2ZrJltJ0XWm5F8GeKKzRQCTGK1Wz + Fn3mBa+M7jWTKBe5Lai9kc9IktjMIa1R19RNmsCl1VHUFT3Ot/ga5XLNvh/uBH6Yczh9fb1wps9D + A1axu9IdKUJX2syvFF01GmPViraMP+e6DY/UOWPcIBMJXRvIEJdSSV3NYu58wDyHOLVZU9e0ZDb7 + K06E623gscPOL3eUU+0N+T6mFLeOEpJVf+QUbxN3yy3kIJtneOjKU09yfCLrp0EdUo8gK13/tx/E + oGWOUlbzlurvY1LzpaJXyqiID1+52mCMU9x64JTOHZ9NYdfxxql5Q5f0Fg7HxndHrcUWlPlFoOrF + OXaC88lKuD4yhR6098odQ8wXCkuJiNX7NsvmF05BVoeXh+Pg2GZjwe4t/DS4enGmjnGd18K2IC5V + S9HpmJpnayCvUCdymxqu1J3kJwj394Ha2e2TTRPvFlDT1YAPd26dTT3qfejprNBdYF0ZHzxsC15b + p8Bbrv10E7WeKehV/qTa5xGH0iYUecRSc08vU4Q7ql4nCw4oV32ierEhEaz7yvgQDew3gR2Ojr9a + g09ESlCHWzQP1ZgqsnXM/dVOSg3hW751eA7jAUf6NUNCx2F1PZ29mQYowe68trIGDTuG8NJP43c+ + nyDKlwN2v842K7ej9oY+K2zCXz96tjSaV5XeoxXez61ds69wrWDBI+oxYTJ+8RjmrgGaHaFgI/d5 + VhARgv1lvgxeia8edH3qU9sW+459hWMJuU30337JKLdHAdIv5ky32p5zl/jJKZH5WvuTK5uZOOE9 + QOzswN+El4Ox7I9SGbOM+WLLfMQqos1gbe6uX8nfqmN+qsTy234cfHK9664UPEtP2bdaQz2rn7rR + VnEK3Whd/E12ElGz4KOSN+kXb/1HGQ7n7xBBfuiepENT6fIBz/nQrZMBZ8c5rEdTb0t0eF5NHMVo + MuYF/5Rms239sUGreuwLB0CcdYkaRCrQbH3FN+zoWyOI4FM3SSj0EdZkd+kHvAt5Nzs8ITJWLra3 + qoTI837U4ZbsAupWkY14g02gpG4V4SieXkh6X8YKhrh60GvBlRnfaZKngOwN+Ljg4/TNmhQYNTpq + 2khjwsPW//Eh1wWcMU+JTiDd0sYf2W2b8b/vrZrTnnDD+Vy3Tl0n6EivHrVwbBvTtj8Wym5pvWsu + +4FPeryGazRP2GLPbTdCI1sbpeSOuBjdkytoNdgKfRo1NfRnH45qwkZle4/W9HDZGNmXHfsKlCuK + sMXfP2gWG/mJ1O0T4+jZr1yq5uFaMSZhpgW1zG68PT+OknYeor6teIxpnZeArHx7Hw6V747elzOB + 6IePTyUxNhiC5IRWVc7jhO5x/VVPJa+Y21omdBT9rnebhgf+Vqzxbh1J4fyotQRlR7gv8fqRzZ7m + FXDCO4a9wqyzpTcnB2jlRNSrVttwuPKvQmby9UZNcXmV6UIbCzXHIaW+qbdonK3ehh1fP7G6Cfd1 + v4ayVB7G7vq3/uLlSRtY175FzWd/N6bjintC0xcF3o+UZKOc7t+wtu8aNr6NFU6fezCjvKTq8vt7 + Nuf7ZIYgic708q6/2TB0b0c5fT3XXzoWZjzsll7hYn7AW5mf2by2wkZRT4eMFvlXcIfdfi4hM/CG + SLY7uvM0hhE83fOd/vjKlOz8BM3eR8dWrttoUreHJ+oOcYT91fxyl/Ndyst8YA2bUshi/PTRQ897 + XAxum02n3FmemApG7J6aspunYawUcZHMK6vROmn2PhZ0z/5F83uI2KiL+ShfZhBoJIVXNp/rNIHY + 5iua6A7K5glr3N9+txgJkBQ8Gw/eO7nEjnuc2Xg8OjrIx86navP5umy1Cwrl9BXX1EriVdY3oSOC + 9ZoMetie7HquQiNWPpeQYO15qbvGODVP2IpmTrPPNTYGfJ9H5bD/rmj+FTQksuDig2YD5yuevTXG + g6Wtld/639Vhlwn7WPV+8YFq04FmI03TN8rz1KFekDgd+8OL7t1jQyk2rD1MfgzyYbVd+LXpzmZn + 2uB/GCPcfrd2p9HUnvBt3Cc2m4ohpg0fH9xdRfF+oFbHc1bmoNch56kTetC9g5bZ0DxHAUc0CQzW + b+8RXG+7HTVfydI7W3FmpCGq+o8lnvbxcMuh/pVo6WeXzbe0t9BDL3rq3iPNGI3tIYLvjg+IHOh7 + JpwdcdycTgx8Ili82//w+FOsLmT9vBXdn94RTC+n13pTZTOE3Bued+1/AAAA//+knUvvgs7y5vfn + Vfzz25oTuXczO+QmN7u5iZhMJoCIoojcGuhk3vsEv2dmMZndrF2ITXXV83yq7P4Qy1lMytSpsgIX + oxQjR/ho46/+aWMFyf2N8+gdlG8ESTRgUvoCVy/pm9kBVcs64lZX1HM8q/hyUaQODvG7radluws6 + DVWCHdsbo6G8fyu4+oGLzew4RVt9qsDPXwVbfK4730SinVwqcuITR+OezDbSKhsYx21q9cxFrB3A + zM8Ya2p2cHlOW3TZO3c1dkzv3U9G+43hem9v+C4sQr7kOz+BsLYXctr80gLehx1ka1Ejh+qxWfpP + vI14qi65v43Zbfu5Z+AlxfOmnzI6j6QM4Xh00fTd9NokNfcCdqV4xP5nMAE/jRsinUedODvTzdlr + VOjwo0JxWy8QjR/l6f32Ez46PlsvU9KV8OQPkISnStO4w+2B5M5pQsS/So0ODOMiWBN5nJh3WtGl + ErMUXurPE9HI9wAd4yMDZKa7bvozBbS9nmZQ7XMfdRd1ySnDKk+ZseeZnE6nMB8FYc7kyG+KTV/d + 3Tlj11mGi3RB8j6/aytRruWvPk7zT099jlIJdvF+JJ7GnbXZrNwnvCvQJsb9VNHleS1DiZOnA7aj + h5Cv0tlz4PZ92FZZHszrR65A83kfiZ4sb7o+9JCB7gcnk3wTw9/vyYC50Cc5hu4+GtSzlkmvy2VH + 3MXA2jwiT4CnV67/8mu0pO1lhpsewpqVzT2N/WWWcXJSJmFEbL58S82Ts0tFiUrlJf/5AVhdsoj8 + 8sXEZqop94F6IwfIqD1vNqiQNr02MUqc5PPXb1V4NG4d1qxXTjtQw07+qLE3rYxA6zExRAe0Q1Ei + ltMKd31Gbizd9rcK+269i2YtrBr5vDNuqKlkB3Bu9I7/njeoekkbxfxuwvZ9feJMPDP9YsGLB/NM + fGL8Ubp8LVzwgjdrlBG1XgCM6+PZyD89oq9oqFcZCfDnpzDKp5ByP33evy8hkvSj4g7pd9RhLOnb + 3ekzjWj3nDdf0M74JOR83+K6k8AnUWJsOw2XTwMb+HLB5BaaBNjSuaSXDqLmeSVW/SzyVeRuFeTC + 2Mfu4IwaybnZhIdYviFamCltV9uE0pMJ2wnC/qbRMcYMnJbggbX4nEVzR1EHmsgP0Vd9PPJeepJY + 4h+kJO6zjF36uAehTNbZxsEh3fU0zUXhz1/oY9TVc3bxEPTsTseHZ8NE88m0BbjFB3Zyamn0bVsq + rJXgiNht5OULLA7B86MISXFYSD/uaiaDer6zsbGKttbmqlXBFCUNYiCC2jwVbCpvfgMfeWxTUvnV + LL3f93XiJaPJ5y0eAaMaR+zvkFtzTGdZcKcoLvZhtES//C5557YmJ666uRuPSmUlaCaigBRrK3hc + OZg3UTxB/TNo6/ElQHiIBo149ygHX8NVdHHzNxN3Tvj61R/2Hrjc/YG4VPnm8yW9zpBEE8Zb/nPX + zwAgiIT3lZi7O6+ttxsS4M+v2UYf5xsvcuTvp+LJ4ZDu6iEgQgN7NeCxviKvJ53umOLnqVJsXJub + Rl/o1Ek/XqYOsg2G0f8MkotZgyjwVvT01IEU5nLiT7JzYcGSaYkKfn53uxkaENquDAzWsp2ER+T2 + P78n/+pplPhxT4trOYtW9CkJVsZPtHLHrwfPKOWwox8rbb5+nBAeyPD48yOdSxYT3nqaEk8bbMAY + Qa7AuaFvrJt47lemeEnitSgyfFOLwe3tOw3hfuGOOL0+R21ptJMKf/zEfuxabVFnm4FNFIboZRpG + PrNKCmFlfUdsEgG6y88vHEFTkZMV+tHkPW8MiOZAw/rmD5atfkKP3fNYfauKxjZ+FcJ73AXEcz+0 + Hhr7soOl+bwhYdQdjeepBKEvKBBfR9L0K5YWJIfoZuI7+3lHSyWGmezZrY7x3VBqPmLGHQyidMKn + oRop5cPHSw6OKSY//UeNy3kH7cV8I5C2s7sEg1KCr34vCEKq5M7cHDIw2ndnjDsldHv9JSKYStqA + kQAtsK63tZCDY4YnHrt8vwoWV8JyFEbijFlHl0cjVpAzdyVxGP8Y/fwZHAqdxdrpLtPBvs6xLJsn + DyuhoUfc3ahSWD1nA6sa42hLhwxL3uodtqV3mLPFFIay94wIscJh7uf1w1byrtUsNH3OpsYOWcgB + vp0zXNS2XzOiG+jyNMAeW9ZwiBglSeGfPj7SK+uuNzFs5cX2IhKVvKLRj3MLJYvrxElOdz6dnbEp + 5ZaxrM2/rO78TqgHD4V6Jbob3+hKibFCbpJzoor0XM/0nU2wfedPJG71amYfzwTa54H+8bFxCSUT + TodGQtymn7kq9gW52bUauaiuUq8BNAupgOay6cm3+8efjwMvTT89NDNLm/54ITHb6ZsvUbcK8nwc + eyR53lkb9txZBVu8T999xUStrwYVEJQlJaUhv92iC9gQ0pUw6JLycz3GEHmwnB4Z0aS4obNjSz4Q + mxf7Vy875XArwc9vHaf4CFZDZFqQG1BBi2KbGlVFKMHipvKI17KrtqjssQDh+anhk+yh6I+PWcku + xJj9GNG67jUOtn6pEF3e99o6MdoEx4xPEN38TCeF3wRWPbEQW4UoX4Fh6jBk+QtRz7kHSGmyEjRV + ExDTrWhEQ33QISG6QsIwf2vc635VIFafAjEvR7MmoxJMcMT3FzbG3dHlbB0ycHw+lM2vvfMtXyCA + 8iXGLlXsiB4fFgfgxQ0nlVLTXa+zHEvcFE/4tOWD9fjJZ+iNW73e9BQTTbUK1XtukeNl1bQ1EPtW + 6pLXgkuLHvqf/wA//aJfgUCnu0QkuPHUv3z10yewiaQ9ksZX4q6H3fqCnhMuxH7tCBgMJHhQhok6 + rb0n1cQ+eAOcH4yGy3xaAXnvjhW8uM0LH5vazieLPkr401PH0L1HS37/zrA1TESwClN3PnxePvDr + 6UgsgbVqloXVLJ8Ew0NrSPKeW0bhCd7V0ye2wd7r6ZYefNCVfkay+XUD9Fefu8euRoI0P+koSacO + zuQIpl38qty1a6oZHj9Cisv9+tb+3t+tvqtox/r3aJ46v/3xtGn2nc7d9OQK+0C5TcKsB3Qx5WGV + bvdVxNvz9Wy+SxO48a2Nt3V1z2miDpPD0qD9yG2nbppqBrKn9EZ8X/b51w/vFdj02VaPhp5YZIkl + 0cXaxKXJPadHNQvh7cmcN55G6hUXaidz0vk0zfC2gShWmn98DSfv6VGvzYEf5MTinoj7+Yef/g6i + bCKGtNtplLYrB6LhJZFgOh1rDqi9D6GERnxSwwqs5GW04hlyGpIO+UTXsuczGOT6hZQ/PfS8oQyC + YmyIvel9Il/FGP75mZCAeuUcXYH94etMT4t4OWvKrxWWK67RYu87jdoaqaTmKFTTTD5+TTtdNSEQ + jikxNcKA+aOHseTGLsCevvA5TfNFkOOP2kzLjZU3vTfvYE37X79grOfGvkApsW8YVWJk9wzJwkZ0 + ueb7x8Pb7KIjWJrVDYdvVXHp8KhNeYs/Ym7rtSxL1YKvt6zE7pnB/apIKMSNZyHKl06+tt3VgUFT + 2vjAai930spdCX68H41uF9HNX8FNr2MDklPOmYlSyvc2uW488BatjpqpML+2Fr7VzMldlnDVoVqu + OTGv6kGjzUWopF2hfHE8Rk69DN7+Bc7meJo+TW1H/MYXZagyN+xcp2e/5asSilIoEyN4WC6JouIF + HyLCREt8ph6Hy6zAQ/E1ifbjyQ7iJahU8IBPW31Y053f/Pon07jplzUWEh2mrOn89rM2ESUoYcPB + bGKAjeq1LVgJWpzikRObE7ogIjDAuR6f5Md3xotwYwD++jn+9UuGfrIVaVtPdKnWLJr5cVbhSR9u + 5CQEw188yvuLoSLJV7+AYv6gy3CtdTRog01ZYg4ZFF12xsXpiTRejHactO+og0B1RfU8dWkHd9Xl + jhUueoARkZmT/3c/agSzysUzWPVw+OP5/Stvpb/+5h1dK23J748Zbv1Ngorv2SUJfnny16Pr1i9V + KH8pi+mXnxEb9DRaqtRWYImQifb80IE2PgUdvN0tD1/6WNHYsFAz+eEsKr75J8ldXbLochCuB3LY + a1E0vK+lChkzh2gnQIuuUyglYPWBgE/KpakXdr+dirfplR8PZIuZ1eXCGlRSPFCS0+F1EuDq7s5o + YU68O99PVgt39RRh+8W8+vW5LALkVoXH+ng7g+kufQR4gJcRH1xJj7jLul2EcM5L4h1ARtfHQVDg + Vh+QFMsu+PlD+Kt/7oKzaPQaAwLtzUY4LD2tp4VRtfLGy6a93do5s1wNRX4GrETUh+dGLPPcc/Dl + DCspel2KFjG/60DMmoSopw5F7G0/NmLoOAH2vuyD/n4v8MbEI8fbutaTqM2MzA6nKy40jnWnbxaZ + cNw9SqxYuIpmyk0qNPrLZesXsaBp8qr99Y+mFUwY/PIDDD4698dfxyJEFaBouJCse03Rytzx8OMP + aG4/tvvrj/7F/6xvF3354w3+8cmt35X/6dufnsAfxYnWXz8nvQ4pid6HDPQbf4de+WnQ97UjdH3U + dvrjL+S05pa71Z9QHtkmn/YpfuXL613vIJJ4NHGoAu6aMO/tIs9PPPEnM3Tn462dJOmsqCSwdALG + zf/8f40UiP/vkYLhUoZEu9XvaFaKdyp7YTRj7Rz0dN1X1QopgBCjj7bWY+cpFZwL9jZ1n1jReKDU + jSzGoUGwnYza8KDPUEytSZi4VAsjlvXxC54474zv8yugLB9vR9MmgYE96fTo2eBSK9CoPzJijdJz + Fy0/mbCj9YigdHrUFNVpBu92JWJfHB2XRU49Aw7WwvSctI87B22wgsSDLskdv89nIbeeUJaSA2KG + dt/PYv3I4FuvNGwwOyfiNDPi5DAfSqInn12/7MWigtyV5bEh+jVYgat0cuIbKkHBi83n4Z06MLhI + PNGFzHAXFO938OpVd3w/tU293mSlkJ9tlyL2bm53tbLbQcnZTcLKPXrm/Bx4EvS5JZjqEy5yOkHr + BRpXPE+xkUl04Z3rDM06NLFGbEIfQdRWgL+fRHKd48SdxU8tyNzRZ8g9G8Z+5iouBtf1cpkehfKq + abBrEhmUZUKc5ONHX9c5SrCenS9GYH7mjJuSEoKqeRNHfrvuck98R47w08BW55jazH/vCI5ztSOO + cTAAE8ulCtGoMdio8RMs2JpL+aFtRzaOjUL541EdoMq8C6xnc57PzXnk4OcQpOj2lm26kI+UgJtf + IJKFJe3X3tFjmCnxESPvenD5UNNX+TAv7DQnreqychvOsNd0gRTrK6UzvviKzI/oiw/mEmicYN0a + GOZTiVHv4ZxNSBZDfvS+JMADiNblJjrQeCgSVq/JJeeOl6WE2/sgpqlXdDhkqw7f1nFCi9PVdOq1 + tZXjpKzJyUdqzUrvzyCvlwMhdpA6gP0GuwTK8BJg9b2M/Xoi1SwfTUgw0o+ffm0Pxxfc1o+YSz9E + i/FmHdkOBgYnbP6MmLc6r9B78jU5cAGJhvz8COGLgQLWazfol6j0X9CuWRVfhZO1rXeiQjk7aSQx + XzFY46JIxf0hvBNfHDttPjJzA0HttkhinRgsnHfShfPAnwg65WlPTUVUoNbyAlaxaEdManWq9Ntv + x0df1tMvni+6GEyUqmpN/UkpQXkOb9hhpI4O5QAHeJS8Gp+ZSYl4pooSOUK7kGRtcqGsYloM3OIR + e1Gq9QvpISedEuOCj12yA2Oj700YBfqDJHl2iGbWT0v4W18ViKAfxC8w4SqOM/59zh9PRQpfQYix + PbvXnB9FMYOa4eJJJPajXuRXGkIVzS+cX3QrZ1osqGA3qiq+uPUc0XIWdOCz85eYuAV0DKLqKXdK + IBIlp1xOT59QkKNDnWDFZgyXsfdVByWv3xNFlGOXPTJkgIZ/P05z4d0i2rO5Cl5cHWFdwU39TfWk + g8gRG3wDURfN0TBbsjWWF6IU3i3ny725wn3AhdOOGE/trV3Ul6zb1RavlpLzn/sqweh92pMQVDGY + w6kv4TykLVYn7aNt8ZvAZZ41fHQdu16nHOlQckxIjmdlF43a/fiS2pa2SH7kZs5AieHkbb0QbT5D + PijpU5Cf8vlL1K7OXa5plVUuRnQlbs6xdHbTTwnDMnhg/aO/otmEbAP3dTripCiuLoMfA4KHQq+3 + Kb1TxKoxzeSIu7wRp+apO+/2uQdbIabkeAsvoA3a6yobN0lDoHokOd1d9iq4916Ibx255JRe1lKu + 3fiKyyY7AD5Q2Jc8j1efZLKn52sHrhMIxJc/DWpu0wVHXvuXj/FJmOs2v/YrPJQGxX4oeC7rgHMI + 9fR5IFdmLCh7QpMvHsjpSrCSq5TPO6eCZ2fYY9M104gzr8MKg/5TESzi0F2ODJmg5cY2dqM4jPi8 + Fji5OsUVUb6KlC/ks8ay92AAPlT2IWe3/Ave+lMjes8FlF5K7gXjWLBwdJaKngWdacqHHVowNhpe + I0dNQfJB9mxcnsdVG05XLYbkozTTTts5PTWsnQp7Lh4Q76MZrMttseQgETAOxuTtfjVfkOA58x0S + TsUJsFOd78AnZCk5clIAKP9NddByc4rd+z6suRF1A8RlmBKzmtaeqoAbYLjL7uRoLk865PUewiLX + XZIeebfnVbCboOHNNxyub6dn8EcWYPZ+u1gvv0hj3PRTyPW+YfEBF0tOP7mQgnCtd9ODOxg5v2wt + mN/zrw/suExMbU7aodudaF7j9nz72u4cP9XHv/UdXBT5UPxkANsCJ9bLLRBXQI9DRS5nZZcvz2Uy + oVEKPb75U1Izsmg/xTucR3z5jshdaglB6K3phJM0KqLZ87sClpqDiU7Jqx6OAjBhMyoAo4DZ53Ot + xhJsTeODS/ictbW0awmammthBJ++Sx6W+4I8oQNRLo8CsFfzzchnGVJcPC6sy8cnyMG4VXfktmdP + gKn6QyobpCynVeJ1bWx03pQvoXQgJaN4/ex4ng4/9/CINfJMej4+9g7MRfgm3gOlOf1OYwHxnH5I + wuZqxOqRosv6hCU0H1a2ps31iyC6CjtseVecz127m0HtH/oJfv0PoPGxtmRNtz7YmdPPT29YMu+a + OTledmbN3NoklnMhdbDNjAVY78kxlA0UC9gu2bRnnooxwVUkM8Yl2+VzUaqWfCWoImVpWfkaJ84k + izyciBmlC1i+x86CF+7VYfzcfbT3wr0EmRPgCTtCp1BWfqX+NrIIcNSUuOY6d9/CXal22GAvi0uf + +sGElhcvGGlTVS+LRDIgPJQA3z/HGqy0/SJYnZIKKzX7BlST3Ax0JEPEacmun57pGsvv1hs2PfXW + qOxGHYRC3SHImzBf7P1lht1pYPGhZR49Jfqjkhm32g7CiwJ38VRVgAISVHIeBp+uy3BkIDmXLlbX + s/K3X+HaNBJRfdWMKFNFMbw+8DL1Bq/XPdEfT/mkV3D7l38eLbkiqPJgJDq29bgGTH5++PIUfj2i + gfFJ5yKXIPSY/fKXf5bg0iuwuPWIGKPB96sRaAJ8fzwdO+KQ5tQ+zaEcfNXbxJDmQ2neqU+pyYuK + OGIU1LOSdhIgfHPF2Dj50fxSvg2YZVnDsdKeIh7aXgkFljynz7Y/VnAuOHi7CxkCYf/o6bd77qTr + TQ9JRJ5JzYpnmwNuLhoYGfbdXe8J9uF1WV5EP8EyX0jPML/9j8LrKdtGTNsEiOm1xk5rjnQ+hWIH + PxVTE3yWFJfzaO+DZrZXYjUHO5/7SlyhKDwfE2fGDuWQcOhkfvAOuHjxD2356fdf/TrgIsiHz6ll + QFR7hNwTmtHFD64J3G7lRKHKPnNq6qCCrHY/kdN1lfulPfiF/GhyDw2bH1hyZVbl2tf6ib0TDvzp + QQkmFjaMjwXW8Dxx8AjWHbag2uUrgp4FIzo/0aqyar4G+OYAlr5c7L/4W79apebIfNFxaMuL+Vw8 + 9Q4QwfJIxmY7OpwSaP3Vf1u2Im29LkwFd65QkHMtRD3ll5speXRvYw9jE9BAqjmJE3csYpigjahA + vis4SRc6jTwt8+Vg+QrM7YDBh3HP0jkW8+qXD7Ft3ZSeC09fBrCqmBFE3py7HLzwCZ1P9yUaDb2e + W7u4Ev3QVLDe31yNWyslhnf3GKMl8j7Rpo98mF/8F7ndQrtfFumTwkJevWnf2nm9jgkZIJeE3sQw + jzUamMT04fPrufiyplM07sX4KY1TRvDxkcc1934vL7nZWQ9cYIGv1ygzEHgfjybGgzpF82IfFcC1 + aUZuViFr6/5Vh/JPX3q4PfWzOMovsM0/Yc8ZtZyJxaiSfe1xQ2wbOe4gi3YF7Xd+m8DXS/pVdcoY + 7DygT7/9Tq51vAPBp1SJW1ikH8T6m8GLaI8kWASrnsLTlwOHmbLkZBU3bY6Ayck78jGw6s5DPR8e + 7gxqclBx2XQ9WMab40Pefir4uO0fhk3PhTyFvUewbL3AJCrpC+KJcwky7L22XkdJhXfPgMR0TSGa + 0VnhfvUWCYwigWFnf8rf/ppEOwH58jmaPtyeB+vP1QHcdx97cHnSCKPaudNRbrMVmm/exh536/s1 + mw8ePDhQnvgv59BFRd8Jho6j/eVjagipCcf93iFIuQT1pKnbuW3TvieKGGs5v2wXM0HumRFzAUm0 + gA7p4OrsdGL3X7ZeSWSbED+vPDbHJ64popwvtrF+waU+C/mQ3Rpf3hUFJhdc1Npivg4MPPfMGwe7 + 2qIsuFYIiuLDRiIFRPvFr1SaRCKWH6ouPZA8BvuXbGF7+/3956nqYIsfJGVV7VKBpYU8jtkRqw9B + AqvoDDO0dqqDaMNz+fL4nhB8KUNBDjtI6q2+l1D+ejnJ5ALltG2jGT5qxibFjry1FStdAz9+OCP+ + BaqfPjZlIrkF0alw2N6PxcHGEUZ8eOt9TfLOecLSHCV8Ldm0Zrf6Id1lesZu3vRgXgyvgg+NuBh/ + 5rifhXcxADMaAPbFuM5nW6sRFB5qsNUrA9CbwJowlbIAK6pbRCPy5RIuDyQQszIOtMW3xwCPkDZY + pWg7rsfTTVn+ovyXz/OhYs8vsOl38lcfzVaPAQLNBbsDHGrKPp+VhP3oi7HSD2B59bMv8wsAkxSi + b03fefz81aPpq+SLO32YwQGWsyaIEaM9nRN04WA472vEGUB357ftlKB/dhqqhUamM5HiDORHcp0W + 8/HRyBq0618+1viXqS1hpQnQ2r/eWO9PB3ctjW8mf2VbxTc+u/SUey2DLDxfA/Hby7emkhRwcrfW + Blbjlw3oJ59TOcEPhJ3Py3HnQwkbQNIDIpZ2brXpdfMnSOGTTPBdBZT24u0p9fqxmoiSP8Hin6PN + DAsdYrb3uZys+CU/3ukL347SNZoa7lJCWZwRiUPEA/pEtxBCzW/wZctXS0qFAY4kv6BO9vSIIxe3 + kf7y+SDk0d/zG/hcke395a2t9Qj+8p111klN5WCMgVC/Y3LY8svvfQM9MwsEYyeIFnCtPJkW14Uc + x0YBXNp3DNx4BNoLnJvT00J0yCqCQ7aJCUpv3Cj86js2dmGeM5vfA4epbwimoKK0YMoJMpNnoRVU + DKVObO8E7e2fcJFqL42s5zqE+Jnz+DjhoJ6FXKlkgESXONk8uuR1w5zI3/oSK6N9cf/8892qAnwq + RBUwR0Zo4OJ/DbQc9lrNdXIryEzZyiQLp1tNynk25ZP2jIkri03UGnPmAYzICWO4t7QfHwPpribE + 2PTUYtz7EiimNZFrNuRgPryRDyU5nnFJzp62PN7OBFZVCHCyI1E+bvlD1i7BDfv32ov4yE5KcNhT + D4lZdHbXEXUTDHptnPi95+bzdogJuNUfHVvH8gXoBaUbf0A1sbZ8O5XGN4Wh6/SI/3IdnWXZU6D5 + Zm3sLuWsUbZlENhrAZm4nFouFRdhBzmpaqcUVE3NcNUu/tOP1+f5VZPZFCbgJDrCh1S8R/PVWZBc + TKfDNP7qWYXUEF7YRv3b/21tNS9546E//QZGIWEdeVnjErtFeu25KDsh0DfLg3gqM/dL1G7+U3oJ + 2PLsd0QEFpQw3KV3rFm3ibbr6Z1CIloMdtv6Df72r/fgwMbn1IiGR+yDhLQeKb3rQWOU516HQVp0 + +OcnqDJ6FojeeI+65SBo1DAbDqqHSzvx1VqD8ccfPhVXY20SDcBnj0cnh3soEf9eD/mPF8qK4Zjk + 9zxz2dQKKAXZxIoBwoipd1kMR2cysZl3fbQsc45++R4xjCS6dGe3MeBA7RNvn54B1XiIwEVLOHSe + 2bGex/7Byd9j4uLTW/6C3i06BtwUoJFjWnXRGrphC3xllxHryPd9Pwe6BEUjHLH2PId07rLKlJ3E + RFhxONh/1/WZyW2K2Yk9GEbOChnfwmbv2pP8yJto7ffCdr2eH2EjT3yXbTFx4LU62X96d/j5tROH + zvjUmU2/8U5L/vkDc1yv9cp0W/56Yn96MYEVUbgTPEmHqCOKAdacGub09/z4RKydRuyT4EN+F2Ny + ul4TuqR60sLTWSckWUKjXzn5XUKWcxGxBPvSUwvXDdiHjLT5q6M7t3hW5enpXTCCoanxvlC0oE9O + 0/RXX79dt5PyK/vBrmTPOQVK38ApPn3QvIQR5beGNwhdq8fqxgvI9Tt1MFKqCSu7O98vH01boUGK + Enuxs0SkqeUMMgTNBNuEUvq6GonU7XcHYnyWJmI3vgwRbPbEbspHTk6fTABvkR7RB2hTv/z4WOgR + k6AgdnOaFJ9MejddgJYxeWt0nyEEMR5ZtEI17cefvgfK7YNNZ1z65XZmfPi1AZoku/5GdNMvYCz8 + B/Eu0kdrDeGOJJ+nIj6+5VSbt/oJmSXeI75LSjpPguFBUZvC/9T/fdXOUEmmxwTe2pXOXfl8QR16 + HT5MeA+W6Jnr4ltY79hqMt/tPFr78k/vnsMe0y0+mZ+fwpaltP0svecGRtH39efn6G3tU1jnkkec + AXd//gqwtHExPui0Xr72EsubPpjYKsh6/qcPmP1aTzttUmpmf+gKEN55SHQmsPKZGm0KNr5NDGR7 + +Ri+zAxIWUfw73P+eIqzHx9FQkcTyna+q/zy98Rs/HGJynTjT5KFURD3+WzvqxYexnZHFFMnWh8o + cgM6HPhIfJ5f/SpZSwnLN+OTuM5BTZpbPQHPDyti7cUxotruJMF5knti9JKmTZMvStAi6oq3+tev + J8Uc4Mb3pp/+q8B0LeCLlStSfMW033iCI0+1t8dbl94lo35qQXEycpx8FU+bJ0Yd5M/dP07cArho + MW+zBY7Z8U2U8SmDjpkkCcB3xhCtQe9+/B6flrxnK4BPHeH//CK8KaI2NZu+pSUjNT+eRi5b/lji + DkBweygHcgQaqul2xyZcKuRjhWX46M/vMtXioWaLv/X4PHVQxckF29ul2ssqQB1eBNeYbrDc0SUs + DhmE6kR/7x+s91Bf4cJctr+k6TqgbvFkZOeL9Wln+a9oGd44hGY0AbSMDdbmWxXEcOMdxAnRt1/r + 3K5gV4Yt4pbw3f/5/a3/NEEsXOopV4gDZ4dggmpnT8fzcupA/uEuiDusx2jjhQrcvo+YRSFuF2Fm + Owge7xNGV26i6/pSOUhEhyE/PTuytiz84g0r8k1xGbXOdvCb3Q8TFy1pvbCHWfjtV6xs+WPRr9cZ + KhZZiHsnVk063owBvgcKzpiHrvE3yDdSVqsWYo1PS1cdMcMfTzb3lqT1dqqXsh1MDLH110jXn767 + 3aWMHMFwjwZU35/itl8n+df/0es3hMi+uPjgdBqdL4rtQGv+IDQPlZnzSXIewMZPJubzEqJ1zr87 + GJhxsfGnilIAvyq87y4WQc/grc3SrM/A0aCy6YMMLK2R7SAmHMVq7Nba0kgdIz3bNiXR+XCgTFc+ + G+hm0g2xoq/R5bk0OmzFc441n7T5vEizD+cha7E+tPuaHr6HTtYapsWJczvW7Gd/QL9+BmLla7Wd + 7T1nshj7BvZP8oPObHou5V99joTmBqjlfnUI9QBh1GQPuu4KNYOmsN8Te1CLejRvswNPl35Fc+68 + 62n3jHV5zz4BcQ/nhzv/9Nu4PBqifqUuWrcTIf/4mIdxA+azsYNQTrsW64eg1FjYuA0cLkWIk9fn + nQ+snxbQ3X1Moh5LqlEf3h142C8eMdCTasQOpBVetJjDhoGe2iI93h50UqPEB7fe1fTsewr48bVN + P/VzNK+tXB6D8cd38+Xmtjr87VdDvlb9aHGcBD1lPGMv1V7u0ijwtZ2idMRXOZU1+m2qQia6lP76 + UzWtQGXJ4cBsfEw79gODDj581Jw9rccPoXR2AIJoZ2f4PGiV1hvqEMOS36b4VKHM19tBU+QsEJ5k + 44t//Wj5V2/Va8JHs3ZPS2njwyQ/TEfKo29nwphvbIxo2dK//T/b04cc9p7Yj5v/kfuo7XFRFB2g + O7tK/vKNN+VQWwcvf0IqwZicNz0/6c7qybkdMWje+hPj7Qx9+NM7mvZ85aM1dAPIj+N1ypcp05YL + v41UDm1CDGaq8iFV0wSoAcjR5+E6PeM6/gypNVoYCWumrdlse3/9P/uXz8NgSH7xu+13l84//bhG + pY4Pq7XW64cZLGjMSkiMLb7nb5FncOOJPz4HuI2/ArGVE6z11ytYj3euhINMdujho7tGf/0TNize + JIUhk0+jFSjwPyMF//qv//rv24DAP017K9/bYMBYLuO//8+owL/5fw9N9n7/Bgv+mYasKv/5b/8Z + Qfjn27fNd/wfY/sqP8M2ayBLAvs3bvDP2I7Z+//66F/bF/7Pf/0vAAAA//8DAFx1HRS6BQIA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da8761f8f9e64-SJC + - 984403e51a25236e-SJC Connection: - keep-alive Content-Encoding: @@ -3038,19 +3029,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:25 GMT + - Wed, 24 Sep 2025 17:31:24 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=OvcFtz7xwsphUZh5JMMqodWydSyKK.p2VZWIBNrgwSc-1758668425-1.0.1.1-5Ok2hXno_FnR.Co8udDCSbNeXbGzE.wrdqdDXv0UUSFmUjqH08fPx1rI.VvLyNr6hrJCI8kC6sltAv0eHVmvvFc581nxd9P_CHtRgvny.kc; - path=/; expires=Tue, 23-Sep-25 23:30:25 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=WpaWLmP2ybMtK6uLBHZqHnAD.7o87tY0ppcMudJlyK0-1758668425119-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-84f87775f7-rqsfh + - envoy-router-55c75b6fc8-p426z X-Content-Type-Options: - nosniff alt-svc: @@ -3062,7 +3047,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "384" + - "244" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3070,7 +3055,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "404" + - "390" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3080,13 +3065,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199979816" + - "199979818" x-ratelimit-reset-requests: - - 0s + - 1m0s x-ratelimit-reset-tokens: - - 6ms + - 1m0s x-request-id: - - req_89ac19dfd2e5426f8e5178152de76e30 + - req_b89461690e0a42d180b3a27825119eb9 status: code: 200 message: OK @@ -3251,7 +3236,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da8796bd69e64-SJC + - 984403e8fefb236e-SJC Connection: - keep-alive Content-Encoding: @@ -3259,13 +3244,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:25 GMT + - Wed, 24 Sep 2025 17:31:25 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-55b6d8ff76-m54v7 + - envoy-router-8b4d6d9d7-rdzt7 X-Content-Type-Options: - nosniff alt-svc: @@ -3277,7 +3262,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "66" + - "93" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3285,7 +3270,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "89" + - "118" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3295,13 +3280,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999933" + - "199999930" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_35f2057ba50641dfb4adf470c90d2c11 + - req_81db25ce0f6b4c0d861a12428593e8cb status: code: 200 message: OK @@ -3462,7 +3447,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da87adba42343-SJC + - 984403eb8f8a3ad4-SJC Connection: - keep-alive Content-Encoding: @@ -3470,19 +3455,19 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:25 GMT + - Wed, 24 Sep 2025 17:31:25 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=kRKvDNN3NlJJGfGVrXRk_JWupv4.SJrFoXpk0uf6fZs-1758668425-1.0.1.1-phaiyc31nzc7cJD5iO.ZOfjECtUGggk0duu.s5zQpPv2h.qARr3jCS8jlQV838Aa_uwFWobH25k0oUCwLwMry3d9cxJyznCk7ghDAl1HXWo; - path=/; expires=Tue, 23-Sep-25 23:30:25 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=3JV1p87Zf6AOKJIdKT5.YiZBWbPKr.6dxPJ_SB1qbz4-1758735085-1.0.1.1-F.HKftp2bs1Cjm7nu3QJBS1tmU4gAeRInFOsS81NUwBS5vOxDom.e7T9w8oGFrxZA1yyq8BVn9ImiqERsiClTrAnmkl_v7prTT.azj4O2W8; + path=/; expires=Wed, 24-Sep-25 18:01:25 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=U4j594PO1AWEm7jvvLVb0l25WXC7a0Beo7nTz3Ah6IQ-1758668425606-0.0.1.1-604800000; + - _cfuvid=h071hO_oxJKIMNtYjy8D7iDcCpsnbikZnPwi9CkxO38-1758735085467-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-758d5d8954-j5xkf + - envoy-router-7f94565f6f-wflj8 X-Content-Type-Options: - nosniff alt-svc: @@ -3494,7 +3479,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "60" + - "57" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3502,7 +3487,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "100" + - "74" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3510,7 +3495,7 @@ interactions: x-ratelimit-limit-tokens: - "200000000" x-ratelimit-remaining-requests: - - "199998" + - "199999" x-ratelimit-remaining-tokens: - "199999996" x-ratelimit-reset-requests: @@ -3518,89 +3503,90 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_28c3041a8d134f628f7e72c63341e331 + - req_dbbc7cb72a9c46e7a8e78be4ddfbd6fc status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 1-3: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n - A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi - P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n - \ D. White\u2217,\u2021\\n\\n\\n \u2020Department - of Chemistry, University of Rochester, Rochester, NY, 14627\\n\\n\u2021Department - of Chemical Engineering, University of Rochester, Rochester, NY, 14627\\n\\n - \ \xB6Vial Health Technology, Inc., San Francisco, CA 94111\\n\\n\\n - \ E-mail: andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n - \ Chemists can be skeptical in using deep learning (DL) in decision making, - due to\\n\\n the lack of interpretability in \u201Cblack-box\u201D models. - \ Explainable artificial intelligence\\n\\n (XAI) is a branch of AI which - addresses this drawback by providing tools to interpret\\n\\n DL models and - their predictions. We review the principles of XAI in the domain of\\n\\n chemistry - and emerging methods for creating and evaluating explanations. Then we\\n\\n - \ focus on methods developed by our group and their applications in predicting - solubil-\\n\\n ity, blood-brain barrier permeability, and the scent of molecules. - We show that XAI\\n\\n methods like chemical counterfactuals and descriptor - explanations can explain DL pre-\\n\\n dictions while giving insight into - structure-property relationships. Finally, we discuss\\n\\n how a two-step - process of developing a black-box model and explaining predictions can\\n\\n - \ uncover structure-property relationships.\\n\\n\\n\\n\\n\\n 1Introduction\\n\\n\\nDeep - learning (DL) is advancing the boundaries of computational chemistry because - it can\\n\\naccurately model non-linear structure-function relationships.1\u20133 - Applications of DL can be\\n\\nfound in a broad spectrum spanning from quantum - computing4,5 to drug discovery6\u201310 to\\n\\nmaterials design.11,12 According - to Kre 13, DL models can contribute to scientific discovery\\n\\nin three \u201Cdimensions\u201D - - 1) as a \u2018computational microscope\u2019 to gain insight which are not\\n\\nattainable - through experiments 2) as a \u2018resource of inspiration\u2019 to motivate - scientific thinking\\n\\n3) as an \u2018agent of understanding\u2019 to uncover - new observations. However, the rationale of\\n\\na DL prediction is not always - apparent due to the model architecture consisting a large\\n\\nparameter count.14,15 - DL models are thus often termed\u201Cblack box\u201D models. We can only\\n\\nreason - about the input and output of an DL model, not the underlying cause that leads - to\\n\\na specific prediction.\\n\\n It is routine in chemistry now for DL - to exceed human level performance \u2014 humans are\\n\\nnot good at predicting - solubility from structure for example161 \u2014 and so understanding how\\n\\na - model makes predictions can guide hypotheses. This is in contrast to a topic - like finding\\n\\na stop sign in an image, where there is little new to be learned - about visual perception\\n\\nby explaining a DL model. However, the black box - nature of DL has its own limitations.\\n\\nUsers are more likely to trust and - use predictions from a model if they can understand why\\n\\nthe prediction - was made.17 Explaining predictions can help developers of DL models ensure\\n\\nthe - model is not learning spurious correlations.18,19 Two infamous examples are, - 1)neural\\n\\nnetworks that learned to recognize horses by looking for a photographer\u2019s - watermark20 and,\\n\\n2) neural networks that predicted a COVID-19 diagnoses - by looking at the font choice\\n\\non medical images.21 As a result, there is - an emerging regulatory framework for when any\\n\\ncomputer algorithms impact - humans.22\u201324 Although we know of no examples yet in chemistry,\\n\\none - can assume the use of AI in predicting toxicity, carcinogenicity, and environmental\\n\\npersistence - will require rationale for the predictions due to regulatory consequences.\\n\\n - \ 1there does happen to be one human solubility savant, participant 11, who - matched machine performance\\n\\n\\n 2 - \ EXplainable Artificial Intelligence (XAI) is a field of growing importance - that aims to\\n\\nprovide model interpretations of DL predictions Three terms - highly associated with XAI are,\\n\\ninterpretability, justifications and explainability. - Miller 25 defines that interpretability of a\\n\\nmodel refers to the degree - of human understandability intrinsic within the model. Murdoch\\n\\net al. 26 - clarify that interpretability can be perceived as \u201Cknowledge\u201D which - provide insight\\n\\nto a particular problem. Justifications are quantitative - metrics tell the users \u201Cwhy the\\n\\nmodel should be trusted,\u201D like - test error.27 Justifications are evidence which defend why a\\n\\nprediction - is trustworthy.25 An \u201Cexplanation\u201D is a description on why a certain - prediction was\\n\\nmade.9,28 Interpretability and explanation are often used - interchangeably. Arrieta et al. 14\\n\\ndistinguish that interpretability is - a passive characteristic of a model, whereas explainability\\n\\nis an active - characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, - an explanation is extra information that gives the context and a cause for one - or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 20-22: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnal + molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate + that would result in the model predicting the molecule\\nto not contain the + \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual + and\\n2,4 decadienal is also provided. Republished with permission from authors.31\\n\\n\\n + \ The molecule 2,4-decadienal, which is known to have a \u2018fatty\u2019 scent, + is analyzed in Fig-\\n\\nure 5.142,143 The resulting counterfactual, which has + a shorter carbon chain and no carbonyl\\n\\ngroups, highlights the influence + of these structural features on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. + To generalize to other molecules, Seshadri et al. 31 applied the descriptor + attribution\\n\\nmethod to obtain global explanations for the scents. The global + explanation for the \u2018fatty\u2019\\n\\nscent was generated by gathering + chemical spaces around many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting + natural language explanation is: \u201CThe molecular property \u201Cfatty scent\u201D + can\\n\\nbe explained by the presence of a heptanyl fragment, two CH2 groups + separated by four\\n\\n\\n 20bonds, and + a C=O double bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe + importance of a heptanyl fragment aligns with that reported in the literature, + as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, + the importance of a C=O dou-\\n\\nble bond is supported by the findings reported + by Licon et al. 145, where in addition to a\\n\\n\u201Clarger carbon-chain skeleton\u201D, + they found that \u2018fatty\u2019 molecules also had \u201Caldehyde or acid\\n\\nfunctions\u201D.145 + For the \u2018pineapple\u2019 scent, the following natural language explanation + was ob-\\n\\ntained: \u201CThe molecular property \u201Cpineapple scent\u201D + can be explained by the presence of ester,\\n\\nethyl/ether O group, alkene/ether + O group, and C=O double bond, as well as the absence of\\n\\nan Aromatic atom.\u201D31 + Esters, such as ethyl 2-methylbutyrate, are present in many pineap-\\n\\nple + volatile compounds.146,147 The combination of a C=O double bond with an ether + could\\n\\nalso correspond to an ester group. Additionally, aldehydes and ketones, + which contain C=O\\n\\ndouble bonds, are also common in pineapple volatile compounds.146,148\\n\\n\\nDiscussion\\n\\n\\nWe + have shown two post-hoc XAI applications based on molecular counterfactual expla-\\n\\nnations9 + and descriptor explanations.10 These methods can be used to explain black-box\\n\\nmodels + whose input is a molecule. These two methods can be applied for both classification\\n\\nand + regression tasks. Note that the \u201Ccorrectness\u201D of the explanations + strongly depends on\\n\\nthe accuracy of the black-box model.\\n\\n A molecular + counterfactual is one with a minimal distance from a base molecular, but\\n\\nwith + contrasting chemical properties. In the above examples, we used Tanimoto similar-\\n\\nity96 + of ECFP4 fingreprints97 as distance, although this should be explored in the + future.\\n\\nCounterfactual explanations are useful because they are represented + as chemical structures\\n\\n(familiar to domain experts), sparse, and are actionable. + A few other popular examples of\\n\\ncounterfactual on graph methods are GNNExplainer, + MEG and CF-GNNExplainer.69,104,105\\n\\n The descriptor explanation method + developed by Gandhi and White 10 fits a self-explaining\\n\\n\\n\\n 21surrogate + model to explain the black-box model. This is similar to the GraphLIME87 method,\\n\\nalthough + we have the flexibility to use explanation features other than subgraphs. Futher-\\n\\nmore, + we show that natural language combined with chemical descriptor attributions + can\\n\\ncreate explanations useful for chemists, thus enhancing the accessibility + of DL in chemistry.\\n\\nLastly, we examined if XAI can be used beyond interpretation. + Work by Seshadri et al. 31 use\\n\\nMMACE and surrogate model explanations to + analyze the structure-property relationships\\n\\nof scent. They recovered known + structure-property relationships for molecular scent purely\\n\\nfrom explanations, + demonstrating the usefulness of a two step process: fit an accurate model\\n\\nand + then explain it.\\n\\n Choosing among the plethora of XAI methods described + here is still an open question.\\n\\nIt remains to be seen if there will ever + be a consensus benchmark, since this field sits on\\n\\nthe intersection of + human-machine interaction, machine learning, and philosophy (i.e., what\\n\\nconstitutes + an explanation?). Our current advice is to consider first the audience \u2013 + domain\\n\\nexperts or ML experts or non-experts \u2013 and what the explanations + should accomplish. Are\\n\\nthey meant to inform data selection or model building, + how a prediction is used, or how the\\n\\nfeatures can be changed to affect + the outcome. The second consideration is what access you\\n\\nhave to the underlying + model. The ability to have model derivatives or propagate gradients\\n\\nto + the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe + should seek to explain molecular property prediction models because users are + more\\n\\nlikely to trust explained predictions, and explanations can help assess + if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3609,7 +3595,7 @@ interactions: connection: - keep-alive content-length: - - "6093" + - "6260" content-type: - application/json host: @@ -3641,26 +3627,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTbbts4EH33Vwz4UgewA9tNk8ZvRlOg6fYDulgXxogcSdNQpJZDJhGC - /PuCkmwr2y6wLwLEM2d4eObyMgNQbNQWlK4x6qa1y09fr7/U4f3nP9F0t1+6r7ub8tPN3f0OnVir - Fpnhi5+k45F1qX3TWors3QDrQBgpZ13ffPh4ff3xavOhBxpvyGZa1cbllV9uVpur5Xq93KxGYu1Z - k6gt/DUDAHjpv1miM/SstrBaHE8aEsGK1PYUBKCCt/lEoQhLRBfV4gxq7yK5XvXL3gHslaSmwdDt - 1Rb26vNza5EdFpZgFyKXrBkt3LtI1nJFThPMv+/uL4AFEEoma6D0OgkZ8A7a4B/ZsKuAXaTQBoqY - LRFAZ4BydjcelD6AIWrBEgaXKfO7bxfQuwNtIMO6D1wAGhNIJIfEmuBdYVE/LAv//A4cxhQIfJkR - oYEtl/B9dw/IjUD0QK7GrDuGJLHXkQQLthw7KDrwZUlhUCxc1VGydA9PdQc4qmnwgQSkJZ0NmYq7 - hD+oA+2dprZn9jez0zYZmngwXjfP+g1VgXrNdWrQQXKGQi6UOYb58nj1xQJ+JunrMNo2/zuhi5xt - fSRoKAbWArHGCIZKcqb3qH/rkw+xZkciOeNE9cXi13LMDYkO3A5/2mLgsjtaHgjF9zUqqGZn3iQb - 3GaBFkNknSwG20EgS4/oYvZE19SwxNAt4KmmQJMn55x336b5QKODKrEhqLvW93Ud28dJLvZQY8BA - 4Hw8t4+0KbBPAtqHQHZ41+VeLYY+HwVpOoj2gYZ+X69OeG7hAzdYkWSsRCu0d6/T4QlUJsE8uy5Z - OwHQOT82eh7bHyPyehpU66s2+EL+RVUlO5b6MPibh1Kib1WPvs4AfvQLIb2ZcdUG37TxEP0D9det - N6txI6jzDprAV7cjGn1EOwHen5A3KQ+GIrKVyVZRGnVN5sw9ryBMhv0EmE0e/que3+U+Ndf/SX8G - dB45Modz6/wuLFBe0v8VdjK6F6yEwiNrOkSmkIthqMRkh/2ppJNIzaFkV+Wh5mGJlu3hZn1bmKJE - c61mr7N/AAAA//8DANIk6odNBgAA + H4sIAAAAAAAAAwAAAP//fFRNbxs3EL3rVwx4SgFJkFSrcnUL0hwcFGmBtkHgKBC45Ozu1FyS5QxV + C4b/e8FdS1qndi4EyMd58/Fm5mECoMiqLSjTajFddLN3Hz6a9Mvvxh7f5z8+faTb29UH2fyq//r8 + 222tpsUiVH+jkZPV3IQuOhQKfoBNQi1YWJeb9fXmx/Xiet0DXbDoilkTZXYVZqvF6mq2XM5WiyfD + NpBBVlv4MgEAeOjPEqK3eK+2sJieXjpk1g2q7fkTgErBlRelmYlFe1HTC2iCF/R91A87D7BTnLtO + p+NObWGnPr+9gTfv76PT5HXlEN4moZoMaQc3XtA5atAb/AES1pgYJECH0gbLoL0FQdN6+icjQ2a0 + PazvEKRFiAktmVIghlBD5bS5m1XhHvqCMJAXTDGh9I4LW/YWU0nBlqc53PieqM/hXgpJFxya7HSC + mELEJMeRmymUdE7hObrD0X8TcvFXayNZO8CSs9dDdMW3RTaJooT0DZYQsIsuHNHO4d13WMgfgjsg + dOSp0w5YUjaSk3ZgWu0b7KunTzFhf3OCCUj4lAbaU2aEPIV/W3L4amyZETinFBoteCprYRVJVGV5 + roEE4IimyDuqS41ackKew58tMp7Lh77V3iBIyixT0MYgM1XkSI7TQS3pL0WWUvaTqGBa7IglHaEq + 6oQDWfIN6D6Ms9Y2dJr8LKHDg/YC5JmaVoY4YJiJQn2RFCxG9JYhDG2hs6XSm0MjlobLKQburcp1 + VKr5Tk2H7n/yZ3DPJiQcpmC5OOOli/fU6Qa5YLV2jDv/OB6phHVmXSbaZ+dGgPY+yCBNGeavT8jj + eXxdaGIKFX9jqmryxO0+oebgy6iyhKh69HEC8LVfE/nZ5KuYQhdlL+EOe3fL1c/XA6G6bKYRfHX1 + hEoQ7Z4Bq+kLlHuLosnxaNcoo02Lduzz+rKbihzhgi0mo9z/H9JL9EP+5JsRy6v0F8AYjIJ2f+n1 + l74lLNv7tW/nWvcBK8Z0IIN7IUxFD4u1zm5YrIqPLNjta/JN2V80bNc67tc/LavVerOxlZo8Tv4D + AAD//wMAg9jwD2YGAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da87c7b3767e5-SJC + - 984403ecda31152b-SJC Connection: - keep-alive Content-Encoding: @@ -3668,14 +3654,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:29 GMT + - Wed, 24 Sep 2025 17:31:28 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=p6YOxCWlTkI853OG7KFU8KUIho_bLDXP20UzaT5odCk-1758668429-1.0.1.1-MfHLMcMUn2Lia7KloHZgJk63Fq9g5jaYQ7.3SugX7D1S3fW05oMKLkae.hVLMJffq_dheLp7UBzbTWuClWYvKZobvBmOhJtVaPeQX81ZCVE; - path=/; expires=Tue, 23-Sep-25 23:30:29 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=.DU7at43i95mF88M1qsgmPQoDNw3QGmIY1W_Ks54Y20-1758735088-1.0.1.1-ow32zeWvtAuuVg4lfCmmJ2kDwnQj.BZF15KY9w4qQDodm6.zfu5nFxeAktaB_GQXhmGaNfW3RpWVy5eBnA3Cx9jGaiZjuuOwadH00MKPC50; + path=/; expires=Wed, 24-Sep-25 18:01:28 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=PMZH9FO5K6vMNb97cDTwZLxDCKJf7MU1HZeq61c2i_k-1758668429042-0.0.1.1-604800000; + - _cfuvid=GsDy78Cj22l4d_AC4px.ghA38zLfN2oWfX892GvKQ2Y-1758735088104-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -3690,13 +3676,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3267" + - "2443" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3295" + - "2469" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3706,93 +3692,96 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998544" + - "29998505" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_1ad7e11b71814be780ab9a1f1cb4516a + - req_68a5b5797d454edeb482d0a9657e0d31 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 20-22: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnal - molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate - that would result in the model predicting the molecule\\nto not contain the - \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual - and\\n2,4 decadienal is also provided. Republished with permission from authors.31\\n\\n\\n - \ The molecule 2,4-decadienal, which is known to have a \u2018fatty\u2019 scent, - is analyzed in Fig-\\n\\nure 5.142,143 The resulting counterfactual, which has - a shorter carbon chain and no carbonyl\\n\\ngroups, highlights the influence - of these structural features on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. - To generalize to other molecules, Seshadri et al. 31 applied the descriptor - attribution\\n\\nmethod to obtain global explanations for the scents. The global - explanation for the \u2018fatty\u2019\\n\\nscent was generated by gathering - chemical spaces around many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting - natural language explanation is: \u201CThe molecular property \u201Cfatty scent\u201D - can\\n\\nbe explained by the presence of a heptanyl fragment, two CH2 groups - separated by four\\n\\n\\n 20bonds, and - a C=O double bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe - importance of a heptanyl fragment aligns with that reported in the literature, - as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, - the importance of a C=O dou-\\n\\nble bond is supported by the findings reported - by Licon et al. 145, where in addition to a\\n\\n\u201Clarger carbon-chain skeleton\u201D, - they found that \u2018fatty\u2019 molecules also had \u201Caldehyde or acid\\n\\nfunctions\u201D.145 - For the \u2018pineapple\u2019 scent, the following natural language explanation - was ob-\\n\\ntained: \u201CThe molecular property \u201Cpineapple scent\u201D - can be explained by the presence of ester,\\n\\nethyl/ether O group, alkene/ether - O group, and C=O double bond, as well as the absence of\\n\\nan Aromatic atom.\u201D31 - Esters, such as ethyl 2-methylbutyrate, are present in many pineap-\\n\\nple - volatile compounds.146,147 The combination of a C=O double bond with an ether - could\\n\\nalso correspond to an ester group. Additionally, aldehydes and ketones, - which contain C=O\\n\\ndouble bonds, are also common in pineapple volatile compounds.146,148\\n\\n\\nDiscussion\\n\\n\\nWe - have shown two post-hoc XAI applications based on molecular counterfactual expla-\\n\\nnations9 - and descriptor explanations.10 These methods can be used to explain black-box\\n\\nmodels - whose input is a molecule. These two methods can be applied for both classification\\n\\nand - regression tasks. Note that the \u201Ccorrectness\u201D of the explanations - strongly depends on\\n\\nthe accuracy of the black-box model.\\n\\n A molecular - counterfactual is one with a minimal distance from a base molecular, but\\n\\nwith - contrasting chemical properties. In the above examples, we used Tanimoto similar-\\n\\nity96 - of ECFP4 fingreprints97 as distance, although this should be explored in the - future.\\n\\nCounterfactual explanations are useful because they are represented - as chemical structures\\n\\n(familiar to domain experts), sparse, and are actionable. - A few other popular examples of\\n\\ncounterfactual on graph methods are GNNExplainer, - MEG and CF-GNNExplainer.69,104,105\\n\\n The descriptor explanation method - developed by Gandhi and White 10 fits a self-explaining\\n\\n\\n\\n 21surrogate - model to explain the black-box model. This is similar to the GraphLIME87 method,\\n\\nalthough - we have the flexibility to use explanation features other than subgraphs. Futher-\\n\\nmore, - we show that natural language combined with chemical descriptor attributions - can\\n\\ncreate explanations useful for chemists, thus enhancing the accessibility - of DL in chemistry.\\n\\nLastly, we examined if XAI can be used beyond interpretation. - Work by Seshadri et al. 31 use\\n\\nMMACE and surrogate model explanations to - analyze the structure-property relationships\\n\\nof scent. They recovered known - structure-property relationships for molecular scent purely\\n\\nfrom explanations, - demonstrating the usefulness of a two step process: fit an accurate model\\n\\nand - then explain it.\\n\\n Choosing among the plethora of XAI methods described - here is still an open question.\\n\\nIt remains to be seen if there will ever - be a consensus benchmark, since this field sits on\\n\\nthe intersection of - human-machine interaction, machine learning, and philosophy (i.e., what\\n\\nconstitutes - an explanation?). Our current advice is to consider first the audience \u2013 - domain\\n\\nexperts or ML experts or non-experts \u2013 and what the explanations - should accomplish. Are\\n\\nthey meant to inform data selection or model building, - how a prediction is used, or how the\\n\\nfeatures can be changed to affect - the outcome. The second consideration is what access you\\n\\nhave to the underlying - model. The ability to have model derivatives or propagate gradients\\n\\nto - the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe - should seek to explain molecular property prediction models because users are - more\\n\\nlikely to trust explained predictions, and explanations can help assess - if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 3-5: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + a passive characteristic of a model, whereas explainability\\n\\nis an active + characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, + an explanation is extra information that gives the context and a cause for one + or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n + \ Accuracy and interpretability are two attractive characteristics of DL models. + However,\\n\\nDL models are often highly accurate and less interpretable.28,30 + XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. + XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate + but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. + Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe + explanations should give insight into the underlying mechanism.\\n\\n In the + remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin + various systems these methods yield explanations that are consistent with known + and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn + this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding + our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. + According to their classification, interpretations can be categorized as global + or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. + For example, counterfactuals are\\n\\nlocal interpretations, as these can explain + only a given instance. The second classification is\\n\\nbased on the relation + between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) + or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand + is self-explanatory32 These are also referred to as white-box models to contrast + them\\n\\nwith non-interpretable black box models.28 An extrinsic method is + one that can be applied\\n\\npost-training to any model.33 Post-hoc methods + found in the literature focus on interpreting\\n\\nmodels through 1) training + data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 + or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation + and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 + Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused + the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe + may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof + physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan + be evaluated by considering its agreement with physical observations, which + they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests + that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence + strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. + In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases + and subjectivity can be used to measure the correctness.40 Other similar metrics + of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be + found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced + CIME an interactive web-based tool that allows the\\n\\nusers to inspect model + explanations. The aim of this study is to bridge the gap between\\n\\nanalysis + of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n + \ 4evaluation metric is necessary in XAI. + We suggest the following attributes can be used to\\n\\nevaluate explanations. + However, the relative importance of each attribute may depend on\\n\\nthe application + - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability + of a static physics based model. Therefore, one can select relative importance\\n\\nof + each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it + clear how we could change the input features to modify the output?\\n\\n\\n + \ \u2022 Complete. Does the explanation completely account for the prediction? + Did features\\n\\n not included in the explanation really contribute zero + effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation + agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n + \ \u2022 Domain Applicable. Does the explanation use language and concepts + of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the + explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the + explanation change significantly with small changes to the model or\\n\\n instance + being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n + \ We present an example evaluation of the SHAP explanation method based on the + above\\n\\nattributes.44 Shapley values were proposed as a local explanation + method based on feature\\n\\nattribution, as they offer a complete explanation + - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3801,7 +3790,7 @@ interactions: connection: - keep-alive content-length: - - "6087" + - "6241" content-type: - application/json host: @@ -3833,26 +3822,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//fFRNb+NGDL37VxBzlg3bcJzUt3RRtMlhTy2waL2wqRElMRnNqEPKGyPI - fy9G8oeyu+lFgOYNH98jh3ydABguzAaMrVFt07rpp8f1H/Xfn/l3Wz+Fv+7vblePlNvHz3fr468H - k6WIkD+R1XPUzIamdaQc/ADbSKiUWBe3N3fr9d1qedMDTSjIpbCq1ekqTJfz5Wq6WEyX81NgHdiS - mA38MwEAeO2/SaIv6MVsYJ6dTxoSwYrM5nIJwMTg0olBERZFrya7gjZ4Jd+r3u/3TxL81r9uPcDW - SNc0GI9bs4Gt+XL/kEGI8NtL65A95o7gPiqXbBkdPHgl57gibymDSCVFAQ3QkNahEEBfgJKtPf/b - kUAnVPQwPhNoTdBGKtimYgmEEu4foK+KAHul2EbSPmOi6XxBMfko+iMNUHcNepnBg++5eksvmnia - 4Mh2DiO0MbQU9TjKlMGXlOek0PEzje7b0KXMJVrt0AEl2x4HgUlFQWIjtxrid1ikizsaagW5Q/s8 - zcPLydQMPv0PO/tDcAeCijxFVPbVSJZo7Kx2kQS+sdbQsOcGHdgafUUCWqNCJOmcAnsouCwpktez - fybJ4FvNjj500AmBdDGGCpXObdAAqBo575TA1tSwRTciTRekJZvew0huSdiLncGfNQldik2+Rm8J - NHaiGaC1JMI5O9ZjNnRZ+5/TY0hWQoPsT33qFYjGI+Spo+HARaoT9n29vJQhZBrJ0QF9KohwVavM - tiYbnvgJsrQTGyINT30xv+CpkztusCJJWIlOaOvftn6/34+nKFLZCaYh9p1zIwC9DzoUNs3v1xPy - dplYF6o2hly+CzUle5Z6Fwkl+DSdoqE1Pfo2Afjab4bu3bCbNoam1Z2GZ+rTLZbr5UBorstoBK9O - i8NoUHTvgHPcO8pdQYrsZLRejEVbUzGKXdwsLyawKzhcsflk5P1HST+jH/yzr0YsH9JfAWupVSp2 - 12H/2bVIaWF/dO1S616wEYoHtrRTppj6UVCJnRt2qZGjKDW7kn2VthUPC7Vsd7eLX/IiL7FYm8nb - 5D8AAAD//wMAHpnyCFkGAAA= + H4sIAAAAAAAAA3RUwW4bOQy9+ysInRLANmwnXqe+BbsBmu1iT4siwLowaInjYaKRVJHjxg3y7wvN + OLbbTS+GR++RfI8S+TIAMOzMEoytUW2T/Oj3P/+2+fHj48Psw8fw2c2mN59881R9ivfzz9/NsETE + zSNZfYsa29gkT8ox9LDNhEol63Qxv1lczSc38w5ooiNfwrZJR9dxNJvMrkfT6Wg2OQTWkS2JWcK/ + AwCAl+63SAyOns0SJsO3k4ZEcEtmeSQBmBx9OTEowqIY1AxPoI1BKXSqX1YBYGWkbRrM+5VZwsrc + PSePHHDjCW6zcsWW0cN9UPKetxQswcXD7f0lZKooC2iEhrSOTgCDg5SjJRES0BoVrMfM1R60JuCg + lAN6cGRZOIZRg08cthAr6FoiQ0iYlW3rMfs9OKIEnjCHwrr446/LI+9bzbYGzASxUgqA1rYZlWDT + KngS6aulTFqsjOHh9h447KLfFWnfIohSkiU42pGPqRTAn9LEhF9b6kt23rQulZwrZCp9Clhuu+sB + q0DK5Nh2R2O4OydYDLAhsKi0jZm/kwMU2Pq4QQ8xg48W/bArgp30zEHYwkXpR+lP6V8n5LLQ6flE + iKKjOtrLMdzt0LddwRJRDL9dDAfrW0cCqJp50yoJeH4iwE4tbtiz7odweMEUSKR85UxW+w8XG+QA + mJJnewyo2FH/L8dNKwdusSEJs7Dux/BPTULnlWvyCbC8Eel8fW2x5OjCWu0yFwM/dJgD7DBzbOWg + RIYHV+UyUr0XtuhBLJcXKuOVGfaPO5OnHQZLa7ExU//Ip5Mj3gq5NTe4JSlYhV5oFV7PJyZT1QqW + gQ2t92cAhhC1F1hm9csBeT1Op4/blONGfgo1FQeWep0JJYYyiaIxmQ59HQB86bZA+8Ngm5Rjk3St + 8Ym6ctPZ9EOf0JwWzxk8vz6gGhX9GXC1uBq+k3LtSJG9nK0SY9HW5M5ip/PZ0QS2juMJmwzOvP9f + 0nvpe/8ctmdZfpn+BFhLScmtT+P2Hi1TWc6/oh173Qk2QnnHltbKlMt9OKqw9f3eNLIXpWZdcdiW + jcL98qzSev7bdDObLxZuYwavg/8AAAD//wMAiFm1x0UGAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da87c6acf7542-SJC + - 984403ecdfbcfb30-SJC Connection: - keep-alive Content-Encoding: @@ -3860,14 +3849,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:29 GMT + - Wed, 24 Sep 2025 17:31:28 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=g59MhRzWmtV1_dQuH2dhgSARVCIPu_22YRuR81CFd0c-1758668429-1.0.1.1-3bLq8ZsTRpGVUDsZ5YKvzYtNq4UQI8EKMjpV4.YQV7qARZ2GpvzUw6QrUPCdGsdp6YbLQFGvAO8nxrsWGPbma0KAbav4u1QXyXfD3Xoohu0; - path=/; expires=Tue, 23-Sep-25 23:30:29 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=LQ4GN8qRdURVBx_q7sE4EnR6SvyaDuUjHVh1o3cNanQ-1758735088-1.0.1.1-QnVW434Jr6YNQQ7Gk6Hd.JFNAX53Z59eF5vaGt0w8K0DUnL_fFEhktCZEDwrbqQQqUCsxdV5rvEGaqLYb4PKg.5WbtaslM3cXGA75Kbq910; + path=/; expires=Wed, 24-Sep-25 18:01:28 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=70rILdItV0BKtSEGjqwyDblCH5EAd.t54jktVw_0aok-1758668429725-0.0.1.1-604800000; + - _cfuvid=7k8E44tXdf5qtstYRzM5s_bwfpvTfYU5U3BHOcRNrtc-1758735088202-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -3882,13 +3871,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3960" + - "2305" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3988" + - "2533" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3898,95 +3887,98 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998543" + - "29998514" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_875ae8c7474146df938263e6c644703c + - req_58208817dd394d02a90878f8d32e65ca status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 25-28: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n2021, - 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. - D. Model agnostic generation of counter-\\n\\n factual explanations for - molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. - A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n - \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; - Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature - Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; - Gregoire, J. M. Computational sustainability\\n\\n meets materials science. - Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with - artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, - 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, - N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; - Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n - \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities - and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, - 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, - R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and - applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) - Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility - better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) - Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. - Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, - K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter - programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n - \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, - J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial - Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n - \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, - S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n - \ Unmasking Clever Hans predictors and assessing what machines really learn. - Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. - J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n - \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) - Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n - \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) - ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n - \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for - an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) - Miller, T. Explanation in artificial intelligence: Insights from the social - sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n - \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, - K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications - in interpretable machine learning. Proceedings of the National\\n\\n Academy - of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) - Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) - Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; - Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n - \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) - Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n - \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF - Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) - Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for - Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, - Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) - Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n - \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges - in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint - arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, - K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial - Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, - challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, - P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n - \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) - Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D - Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd - ACM SIGKDD international\\n\\n\\n 27 conference - on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 1-3: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi + P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n + \ D. White\u2217,\u2021\\n\\n\\n \u2020Department + of Chemistry, University of Rochester, Rochester, NY, 14627\\n\\n\u2021Department + of Chemical Engineering, University of Rochester, Rochester, NY, 14627\\n\\n + \ \xB6Vial Health Technology, Inc., San Francisco, CA 94111\\n\\n\\n + \ E-mail: andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n + \ Chemists can be skeptical in using deep learning (DL) in decision making, + due to\\n\\n the lack of interpretability in \u201Cblack-box\u201D models. + \ Explainable artificial intelligence\\n\\n (XAI) is a branch of AI which + addresses this drawback by providing tools to interpret\\n\\n DL models and + their predictions. We review the principles of XAI in the domain of\\n\\n chemistry + and emerging methods for creating and evaluating explanations. Then we\\n\\n + \ focus on methods developed by our group and their applications in predicting + solubil-\\n\\n ity, blood-brain barrier permeability, and the scent of molecules. + We show that XAI\\n\\n methods like chemical counterfactuals and descriptor + explanations can explain DL pre-\\n\\n dictions while giving insight into + structure-property relationships. Finally, we discuss\\n\\n how a two-step + process of developing a black-box model and explaining predictions can\\n\\n + \ uncover structure-property relationships.\\n\\n\\n\\n\\n\\n 1Introduction\\n\\n\\nDeep + learning (DL) is advancing the boundaries of computational chemistry because + it can\\n\\naccurately model non-linear structure-function relationships.1\u20133 + Applications of DL can be\\n\\nfound in a broad spectrum spanning from quantum + computing4,5 to drug discovery6\u201310 to\\n\\nmaterials design.11,12 According + to Kre 13, DL models can contribute to scientific discovery\\n\\nin three \u201Cdimensions\u201D + - 1) as a \u2018computational microscope\u2019 to gain insight which are not\\n\\nattainable + through experiments 2) as a \u2018resource of inspiration\u2019 to motivate + scientific thinking\\n\\n3) as an \u2018agent of understanding\u2019 to uncover + new observations. However, the rationale of\\n\\na DL prediction is not always + apparent due to the model architecture consisting a large\\n\\nparameter count.14,15 + DL models are thus often termed\u201Cblack box\u201D models. We can only\\n\\nreason + about the input and output of an DL model, not the underlying cause that leads + to\\n\\na specific prediction.\\n\\n It is routine in chemistry now for DL + to exceed human level performance \u2014 humans are\\n\\nnot good at predicting + solubility from structure for example161 \u2014 and so understanding how\\n\\na + model makes predictions can guide hypotheses. This is in contrast to a topic + like finding\\n\\na stop sign in an image, where there is little new to be learned + about visual perception\\n\\nby explaining a DL model. However, the black box + nature of DL has its own limitations.\\n\\nUsers are more likely to trust and + use predictions from a model if they can understand why\\n\\nthe prediction + was made.17 Explaining predictions can help developers of DL models ensure\\n\\nthe + model is not learning spurious correlations.18,19 Two infamous examples are, + 1)neural\\n\\nnetworks that learned to recognize horses by looking for a photographer\u2019s + watermark20 and,\\n\\n2) neural networks that predicted a COVID-19 diagnoses + by looking at the font choice\\n\\non medical images.21 As a result, there is + an emerging regulatory framework for when any\\n\\ncomputer algorithms impact + humans.22\u201324 Although we know of no examples yet in chemistry,\\n\\none + can assume the use of AI in predicting toxicity, carcinogenicity, and environmental\\n\\npersistence + will require rationale for the predictions due to regulatory consequences.\\n\\n + \ 1there does happen to be one human solubility savant, participant 11, who + matched machine performance\\n\\n\\n 2 + \ EXplainable Artificial Intelligence (XAI) is a field of growing importance + that aims to\\n\\nprovide model interpretations of DL predictions Three terms + highly associated with XAI are,\\n\\ninterpretability, justifications and explainability. + Miller 25 defines that interpretability of a\\n\\nmodel refers to the degree + of human understandability intrinsic within the model. Murdoch\\n\\net al. 26 + clarify that interpretability can be perceived as \u201Cknowledge\u201D which + provide insight\\n\\nto a particular problem. Justifications are quantitative + metrics tell the users \u201Cwhy the\\n\\nmodel should be trusted,\u201D like + test error.27 Justifications are evidence which defend why a\\n\\nprediction + is trustworthy.25 An \u201Cexplanation\u201D is a description on why a certain + prediction was\\n\\nmade.9,28 Interpretability and explanation are often used + interchangeably. Arrieta et al. 14\\n\\ndistinguish that interpretability is + a passive characteristic of a model, whereas explainability\\n\\nis an active + characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, + an explanation is extra information that gives the context and a cause for one + or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3995,7 +3987,7 @@ interactions: connection: - keep-alive content-length: - - "6109" + - "6266" content-type: - application/json host: @@ -4027,26 +4019,27 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFTbbhtHDH3XVxDz1AKSYTmWfHkzmgJV8tw2RRVIo1nuLu1ZcjLk+gLD - /17MriyrifOyC8whDw+vzxMAR5W7Bhdab6FLcfbbp+Ufbf747eJq+XF5u/iHzv7+LFch/hk/yV9u - Wjxkd4vBXr1OgnQpopHwCIeM3rCwzi8Wl8vl5fnZYgA6qTAWtybZ7FxmZ6dn57P5fHZ2undshQKq - u4Z/JwAAz8O3SOQKH901nE5fXzpU9Q2664MRgMsSy4vzqqTm2dz0DQzChjyo3m63tyq85uc1A6yd - 9l3n89PaXcPa/f6Yoif2u4hwk41qCuQjrNgwRmqQA8IvX25Wv0LGGrOCCXRorVQKniswDC3Ttx4V - iOFmBdZ6g87fIViLUGEgJeFZ5++IG0hZAqqigtTQ+dASI0T0mQs6VEzBsmdNPiPbEIPYMKeMNqg0 - gbbvPOsJrAw8dYOmlOWeKgRipaa1oqYYysPA8NA+FW36pIadjvI0YSjpQspYUSgNVZB8kKxTQNY+ - F2GWe7Up+BCkZ/M7imRP04G69pQZVU/gy80KSKEiDb0qFt1w7zNJrzC049F0CsQh9lUhJVPwKUUK - 3sZ4ofUxIjeoI7ekJNl6JqPhSeEBYyz/4lv6X2Jk1CSsNLRwBRXeY5TUIdsJfMansXGlkboPjvAg - +U5BeKz4zDcsahQAyzTwqxztc5bGG+4bs084+w5Hglry6FIGaKjJfgj2hT5Zu+k4cxkj3nsOuNEg - GcfZm58e8F6x2lDnG9SC1T4qrvllzdvt9nisM9a9+rJV3Md4BHhmsVF4Waive+TlsEJRmpRlp9+5 - upqYtN1k9Cpc1kVNkhvQlwnA12FV+/9tn0tZumQbkzscws2Xi8VI6N6uwxH84XyPmpiPR8DF5dX0 - HcpNheYp6tG+u+BDi9WR7+LD8pCE7yuSN+x0cpT7j5Leox/zJ26OWH5K/waEgMmw2rzt0HtmGcsF - /ZnZodaDYKeY7yngxghz6UeFte/jeNzcOFibmrgpJ4HGC1enzcX8alftal8t3eRl8h8AAAD//wMA - US2bI+oFAAA= + H4sIAAAAAAAAAwAAAP//dFTBbiM3DL37Kwhd1gbswHbiTTa3tCnQ7AZF0dOi9cKQJY6Ha42oipLj + QZB/LzTjtZ0mexlg9EjqvUeRzwMARVbdgjK1TqYJbvLr5z9M9Nu4e1w0X/5qPrv73//Mf//iPu2r + q09qXDJ4/R1N+pF1YbgJDhOx72ETUScsVWfXi5vry8X0ZtEBDVt0JW0T0uSKJ/Pp/Goym03m00Ni + zWRQ1C38MwAAeO6+haK3uFe3MB3/OGlQRG9Q3R6DAFRkV06UFiFJ2ic1PoGGfULfsX5eeoClktw0 + OrZLdQtL9ds+OE1erx3CXUxUkSHt4MEndI426A3C8OvdwwhIQENF6CxUbLKgBfYQIu/Ikt8A+YQx + REx6TY5SC9pbwFLe62KSQMURLGIAhzr6kjO8fxxBZw+EiJZMFzgGbW1EkRKSaoQPa6fNdrLm/Qfw + OuWIwFVBBPtsuYCvdw+gqRFIDI3eItw/nteEhiNC9hZjsch2ggvDFLOkJ46pbmHdAlcVxl6O0KZO + UnRxx8KiISH2k0ZvS0SIbFDkAr5gC4a9wdCFG5ctvrVjWOdG+1cUeoAr0L2M0Ri+Z+macLBs+G/W + PlHSiXYIDaZIRkByCBxTZ0+hD+TPtY7Gb70fWhQTKfR/XMFT3YIENOWyV0bpiNBoi6PeUxIIOiYy + 2enoWojocKd9d6epsSFJse1am73hXW+epJhN6dMkRA4YU5fXU6kpSM/PS+6i+xaCZfCcSmBbXpaE + HImzgOF4TB7DE6UaApc3XR5qxE12OnFsgZrgjsaRL0K0gKMtQuI9meL1SejFUo37eTgoMrgSwxH7 + uZhNj3h56itq9AalYJV2gkv/cj5kEassusy4z86dAdp7Tj2lMt7fDsjLcaAdb0LktfwvVVXkSepV + kcC+DK8kDqpDXwYA37rFkV/tAhUiNyGtEm+xu242v/zYF1SnXXUGL2YHNHHS7gy4vLkev1NyZTFp + cnK2fZTRpkZ7ljtbzI8idLbEJ2w6ONP+ltJ75Xv95DdnVX5a/gSYMotoV6d2vxcWsezzn4Udve4I + K8G4I4OrRBhLPyxWOrt+1SppJWGzqshvytBTv2+rsFp8nK3ni+tru1aDl8F/AAAA//8DABe/8+V4 + BgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da87c7e43face-SJC + - 984403ecfaf3a63b-SJC Connection: - keep-alive Content-Encoding: @@ -4054,14 +4047,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:30 GMT + - Wed, 24 Sep 2025 17:31:28 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=x5YSqGUwoU7.RaAIPipY8ybnHoFueabbWjAsdj0KiTs-1758668430-1.0.1.1-XmR3ufK_.Me59oJK2zRHJQObXkE6pxPO.0.PevhX3PujFWig3PLM9SrjRb7hvKQW3dVAFtm7xAAWAyUgCmq6PH_644EdFRdGNrBUq_CTM.o; - path=/; expires=Tue, 23-Sep-25 23:30:30 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=4MxZr.gdSY.fBT8VK01HSwJ.oP_cvAr__I_WKr_zbx4-1758735088-1.0.1.1-9W34zp2UIL4AO_nC_NqbE7h09G9hrqZBR.yq7yznwFmXAYutP0j4kgP4jE3fr0nS6oBHgc0M934Jf7Vtj3ZpKJnyWMC1vL1ZPCbv4UVrVmw; + path=/; expires=Wed, 24-Sep-25 18:01:28 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=si3PxGmxR.4qnh6MJHhLe9Wbv.3tob5vhdVLxL9OJeE-1758668430934-0.0.1.1-604800000; + - _cfuvid=JDMBiJVBxER838uyuDihEDpj9OZGsVRdGELVHjmlVeo-1758735088799-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -4076,13 +4069,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5103" + - "3118" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5130" + - "3136" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4092,93 +4085,98 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998547" + - "29998507" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_6b5a8b1a033e471e8ff83e08e2db29e1 + - req_fc120f678ccc4ce39ecb0cf6e2d601c5 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 3-5: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n - a passive characteristic of a model, whereas explainability\\n\\nis an active - characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, - an explanation is extra information that gives the context and a cause for one - or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n - \ Accuracy and interpretability are two attractive characteristics of DL models. - However,\\n\\nDL models are often highly accurate and less interpretable.28,30 - XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. - XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate - but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. - Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe - explanations should give insight into the underlying mechanism.\\n\\n In the - remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction - while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin - various systems these methods yield explanations that are consistent with known - and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn - this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding - our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. - According to their classification, interpretations can be categorized as global - or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. - For example, counterfactuals are\\n\\nlocal interpretations, as these can explain - only a given instance. The second classification is\\n\\nbased on the relation - between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) - or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand - is self-explanatory32 These are also referred to as white-box models to contrast - them\\n\\nwith non-interpretable black box models.28 An extrinsic method is - one that can be applied\\n\\npost-training to any model.33 Post-hoc methods - found in the literature focus on interpreting\\n\\nmodels through 1) training - data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 - or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation - and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 - Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused - the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe - may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof - physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan - be evaluated by considering its agreement with physical observations, which - they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests - that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence - strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. - In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases - and subjectivity can be used to measure the correctness.40 Other similar metrics - of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be - found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced - CIME an interactive web-based tool that allows the\\n\\nusers to inspect model - explanations. The aim of this study is to bridge the gap between\\n\\nanalysis - of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n - \ 4evaluation metric is necessary in XAI. - We suggest the following attributes can be used to\\n\\nevaluate explanations. - However, the relative importance of each attribute may depend on\\n\\nthe application - - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability - of a static physics based model. Therefore, one can select relative importance\\n\\nof - each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it - clear how we could change the input features to modify the output?\\n\\n\\n - \ \u2022 Complete. Does the explanation completely account for the prediction? - Did features\\n\\n not included in the explanation really contribute zero - effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation - agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n - \ \u2022 Domain Applicable. Does the explanation use language and concepts - of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the - explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the - explanation change significantly with small changes to the model or\\n\\n instance - being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n - \ We present an example evaluation of the SHAP explanation method based on the - above\\n\\nattributes.44 Shapley values were proposed as a local explanation - method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 25-28: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n2021, + 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. + D. Model agnostic generation of counter-\\n\\n factual explanations for + molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. + A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n + \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; + Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature + Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; + Gregoire, J. M. Computational sustainability\\n\\n meets materials science. + Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with + artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, + 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, + N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; + Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n + \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities + and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, + 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, + R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and + applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) + Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility + better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) + Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. + Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, + K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter + programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n + \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, + J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial + Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n + \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, + S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n + \ Unmasking Clever Hans predictors and assessing what machines really learn. + Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. + J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n + \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) + Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n + \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) + ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n + \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for + an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) + Miller, T. Explanation in artificial intelligence: Insights from the social + sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n + \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, + K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications + in interpretable machine learning. Proceedings of the National\\n\\n Academy + of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) + Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) + Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; + Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n + \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) + Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n + \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF + Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) + Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for + Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, + Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) + Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n + \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges + in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint + arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, + K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial + Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, + challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, + P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n + \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) + Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D + Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd + ACM SIGKDD international\\n\\n\\n 27 conference + on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4187,7 +4185,7 @@ interactions: connection: - keep-alive content-length: - - "6068" + - "6282" content-type: - application/json host: @@ -4219,27 +4217,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFVNb+NGDL37VxBzSgA7sLP59C3YLtAsih4KFFigXhjUDGWxGXHUIeXE - WOS/FyM5jt1mL4JmHh/5SIrUjwmA4+CW4HyD5tsuzj5/vfm1yfxHe/9nr9X1Z8lzzb9z62+/BnLT - wkjV3+TtjXXhU9tFMk4ywj4TGhWvi9vru5ubu6vL6wFoU6BYaJvOZldpdjm/vJotFrPL+Z7YJPak - bgl/TQAAfgzPIlECvbglzKdvNy2p4obc8mAE4HKK5cahKquhmJu+gz6JkQyqf6wEYOW0b1vMu5Vb - wsp9eekismAVCR6ycc2eMcKjGMXIGxJPcPbt4fEcMtWUFSxBS9akoIASwMg3wv/0pGANGrT4RGAN - QSDPyklmLT6xbKDLyZMqKaQaHh5hKIpOocNs7PuIOe4gEHUQCbMUytkvv50f7FiMcpfJBqkldC+B - csk3lKsL+PbwCCzbFLekJdyWQ/GCIXBpEkZgqVNusZxKHj5i5no3yB3K9GKDY4990VlRwxKgyxTY - F45ewKMBlwyMBLi0vyUxCoAKCPacZmrUveW6hJqz2hQCbSmmblAjgN73GY2g6g0kyew0tSHh6Vjc - hmTQLxug0igZtA9NYNNTaSX9t854FKio1CyzKHs4q3qOVi7SkO4Q5BxSBno52GDXRaYAXVKbWUYu - XTi/gC9bjD1aUXFSYzTLXPVGCpGfCHCQghVHtt0U9vNBQqrllDN5Gw8htcgCQ0B/INQcaHzLqep1 - b1sKob33LCN732g9/XJ6pbovHYaaKYa9It9Qyx5j6UhH2XZHJStFxMgbOS3tM1sDT5KeBbpmpwO7 - Jd+gsLZ6sXLTcYoyRdqieFqrT5nGaVrMD3ivFNbc4oa0YDVGpZW8Ho9mprpXLJtB+hiPABRJNuop - S+H7Hnk9rIGYNl1Olf6H6moW1madCTVJGXm11LkBfZ0AfB/WTX+yQVyXU9vZ2tITDeEWi7tPo0P3 - vuGO4Jv7PWrJMB4Bn64vpx+4XAcy5KhHO8t59A2F45hv3JJ9Hzi9Y/PJUe7/l/SR+zF/ls2Rl5+6 - fwe8p84orN+/kY/MMpW/wM/MDrUeBDulvGVPa2PKpR+BauzjuKCd7tSoXdcsmzL/PG7pulvfLu6r - UNUYbtzkdfIvAAAA//8DAO57loWuBgAA + H4sIAAAAAAAAA3RU247bNhB991cM+JIsIBu248vGb0abLtwC2yBAgC3qwBiTI2m6FKlyqMTGYv+9 + IOW1vWnyIlA8nDNnrk8DAMVGrUDpGqNuWjv85fd7He6m77jmz/dUY3i4X5aHu5mflc1fqkgWfv8P + 6fhiNdK+aS1F9q6HdSCMlFgny/nt8t18fDvPQOMN2WRWtXE488PpeDobTibD6fhkWHvWJGoFfw8A + AJ7yN0l0hg5qBePi5aYhEaxIrc6PAFTwNt0oFGGJ6KIqLqD2LpLLqp+2DmCrpGsaDMetWsFWfTi0 + Ftnh3hKsQ+SSNaOFjYtkLVfkNMHbh/XmBgKVFASih4Zi7Y0AOgORdO34344E2MF6A7HGCA0+EsSa + wJBmYe+GDT6yq6ANXpMICfgScl4EYkAnLQZyMVOyixTaQDGLih7qrkEnI/iDjvDNh8fsKrGXTDa9 + 17YzSX5giggUAe0I3k7Hk/c3BXyrWdfgu2jZkcDDegPaO01tlAIiHrzzDZMU2beu0Vpy1cv/Xedc + 0p3O6xq/IzUsusvR/Lr+9HH9pmdvg68CNiP4M9YUwPk+kFSIwPsuNYycRX/iPXHw16IXN+AdaJvK + WTIFoFQjh8nwVe4/okXN17bTSbZF6FwyNVlPGbChlLdR/mUBHTiyRgulDxBIWu+EcwdsCkBjAomk + qFkkFdZyqmboJBZQIgdHckpPoKqzGH04Qp4GRqepABSouaotV3UkA/sj3HlvGnTZ6DeLh3ROsS5v + +i6qCT58fiOpgU6cOUt9SKOtKvrWDWTpa/KxE+0DpRaejE9YJ2R23GBFku5LtEJb93w9C4HKTjCN + ouusvQLQpSpln2kKv5yQ5/PcWV+1we/lO1NVsmOpd4FQvEszJtG3KqPPA4Aveb67VyOr2uCbNu6i + f6TsbrJ4P+kJ1WWlXMHL2QmNPqK9Am4X8+IHlDtDEdnK1ZJQGnVN5trnYnYOAjvD/oKNB1ex/1/S + j+j7+NlVVyw/pb8AOk0hmV0byLB+HfblWaC0dn/27JzrLFgJha+saReZQqqHoRI7229EJUeJ1OxK + dlXaMNyvxbLdzReT/XS+XJq9GjwP/gMAAP//AwAi3bZ0HwYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da87c7ecb67f4-SJC + - 984403ecfe5e6cd4-SJC Connection: - keep-alive Content-Encoding: @@ -4247,14 +4244,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:31 GMT + - Wed, 24 Sep 2025 17:31:28 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=oBLnlpITPWl2iGjRpKVfB_Xt9_0U0p._TdFlLTitRGs-1758668431-1.0.1.1-JlujvIAcjx9h0U_L6.W7eixGUf66ZVTpQAlPTYGYXX46pYe6GO3PA7kKblQfCfhEf7F_.ZwIBFhQojXicMY7M_L1Wyaa04hIj2Mg4vC4yP4; - path=/; expires=Tue, 23-Sep-25 23:30:31 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=MqLaZ7yGdDb7FY9e0wmLoL2DfUXhALOZFCO9ZaOvO3s-1758735088-1.0.1.1-ONgJhkiKLch3BM3ZanSaVW16R5n6TgH4m6vmgNIPnwIJlT0.vndoWo4usDWlb8VQciscXqN0zL91IGDYByyv7OhQY3Dc2FmqDnyFjBZEOmU; + path=/; expires=Wed, 24-Sep-25 18:01:28 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=.4PWfCC7TRPRVyWnJpgjuoW5RZLmLUk3kIRoM0IeWkA-1758668431791-0.0.1.1-604800000; + - _cfuvid=AtkRFmG4lXutzROxqi16YRyFBvCw5i2HazP.vQeGe80-1758735088864-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -4269,13 +4266,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "6030" + - "2883" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "6056" + - "3184" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4285,28 +4282,31 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998551" + - "29998510" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_0ada496ede2e47efb4ac636e09d3d763 + - req_841f091b67224a7fbb935f7e8d6d74d4 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 22-25: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nut + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 22-25: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nut to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain molecular property prediction models because users are more\\n\\nlikely to trust explained predictions, and explanations can help assess @@ -4373,7 +4373,7 @@ interactions: (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-ac\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4382,7 +4382,7 @@ interactions: connection: - keep-alive content-length: - - "6096" + - "6269" content-type: - application/json host: @@ -4414,26 +4414,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNbyM3DL37VxA6tcDYsA3Hm/Ut3RZt0qKHomhT1AuDljgzajSSQHEc - e4P890Iaf6XNXuYwT3x8JB/5MgJQ1qgVKN2i6C668aeH5U/u4YEWv3yqf/t9/6P7Nf3x51+PN3fy - +N33qsoRYfsPaTlFTXTooiOxwQ+wZkKhzDr7cHO7XN4u5h8L0AVDLoc1UcaLMJ5P54vxbDaeT4+B - bbCaklrB3yMAgJfyzRK9ob1awbQ6/ekoJWxIrc6PABQHl/8oTMkmQS+quoA6eCFfVL+sPcBapb7r - kA9rtYK1ery7ryAw/LCPDq3HrSO4Y7G11RYd3Hsh52xDXlMFNgFCR9IGA30iAxKAhkCITMbq3I0E - HRqC7QG64Ej3Dhkih0gsh6tnUNqSJnAvgLZLmcz63MREmZ1BuE8C6A2QTz0TSItyDANkAkfI3voG - dGAmLaBb6qxGB5Gt1zY6ShN4vLsHjR62BBijs2QAayGGrUP9NN6G/cCZiSRA73XYEUMS7rX0TOOz - eCaHpcLWxgTPVtrQC2QfcOhsygSodc+oD7mn1gtxZBLcWmflMIGf6QC6RefIN5TA+iLOeu16Q9CG - 56GdfshSamSKTIm8kIFvaNJMKhDaS3XV3LPS9G0FhmpbenLBTXGFppxPhz6rqlFLjw4a8sQlWwVo - MEqOfKOhDpmgronJC2BvbPZCOmkpHU+SKjBBS+AsIccHLnM5zSNF1FS4mNDZL8VnR4WUqjJkQzty - Iea4dEhCHYrVUDN29Bz4qRiEduh6lGwFOk3dU0qFoExXH5sNoX5TyGStqsH/TI52uR+bpAPTsAez - 6RnPzt7YDhtKGavRJVr71+ulYqr7hHmnfe/cFYDeBxkS5nX+fERezwvsQhM5bNN/QlUeWmo32f3B - 52VNEqIq6OsI4HM5FP2b3VfZdVE2Ep6opJst5vOBUF1u0zW8PKISBN0VcLO8rd6h3BgStC5dXRul - Ubdkrkmnt+cisjvCBZuOrmr/v6T36If6rW+uWL5KfwG0pihkNpfr8t4zpny/v/bs3OsiWCXindW0 - EUuc52Goxt4Np1UN/tzU1jd5w+1wX+u4+TD7uDXbGs1SjV5H/wIAAP//AwDUy359aAYAAA== + H4sIAAAAAAAAA3RUTW8bNxC961cMeEqAlSA5VqXoZgRFk9ZJUbSHBlEgjMjZXdZckp7hKlYN//eC + XFnats5FgPa9eZx58/E4AVDWqA0o3WLSXXTTdz9/0v3v9zc/tbcfF+8e3i++/fbp18+3H+/fr25b + VeWIsP+LdHqOmunQRUfJBj/AmgkTZdXFarlevVnO1+sCdMGQy2FNTNPrML2aX11PF4vp1fwU2Aar + SdQGvkwAAB7Lb07RG3pQG5hXz186EsGG1OZMAlAcXP6iUMRKQp9UdQF18Il8yfpx6wG2SvquQz5u + 1Qa26s+bD/Dqx4fo0HrcO4IbTra22qKDDz6Rc7Yhr+k1WA+pJSh6DwlCDV1wpHuHDJFDJE5HiEzG + 6uwJlKoF0HYCKWTKwRoCym95zBSBOvDAGwUWNvkWvSZI3EuqgLz0TOX9ge4I2QvowEw6gW6psxqz + jPXaRkdSAXoDNWrrbMJEYEhbscFPO7yzvsn1mNCh9QLO3hG0hC61GplKJPmD5eA78gkdiLbZhRn8 + QkfQLTpHviEB67XrTRavrc+qo/KAKTJJFih/X9GsmVWQ3atG3kniXqeeSV5XYCgRd4PUhWJKWzUV + v3TofSKuUaceXa7TGCaRHMLU9A5T4CMw3feWKecvVUkrcKacrZKIJ0UmdPbv0v3Tm8/2GTqQCzHH + yVESdZishpqxo2+B74ZWHdD12eBx6afGeBIpQhijsxr3uRnHGfzRkhCgRNJJIFuu2aaSFgrkmUyM + XuxpSjh0kJ1E1u0wS6hP7EG38GZbVQ0TzuTokA3biQ5MedLfnqBeyOxshw1J/lyjE9r6p/HGMNW9 + YF5Y3zs3AtD7MPSy7OrXE/J03k4XmshhL/8JVXk2pN0xoQSfN1FSiKqgTxOAr+UK9P9abBU5dDHt + Urij8tzierkeBNXl8IzgN4sTmkJCNwKW67fVC5I7Qwmtk9EpURp1S2b85nx9LgJ7Y8MFm09Gtf8/ + pZfkh/qtb0Yq35W/AFpTTGR2lxPxEo0pH+fv0c5el4SVEB+spl2yxLkfhmrs3XA31TDpu9r6hjgf + lHI867hb/rDYXy1XK7NXk6fJPwAAAP//AwCGuzDFRQYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da891adaa67e5-SJC + - 984403fceaab152b-SJC Connection: - keep-alive Content-Encoding: @@ -4441,7 +4441,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:32 GMT + - Wed, 24 Sep 2025 17:31:30 GMT Server: - cloudflare Strict-Transport-Security: @@ -4457,13 +4457,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3085" + - "2262" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3099" + - "2301" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4473,28 +4473,31 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998549" + - "29998512" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_7e22ccf50b444b9f956ba3eca08994c1 + - req_01ddbccf2a3c490f8eb660cc25fba702 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 12-14: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnterfactual + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 12-14: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnterfactual approach, contrastive approach employ a dual\\n\\noptimization method, which works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. Contrastive explanations can interpret the model by identifying contribution @@ -4558,7 +4561,7 @@ interactions: al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness via exposure to adversarial examples. While there are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4567,7 +4570,7 @@ interactions: connection: - keep-alive content-length: - - "6053" + - "6226" content-type: - application/json host: @@ -4599,27 +4602,27 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3RU224bNxB911cM+JIWkATLsR3bb67gtHaRBCiKwEAVCCNydndiLrnlzMoWDP97 - Qa4syanzssDyzOWcuT2NAAw7cwnGNqi27fxkfnv2R/iC+tVVN/P56dfvmz//ur2+m93+Vl3XZpw9 - 4uo7WX3xmtrYdp6UYxhgmwiVctTZh9Pzs7Pzk/ezArTRkc9udaeTkzg5Pjo+mcxmk+OjrWMT2ZKY - S/hnBADwVL6ZYnD0aC7haPzy0pII1mQud0YAJkWfXwyKsCgGNeM9aGNQCoX10yIALIz0bYtpszCX - sDDXj51HDrjyBFdJuWLL6OEmKHnPNQVL8Mvd1c2vkKiiJKARWtImOgEMDpRsE/jfngS0QYUW7wm0 - IegSOba5OoOhI8tS/mIFVzdQiiLAQSl1ibQwyIZ9cJSyDFeeNELTtxhkCvPYZ+sKrfbogTL1gNsU - iQDhnjaAXZci2gY4wN3VzRi6FNfsONSAhU8OOwYOOYeliac1+fzLdaMCqw2wo6BcbbKLbTDUlHkC - h65XqAi1Ty9yH2LvHaBXSkV1UfVODtRP4WNMQI+YhyWnhTZ6sr3HBLahlkXTZgz2lTYBiwGkr2sS - zUFzX7ZKcwN2EURTb7d8IqBtmNYEjoQTuay8o6RMMoW/943yfE/w6dPV/LoUfP5x8vvnz9tBoFRK - 2Qs5qGKCmgIl1FKK1xTH8MDabOOsKFsU9ROsQxRlW4Jj13m2L51cRW0gUZ1I8iwUC+vz3L7oA0W5 - l2nuHKCXCHl+E4rKkA7dmpJgykOqCTlwqMfw0LBtoIq2FxKIYWACKa560UAikFCb0iMMhzPHnnUz - XZjxsBqJPK3zVCzFxkTDilzs4FyVJbdYk2SoQi+0CM+H65ao6gXztofe+wMAQ4g6tDAv+rct8rxb - bR/rLsWV/OBqKg4szTIRSgx5jUVjZwr6PAL4Vk5I/+oqmC7FttOlxnsq6Waz8/MhoNlfrQP4bLZF - NSr6A+D9ycX4jZBLR4rs5eAOGYu2IXeY8/R4JwJ7x3GPHY0OtP+f0lvhB/0c6oMoPw2/B6ylTskt - 9wv5llmifNl/ZrardSFshNKaLS2VKeV+OKqw98PRNbIRpXZZcajzjPFweatu+WF2sXKrCt2ZGT2P - /gMAAP//AwDSyMp0ggYAAA== + H4sIAAAAAAAAAwAAAP//dFRNbxs3EL3rVwx4aQusBEu2qtg3w0gKt4mDFjkEqAJhRM4uWXPJLWeo + WDD83wtSsrVpnMsCyzfzZt58PU4AlDPqCpS2KLof/PTm9zu9+2u5e/+nPPhPepn9+8V9e3v+x82i + +6ia4hG3/5CWZ6+Zjv3gSVwMB1gnQqHCOl8t36zOl2dvLivQR0O+uHWDTC/idHG2uJjO59PF2dHR + RqeJ1RX8PQEAeKzfkmIw9KCu4Kx5fumJGTtSVy9GACpFX14UMjsWDKKaE6hjEAo168d1AFgrzn2P + ab9WV7BWbx8Gjy7g1hNcJ3Gt0w493AYh711HQRP8/Pn69hdI1FJikAg9iY2GAYMBIW2D+zcTg1gU + 6PGeQCzBkMg4XarDEFvoUVsXCDxhCi50UIvC4IJQGhJJzaAw5mAoFRmmPkkEm3sMPIObmIt1i1oy + eqCSesAaogGEe9rD5+tbwGFIEbVtYEhx5wwB1jwKXQMuFG5NU0878uXXdVYYtntwhoK4dl/Tc8H1 + 6EFbDB1V2S4MWaAllJye5aIXSlVv1fMTj3TP4F1MQA9YxqQEhj560tljAm2pdyxp34D+RhWDxgCc + u45YCmnpyEFjLf0LA0vK+phJhFJd2hEYYpfIFOUDJXHEM/h0apF39wQfPlzfvK2lvnk3/e3u7jgC + lKCjQAmFvsupjWkUurh2CQc73SKTAYOCDSTigbS4Hfl9A2Jj7mwpn/dUK1hjU+CcSn1rATR6YMGt + 8072kKhHF2aHHnqOUEY3IQvDVycW0OwoMaYyn5LQlTFq4Kt12kIbdWZiiOHQCEhxm1kCMUNCsbVJ + GMbjVoPO1qo5bEUiT7syGBvWMVHZjssjlJnMxvXYEZfnFj3TOjyNtyxRmxnLkofs/QjAEKIc+lf2 + +8sReXrZaB+7IcUt/89VtS44tptEyDGU7WWJg6ro0wTgS70c+ZtjoIYU+0E2Eu+phpsvFhcHQnU6 + ViN4uTyiEgX9CDhfXTavUG4MCTrPo/OjNGpLZuQ7Xy5eRGA2Lp6ws8lI+/cpvUZ/0O9CN2L5If0J + 0JoGIbM5beNrZonKQf+R2Uuta8KKKe2cpo04SqUfhlrM/nBrFe9ZqN+0LnRlvtzh4LbDZvnrfLtY + rlZmqyZPk/8AAAD//wMA6HdyrXkGAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da89da8d3face-SJC + - 98440401adc8a63b-SJC Connection: - keep-alive Content-Encoding: @@ -4627,7 +4630,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:34 GMT + - Wed, 24 Sep 2025 17:31:31 GMT Server: - cloudflare Strict-Transport-Security: @@ -4643,13 +4646,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2941" + - "2182" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2955" + - "2209" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4659,28 +4662,31 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998553" + - "29998516" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_98e19133e53c42a593e5ce106288c052 + - req_dad6a1bd4b0b40bc80cb6e2f088130dc status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 8-9: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nrepresented + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 8-9: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nrepresented with equation 2.\\n\\n \u2206\u02C6f(\u20D7x) \u2248\u2202\u02C6f(\u20D7x) (2)\\n \u2206xi \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) @@ -4747,7 +4753,7 @@ interactions: subgraph importance for small molecule activity prediction. On the\\n\\nother hand, similarity maps compare model predictions for two or more molecules based on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights - or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4756,7 +4762,7 @@ interactions: connection: - keep-alive content-length: - - "6108" + - "6281" content-type: - application/json host: @@ -4788,27 +4794,27 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTbbhs3EH3XVwz4ZAMrwZJdOfGbkAaNDTcpaqNwUgXCiDu7OxGXZDmk - Y9Xwvxfk2pLaukBfFgueuZ0zl8cRgOJaXYDSHUbdezN+dzX/YD/9+v50dvvl8+nV9093365urm+/ - 2OvfPhtVZQ+3/kY6vnhNtOu9ocjODrAOhJFy1On5D2/m8zdnp9MC9K4mk91aH8dnbjw7mZ2Np9Px - 7OTZsXOsSdQF/D4CAHgs31yirelBXcBJ9fLSkwi2pC52RgAqOJNfFIqwRLRRVXtQOxvJlqoflxZg - qST1PYbtUl3AUr1/8AbZ4toQLELkhjWjgUsbyRhuyWqCo7vF5TEEaigIRAc9xc7VAmhriKQ7y38k - EkhCdYFxQxA7gpo0Czs77nHDtgUfnCYREnANLC6h6CIVeAyRdTIYzBYGVR/AWRIwvMlhyIMhDDYH - Ofrx+rhkbgP6DiylgAYsxe8ubASOfvr4UY4rYBsp+ECxMMv2ydYUsjx1eYoOutSjlQncLS4BvQ8O - dUcCbLVJNeUENZON4zVmZi+sj2jSToYEbcgN3xlKVX7fLX4+rgZyY2ytk8h6510Y3XxY/AJHQ1hn - 4aZDb2gL92gS5eJzufcsCQ3/iXnADmWWpDtAAUHDZPW2WAv3bDBw3EKPXiZw25HQvlPcZ8IYY+B1 - ijRUBz5QzTonKH1l61OEhjCmQFIB12QjN1vg3ruQBwskrYvuWSXIUlfgAtAwRNA7Q6WPudWeQtwe - phiEZgEdUhmyJrtaSSH3NQa04jFkShXEkCQOQiTBNZvMjC0MnTKsiyxSAYmnHMwUuGEyLyLrjnqW - GAaB9qUV6mzbyVJVw0IEMnSPVtNKtAs0LMb0ZIfnwV5xjy1Jxho0Qkv7dLhlgZokmJfcJmMOALTW - xaHYvN9fn5Gn3UYb1/rg1vIPV9WwZelWgVCczdsr0XlV0KcRwNdyOdLfjoHywfU+rqLbUEk3PT2Z - DQHV/lgdwPPzZzS6iOYAOJu/rV4JuaopIhs5OD9K56Wp9777W4WpZncAjA6I/7ue12IP5Nm2/yf8 - HtCafKR6tZ+918wC5Wv+X2Y7oUvBSijcs6ZVZAq5GTU1mMxwaJVsJVK/ati2+ebwcG0bvzqfvl3X - 6wbruRo9jf4CAAD//wMAzxcjl3YGAAA= + H4sIAAAAAAAAAwAAAP//dFRdb9tWDH33ryDuUwvIhp3Ec+K3oOi6FmswIMOwDxcGdUVJXO5XL6+8 + KEH++3AlJ1a39MWAdchzD3lIPs4AFFdqC0q3mLQNZv7u040++J8fbg+frpqb976Vh83Xuz//2Kzo + /EdV5Axf/k06PWcttLfBUGLvRlhHwkSZdbVZX27O18vLqwGwviKT05qQ5hd+frY8u5ivVvOz5TGx + 9axJ1Bb+mgEAPA6/WaKr6F5tYVk8f7Ekgg2p7UsQgIre5C8KRVgSuqSKE6i9S+QG1Y87B7BT0lmL + sd+pLezU+/tgkB2WhuA6Jq5ZMxr46BIZww05TfDm9+uPbyFSTVEgebCUWl8JoKsgkW4df+1IoBOq + MswuUQyR0hDQuYpiVlVBaglCpIp1bpqAr8GibtkRGMLo2DUw9EoKCBgT685gND2UBvXdvPT3R3gB + HyJWTC7NS8yvHhUVIJ1uAWXQ0MRsBzTH0FFv/vfu+nMBGAm0t9Y704/Sax+BxnZkJVOl7KAiCieZ + R6rQgqMuogFH6R8f7wTefLi5kbcL+JyVzrFxXhJrwBCiR92SgOE7gtufrn8pYFTvHdy2GAz1cEDT + US4/+gNXBDVh6iIBphS57EY1ZT/S3bPFlNXkxmafn0NyZwl1C+xCl55JFvAbS4eGH3AIOllXADtt + uipzCRomp/uhRGHLBiOnHiwGGbuGRjyQDcb3o+HHpoH1hgbLvuld2UPLTWu4aQexzyWxDT4mzAPm + Y7YiYMy4bsmyRgM1uyYPErskC/i1JaHT6LEdXnbtQPAycliyyWqzYd4iu2O7B1JJcSxrKtQHiqmf + KF7sVDEuSiRDh8y/F+0jjQtz9QLnodmzxYYkQzUaoZ17mi5fpLoTzLvvOmMmADrn02DDsPZfjsjT + y6Ib34ToS/lPqqrZsbT7SCje5aWW5IMa0KcZwJfhoHTf3AgVorch7ZO/o+G51fn55UioTjdsAq/X + RzT5hGYCXFydF69Q7itKyEYmV0npPOvVJPfs8nTFsKvYn7DlbFL7/yW9Rj/Wz66ZsHyX/gRoTSFR + tT+5/VpYpHznvxf20utBsBKKB9a0T0wx+1FRjZ0ZT7CSXhLZ/WSSc0gd9usfVuXZerOpSjV7mv0L + AAD//wMAjqO8oZAGAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da8a32b0d67f4-SJC + - 984404029efe6cd4-SJC Connection: - keep-alive Content-Encoding: @@ -4816,7 +4822,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:35 GMT + - Wed, 24 Sep 2025 17:31:31 GMT Server: - cloudflare Strict-Transport-Security: @@ -4832,13 +4838,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3406" + - "2403" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3429" + - "2447" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4848,27 +4854,30 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998537" + - "29998500" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 2ms + - 3ms x-request-id: - - req_fef0fad1d7bd4077b49141405d2101e4 + - req_5b5210d5224c4030a1df812bd9aa1ea7 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from Wellawatte2023 pages 14-16: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nsame optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness @@ -4934,7 +4943,7 @@ interactions: is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + What is XAI?\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4943,7 +4952,7 @@ interactions: connection: - keep-alive content-length: - - "50812" + - "50985" content-type: - application/json host: @@ -4975,26 +4984,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3RUwXIbNwy96yswPK88li3JiW9Kmk7VadpjM60yEpfE7iLikhsCdK16/O8dchV5 - 2zoXHvCAhweAwNMMQJFV96BMp8X0g5u//3n9U7/95Y8ffms3v/+98UjHryd+51end7e/qipHhPoL - GvkWdWVCPzgUCn6ETUQtmFkXd6s36/Wb5e11Afpg0eWwdpD5Msxvrm+W88VifnN9DuwCGWR1D3/O - AACeypsleouP6h4KTbH0yKxbVPcXJwAVg8sWpZmJRXtR1Qtoghf0RfXhcPjCwe/8084D7BSnvtfx - tFP3sFOfNtsKQoQPj4PT5HXtEDZRqCFD2sHWCzpHLXqDFURsMDJIgB6lC5ZBewuCpvP0NSGDdFqg - 10cE6RAsGmIKft7rI/kWhhgMMiNDaGCzhdIgBvKCcYgoJXlmTN5izCXZYpIAXeq15yvY+sJcqnuU - zGM67IklnkqkjakFS2zCA8ZTBZ82WyCGxGgzzSUV1E6b47wOj2cVFSRfgoAlJiMp4nyIYcAoJ4jo - dB44dzRwVRJlLDCCNhkoMvtgc9tGz9Kk4NAkh3wFP4YI+Kjzz6nAhJR1NNpI0g4wt96fw4z2wKlt - kQVMp32LUyo9kVfs2nSED7nVTBFHWRiFkCvgZDrQDLULwc7rqMlDrWMkjDBg7LGkvCo9+jZPR0eE - jx837z+M7UQ2kQYp6icqhxgeyCKQZ2o7KTMM0IW/JkIb1KNM8o1L+QPBENFSaVjuItn8KciDaD6e - U3NwqSZHcpo4TyaLTK2/2qlq/MoRHT5ob3DPJkTMX3pxfcbyzPfU6xY52yUm3PnnnT8cDtNFidgk - 1nlPfXJuAmjvg4z15hX9fEaeL0vpQjvEUPN/QlVDnrjbR9QcfF5AljCogj7PAD6X5U//2mc1xNAP - spdwxJJusV4tR0L1cm8m8HJ1RiWIdhPg7u3b6hXKvUXR5HhyQZTRpkM7iV3dri9F6GQpvGDXs0nt - /5f0Gv1YP/l2wvJd+hfAGBwE7f5l/K+5Rcw3+Xtul14XwYoxPpDBvRDGPA+LjU5uPJeKTyzY7xvy - bT4NNN7MZtiv1ov6ZnV3Z2s1e579AwAA//8DABGc8bM8BgAA + H4sIAAAAAAAAA3RU224bNxB911cM+BQDkiH5Hr0ZcQqoiFsURVEXVSBxydHuRFyS5swKUg3/e0FK + ltZt8rLAzpnrOZx5GQAosmoKyjRaTBvd6NPPv5ju4Ul2z//4RL//uZ09jf1vLOaPX//6qIY5IlTf + 0Mhb1LkJbXQoFPweNgm1YM46ub2+u728Ht/dFaANFl0Oq6OMrsLoYnxxNZpMRhfjQ2ATyCCrKfw9 + AAB4Kd/core4VVMYD98sLTLrGtX06ASgUnDZojQzsWgvangCTfCCvnS9XC6/cfBz/zL3AHPFXdvq + tJurKczV5210mryuHMJ9ElqRIe1g5gWdoxq9QfjwdD87g4QrTAwSoEVpgmXQ3oKgaTw9d8ggjRZo + 9RpBGgSLhpiCH7V6Tb6GmIJBZmQIK2i1acgjONTJZ/TD45ezks8ixp754csZFB4ZyAummFBKr9m3 + 8xZTntwWkwRoulZ7PoeZLz0UEraSK5oGW2JJuyE83c+AGDpGm2OOeaFy2qxHVdi+lcxFTPAejQBm + orzOuhcSWFJnpEs4iilETLKDhG6PNxT5HH4KCXCr82sZggldrrPSRjrt3mUbAnemAZ0ZDIxQo8eU + nxRUuzLG4+P9p88H1rNzXSMLaJOjy+RtsFm4U3NtcGg6h+Unc42brAhTQguHfgl5CI7WCJULwY6q + pMlDpVMiTBAxtVgSnsMDskkUpczTYyGmsCGL8NxpLyRaaINAnqlupOh1bESnd1U12azuQZPs2tMy + I5n4jXZkteTfIgfEhJbK0Hw+V8P9Y07ocKO9wQWbkDA/6sn4gGWFF9TqGjnbJXU4969zv1wu+6uS + cNWxzpvqO+d6gPY+yH7WvKRfD8jrcS1dqGMKFf8nVK3IEzeLhJqDzyvIEqIq6OsA4GtZ/+7dRquY + QhtlIWGNpdzk5uNh/9Xp4vTgq6sDKkG06wF3l2/Iu5QLi6LJce+GKKNNg7YXe315cxxCd5bCCRsP + erP/v6Xvpd/PT77uZflh+hNgDEZBuzjp/T23hPkq/8jtyHVpWDGmDRlcCGHKelhc6c7tD6biHQu2 + ixX5Oh8C2l/NVVxc30yqi+vbW1upwevgXwAAAP//AwDY/DJMPgYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da895ff8d7542-SJC + - 984403fd6f18fb30-SJC Connection: - keep-alive Content-Encoding: @@ -5002,7 +5011,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:35 GMT + - Wed, 24 Sep 2025 17:31:33 GMT Server: - cloudflare Strict-Transport-Security: @@ -5018,13 +5027,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5635" + - "4765" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5668" + - "4801" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-input-images: @@ -5038,7 +5047,7 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29997791" + - "29997753" x-ratelimit-reset-input-images: - 0s x-ratelimit-reset-requests: @@ -5046,22 +5055,25 @@ interactions: x-ratelimit-reset-tokens: - 4ms x-request-id: - - req_b798e54b6f2a458191de8c92bf52001b + - req_fc6790685c4f4ea4a1c26d0ee340d91a status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 28-30: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 28-30: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international\\n\\n\\n 27 conference @@ -5129,7 +5141,7 @@ interactions: M.; Grebner, C. Interpretation of structure\u2013\\n\\n activity relationships in real-world drug design data sets using explainable artificial\\n\\n intelligence. Journal of Chemical Information and Modeling 2022, 62,\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + What is XAI?\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -5138,7 +5150,7 @@ interactions: connection: - keep-alive content-length: - - "6085" + - "6258" content-type: - application/json host: @@ -5170,26 +5182,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNayNHEL3rVxR92oWRsBRb3vVNhICVSxK8EEO0iFJ3zUyt+mPS1SPb - GP/3pWZkS9k4kMvA9Kt69erzeQJg2JkbMLbFYkPnpz//urxN9G2/K3/Sl4ddfrj/o7+7/e3eXdRh - aSr1SLtvZMur18ym0HkqnOII20xYSFnn11eflstPlz8tBiAkR17dmq5ML9N0cbG4nM7n08XF0bFN - bEnMDfw1AQB4Hr4qMTp6NDdwUb2+BBLBhszNmxGAycnri0ERloKxmOoE2hQLxUH18yYCbIz0IWB+ - 2pgb2JgvLQE9WspdgS6nAzsSQPAsBVINmWrKFC0JZPKaHpQEvzx2HjnizhOscuGaLaOHdSzkPTdq - Dx/uV+uPFTy0bFtg5ayZvIM62V7IQYoQcM+xgdUahgoJhJQJOBbKXaYy0GN0UFriDF0mx1bLLdBH - R1lTdYNRSdD2AaPMYF2Ao/W9pvGQ8l40kNYgoxQ+aLKdx4gDTwV0QN8PP5rt/WoNHCFoIPTAARuO - TQWBSmYrUKesNtWgqs4YaAyh746Em6j5KPjKG5uBVJ6kUJAZrJxjjYbeP1XABQLFMaVApU1OwPOe - 4O529Tt8uGux8/R0dDrQWPej9o8VOLIsKr1komMNR206mplEyE2FoqiMQraN/HdPo9yzKrPn8jQD - nYSzdrfctJ6btmj5gUOXckFtbKqhZIzSoVpqFj9QVa9NA9ui9xQbEi0rjVOjYnYe7X66S4+vnecI - B8ycegGXAnIUkN62gAIBC2VGLyCWVVsFtqXAUvIxlMt9c6z/bGOqccozeTqo4K3YlGmc9s9vsM7g - VhtMolCNXmgTX843J1PdC+rixt77MwBjTGXsgu7s1yPy8ralPjVdTjv5wdXUHFnabSaUFHUjpaTO - DOjLBODrcA36fyy46XIKXdmWtKch3Hy5mI+E5nSAzuCryyNaUkF/BlxfX1XvUG4dFWQvZyfFWLQt - uZPv6f5g7zidAZOzxP+t5z3uMXmOzf+hPwHWUlfIbU9X4D2zTHqh/8vsrdCDYCOUD2xpW5iyNsNR - jb0fj6cZN3Zbc2x0uHm8oHW3vZ5/3rldjW5pJi+T7wAAAP//AwBZuZduSgYAAA== + H4sIAAAAAAAAAwAAAP//dFTRbhs3EHzXVyz4EhmQBEu2rEQvhWEXrVLEaIugDVAFAo/cu9uYx71y + ScWK4X/pz+S/At4pktI4Lwfcze5wZm+HjwMARVYtQZlaR9O0bnzz+s58vH/7aXf74G9Wf/x1u725 + uAu/+Lu7f3dejXIHFx/QxK9dE8NN6zAS72ETUEfMrNPF/OXiYn7+6rwDGrboclvVxvElj2fns8vx + dDqene8bayaDopbwzwAA4LF7Zone4oNaQkfTfWlQRFeolociABXY5S9Ki5BE7aMaHUHDPqLvVD+u + PcBaSWoaHXZrtYS1elsj4IPB0EZoA2/JokDAEgN6gwKRYasDcRL4yOFewJKYJEK+gp8fWqfJ68Ih + XIdIJRnSDlY+onNUZQIYvrtenU1gFaGmqnZU1VGgwVizZccVoUDJAbCnyqxtQEsmj1WASzAu2yoJ + g8AQJ9VkBC/+rncgNSdnYQUxJImw4/TTCyh28CcVSIEBI2g3ORtBHkDQEmmL/TFe9+TD2zoF7W2t + w7Faewu41S51RVnAu+sVkIcmq9IOqNFVljl8Tf5rW+dPO2Fo0PfkZdAN9hPL/iwKVZ290wN81bHL + TiI2AsM3XAt6OqppMAYyPUWuHP7KZdlo/63emiRy6NS1GKRFk80KsAfyEUMbMOqCHMVd50SbmjyC + Qx06ScM37PxxCBO4tpayDe3cbgQUgbxxKW9G74g9lKhjCthPl4q0H+nn/2JITYHuQ6fsN/bs0d/z + WffaBQECVsnpQJ/6EWdv38kc/u5SUxwUrdWo392ADrfaG9yI4YD9Dr86wEnQbvIfQslQqZ3g2j+d + 5iFgmUTnOPrk3AmgvefYr0ZO4vs98nTInuOqDVzI/1pVSZ6k3gTUwj7nTCK3qkOfBgDvu4ynb2Kr + 2sBNGzeR77E7bno1X/SE6nitnMKXezRy1O4EeDmbjp6h3FiMmpycXBTKaFOjPemdX1wdTOhkiY/Y + +eDE+/eSnqPv/ZOvTlh+SH8EjME2ot0cY/9cWcB89f6o7DDrTrASDFsyuImEIf8Pi6VOrr8VVR+2 + TUm+yitH/dVYtpv51bSYzRcLW6jB0+ALAAAA//8DAPvQfr4jBgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da8a61d9867e5-SJC + - 9844040d2a86152b-SJC Connection: - keep-alive Content-Encoding: @@ -5197,7 +5209,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:36 GMT + - Wed, 24 Sep 2025 17:31:33 GMT Server: - cloudflare Strict-Transport-Security: @@ -5213,13 +5225,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3584" + - "2628" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3611" + - "2652" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -5229,27 +5241,30 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998550" + - "29998513" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_10f4e4f4e3eb4f43be4f2b12adff443f + - req_d85f4ba019eb4a948c6112d1ae33b8ed status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from Wellawatte2023 pages 16-20: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nssion challenge and is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented @@ -5316,7 +5331,7 @@ interactions: \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal - is also\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + is also\\n\\n------------\\n\\nQuestion: What is XAI?\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -5325,7 +5340,7 @@ interactions: connection: - keep-alive content-length: - - "188340" + - "188513" content-type: - application/json host: @@ -5357,26 +5372,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3RUy24jRwy86yuIPiWA5EiKX/HNCBLECRAkwCIwEi0Eqoczw3W/3GTbFgz/e9Az - ljW7673MoatZU1VN8nkGYLgxV2Bsj2p9couffz//7f7TXw9/LP+83e8D3f97u7z8+597jtfX3sxr - Rdx9IquHqhMbfXKkHMMI20yoVFlXF2eX5+eXpz+eDoCPDbla1iVdnMbFerk+XaxWi/XytbCPbEnM - Ffw3AwB4Hr5VYmjoyVzBcn448SSCHZmrt0sAJkdXTwyKsCgGNfMjaGNQCoPq500A2Bgp3mPeb8wV - bMzt9Q1898tTcsgBd47gOiu3bBkd3AQl57ijYOl7yNRSFtAInrSPjQCGBpRsH/i+kID2qODxjkB7 - gpSpYVvTGS82ZFk4hoXHOw4dpBwtiZBAbOH6BoaQBDgo5ZRJBzG1sISGcrXVDEcaoS8eg5zATRj+ - NDh80spje/Js0Q2FPjqyxWEeuTl0c6h2WaAINZWJRuPQx0eQRLY6n9RJ2YnmYrVkqtJaV2oWVXui - rEwCju8IJLqyY8e6h5hBLAU9gV9jBnrC2iNzsLFUYy1aLegOiYjNnDTmxQ6roEFNwNfMMgH55OJ+ - lMoNBeV2DwdF6MD2GLpD8uwTWp3mfgIfehICDsJdrwLouAvwyNrDXYiP4ZhXyhwsJ0cyBym2B5Qh - 29paNVi03LD9YYfCFrocS6p5fGGcRClP0RrERNAcGvIxiGbU2gI19fogFgM0lPmBwBMGDl1bHGRy - YxQ9J4E2Rw8NKp5szHzs40yOHjBY2oqNmWo/r5avWH3gLXvsSOq55kKb8DKdi0xtEaxjGYpzEwBD - iDr+uU7kx1fk5W0GXexSjjv5otS0HFj6bSaUGOq8icZkBvRlBvBxmPXy2fialKNPutV4R8Pv1qvV - +UhojuvlCK9O16+oRkU3qVufXc7fodw2pMhOJgvDWLQ9NRPSn9bHBYOl4XjElrOJ968lvUc/+ufQ - TVi+SX8ErKWk1GyP7fLetUx1BX/r2lvWg2AjlB/Y0laZcn2PhlosbtyORvai5Lcth64uHB5XZJu2 - Z+er3frs4qLZmdnL7H8AAAD//wMAtdtH1SsGAAA= + H4sIAAAAAAAAA4xUwW4jNwy95ysInVrADmJnvdnNLWhTIC26py02QL2wZYkzw1hDaUUqiRHk3wvN + OLF3mwK96KDHRz0+kXw6ATDkzSUY11l1fQrTX37/5Hbd+w/8rWw/7ewff/0qdPvl+u46/fn5zkwq + I27u0OkL69TFPgVUijzCLqNVrFlnF4sPF+eLs4/zAeijx1BpbdLpuzidn83fTWez6fxsT+wiORRz + CX+fAAA8DWeVyB4fzSWcTV5uehSxLZrL1yAAk2OoN8aKkKhlNZMD6CIr8qB6vV7fSeQlPy0ZYGmk + 9L3Nu6W5hKW5fkzBEttNQLjKSg05sgFuWDEEapEdwk+3Vzc/Q8YGs4BG6FG76AUse1B0HdO3ggLa + WYXebhG0Q0gZPblq0xjo0ZFQ5Glvt8QtpBwdiqBAbODqBga3BDRblmQzsg40YsWcMmpVeAo3PCQf + qnvUSnUd9uRsGKL7GNCVYPOYjridwO3VDZBAEfRVfGGPudrloYsPIAldLfqIKmUjmovTklGAuAll + sCHlmDAroUCgLYLEUDYUSHcQM4hD1lP4LWbAR1tbZAIuliq/sU6LDS8+iMuUdIhLwbLde5QRsE8h + 7kad5JGVmh28aLGhFlW17hmD39Qn6/TY7VP43KEgEAu1nQrYQC3DA2lXX8RMPbLuDXt1j1gLVf4E + pLgOrAxG1x6rLqMoZmhzLGkso0PFHK3Gvlr0gxcDE8Oos6MEG9QHRIam8CDShuNce+vqR20y+RYF + vFU79Znukb/rpKEKH3tLDFuODwF9ixNA7iy72laai4ydU8SOik6XZjJ2fsaA95YdrsTFjHUCPu6h + 2h4r6m2LUq81F1zy85LX6/XxWGVsitg61VxCOAIsc9Sx4DrQX/fI8+sIh9imHDfyA9U0xCTdKqOV + yHVcRWMyA/p8AvB1WBXlu+k3Kcc+6UrjFofn5rPFfExoDtvpAM8W53tUo9pwxDs/W0zeSLnyqJaC + HO0b46zr0B+4h+Vki6d4BJwcFf5vPW/lHosnbv9P+gPgHCZFvzo0yFthGev6/q+wV6MHwUYw35PD + lRLm+hkeG1vCuFmN7ESxXzXEbd1JNK7XJq0W72eb+eLiwm/MyfPJPwAAAP//AwDhoKKOZwYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da8b11811face-SJC + - 984404101b45a63b-SJC Connection: - keep-alive Content-Encoding: @@ -5384,7 +5399,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:42 GMT + - Wed, 24 Sep 2025 17:31:36 GMT Server: - cloudflare Strict-Transport-Security: @@ -5400,13 +5415,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "8093" + - "4495" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "8120" + - "4538" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-input-images: @@ -5420,15 +5435,15 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29997016" + - "29996979" x-ratelimit-reset-input-images: - 0s x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 5ms + - 6ms x-request-id: - - req_9efcae9618aa4c0fbfed7bd1cbc5e810 + - req_a4695326b2d84af1ba8380be699f16a8 status: code: 200 message: OK @@ -5437,70 +5452,69 @@ interactions: '{"model": "deepseek/deepseek-r1", "messages": [{"role": "system", "content": "Answer in a direct and concise tone. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them."}, {"role": - "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-c1e4e45f: - Explainable Artificial Intelligence (XAI) is a field focused on providing interpretations + "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-f010a4a5: + Explainable Artificial Intelligence (XAI) is a field focused on providing interpretability and explanations for deep learning (DL) model predictions, addressing the ''black-box'' - nature of these models. XAI aims to enhance trust and usability by offering - insights into why a model makes specific predictions. Key concepts in XAI include - interpretability (the degree of human understandability of a model), justifications - (quantitative metrics that defend the trustworthiness of predictions), and explanations - (descriptions clarifying the reasoning behind predictions). XAI is particularly - relevant in chemistry, where understanding DL predictions can guide hypotheses - and ensure models are not learning spurious correlations.\nFrom Wellawatte et - al, XAI Review, 2023\n\npqac-d73a7782: XAI, or Explainable Artificial Intelligence, - refers to methods and techniques that make the decision-making processes of - AI models interpretable and understandable to humans. In the context of chemistry - and drug discovery, XAI is used to interpret black-box models, uncover structure-property - relationships, and propose actionable modifications to molecules. For example, - counterfactual explanations can suggest changes to molecular structures to achieve - desired properties, such as blood-brain barrier permeation. XAI methods like - MMACE and descriptor explanations provide insights into how molecular features - influence predictions, aiding in tasks like solubility prediction and drug design.\nFrom - Wellawatte et al, XAI Review, 2023\n\npqac-32f7e033: XAI (Explainable Artificial - Intelligence) refers to methods and techniques that make the predictions and - decision-making processes of AI models interpretable and understandable to humans. - In the context of chemical and molecular modeling, XAI is used to explain how - specific molecular substructures influence properties like solubility or scent. - For example, counterfactuals and descriptor-based explanations are employed - to identify structural changes that impact predictions. These insights align - with known chemical principles, such as the role of acidic/basic groups in solubility - or ester groups in scent prediction, demonstrating how XAI can derive meaningful - relationships from data.\nFrom Wellawatte et al, XAI Review, 2023\n\npqac-ec18c50c: - XAI, or Explainable Artificial Intelligence, refers to methods and techniques - used to make the predictions of AI models interpretable and understandable to - humans. In the context of molecular property prediction, XAI methods like molecular - counterfactual explanations and descriptor explanations are used to explain - black-box models. Counterfactual explanations involve generating molecular structures - with minimal changes that result in different properties, while descriptor explanations - use surrogate models to attribute chemical properties to specific molecular - features. These methods enhance trust, accessibility, and utility of AI in domains - like chemistry by providing actionable and domain-relevant insights.\nFrom Wellawatte - et al, XAI Review, 2023\n\npqac-cd676c55: XAI, or Explainable Artificial Intelligence, - is a method used to explain predictions made by molecular property prediction - models. It aims to increase user trust and ensure that models are learning correct - chemical principles. XAI can be applied after black-box modeling to uncover - structure-property relationships without compromising accuracy or interpretability. - Key challenges in XAI include how explanations are represented (e.g., text, - molecular structures), defining molecular distance in counterfactual generation, - adapting explanations for different audiences (e.g., chemists, doctors), exploring - chemical space for realizable molecules, and developing systematic frameworks - to evaluate the correctness and applicability of explanations.\nFrom Wellawatte - et al, XAI Review, 2023\n\nValid Keys: pqac-c1e4e45f, pqac-d73a7782, pqac-32f7e033, - pqac-ec18c50c, pqac-cd676c55\n\n------------\n\nQuestion: What is XAI?\n\nWrite - an answer based on the context. If the context provides insufficient information - reply \"I cannot answer.\" For each part of your answer, indicate which sources - most support it via citation keys at the end of sentences, like (pqac-0f650d59). - Only cite from the context above and only use the citation keys from the context. - ## Valid citation examples, only use comma/space delimited parentheticals: \n- - (pqac-d79ef6fa, pqac-0f650d59) \n- (pqac-d79ef6fa) \n## Invalid citation examples: - \n- (pqac-d79ef6fa and pqac-0f650d59) \n- (pqac-d79ef6fa;pqac-0f650d59) \n- - (pqac-d79ef6fa-pqac-0f650d59) \n- pqac-d79ef6fa and pqac-0f650d59 \n- Example''s - work (pqac-d79ef6fa) \n- (pages pqac-d79ef6fa) \nDo not concatenate citation - keys, just use them as is. Write in the style of a scientific article, with - concise sentences and coherent paragraphs. This answer will be used directly, - so do not add any extraneous information.\n\nAnswer (about 200 words, but can - be longer):"}], "temperature": 0.0, "n": 1, "stream": false, "max_retries": - 0}' + nature of these models. XAI aims to make DL predictions more understandable + and trustworthy by offering insights into the decision-making process. Key concepts + include interpretability (human understandability of a model), justifications + (quantitative metrics supporting trust in predictions), and explanations (descriptions + of why specific predictions are made). XAI is particularly relevant in chemistry + for uncovering structure-property relationships and ensuring models do not rely + on spurious correlations, with potential regulatory implications in areas like + toxicity prediction.\nFrom Wellawatte et al, XAI Review, 2023\n\npqac-933aa846: + Explainable Artificial Intelligence (XAI) refers to methods and techniques that + make the decision-making processes of machine learning (ML) and deep learning + (DL) models interpretable and understandable to humans. In the context of chemistry, + XAI is used to interpret black-box models and connect explanations to structure-property + relationships. For example, counterfactual explanations, such as those generated + by the MMACE method, suggest actionable modifications to molecules to achieve + desired properties, like blood-brain barrier permeation. Descriptor explanations + provide quantitative insights into molecular properties, aiding chemists in + understanding and validating model predictions.\nFrom Wellawatte et al, XAI + Review, 2023\n\npqac-9ea0ecba: XAI (Explainable Artificial Intelligence) refers + to methods and techniques used to make the predictions of black-box models interpretable + and understandable. In the context of molecular property prediction, XAI methods + like molecular counterfactual explanations and descriptor explanations are employed. + Counterfactual explanations involve minimal structural changes to a molecule + to alter its predicted properties, while descriptor explanations use surrogate + models to attribute predictions to specific molecular features. These methods + enhance trust, accessibility, and utility of AI models in chemistry by providing + actionable and domain-relevant insights. The choice of XAI method depends on + the audience and the purpose of the explanation.\nFrom Wellawatte et al, XAI + Review, 2023\n\npqac-63500d03: Explainable Artificial Intelligence (XAI) refers + to methods and techniques in AI that make the decision-making processes of models + transparent and interpretable to humans. Key works in the field include , which + outlines XAI concepts, taxonomies, and challenges, and Gunning and Aha (2019), + which discusses DARPA''s XAI program. Other notable contributions include on + classifier explanation methods and on a unified XAI framework. XAI is critical + for responsible AI, addressing issues like trust, fairness, and regulatory compliance, + as highlighted by Goodman and Flaxman (2017) and the EU''s AI regulations (2021).\nFrom + Wellawatte et al, XAI Review, 2023\n\npqac-490edcdf: Explainable Artificial + Intelligence (XAI) refers to methods and processes that clarify the internal + decision-making of models, particularly deep learning (DL) models, which are + often accurate but less interpretable. XAI involves two steps: developing an + accurate but opaque model and then adding explanations to its predictions. Explanations + can be categorized as global or local, and as intrinsic (part of the model) + or extrinsic (post-hoc). Evaluation of XAI methods includes attributes like + actionability, completeness, correctness, domain applicability, fidelity, robustness, + and sparsity. These attributes help assess the quality and utility of explanations + in various domains, including physical sciences.\nFrom Wellawatte et al, XAI + Review, 2023\n\nValid Keys: pqac-f010a4a5, pqac-933aa846, pqac-9ea0ecba, pqac-63500d03, + pqac-490edcdf\n\n------------\n\nQuestion: What is XAI?\n\nWrite an answer based + on the context. If the context provides insufficient information reply \"I cannot + answer.\" For each part of your answer, indicate which sources most support + it via citation keys at the end of sentences, like (pqac-0f650d59). Only cite + from the context above and only use the citation keys from the context. ## Valid + citation examples, only use comma/space delimited parentheticals: \n- (pqac-d79ef6fa, + pqac-0f650d59) \n- (pqac-d79ef6fa) \n## Invalid citation examples: \n- (pqac-d79ef6fa + and pqac-0f650d59) \n- (pqac-d79ef6fa;pqac-0f650d59) \n- (pqac-d79ef6fa-pqac-0f650d59) + \n- pqac-d79ef6fa and pqac-0f650d59 \n- Example''s work (pqac-d79ef6fa) \n- + (pages pqac-d79ef6fa) \nDo not concatenate citation keys, just use them as is. + Write in the style of a scientific article, with concise sentences and coherent + paragraphs. This answer will be used directly, so do not add any extraneous + information.\n\nAnswer (about 200 words, but can be longer):"}], "temperature": + 0.0, "n": 1, "stream": false, "max_retries": 0}' headers: accept: - "*/*" @@ -5509,7 +5523,7 @@ interactions: connection: - keep-alive content-length: - - "5352" + - "5310" content-type: - application/json host: @@ -5525,52 +5539,55 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//4lKAAS4AAAAA///iQjABAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA + H4sIAAAAAAAAA+JSgAEuAAAAAP//4kIwAQAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmIC + AAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIA + AAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAA + AP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA //9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD/ /0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP// QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9C YgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0Ji - AgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmIC - AAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//jFhtb9y4Ef4rA36J - bci6OIljd78UvlzaGr1c0bsUd0VdBLPUSOItRSocau1NEKB/o3+vv+QwpKRd+SW9L4Z3lyJnnpnn - eYb6rEylVqohd3p2cX75+vXlq1cvTut//tn8Zdjw379dD5fvf2i/ff/jz6pQffBbU1FQK/UdUX/t - 6oCqUJ2vyKqVqoh6Jtp8M/1zGs5Uofz6V9JRrZRuMZbad72laLxThdKBMFKlVvuzC6VbbzSxWv3r - s7K+6YNfs1q5wdpC1cYZbj8EQvZOrRRH36tCOYxmSx+e+NW4iu7U6nmhOmLGhtTqswreklopZDYc - 0UWJxrtITiL95eoajt7e9RaNw7UluArR1EYbtHDtIllrGnKajiFQTYEheugotr5iQFdBJN0683Eg - horYNI6qtAQ3BLEl6ANVRgsIeX1F2rDx7rTDjXEN9MFrYiYGX8PVNSSEGYyLFPpAMcUkDw6uoiDx - V+mr6KEdOnRcAFZVIGbZTU68UWuLenO69nc3ChzGIZBsnstxN51gzYZAygeWMDh5mnccqWM46j+i - PtVn9IpendcFpI/VxUu8uLh8cVzCdQTq+hbZfCKG2AYi0D7IH6epj7yCk5ODDIw1cXdyAkcSXkWN - rI8ebluj2zEL0OhShIFachVgDvN///kvg/WN0ccFnJz8OnAqDiY8ZcePA7poYmoKqUswmmGL1lQY - M7wT/BDDwPHWh9gaR8zHRYL15ISk+G6/ZUWsg+lzybTFYOrdhG3uN/m0pta46rC8x/dwOy4BbtyN - u3agW+oMx7BLR3bekh4shpyjcU0B0oaGAfvemtxBg9N+SwE4hkFLDU/74HsKcQeBbA63NT0X0Aym - Imh3vY8tsWFoyFFIK3KO5Fh6YCw8Vi2FVICEUw5Oo4U+GKdNb4khYGwpQGzRAfdDMH5gKfF88uM9 - 8vJFfUHPX748LuGvtJt5Ypy2Q0VwcqL9IG1Ro44DWlhCX4wdIXl6JuiMMx3aGQG0ksK+/olnGUtK - H9BGClNJqIIRMEMMR1Q2ZQFr6311ug5oHKwxBCPrKXSUdpxbYmoBH54IcWACHkLwDcYZWIkgxmDW - Q1zyPnrgnrREflD8mhI1RyaiNpXR36yRjYYm+KFnkONZUqoHl7ZCa3I2C0aO4JM+u9Tnz/XDWrxv - ielQqci16DRlShSAWiTIZJ5mDIaYPoBxEJE3DDzoFpCBvR3ywkNuJWULQzNqIKx3gNY0iSmHCMKt - iS1UvpMCbJy/tVQ1NObzdAKJR29atJZcQ9JQmTBjX1UkduCaA3CrJPV6rwm1D3Cv+xY0qbCPD6KV - hyqzpcAEOFRGjGDupZHUDFsuQVvjxDSc6Irs4YPsNnHLCmnRmk9JuxddPFKURekNt3sdxmg01AE7 - uvVhk7qItmgH6biDKDMtdRRNm1hZvb54rc/Pj0tVqED1wGgnW50VTK3U3za4K+AaHGXJQce3ifUE - 0iZp9xv1c4tRtOmXq+s/3igYZqMZZ4QKkpvexRK+pwgdAUcMUXogEFZ5dfBD0wKhbsWK5OnxISAX - g8n8bSbVIdjQDnpvXORSav+n4DtYKM5qlsy1H+IYi5y195296T4o6nffj6S9754mwLPZPp+N7pkc - D02Xa3DIncwVHi0uq95kgoCB4L4LFrD0sOJBfCX8SJa26KK0+d45JOz9DLD0tpwlbn2G4FHFTjgu - dCNDKJMKy+QxTSb3ho8SDg2sABOfsehf6ph5JcygzcDW4o//370kch6ahjgunXEPUglv77BLxpS0 - 8isukmD6usqX8G70pbTZu3dXb96Oo9mjqg8t2V5q8bukbw/zpF8jzOOZaTC8ul4Ubzna7QHX2fHG - EYHykMrQ+lvgYT1Dy4B1TToe+F0JbxYY8b0ET9coFVykaSpy0dS7Q7/VLYrglnAlaj7K92MDw4GH - Te61QGwPy6Tyh913CMbD5tt3xdxD+wcK6UX+akscTYPEmM0o63VNgdwhasdfbYOjB4Y/ub1wbnLz - 4xLeZoXgQ4nY2+lMpT0kk15nSOY635sTORNOLlJ8KD/jdDfawGPVKeFqnCt7z/F0ainZL5F0wchU - Y5FU65MootZDQL0rYWHA2XkD9YGYXBZbkfZDyIpHDLmYjTR77ui/Dy0TuMe0XFLMvidH7A0x4feD - vy2Ady5Nvp9GEWeavGMyicUF7xpqr5OCeQfjNWy+eT070MH7vBR1R5nknhT3Zfbpfih1elpDpRUf - 9LchLn6Hci57fjyve6Bt9wq39Xa7HCCWRXyiQMsyZOzHsWGONDl3HiJW8FMaApJg4Dhq2XFSyzt2 - IjfeJaufPfPo65jKhC6tPN0AzALW/ZA9gnD0AKI9uacLoJ7BKeGNiQTshyDsxV6ADwYj2UzWNy3p - TR5iekkOG+FpXIwzaUJYEtLEycauxKHlmrvO8+r0k2DAYLpcabsr4R+cb9NGLhokLytSSCw+BqxN - kmqjgePOUnnj1Jcv/y7UML3y6IPv+vgh+g05Vquzs+fP5aXH9D5m/uHyxXmhoo9o92v/IN8tNvhQ - UURjx1czX778BgAA//8DAFam13NEFAAA + AgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//4xY7W4buxF9lQH/ + 2ALWin2d5Cb6UxhJChi1c4F7WzS4dRGMuCPtXFHkhsOVrQQG+hp9vT5JMeTuSpu4af5Ju/wYzpw5 + 53C/GK7NwqzJn138/OLVz5cvzl+/PPv1Lx/ebn/5KV2k33+/fXX9idf2s6lMG8OOa4pmYd6HHSc0 + ldmGmpxZmJqoFaLNs+HHWbwwlQnLP8gmszC2wTS3Yds6Shy8qYyNhIlqszhsXBnbBLYkZvGPL8aF + dRvDUszCd85VZsWepfkYCSV4szCSQmsq4zHxjj7+j7fsa3owi/PKbEkE12QWX0wMjszCoAhLQp80 + muATeY303UPrkD0uHcFVTLxiy+jg2idyjtfkLcHph6vrGURaURRIAbaUmlALoK8hkW08f+pIIDWY + gHyDOic1BOwTxTZSwiU7TvsyIaKXFiN5u4ewgi3ahj2BI4ye/RpOb29meaTm9ujx25sZ5PxLBVjX + kUT0eWqII7BvKJJPcGeWDu3mbBke7gx4TF0kWO6hVFMnNN0W/Vnna4qajjofnb3wukmiMYd+zZos + Cwd/tsWNTmxjsCRCAqftJ7Rnq/OLc3yOLyrIf19fXiK+ev5yNocPV9eAvC3Jwg2VuKGNVLNVQAik + 2Em6DzE1JS2Yn+dYUhNDt26+Td9pDh0UV5Ea8hpcTmFe3YU121kFf3SSy4hlo9NPHfrEKeNGSxfZ + CkjXtiGmcqwxqlmVYyHFhB/m1yQ2clv+hRVIS1bXP5oIMQ9GRzJ7OjnPX59TbevVbA5/bUhouodF + D0sCi4nWIfJnqgEF1i4s0cFpPt7ZPdcES2pwxyHOIERwwepr9jXvuO7wOMFnjnbk+vNgLmvUGls4 + XXbs0ljnkry8Hj2MY9og6awJFtCj2wuPxzo6B9z5O3/twTa0ZUlxX+W6s4CNnFhjW4UInbdhR1Ez + LSl2VgF51sbQUkx7iORKDhpuS0Pt0HGNqUAbUw95wF3gGqTtIodOwIY4Tq2gxZjYdg6j2wN7iLTu + HKYQ95A7/SEJON4QpPDAVqF0VLtpvbRAh5Zmb11Xa5Ic5fXBhk5huUKbNONTqNB8Pa/g9vbqzbtZ + BfcN20a7pg1CsGXPW3RjEtDp0Y6AmgKgSxQBh+3oP//6twyhUg191pik6gmiIDPX7hDHsLNjv5n2 + XIBpM4ynWlEmCoEdI0gXY1hjoiH3p5P+Htqd8JzsEguioVC59oeCoDAk1NSSrwWCz1DDruZMqBmU + bev6s1ewRIfeas0xpcjLLlFfsYEXMgNUsOKayq8Ylp0kTzIkI2wxl97RLjPw6STMb/sw47dH7Cp0 + vu57WNMUSdrghbMqXE/5VomrghVyPGyepY7ztvecmmMAriJu6T7EzQDBhuDd33Jlr66HgQU+OcKX + ly/Oz+vzy9kcrpMA7dB1ecDIXeRFSX0CPVSWD6np9ciic3uIvA5Ru0VDbKOmsrzohFadA7QxiPSZ + k2863FQm0qoTdIMmF7llvzYL88sG9xVcgyeqM3a93FPMx9PWyRHfmb9rC7MoKP50Z6AbJKvXI6qH + Bp3DDSXYEkjCmFSxImFdRhc5ILSN4ktn95OAlNYoI3uNqen339Ae2sA+yVxr/OcYtjBp8sXAVLgM + XYJe36Z6W7B/MmmgI0VydJCKYh+eUOWTUYtPeinWog6soizmLbUDOX2td19L2bfiNIffejHKZeUJ + GXM6Ea10nWn4h7g3k2xm6qd4VhsddVGEdQh1qVRWUM11TvWEKDQfvSvKnIAbEri9efb2ZkzuYDEE + pn5kDlNhGRxXztMPU3Ah2P1Ip5IzUZNw/HE2hbVS5YQ3B7M0h98C0AOqzRVQA5b7kLdqLXCSkp6F + YEu+rHpgyRLVgYvH+hyQVz11cPle1Bln6CSAD2nwpmnC0z/A0W0XVbu08CwQif0qRJuX0w6mXcZI + abUCoFJxAlSXlHSbccGRmQ9pGbgOErrN0I0frq5PBNS0K6CP7XIFljPgtMELpeqmR2Rbts2nP/nK + h/wf3u7POB5gGQPWFLWYbpToJe2Dr3NbHoh2KOPhWAOFDuxw1ATsd8HttPX1PpQFz9ouHoltviM0 + 5DUUfT+t6pveIlKh/GIRnxUnqDNHn/dsdHNzePethnxfWynZeZU3UP7oU6N9IMf2JbNRv/SOoKaE + 7Eoa3of7CmTvU0PCn3tCFDrwLqyYnDKTzQylkRUS1rboLzmUnXZmtrc31ZR8M747vYt8hxq+7pAn + nOLIMaVhCoGTDGg5gpbqXI+aBie6rDCjyDiH970WjmRbeqEoYzYGNenNtadzhfEgASPHVcfOSAnt + kIUx2N7XD0SjZmcacL7MzOFW717FLKh46uGzP2d1kzmeIqYxarNuaC9zuMpGO1KtjkjvqMsuQbbw + gM5BNlm9uMKbhuymv/fqBkJ6rbaUd+iJoFU+i6wIl9Bl9tCdQ151u2Tfo2Orslgicfs5XDkJ1WB1 + jrLIRTVZqAKxrHS6YlvysXLhXuCenJvfefP4+M/KyF4SbfVzwVrBw/nObyrTDR8H2hi2bfqYwoa8 + mMXFxU8v9PPA8OVifPHq/GVlUkjoDmNfX15U0wU+9k2gK1u0DdXj6PPKKBWGw4PHJzY6XmB0W+OU + 55cXj4+P/wUAAP//AwAOS9CeZRQAAA== headers: Access-Control-Allow-Origin: - "*" CF-RAY: - - 983da8e52bbacf26-SJC + - 9844042f6ce3cfa8-SJC Connection: - keep-alive Content-Encoding: @@ -5578,7 +5595,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:43 GMT + - Wed, 24 Sep 2025 17:31:37 GMT Permissions-Policy: - payment=(self "https://checkout.stripe.com" "https://connect-js.stripe.com" "https://js.stripe.com" "https://*.js.stripe.com" "https://hooks.stripe.com") diff --git a/tests/cassettes/test_pdf_reader_match_doc_details.yaml b/tests/cassettes/test_pdf_reader_match_doc_details.yaml index 3924d905b..63e5cb3e4 100644 --- a/tests/cassettes/test_pdf_reader_match_doc_details.yaml +++ b/tests/cassettes/test_pdf_reader_match_doc_details.yaml @@ -46,20 +46,20 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xT24rbMBB991cMek7Kxrk2b71Rtm1godBS1sFR5HGsrawR0ng3JeTfF9nZOG1T - 6IsfdC46M0c+JABCF2IJQlWSVe3M8N2n2e3b8cey2q++/ZCUKj378vnpdjxdfVXvxSAqaPuAil9U - rxTVziBrsh2sPErG6DqaTxez2WIynbZATQWaKNs5Hk5omN6kk+FoNExvTsKKtMIglnCfAAAc2m+M - aAvciyXcDF5OagxB7lAszyQA4cnEEyFD0IGlZTHoQUWW0bapN5vNQyCb2UNmATLBmg1mYgmZeAN3 - 6INDxfoRgSx82DsjrYzTBaASVmRQNUZ6uPNYaBUBWMXBQiYGnZ9suCIfouN9Jr6jMfJJMiMggzSZ - WJ94BenIsY0xmT1mdrPZXCb2WDZBmhPjApDWEneR4hXrE3I8b8fQznnahj+kotRWhyr3KAPZuInA - 5ESLHhOAddtC89tihfNUO86ZfmJ73WLc2Ym+9h4cvz6BTCxNfz5K08EVu7xAltqEixqFkqrCopf2 - ncum0HQBJBdD/53mmnc3uLa7/7HvAaXQMRa5Ozd+jeYx/hX/op2X3AYWAf2jVpizRh+LKLCUjeke - rAi/AmOdl9ru0Duvu1dbunw6G23T6XxebEVyTJ4BAAD//wMAFNpzqb4DAAA= + H4sIAAAAAAAAA4xTTY/TMBC991eM5tyiNm1ptzcECIRUVMFKIDZV4jqTxotjW/Zk6WrV/75y0m0K + FIlLDn4ffjPPeRoAoCpwBSgrwbJ2evT202eZLL9u3Ifbxx/fxXxdfZzevvuS8OFmUeAwKuzuniS/ + qF5JWztNrKzpYOlJMEXXyWK+XEzn4+msBWpbkI6yvePRzI6ScTIbTSajZHwSVlZJCriCuwEAwFP7 + jRFNQQdcwXj4clJTCGJPuDqTANBbHU9QhKACC8M47EFpDZNpU+d5fh+sSc1TagBSZMWaUlxBim9g + Qz44kqweCKyB9wenhRFxugC2hLXVJBstPGw8FUpGANZxsJDisPMTDVfWh+h4l+I30lr8EswExCB0 + itsTr7AqckyjdWqOqcnz/DKxp7IJQp8YF4AwxnIXKV6xPSHH83a03Ttvd+EPKZbKqFBlnkSwJm4i + sHXYoscBwLZtofltsei8rR1nbH9Se91y2tlhX3sPTm9OIFsWuj+fJMnwil1WEAulw0WNKIWsqOil + feeiKZS9AAYXQ/+d5pp3N7gy+/+x7wEpyTEVmTs3fo3mKf4V/6Kdl9wGxkD+QUnKWJGPRRRUikZ3 + DxbDY2Cqs1KZPXnnVfdqS5fNX092yXyxKHY4OA6eAQAA//8DAHZ/8oO+AwAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da933ac1d9338-SJC + - 984402ac28be227e-SJC Connection: - keep-alive Content-Encoding: @@ -67,14 +67,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:55 GMT + - Wed, 24 Sep 2025 17:30:34 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=n9lDgOY.PpuZ6u4oJwnrFsAOUuvGev5IrxF4IyYGHxo-1758668455-1.0.1.1-UMByqyhjJBMODiPQ1PlAmKE0E32FkQejPy282kmqnJrP2r78qRuspVKSHCCrV2JXwayzAlwo2Zqrg8aOmdPGrl_d5ZT5J85Uc6voMGQRGLY; - path=/; expires=Tue, 23-Sep-25 23:30:55 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=Y0SSe55qYJ4o2_jhaj.KumWvNtMNpzJVhWNDFWAqneE-1758735034-1.0.1.1-__01vlZFZAxDF9TJ9NjJ33plh7CMQnrSpIhPWMtEmz1Z_K_syt.LiYtrx_6YWLp4HY1eGIH9rhEgiHRXpqAjA3_EmCvp5BT5bga4yyK6uhc; + path=/; expires=Wed, 24-Sep-25 18:00:34 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=NebnkJatRUpasecLYu3EKQhJ2bqJMlGyCYMoaqxz33s-1758668455657-0.0.1.1-604800000; + - _cfuvid=UOoEnJFC9Rr6cHn0M0Sg9abQRQhLFYoSWOpzcbxMyj0-1758735034816-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -89,13 +89,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "584" + - "422" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "607" + - "446" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -105,13 +105,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29999918" + - "29999919" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 0s x-request-id: - - req_6832fb7c627741fc97b4b90f7b104fc7 + - req_84f3d318068b4485b5a708b3af26ae40 status: code: 200 message: OK @@ -135,12 +135,12 @@ interactions: string: !!binary | H4sIAAAAAAAA/62TQW/bMAyF/4qhc+S4TpZtvgXL0PUwNOgw7ND0wEl0LFSWXIlOYgT+76PcAWl2 7QzoYD75eyT4fBaRgPooKuGfxUy0GCPsUdLQIdeOPjxLayK9kQ4YovGO1Zu8yIuLIqqzqEEhMe08 - zgR5AisDxt6mUll8KhczYQhbfns8i839XYIUeblaLpa7uWqwDSdzkGVRlvKlPhQlw6Gnxofpg705 + zgR5AisDxt6mUll8WpQzYQhbfns8i839XYIUeblaLpa7uWqwDSdzkGVRlvKlPhQlw6Gnxofpg705 YPK9RWxNts1ZraE1duDaL7QWjkCEXI340qNTaYLahKl7qGtjDdDUObMctEn+6cw0Dw2Zr7MHzz1E wiDGp3F2MfyGBNn6yu8WnG7MtRdobZIB2PcarhPord0PjA3o8N8N7x++3G34VkPUxWo33819UEbn Pux384IfyaeUq9Xyo1x8Xn34uxB0ZBQQajldF1UNNuLs0r/TAY/Z5npFjfl3O+8c4InjFDlhNYYE 1PL3IJXvHYnqhvNnyDLgUayzLQM6VMSkzLvs66mz4CanmKDfvUXVWwjZNqA2Kglc1GijeHVJoZUd - BtlNQWc6zxCGFHn+gQJJ4zSeRFWk8SCoRnKLKeeut3Ycxz+zD8OuaAMAAA== + BtlNQWc6zxCGFHn+gQJJ4zSeRFWk8SCoRnKLKeeut3Ycxz/v4tTYaAMAAA== headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -158,7 +158,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:56 GMT + - Wed, 24 Sep 2025 17:30:35 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -1263,1694 +1263,1694 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA6R6SbOCTtffPp/iX8/WVMkkffrdIfMkjYCKWYkiAirK0EC/le+ewvskqVRllWxu - ldJeoM/wG07/53/5559/NVmVX/t//cc//3qWXf+v/7p8d7v0l3/9xz//7b/8888///zn7+//sTJ/ - ZfntVr6L3/LfxfJ9y6d//cc/3P/65n8v+o9//sU1lRKwxHwitqv2JhqOwoOoK8eOBf64K6FZd3t6 - MYxdzDZr7wKnoN+QnWuH2iRhp8Q4TnJ62idzNsdZGQGIeEv1g3HQZnOWa2iEaUV2p7encbE2pZB/ - thnRde6lfXed34FVZ6dhdY+3rcjuoIOzsg4Dk44Vo6G9jdBzn3NEi/TEmx/jSoZW6dzf82STQNoR - kPCRgvHlfrzO4v0c9M/3Soi/OrVj6A0BXB4Komb13GgTmogJ5QcIOXgNa6dYHGXcofkw1AoWtLF/ - zzL2eqITs76V3qxi8FHcXyOafvLW61/3uAQlWD0DJHFDO2+3WxNbZ9EaXqaqZnxthDPyrSkhp4O1 - 9sZ65GZckc9AzXC/ZiMffAVQNNWhCiBf44y+lSHcMJ1YJreKJ54vVviw3ro0ooJV9fnZVvDmUo5U - cU5JS6VZVYHH5p14D0GKp5pXS7xd6Qk9J6edN3CO78pF6rnEDkuzFYJGlLHXZSI1de6YjedILtHy - mZhlo1UikYkCoG4PZKfHE5tG9vFht1Yd4p/S3OOaJ3PxvhoTclDWBI1bqS8gVbiQeAGNPNaeixrk - uGNDG1eninX8+gjntDHo/fTOMpG/ZCHUhpLRNPWrTESb7wunPFDiP9sVYqqqKvg+NTnd5+XLa/fc - ywd23+Bh9s5CPN7E8otzLpVIJguFxxf39wzDYF+IvnKkaqqTwUb3V7ylekueLWcb0YB5zz/Si4CF - uJf10gbptnfp5XCEbM67ysbnVs6oL+z0bFof1iH89vuON57Xw9oJwUUJIiqK9968ySIdi7s6o6d2 - T9phGx5zuUiMN3UUEmidXEgz5rq6Ivft8IjF59dTYHX6jFTX4KZN7d7QcSd2M9Xr89DO6a1U8cdS - PBLeH4Yntk50wd54z6j1urket9EeAca+Wg9gRCGaJnyYNxOxI6po1In72khHZL5hRW99bbd/+fq5 - lSLV0l7SprMpm2i8hQ69aLdSm5vdHOHVfN3RlAwK6k72zkbLfhPTFSw0WtI+xJGaWmS/MXk2+tYl - h/Jp3KmmjpdKVKPUR+yOMLHOnprN16hI8Xz/BsRfN1eNpfvHC+/Ti0jNeRNVgtwWIRa+hkRtTwwR - Z2bOgA9UOAUjn6sth5t9gmf+MBD3qlWtkG+6ErSgDqnyUZSY+8QpgPH68OReJmo7jjS7gp6Ha3L8 - RkomHjbyjDeaLw4iA0MT++rmAiaRTAK12Hlz3I5XvNT/INQ31eO4UBCwuysPZAtOkQlW6AZo6keD - eDvUVXPLCRcYuysQZRfoFXdXQxO/yP5MkuL1YOwiPTvwiXwZpvP3lvGkPNqIvo83oiv4qHH9qRvA - 684iURJpmzF+t5fhdksJjQ329EZb3clgl7lLfdtutNE/vgWcjfRLdzt0RfXDFjmoNs1qeFu8qE3p - 53tF0KcTcfPthOZOlb448U2DRLHGvOnqGQI8XVceJOk5ZeKbGy8YDnEbCPfZj7k8mSN86k8dsS+r - k9YlSvdCJ1KZJNzo4I0X8hzgIiUcuY6p6QlYUSOMQjhTV1wRT2i5VYpav3nRE86KuI+t4AihtBaD - FfHKdr6bPcD6plxJTLLQY+tAf8FY1xq5jJ5aTTXvFmjpn9RXci/r5nN3lYvhI1AzTlxvdt8jYN/b - fqnV7kk19dmc//CDJL/60KX4gqFobWq9c5XxZO6O6MLt91Rn/RvNah5+8dJ/6bZV7Hgc148v1kGa - 6RHSHZv5c5SgJPZmoi340Q2HdABLbPvgdXCaimHt5ENp3rsAX6MCjUzgVKzKZU/dZztUzM71Esyw - NchW6++I9/rTDN9p79KEe+yqUR5NG9Duzi/5q7XzWd7UMOf8lhykY6IJmst/EQTzahgfx6qdevue - Q6goKnG1m6qJ15dW4tCSETWFUW0pqxRJ3ldzQrWVV2rds38DhB7k5DQjP5usFHOIx/p9qDW4eWPF - OTU0OwUR9eVuMkq+01fexU1Po1DvvHEw1BLX71s9yOMSrw8KFXyrB4cGD1vRhCojErSv7BPAnQwe - 25GVCR0aD9TKsKDN7zAIkbu+5NThV2+P9dqmhom4Ed2BVHriVTgPUL0uDbFwpmTiEMoA9mbWAmy7 - DzYK3lHByTQ9yc5fWRn/TfYyvgSnOpiE24TogjdITZuanD+FjkaJfwFoRX6h5BpNGnNQomNOVRJ6 - qjOpmqZwFDB3TnYBR24fNNMPjGDeeZGc4PKuuMfZVPAPD1W9umdzmGwHeI76m+7l5MG6CRIOX6+G - SW5teUQcV58FeLToSlNqCt64PzcptsurS3L94LWiGoUB6uizpck+smNeT0rzr17t98dvxVOMa7QL - Lyf6q3f+W72jv/5+W/jQzHLm4iIM9/SM2DMev0V0xK6REeI3wydu7Oiqw+sBI7mDNGfsdWqEH18i - VyMa0birSwUbdkSIHT921fS4ZaO8GyYIvjflrLHkWgVY6euUeDfy8phh3mYkyIlBA7S9eLPx3PjQ - c6uUJmt3iscWf2Q8zusPdW5qWbHPfZtiyVU46l81xsZe2uo4jKOU+uLqHk/x6VrCSWW3YdL6Oxvv - s8PB0o+GMc1l1u4P7hcidIKAO2wu1ff55COc3ySPZKNz9sbn0Mxw2pRHYktzXbWfu5NuNHGMqe/D - ruKHBnHgmV1KbFRL2biOygQv/Zu6o1dW7I7nEJ+REQQPcJS4P5RbCTYbu6Lu5nXJmCGQAgb+mhDV - OwvZLMabAo7GQyRqzwlaV2l3BY070RmeBuPjybqqXyhkoRjGt7dl/KR8G1A0xSH2gxuyHz9Ez0Nx - oid8wh7jRjcELXiFJPCsddzpRVlgtBtUupvTwONSY7IxCQaJqh9lbMeN9vDBWs+MONlO93rn+OGA - cN8nseuv0U7R5ZGgLY4taut6nbFv545QKyCRHItTPJWXYAXDVxcH2GEzEwtrkEF/PI4keILRCtme - vtCqdeOB264GxMasOcJ7zjsafMdWY5ySlmjpz8P6FjuMXppTseEfVKOmXNGsF6KxBuFrSTSw7TSb - HuHlAkrkA/VkQdHEbS1fYC+q34GL4oc3PgP9AjcjdoJNwdOsDwlbbT5gf+l+bb/jKXIzF6ZJvRJ9 - if94z1+CXFyDnu7ykGiM3TkdUg/faT6mx4yL+LUr/fgcDJVVMWscOhjrg0AXvpt9xXgqcC/5w8Dd - KjGjg1KPEJ07hf7q4Ss32RVO5GEOKyuZK7Z/hgLYm1GjjnLdZuz68kqoZbAC3vka2SSOtgu/etOp - IKLuXCkDCPdHQ45x8vWmbvXlfvqG2uusieccpiPW1U1FUgGbWrfwR3RDPk/3K5R4zGkNCSRX2A78 - BXrve74cfMiO8CZu0EvxNDSMg/wZGNQ340/b4vh5geS0O1C99rN4IhFZoc6RfHJ4Xrcef5hTHXB+ - 7wNRfjpa/yyLBMRVe6LGfYza6VsXJvAcPlNX31tMdC7rDva0GwOO9W82y20TIao8a+JF5YoNqkxT - ZBpxQ73mDtmPf6NfvLfN6ojGbXNK4HM4T8QdPbWdsu05BJMlGTldJ4QWPtDBjz9wB4PXpm5IGug1 - ndB7wr8r5m1sE8at3FO9l5yK1yoxh2anooEXHnw7Oa9RxXlvroLZnHVP+MVrwWdCEv7djqb16tA1 - 228CPHsyaiSD9zddcdks+4OyMTJ3F3iinRBsrtsPargpCwDzwZsmr0zxhGjwr+go7XaDFCdyTDdq - GGFOVZNAPqU9GknAFLkPdjm5S7qP+EWPQn6YjOEzWKLXlGbF4S/evaj/lqt2Eu8bgHKKHOJ7FtWm - Qjur8OMPuX5oq2kjNgNei3VHzff1o7F02rmQZJFEVbGo49nj5CNobBgD7lquWrrgp1zQm0Yc9Ip+ - +NiBrXEnSgjO27Hdja4camJK7V1HMmYeqxXiRyRQY9BYzK7CvgNOBIXE0+da9evjqMO8CrfkEvRS - Nj7OpgpVJqTUbMKAzaMmvkCmOqEn9HqwXrOKDtBV4ontt8KPL+dI9FlAlMpatYOrWyMMce39u79m - nzSB08U6UjW4FmzJjyOUe9H57W828c/LDIteIP5w5OKaBExFYuO2ATykSJsXfgjnrbEmaicW7ZQc - lBKxeP0YqO3OWnch/YBOZXCj9uwoLfvF60zpRH0rKbN+32vlj69S8/H+ImaNrw40o8VUc1571D02 - ZQo3FPDEd5wCsVt4LfGrRz7dksCveIVOEkzH3CdbdfxmAzJaU176JzmFhc+mnR1f8BKPYNQr6rGN - moagfAqe5GpfxNNxfc5h85R31NJVtx2debzK8mqvEv1g8B7DeqjiX/xsMhRorry5AK2Ox7/nb1aJ - kMCiz4ijBQdt4svdCtrKiwNGpUc2NZs8RIbud/Si61xFHXTVkTPIJVE3BxUxdDYDOR67DwkT6ZHN - cmqE+GQ1u0H8hgJjMTUuOFRUlfo7/IpZz6ojzJcpp4HrftAoHb0UFj1Krg8p8qZho6rwUN0LseTn - x5tXfaHg8Ry8iDVYLzY9drsXVJnmUQu9HmiiPPZB2qKBmhmCePpYYYkfrhYTe0RJK67x6ohYYXtU - 0SuiTY4WCNDGq4J4aaZU4oI3MEWXD9EHfq2N8/H+hTvfbYnSc08255uugFa++9R53eR4HLvgi5g8 - XIgu3DO26OURyrye6RbLKJ7Jq5LwXBopsS/uVM2bIBwgeOM11U6bOWa1j67o5zckv/5UJy8bkT5p - SUylRzwf+KcKvGaEdLsGH3EZ9q7QObJPf3pVfL2EAJVRcyT7N8bsTx9KSMbUuW4/bLQnsYGXlRbE - Lw0jYz/9/uOT2zfGaDLyYwOTpflEm7/8zz8pUGXX6tA5Bq5G8LYj4NNlO7SV5KDFT1Fh008m1bTV - q+3yB2pkbd36wcqz1tm3NfTvnx9mUL3TmHGWZmSU3D1IJ/vNhvf4beDnjwTTmXoTUeUaPdjuSCyR - 7tl4zwcB2lVBibnonSkc0wR9tWu9+Dd7NtJIkzCOj/nwnlEXj80T2RCga0lzz7rHTLvva3wJDjVx - 4N1q9AvhCqut1ZMAi/t44Rs1WvIjkIej7s3els0gK9cb8b7Dw1v0XYnuJz0gW6umaJBTI4JnJ4Qk - 6kSlnWBAOginhg60tGg8S7dBh+puDoRwe8XrRImNAC7NiKEqTTuJ/hHwkPeXQdzUYTz3heKDtIaC - ZJWuZ+Pjk/iQlYlOjTgK43k/7UO07HcgG5FSCZssMmUk3g3qTO625bLdvkPfnFOGjqCknflPUYJt - mT3RBtGuhNPoByCf5mPw3CelNtcpk3/9qV8JO66a1uZHwre0uhN1ak2PvpNEhcHKHsSXuWM7n5RL - Dt/8zQbxnZdIeFWPCHZrxSF7+pZblhflAF2RbgLEbx9s1Mexw8AN7dJ/1WrOEkhRm/HnYNwFdTU/ - Be3603tUT8HQ5rA6mah8yh2x4+SSNYdVWOBFjxFvya/xlGZHuF4tkxof9VLNUs+F2B7F8e86Vzrj - F+uf5krVw+ab9Vd5XUOCVwEx95FUTcPGVQFPsCfXhY/x37rR4ZDkaKhv47eaNic/+dXDIC78gBLZ - UmCc8Ycm2Ne8cXkeSKeNT927+q3Gnz/Y3iUgJ4s/af1O2tlwNrxyGB9OGAv2eTXDKQeT3qvF/5iu - mwhF6+weyK7cts9nWRyxWitbkskzMKqqrgrG6a5SMyjqdnrc4hEv66lqzrrGjic1xW+/XA+okj6M - inod4Vh6l4H8/lxRV1wvApLqt04Dx9l705fhK1SVHRHts16j6eRH0k///enn+S6cBsAf0aVOb+bZ - RMrcRnZE8M+/82Z02ISw+F8BvOWqmrRqncMGBya1u6TM5n0I0q++Fz8H2CCGXQcLXhK9VaM//xIO - aZkHq/nyZr/82sQmPQecOSdxBzIq0Uu6X4l2rRtvfpr7DoqZXqj63TqxeF4FJTyLz/vPv+1OaZyA - 1gca2ak5y6ZI9iXAvdxTY+zEuDOtYQCdmD7d5qXp8duu19Fbb0ziWVFTifdAKeGxiz+Lnu2q4Sl4 - V9nJsvWvv7eiuj9d4OcHnU9HTuv04lvCabA3JGIfLh7uwr0DfHxx1NxHacu3jzhCtb9JqP2NwnbW - G8OHzHq8qRrqnTYO0ztHhh0Sel+L53jYjrKARoe9SHCPH+2ifzlY73WF7LMuQDOoebgRuyAIvu9e - 0bh6qymgcFJE9bmj2nxkewW+/LGnW+ccZEzkjgqc1+40oHCqWLvoI/mX745lGBr/htZESz0HXEAw - mn56yF2nOV30Xda3jyyERb8MC7/Lxo/mzkilcBt+fOen92Hwwz1x6EHzuN2paf787PwJz2rBvwZE - p5CoLWDTY1/vlcJ1gzoazBeLjU8suL/fU6vO0mrEFgAs/D2YQnWOx12SCfDJE52cD+mTzVWbm3J/ - PD6HwXoYSJS7RwBLflBFsl5tj9tXBKkihAHs8Ctjpxi/wIkfJjGZ7C3+dmvDDw9y1/2weQX4Ii2u - PfXCqUK0jJIIbG4Tk8uiL/76Y3x0zwGnrq12XvxRwL5SE+29a9mw2mlfLCiJQO9qK6C22Vs+GFn5 - JIbJDV5nNZ4uP978ZsGHrdZlHQ7hqUZbEmy0FjE3bQeYrcpe3l9qP2OVqb/4U8v5Htpy8Wuwox9j - Yi39plOFfQGni1RR5TuhuNs29yOIjd2S3TUq2PhONzPKYT+RHz/rNavp4DP6AT0u9TFFsi7B4Vpv - Cbne63jcVPoMtbKS6K6v7T8/6W8epGRfXut//t7x9sXkF/851FiBu+1kUrVKn/HguJ8ULfsxDN3z - 0057n7rox8/MlvDoN0+Ahc8Hg5Jn7eyeyhE1O84mJ37SqlnRDiZe5lVkq02V16FbtYKfH6LVgY74 - w551WOpumKhUeLejPkoDxGZ//uNzI7/9XFEcSRoxPVGpeCvFAghCWJJjeKi8v/nW85aFyzwkrRi5 - jRE6p1+DBntl63HgOTPaWOGFGidHydgnQD5qU0UjeWUO8Y+/yCc+Z8NKUmNtIrEy4oVv/PHfSVEU - G5b3oTdoAzaC54xw3zxOVIm1Eo3+S1BQ06RpMP308q4667ImzjFxXdmrhoXPIXD7bJAX/+brr14S - WDfjNnwW/4+/hMMX3UBRqaGsKRqCTaCjbsvMQNbCgU3H9f6Kbte3uuRHxiY5GRP47ZcvqSqbvL2j - oGn/vBKtOHGsO2aNjX7zEuNkYG8UkDXCT5+s73vJm9JPecWb4303oMX/Z3EuBqBIfUOO+PyqRv9I - BeiqDyHmvJlbutrvL7DoV+JsQxN1Wvxx4dENn4FbOVI7qZshB7lVOmr2OhePnVsl8MMD79k3cfub - Z+ZnoQmgGZxs/uljQYjKZX0Sd4t/AvvZkan/oarHPQM/hea6G4jG3WNEhe/nCgseEV/cOkycjekI - +YEZwQvVjUYjtclh8XsDKSo4Ns2DcsHblZlQZ7BOXvMtLkfI1ZIS59dfyqGU8Pxa2cS6K0rFLXoc - v5W6GtA2PGnz+VulOEB5SUynQawx8KzDnR+25McnWN3dVcRW1RhktjnEvWNmDYzO9CIxOGPFThpN - 4cDMgdplE7PZKsIUy/eWLPElqFn8M4jQAYLvokf7Jf8hiwyRED7gKyZfY0VO2/ROFAw1WvwXGZz7 - vaS6xXpNGM7DC1b3WRjWxmPQpmzyFCDSYFNXvTox68xdjZZ5KNlv4o/X95l8Rc9m7qkdFQmanOOD - w9YeAnI6e2VMLcZKWDujSayDtdY+xrT5grpNWqoGpG/7yqpHLMHgEs1rtGy0D40E98umJsZt1uPJ - JNsIgG1yqjtNW3VKW7vwP59fR/ypXV1RsC4NolapkQnvIsmhEdgquEfswJoMa1e86HMSy8nszY99 - fMRoXXv0XjsPbyKxPcLeCfS/edu0OekJbB+bNkDyDGjavVcrWPwqYgpj2Q7brWPKabw/Ez95uZmo - TmzEZqEb1P7sRdbvr/iIbunjTh0Gh2y+iN0I//qdCvjv//X/4UQB/38/UXCrriohwkVjYvXuInAF - MSe+G+uaSKx1iZLufqO61ACasljlwN988TBcxJIxSXMGfBmShIZjpWT8cB1feFhNCdX6fFeJZy2S - ILpQbnivv1uNS7KzgD5VEFDrdNez+fuoAbcH0lM1G0+Iz7sghBOdd0GynVk1WLJ1BYd7hCR36dCO - 2xuJpJDhjtr9uUVjcfiGEBedQMnNmzy2qVsZ6a0ANIBdhoazrTfAW7ChV1ADNN7K8ILzh/Ym3vhW - vfE4pQLQfRrRTOi/bEhf3wuIReiQg1C/s373LErUy19n4DVf87qNgWZYa+aH2vHK8saG0QDkNPzQ - qxvrHrc/7FK0UfcNuZ7EPeK6k1lCOLuUqmuqMj71hQtESpHQ5IPDmLep2cB0v1tEuRdrbfJiSQan - szt6Li+fdrQka8TI+/bU0Y5tRi/nswxbA2xyOCY5G8uZNzG3USlVhdML0eHlm+DyyoOqyfbQ8qti - L+PHy0soOTGOjfd15UNoOQHx2kKL+fqyTWErp2qwYAtqBkWx8ZwRSlwdOjS7l/KIexetiXZ67Ngv - /vgw5/cAFfceTbfPloOqqMOAOSqLn98LK/GL+1pUz7avjKfpw8fl+ZHS89i8EM8esolPm/UQFLRh - CyPaXWF9bkiw2qCtxue1fAV3dZWJ/bXSahq3pwh7/iEgeyPh2/GSSC70pk+C9ZMv4rG4Cjr4vnCn - wciVrVhEY4CTgztSM163aDybOoBfHkOa2OyTTRCUIZy0TqT+yFtxV85YB6SFLj3JW6ua0/jNgTSV - D2Kf+k874foR4vmZO9Tzm5PX1TiUNmBlBxpw0budassUcL5ej0Tn3RMTrsFex6jQG3qQx41G6+3c - YW5sfOoVgL3ubPorUKqDR3LIzxm/ycILXgenNdXk6Yb4jw4l6PJk0ixLqTcFwfEFdEdzEqTqWhv9 - 4dFAPXENPdGyQ/R4ugoQXrgtvc2dqYlxm8/g4rNOd4jVVfOpuC9+5h+D5vbnySb2kHXQ1mpOjSW/ - P8/Hwccsit7EKS+fal5/rRlOXhLTKIxiTXjulRD0OD8Tvzx27bwa7jYoN/FCfvvHCzQ64i43HnTH - zUQT/MirQbu8arr9xEXL52tbwB98HuiW2R7iV+9nB/aYGmRPhbQVPyb46NucCXEP+lbj1SSw0f7m - EpIKxTdjaj0psPQXcrpgJ+Pl/Cpg96WfSLYZlErsdvYXtN3tRPTtHLfCMZmXRoueRHky2+P2rHLx - pnBgkNbvBon9N7vCcr+l/9Tx1HetCyvX54jl5wMbV+tIxZdXJxFNToZq6hfGWDXASLDEiztKXSMb - d6IEIxeVTFTHJMCxypWDkHgYMXsKjkB5zqeXqZbQ6GfUlE+Pt0e9zVBU4/ESyLB37tfhoPmaNh74 - woeLR0+9fD9mFTv1sbD59bet4Gzb+XQSAzzGXUEOz3XFlsliBGPZfImuZb3H1xfnAvbRaYkj7JWY - j76lipXXbjWsy2rnMYTfR6hrmpHzuNFj8VxjE8Ikyogvnw/efKRbFy/9Kqj7LkJL/fi4uqgfqiSq - HNP1uruAMTguNeUH0folPjAFgzII7dPw6GWt5cjg7xKxbloUt/LZ7kDPe0pJlEmsXiP3C9mUfYdZ - CxVPyFB+hbDyn+R3ffRPpwG/BTgEg2rcMxZCEuEYcyo9b/s947ZuGsI+X/vUuSYKmoYmnnGgljN1 - imnUmFwkJf7wW49mdRDG3a8+jNO7JoEua9lIjmkCTmgdgzmFMh738gpg6acD0vsSze5DcOGL5TVV - resejccImcgXOYUs+e8J27iaIchrm940TY8FspF9GA+PG7H2gstYXpYj7pKPTY7rjacJsmRzUAmm - MuDmfMvm27weoM/rmfiHwqvGSHi/cO50G5obp6gVT33MQSh1Bxq8Hue2u5Vhikv3HRDd7JWM1/MP - ALQ8oXrxTLIe159Q/uHT7tS80YhOVYrlz3akR+3SZCPa7F5oyTfilULijTeepHDBYU7vVjBlfVNF - IZaJZJBL5n7QtNmqClIeRUCuuWS1U+qvUlRk15KaW031OGmfA3C70CKey9qWv42HL26O7YsGd42r - OiP+uAij6Et2k9ZVczFJCa57Y0UU2sSZ6KynEifB2wleT/BahsLHCtR+NH/75YkZTSVoz6vjgJf+ - wXvkU+CFf1DiYsYmydhfgLSWSALYIcT23aPDp3ZbkwO3e2hcFRKAMg+3JDXaPJueqHqhJf7Ul8as - Ze08+7gupZzk+1HPFnzJofLMO90fNmetd++Jju2dqpAoUz2PFw7aCjl4/aFqzGuV0O1aFUBmZ0q2 - 55c3kzRVoF2lId1zhe3N70Qf8E3hDZqrxjpu2Upx8Tk9xVRpN+GPn0RQWBMdOLlkrE7dawI5111I - Vp5rxMz5HMGBP0TkLJkeap+zouPL/eJSg9tttTFQzglM9Uoi9hO92Fy6TEBIunvDvEddOx0kN0I9 - J34HcKwzmr5Kb8NbWB3o6XTXYy5Qzkf8me2UZsqqiOcFgPBzCjV6CupTNZ2cDcDVRBfqWY80Y1UR - 5ngPYhF0RVgxtn4eFYzTT0+2Z8+Px82OvNBpgwdi798FoxHjSxwn7Z3sgj7zpoVvoFL1W7rlisab - BUGbAd/SIzXDaxaL2u6tg/bYRGS7Xvlo3pMpxGezONK0P7dsqtcz4A5hnpDVQfIm9jFkOO28kJo5 - rb1pTM4cFAbMwTfuasTwqwHoHuOBKPrnoc3rUzgCt4usIL5uvhrzmXaBPn/NxK6jXTzWOJVgfsfm - sG4s5E36k5/xDmGPno4qtPODeAHKNScmepYfWhoeyw4Pg7qjVhaYiFN31w6+z+JKA+GzQ7NksSva - kAsXrELLRePVP6ewtQUU7A9Xh83GoeDgJdx0qhaiUFHutfJhun1d4i/xmsdMi/Cna97UpTlBnHDG - A3xDpSM6nO5ZT1bVX35T8qlLNEbV+MLdONwD7mbReIi4kwyVXm6CWetpRovHiQPuaz6X98u0cQ5r - 7sfvaJSprdd75FHCwseCVjIsTRj5/RcuSr4NPoqeZnONnAB4dMTDy5V22Vi+z5K85C9d8DgejxEz - sSqu34O45M8I/TdFgWOmQTENEI/zbKly5E1feq30TcZq3IawUuZsYPHcZg22Rg5ocbwOvImMqp0b - x4YfX1ZfZG779iYCRKksDjwCLZsu+r1BnlvsB4B7rk2p8X2hm3VpqZ1tUNwO+RhhW5oborj0g4Zr - cDbhYDRbkkv0iPrhKr3gQPQLibWdhbjx7L3gSEOgTlDNbOblzIVKlDBJsq0ZsxpXERj250LTr5W2 - 8x9eGcc91WpulbWZzOlQbBKBKCsr0DjLU1NcCbpCb0HYskn77uxNWupX4kuxH3fley9BEO83RPfL - FjHBa67QcJU8bKYjq57Odx2i0XzG1E1Z1Y7zlwXg0mKkqnuzKjF9SA3Y0tiQ7WGz8fqFv6EbRxzi - 299vRUXrbIJ7cndUj04nr19X+XHz2NIL3b62u2z2z/cUgn0ORGd6gOZ34nfwvsgrotaOg3jsXiT5 - h9dbrrC1hQ/YuE08kaq182GzmfYRDK/LRG3NNjUxO7glst5F+MfnxLv0mBFvrTbUF75zO954K4Xt - iRnEec/Gr/8GoIr4TUmdpi3lXkIAz9S6U/d+RO18mncvsNEnC0Q/H9D0fBwCkC/Gix6z24jYhTUh - gLS6UusEcTtx2vUIlmYeKdmvPu2UwLkB6aqMZN+rmieEifLF1rsMAzl7n7XuIepX/H3VEb0f+k6b - +OJto3QWK6IcgrpiEcMlAGESNfW5bkdmOF8sPJ78IPVCpi36JIe4OUbUOL9mrZvnZWIIu4iYy/mC - UXI1F32SUCfHt6C2Ql3MHJj3bk+98V1688lQfLi9LRjeUjpo30ffANBdnwcCLms2Y58D8KoWyK5A - aTZn6JjLfleNwbqPn/HHfs8CUPkBw6z1JJ6d166E8VDdqI1XNO6MTdT96ovsOvu+5FeRg2aiKcCH - /bblftcPVXEIxtcjQdSxjBQt+E/3ha9qfNwPOdzdwCWqdCNozqImhzEeCrIr6z0be686Qnp9tUS9 - tjUbzmWs4K9/kgIU7cOWUe24AlSYzcJXHy07Tm2AEn/0qSopSstgc1qBLK5lSnLOrdi13Za4uigf - euZOTjbJenCFII431F7we370zQpZt71A3LIZ0CSwz4AvynU7cD3RKv6Dmy/0cuOQdLKHbM44tUE+ - M04kOyqxR8v9M8K7frsNGIslNBXhWOBlv4hzqO2Wwnc84sue2NSRlRL9+CAyUHQK1m5Rt7N7+Sbo - 8nm31GHXa8aiQFvJek5pQBsr89j2Y19kB5kCsbLgxdjGNF0Ao06HdTps0aQ/8YiUq3KjBxZx3jRh - IqAnv2ZENcrLv/lM/pxDshhn7STr5hV3keAR03WLSjBXRwF7GrSBaMoFY37y/IKHpQMxiqObzZMX - dvB0vAMJNuihdawXv6D3nw3RLuzhzRIhIdictg7G/FW04/feR3D5PFtKDr2v9e92o4AyXlN6891K - G+cvCkCctJBYL3dEiz6RUHxObaLS46Q1N9tVoRW5bzBqQ6KNw+OboOskI2K/6yKe3rs4wndfs4jG - 4pSxu/SZkRLVOg1iYafx7U1cwetdyCQwTnPVXeRPB7W88ygp5Lia2U1JcFbeiqDmXZFNSz6ipT6o - JqpZPIcgNHA5zQPZavevNh5O7hUaPzeIX/RMG93VNYBhxRLqXUcvExY/CV3uqUu3kXtsp96cXqiv - zYok6bfQpub9aZC7/d6CKSvnaloVZ0n+4GwIhOBN2ORlfgfhZ/TIBYnbVhAnSH/6hyiz/Gon+bRV - IDnYI7FWu008erLOQTFPITW1i53xBtes4BxSkVhH9do2j/YT/epxwKVV/vSzi1Re58g91Od2UQY5 - Lnvfo7t4Y8QTs6oOaEwI0dc3pZ2VE3Nhr2gaCQ73F5o29kHAPumjYBKTW9X/8uu4vXyIctcIG6+b - 44gFO3eJtu/KalKHpACjS3Y0H6unxixS21g47/ZBv9xvVE1bhmJmIQn2ox7z/FqXURdx3jBmE7TD - K72am4VvkD+/g1nVANk7cIL4ICXZLx5o1Rg2uYDGqplrKcC5F7VhNMwxHnNNblCqB3awfkWknb6l - dUSwLlSSLH7iLL3O/o9f/vHFz72odIixoBI9rh5xd7NdBcnqvKGKnHoVTVbnBDXxzAhZr6aKKvH2 - AifRREMqFG7G4/oRgamMNtG3hzqbGz1yoV1dQmLZ1I9F9zC+oLTHfSCdS95r7o/dv/WAJVAuHq6H - WsLL8xLyqVUkSg2KYLsl90Dw+xSxS9EPcDjHaJg+I0Hc+lzkGCXanqjTVfamXfQE0PjaIJ42H9i7 - 3acKrMWyCj7+zfXmGm19OKeHmG7x+1XN4reo8cPeKyQ4wNEbb7aqoLU7GIRgqWHMSFUJD84rDoZt - M3pjQaUvvAa9oElhPzW6l3QJR8LkkfM2LNvp/l7JYBuXeuA9S4y7z7Xg8OJn0WBlRWzUcWnC7W0A - 0dadW/Etv5Xg53cY4laoOnYPlZ9eD8rlfbpDnocw76cjjZbPdLOSw5/+DaTJHuLpbL9VPISbLYl4 - D6ppUL8+hHIVDeLLDRm/vqolbs24ov6ZDFqXPxMOHdzDNKwlQuIp0fryp/+Ipu0sRp+nzQBT0Cn0 - tr18EfOTvoH+iYrgMx3jdqKraMT5UTCpKb1Tj8nyV/7jV8HrsWk7k5xH+Xrf42DzW/+5uxLClvQi - Bq2mlt11Q4Vzp5jkx/f7lemVINVZ8ucX//H3o0ZeVN2yNFv4Zi274etN1CoAtvS/I0g780WDbwje - yJVJjhLTf1GlvW4r8dPkKUJqkJDt4fphk2MYA6w1/UP19a2o5tdmFcG5U83BiKdXS6vdQYbGkO/E - qvXGm4TrfUT5cwxp+A3F+Ic38KDvnmrCs/Pada4GsPiRweqKWzTiT6ZAjkKF5kkMFe3sKQKctv3w - zIjXiptbuJwYqT2yK62y+ulrdLPSZWIiHxkLXrcIcb6/JychMjwxtb6R3DOlp4m/H+J+cFbqn/91 - 5CS+oockTeFz6270sPx/TuH2PhQWo0FiPI4ejdvjCD+/vPDrQzw+0qGDWokf1GqZm9VuvRNQidcR - 2dlZ0f70JZD9akeCkVOXifsoAP3M/DAvemnm0nGFmDA8go9VYo119hTCZW1kVDPiEXUQXxUQz105 - zNKNMmpuehP1fQHE5WMUj8AJAZy8Y0w8fNO82QW/QBE+Tos/bcbf2/5WIBrvyCAyZY9GTPQv/PSv - sNtoGv88zAqgEmdk8SPQjOdXgWA6KDQ7RK+YsWozgrnOygHddnL7GbNng7wVeMQPnyv20+dAX7JK - HHuwqnnjihLkaasRW7NfWk/E0MX5Y/smrnA3Kr6LkhmHT60MLnZLMm7xi0AyK4U687r3aLHmawiN - ZE8ORtR5fTYVL/ycIo24bDdnw9n2G/TzC/Mgn7R5VSJAxEtfVOW9azu/5jKH7XZ3J5dI8+K5PJ5U - mGqQAnZ+H1lT41SGxf8I+FR6Zt2BbwIYqOhSl1dvbPHbCrT+Zkeya6FH32lSI/QZbjXR6cHP/vo/ - XUdPsp0CDv3wF4vUj2ge1hdvVj/ljPT4eqbn6cja/so9VSy6Y0pO5kfLfv47emmWQs2vjWPW3tdf - uEf1QAKfP1XTxr4J6Mdv1n1sZFNJnjUEcL3SaG7qbKS3C8CPfyz4WYmH7UEA2AGiN/8dxVQz4/BP - v1t9w7Nu8WPl+87ExBo4xRtkSeF++icQ3oJaTbjFOiLSTh/WT17JePf1liDdNQ/qF2GFuqpSS1id - jtth+sRKNZfH+7/9tAvG36rfpocS34hikWsRamxcdaf89zyDtIUMidbgSEB5wSfKgrfzptwKsFeR - QMhyPw5rnxzkNPoEqw/z2fjDq8t+Z5PDwSnRfKtTE5JHYJFlHqVNtrqNYN9vjsPMDX02vqOdgtx0 - 7VLNhG8288mnhujzWRHDjreMb4+dC/n7vSNWMXOMDbkUghWcukHKbw/EwuN3ED+onmjSvhy08Hsf - SQSf6S4IPTQHTi3ILArfi5+bogU/VBBeSU4Ug7t5M1dfXbTww2AutQL1RzZL8nYeX9T4enw73tdt - AAKdxeB1GoaYmvM+wsZhfAcbe3hXi34AYKOLgvUbOVr3UaMcGqu/BmwcFTQv8zrUtcEQcOW9jSeu - FgrQxExd9CJrmZfyCtxXjb7Uf+WNL9gB1KZoDZtxU2czc41R/vkt8cNAbLLfsoAeh3RHgvZqZvxP - X6YJJkRNocxYsjofgQ8Pt2Gz7Se01I8CwWvVUWPdPlGhPI4NqE7i0+uiz/uWdyRE2+c8cIVteN0y - PwB6bZsBDkVb0V14jOAu8U9quF/bE8KtqcOi7we8Xwdx/72wAh9ytV7qO4oFQx0iNN7cTbDx9veW - fle3C0T3/EY0ar019lFrAa6ThAYr71rUH6J0gJ05uiTzG1H76QMkfu+fYOWYvDZWlVrgq3LghvTK - NTHbrOYQux6PB07ayNmc+okCu8OQBMLR4NDcnYMAeauVN5z65sCG9ZeMINhXl9zbr9cu8w4dMnUm - NDg9STX0yYoD3+fu9Odv9ks/kIO+jKhd+nXcHrY3QbSrSCLe0k/nVJGEP3234Gk7f4/ODM92jKh5 - ODWaOChRCbXJW4E0PW/VMr/lQDNERJXz5RgzzcxC+PXfSDY/WZfhwYX2DEd63LAyY98r87Gz2Mam - /KBaW6z514ZcnX7Ah2FkbTvLAVwc+UKJdg/QO1MtwL95a7ytg7i7xn2weZi59seXRfvZusg+eu2i - Z1jViMGlhMtpHBb+D+1svdMcHYh5IdrZtVpus7NeEF6bFbHbuGQzVUCCQ67U5P5GjsfvhymVNodV - 9m+/48187oefRJc2cjzzyeMF3S65DNPid0zLfBpKvqY0ivmqnYghCmjpT8Svr4eW/272IR47SwsG - /K3aLq3L4c9v3wgDqdjztOn+f04UCP/3EwWrwXkvZ8Le8cQOug9V86LB5iBL1WRXfg5j6vVUfV3f - XlcE9QqOzySg9qU8aDPtyReUJrGGdXeb0dwSmsNBjmtK6jKo+AalM0LXQ0aJikJN3HO+CTEr1tTe - vXtttPK5xliYauKYaxsJF+cjwCpy5QCds6ntnFv1ReXZ35H7Xlij+bMuv0hJ1iHdCbPcdrdV4cLW - bsdBorGQ9TfOE4APL0KAL9uv1x8d/QJZ8LjQPUkfqOPClQsb/skIwTFFUz2eVLxrUUK9U+Ywruyc - I8S0oIFwEh3Ub00UoBfRnjQYFaUScktbydcbguCj6yIan87jhe+VrtGgJG7LtSe9gVj0SxLBrstm - qPwBbtCaVI/3pTZuY6xCfPUkag49ZiNlkY6KctqTqyf5jHHXgw+1Bga9CLTORm17SbG0IpQ6zeud - fZTXFGIhy6+EWIgt628B+Fc+p04oJ2jKI6Ziv6kKuvXKE+KD9WHAw8M6Dxv2eFfT96tIcIm4K3Hp - ZmCjnzkAkT1Z1BoUIftdxz2fXqheq1rLf9v4i8/a+CIRi3StR8Ek4ca5TnSnHsR2npzzEalZzxPl - bEA1RmIWQHdcQzCzE/G4Xv8qwNvpiR5X54fH2QMqsbgqHuTsyY+WRfOUYN6/vIJ3j9r4edx4KaC2 - 04gDJ50J8JhWeL3ZBUTNHyoSp/4TQhesb1RDX7nqHv1VR8qYvOjR2D4zIc7LI95vLBao99e+7b17 - qODM9e90v5HtePDnUEeWttrSHe4zb45WTQrIbiXqVXtNE0ubs6G2Y4Vo45dmTIPxij3H3tLjpmIZ - 3djVF2IWxMPKqZKMg01qYk0dQxLdH2YlkuO7g/q93tPtJd5XsxcXgCORU+g2ukkZS4v8CPqHq8lx - bmbEs6fhYl21Z3o8iR8kTJvwiNXWvNG9uPZa9nxTE74oUsjxOR8Y7yiNjFxT39Css4psUL2dCcM4 - 9vRomGE8qmwlo4MaOSSYDBKPncHNoITfAw2ciovH/sB32J47m3pJIbFpd485XNytnjiqPmrTE885 - Tl61RdM6PWqCXNkSPI636S8fZnY+6nByTpdgMt9rbcZj4eLtVXnTGwnX1fwNQgl7jrulZEq9VqBu - EeHVk7sF6FRwiP32x3gGItn+D9KuZFlZGAs/EAuZJMkSmWUKAiruBBEFERkSIE/fxf172bteWnXL - ITnnm07CvSTvnD/9pBk4V9UiU2yZTJBjkkJ3KTC+wWvDBsvr3wDdVxGH97TNiWMdCepBpOIs+AY6 - b6leCctUC3AIVA9ItcxBuNUvfjwOwjAP5syhI5lWqt1a1+PPzdzA14/vcAAmlszBb3ZRz75eyJ77 - gK1eA3t41588EUtJSEjeRRC9zXcfvpgRg6WOzi6cr9U5RPya6PzxMfSKnSY99Zz+OSxgDt9Quno5 - VU+qli8sWQpQd7GOrWFF+Zi2XgoWpbnTkFOlfNz6H6b6CxLOqjvA/EtlwZtdHolw/B2A4ONYgfg+ - 5Dgkbgimy16/o4UDZyKs58vAvwo1A8b9CUO0TmoidjMswcPhWgKvpPUoahYLba/xqQ0FNhfPZcO7 - piOolb7epFs7Fbx+YhciNTI9EbKgA6vW7GmeVhmbN/xF9zU8EIQmoC/VYXCU2Clzkipyp88j/9Mg - aK4K1gIBgHmuUw5OiDbU9vHbo+H55sIyOzvUTYNiYCVIeVhpc0pLtT7ky/6VvhEvUz3c2WLHfiFx - NUibZxBKT7OtpWV6RfAx/y70uOHX1r8W8qvwQkugekxkt9KCHhRfFP/xQ4TlCxzqpMA2tzj5+rz6 - MnTPa0BNjfnJD5OAB7XfHvBxw5+FfmsNXW8aoaFVd2yQciuG5JA7pI65D5DW6WOhwgQlDca1BsuY - 7VVYwyjGuawZNT/adoXEvChwdhg7tpx/WgG98zMn+1CZvOnxll1FzJmDTdFTh7HAs4W+1u1Hr6nb - 5ksU4hm0oqXSoIJ9zXR/KdCRs+7U+Sa2txjmGEESZDIOvfIwkOLWNkrcOI9QCm+7geELHSEmv57e - DruPN7/HwwVJ2IVY42NHZ2/7laHn14jpMx9PydokaYQQKW9h1yZ1vj7PiguP5f2I89FWc1HzTAPV - XaTToIN7wNKlz6ClyvuwhXUJhL/92u1xGFYXtd34W2lg9S4/GL/fLWP19Z0iB6cJzn4JARJoVQ2N - 5KoR5HlmLu1SAOGGv/jGF+ofv3ToHvI+tm+uq/MVuvko280XmrufkdGn9xDhGrY/ik9LCtZ1XzgQ - 7EiM00W71NLTO/NofX9FbIz2A7D2c2iQk58P9L7sL8NCrr3x1684Ib09CCfwiyHKzTe9/7g42eol - Ra2nX/7wIGflkMjodfFMGgblL+HLsjdgMcUN9XpfHySDs1XozeJCvWd+84TCOGpophWj0bKsgI2H - uwLPL3inZ5/IOUve0AcTmppQfKxtvRrdduZ4HR1csAaB+dtFBH01g+Bk7mnCbtSo/l5TT+/9RNw9 - owjlpU+wLnwcb2YViGEllvyGN7thmeRVQVbaFNhd+GEYJeSMsDYDmT6bR13PXOeEqBASnYZft04G - FScOIiejoInv7NjiHXYl4D7iI+REtfNoAesVhQpyqa8jp6Yqzp2//cBpr3n6+m5GB256LZTrB/Lo - z7QvCKTqCUc3sxhYY91LGObxnnrTSfGo8o1X6J0dSj2zT3XWClqFpF7kqJVJARAmqXIQHG4nan6e - +5rt7Uj+46e/9ciX88/9t170Fii/fOU7I4aD/b2TeVyoN5+upwvodzGmnlsdNr2whzB6ZTa1edED - q/WNK6jf181x+ie2Vk2VgmKGDj3XzwWspx1wURcsI33ev+9BPB1MDga7yNv0AfAISMsKRvvsQ6+L - WOVrOkUV/FtPM2re+SpeYAZgMj1DKcVLPgeDq4DvadZwysvqwD5tegHPhOYElXA7waR3Kmz8L/ir - d2+1RYcgvJ5DfCiSfc6WEHHw6d2jED5+b0D9L5shCleH7N+zMGz13cJSIlPI331tYI+x7eHljFp6 - nF6VPqtmyEM9MffUD2S+Xh+26v5bj+O31ZPlYi89JMFdpnbhCvV6v6NKEWbbxgfj8RrYsNwUUFlr - TX0HAcCE3C3gRzrYNBrEiz4H/rWFdddQetj4cJ373gFAPjz+6rFmwyuD8PJLH7TYnX1vAVXQQJBq - JyLE5MnGV+FkijVGIVV7cc1ZMb555J7ngJR7sxwmFLw5wC2CR/VjsEsGlM4OEiLDJbM8smR6vn4h - 7NnHo0fXeCa9bacl0ltWhPtwJ3sLfl57JVrojDEWM4/+6a2SjSUuTuw4CD2kF/BG+BYuO4Uy9uqU - ED4c2P7TV3OYmzOQy3ClQW5ljGT3/bhnxz6ihzJsa9prPx6eztYXm/19TdhcAgN+p1KnAezGfNpX - hxn1PrbJemtd/U9fA0yGPpR+6jrMOOuif/tjbfpvkQ9xBx7d7m+9c7AefvIdzrkQUe1T6ImQC/EM - 36dXRr3kswP9rAwG/MMDxxr9etr8FTxkakbzwbdzSfzJPdz0+savr5x2tdLBU2A4WANXLplWq1Rh - PB89bOSnU87n8bmB3bFcqD0AvZYcJW7gQ049eqrCMGHScW3RfoY+vb3nc82jW6zC5smthCdIB/yT - qzloR6ecmvj3y1eh3VcKmcwjWU1hrBfq7EYlTJKM2necsfV+F96QsxyfRuBr5GLeZRyoyuWArW1k - O2tMVKCDLwk9RrsnWNnx4cC3LJf0EVsmmMvw5aJN3xJudTlvuZ8jGUXuecRnk12BWPOTBbWvEdJD - 8N7VS9mEI1R9uND04RN9Ti/aHRrao8SHWyazdSwfPbT4aKKJ7Yw1CbSbhcpMLbDjfc1knpvvqESW - utBYFwzAuItF4MbPm1/tthOjBw62oqHie+acBhJj3oVgIDoRpIjm1By6Fl7Nq4e98tLna1OffehI - Z0q1zU/91Q/Y/N1f/ydzkn0V5VuaOdbS1srXqyuv8MjdLOpXvzBh58OQwatMdqFS6QKjazD4QHwu - VxzugDHwc3yIoTHxDG/1k/N+kY7g+rj+sKMcPfCnxwA5WQXVgjlivPIIS2geKyHci0WnLw+hbEFe - hoTajblnLDZMA2By4bCz6ZuhkRofBYkihjsYHjxhcGYDuq0phov7+HkLKrkemkvwoYdbMoHpr9/Y - 5xLT4HawclrenfBffd7EV6JP0nLrAXv0z+1S9i9nX12eYXKtTvhSSQ9v6UHRIq8T4z/9nMyfO4qh - LjoGPlXHOh9M8KrAB6dXbJ6b1pusWu1RPUdvepxf3vDPv53OxhfH7mz++VsFcaXbU6fKrC1P6Hu4 - Wns+hCf2G9jDu2sw8+9v6qLeAGLhxAq6X8QB+3/4Md1xC63q42KvvdzqpX3aLtwf2m+4L4ZaH+Xg - OAJTVu7UDm/PenmsiwXJ7dZufIaT+fTbreBnHmfCH/NoEKXPu0Gng5HhP/8mbv2BPl/N3fjcq6d4 - u/MiC/IHG9on1+cCyxZU5Ave+ndJ1qTsUyAyF1NVdw/5onCyDDZ8xXrAvT1yKZweXn+HgWx5Blui - oUvBufy+aRBbHzbx9Xr/+704NLp8WNrtyWlSKUbYVOWdPmZ63UL3bjohauHq0emVrjAbLYZ9Q37V - vxhKIqre7IQ3vmBz/Si5f3hqDveLvvkxDvpGlWJfPldsffG/GOw+9UCD9+GWCAn4GCiR6pDwE6r0 - P/yGd0WSwvpLvx4LzSgEGx/i4BA5jM/jRwNrX57wYTWovjxXXkEZb8YUG+AKpJP5FMGR0JXIxRsC - 8rgerb88Cpvhz6zFo2W+AdxZPNn/hos+8QxcgHQ95uFCjopXFc9FRTjsJ+wk79/Ayrvjw18V3rEr - 0GqgW17xN+EJpwq6tVQOuQx5edIJSg/vgUlHpYVqd7HD/W1+D3OFTuEfXofzVf2BxXntR4jF6wN7 - p1zLly2fQp0sXsL9t62TKbfaCj5ZPv7hdU4fI+lhdNEJNhDrhlUQ1xKdxvWGj82wJoQOvKI0Uv/B - tl0+vXnrd+S6Nx4fb7NW849DMEJF7gE1q6fA5htrMwQT+qRGeYKM5X7HgT/96JUXNxGI/XKgoNJ3 - uEzGkDO7P3XwUKlSGGz6nZ+TVEM3357Dz/Un1//yBf2+zTlTJujjkUgp7H5PQhZ+R+tphz4zHPuU - Ud/S8rx77kQi+erbxNgAElgSMBnw9iy/NAzLwJtPdpTBImgSbKs3hzGV3nxopW2Bw9EV/8ufKdd8 - KL4s2bD25U2EJ36VsdtzF0/Y8i9og9TA91ZHObsjhcA+wwK2LlLrzeKu9cFbVkpsGuTn/YzzFMIp - 1utQtCzem6S1yRATfgB7q/0F//KsP7+qeu48rEgPO8Xe7QaqovfLk1ayE2HPgBQGbKXe9Pd+NR8v - IXe5nfKZCFIDxXr54uAj6TkfAI8HtHFe9F8/bPkJ3PgFu2HwGZj8g6Wi0TzDdmm+GXGkZwRv+roF - smY50C7ZE9g84Urz4CPn1L9szxjYQxlHbxB6M3tWb+gfj4Bqa1wlSxuw4l++dDsr8tD95HMJ5Zd8 - wX95zT8/u2pRgM+S1+RjYhe+cnRJ+9evgF53xw7iy8+np1cYe33N4gvQuUdID6fsV8/QrUW0+X1s - SBqnz12WN3BJghRr0VwkonNx+7/vR+/HeAQkXBNZiQGPsft0CjDjrIr/6V9bvzVgelf3GBb7JKZ2 - gD9gdVucwfyjvDCOlsVjT8U1/vkn7IgjWBB6cTB/yBp1T47lLTfrTf7yX7JvhjhfpfOrg9o1U+iB - E17eNmRzkXJMLnjLL+suAJ4IDe1ZUhcHx5zNj+4CuJMYUjt124QMXE4gyu33X//V7BqdMyWhQk7V - jxgOvDuNLeyfSk8eiXWsl61+4OYnsKqmIJnxjWlgx8sJNZfoy6gIjAviLNcnIu2+yfByQwX+1OqI - S2LqjCz77AKz0WA0C8ecLQ4L7jBTs5Va29+zXfIKoZR7PT6SNgTs8poimEWGRcuf63mE7/xof+SM - Oz2/77X3x9/w1XvpVn91IiRKfAF//s5LPk+wSNp0VwZlF2Lt3k5g3S0igbtXXVDvklu6+DIF7S/f - /8srGXXyb/zPbxyqo56vMVdlEImsCVchHsBwe8g83PIowk1mpbPhXY9wf45dam35wRrEd1X6qbyA - rU1vs1TjNj8/xiEDHzyMv6sjwlnn13BuAUqYMJYuXK2Pg+0UL8nyek0q2PJZqu6+bCC2Q0Mlnh8S - 1v/0mySKERC37FZ/7idGRLMiwMmvBxxM67fe6gXCVK/hxhcS+/3x9/N5f1ITWS+duHqnAVdgLnW+ - 2aovVSyKwDu5FQGSPQysabM3nD0+oZddSdlSGAcVAf4QUnPrn80vvgGHKoxVOqq6cBenN6TQ2YXy - M9PA5scchHTTwJ5Jn/p6bGYRXU96sPHDkUl7Z+j/6Qv76Z4GcXW/Cvjz84EV+cP8x8ebP8Hui6v1 - Lb/T4NPLIrKIuy9YXyZSYVrKKb4mqZwMBRKrv3kKDexoTn67oJ2h0Bg3nLVJnSz75VxA3jxjUnkY - DMRPpTcg4/ogOznx9dmsjm84vLn5n9+aLW7uoTAaEr4sdeONVRD78GnfD0S4/HiwnMArQtRf7tiL - q0WnQu6WUCr5iD42/l62+QxAfenSILDe3joNewsKaW5u+rWpRwBQAzf98U+frNKnb+Gj6I74gqFZ - b/mlCg/ObyZC3gT1PApgBiZUfkTe8qzFYWaGRvH6CkmTPpLl3o4tZD+0p+f+/E26Te8C1eHe2PSJ - nPwU1SPAWKorkaiq6N2aPHnotra46eszW//0w2KHbQjRnQOLws0yZEcIt3nJJRnN2S3g2xQu4TLv - quQffzU2TP/0ZjLs7UhBPgx0GhodqKf2id1/30dLhiCXEh7LYFY9TFyRGrnYqaiEt9rx8OUGi2Hu - fjQGumfescWVvj5c1aKEUnL0sa46r5ylK3L/9GAIX79VX7ip4cHGP9sNncRbTafO4Pc172j6sGtv - HG1cgXG9xuESZ0HCY4B75ZYXGf7DJzY/qhT9zc8Y/2nymc28r2x5Mc12RjOsh9+cgeK8PWNqm2dM - +8OlhOo4aBs+n7z5cQiIQvgZ4kCZcL1yLzQrNrgY2JyjRp/kmFyUtFVYKJ2x4K2PLBeBIqcY2y/3 - lrN7AAjgXCcnO0v86KvMZzPc8mgikunBxvx9ecPndeoJN6vqwFM9MaDfvSrsK3eWbPoT/tPvh1v4 - BrNbRDKglRtjF8d8vhpyn8FFae9Uf/Fuvd5c2EJ5ki18/tMzFid3ip7Ye2zvl2ZYNLMroKYeeKxd - Wy2XhlfGwS0/Cmf56+QrdasIma+wC/ebn5mJsGugX7xXqs9USbrgJzsQ2uNCgKRVwzTbI4Rach+o - 6mFQz+F+b8GAgpoe/MwEghv9eLD1D/V9eWaL81pG9JefYCGp6qWDdQW1nTXSv3kCGYMDB7M0P2AV - m5+aqWrDwbHXbOy1J1KPq7q/AzXtGny5SK0+xXDHw19RidhtuLAWp2Ex0BSed9RyD0ePHaqWh9V2 - osdO0ixfJqlzYAM6Hpun38lbh7AgUHLFAz6csmP9l3/BSmEU60LPvOEaPTJ44guf2n/9tOkttArc - RC2hK/N198wiiEhxo044ArD4u5MMjorhhXv5pTCiZ9UbvZAoYaO2+2Eh9s8B+b4x/uZJtRg9lxj9 - zU+3ebQ+69rHgX5Tn2h4T6189VOpgnfsyPj6lzf8zaMrUp6p/tqf6xG6NY/OWnTEl2pdvXHLM5RZ - esU4SLx0INUHWPBOPYFMWx48qgxs+bF0+MtzvIkXLAPGPruQKfKy+m/+Cy/H3qe2Xe508ujS+W++ - Fe6EpBpmXZscsOV9pG55ki8+visw7twx3Lngmazxy+bhcpeP+BgqgcfPzZfAbb5Dt3rOl7NSOnDO - pQirmRow4WH4PKSyM1PjUPlbnl/E0NHTmibww2rKWcH67/u+86EY2F5+98CSPx21R2DXdKdXMSrp - GNLoLdb6uk/jEfwfJwqk/32iYDd+nVCYS0Vfn7yYQRFwS7gubs+YL3EWLMbnQM04nz1anRcLjfdv - QuBO0Nhy1tc3ehdmRPFVoGDWQaPBA27O9Ly/tjrb4USDun5fQu6zHGvB56sVsmuOyb6YwmRpxRqi - 5XQnRAH7aJASK4rh3hAJth/PGCxnoBnwvEgidlNt8ua4l3voLktEg5m1+dIWdx6Sr1TQkH8FbD4c - vi7MDrs7VsW+9X7OKXJgsTtbNLOMKVnw2XDRKMpFOEvzz2NhFccI4CCnYWQ7tagavgK1VEux/g0X - b46KTw+mK+up/ywBY/Jjd1EieXuqWCA6w3x5vi3YXS8/aq4xA8zlTz5CyeRjb9GOOd+k+xU6YCY0 - c7FWS+tudeHvwU00vB4+yWLpgQMe1b7HGbHafKW0I3DQE4Varx0HJttUCjTrL41GmX3z1t/YRCjf - cT9ClLNdi1aviagbM5eWZ6DlolbLPSTRR6Bq86gH4bs/xahbhk8oFkOXDEIIV5g9vgEOvKHX2VVf - DVQd9BCHB8UEgrSaPLymi45V7JFh2X2tO4LSdodFzHVPLB56gSS/s6jX/NSBv5gZB9JT6xFZCEXG - zkfBhdqzs2nM/S4Dv3MOFVo7YtOwcT6eqI0/DWm/E8FheRTA0g/nDPGfGFDLvrFk+fv8qoNuCFwr - SYRzNXPIuKsCPvtfMV+a0OYBsbiQBl/l7pGLFJSK7Gs1Ae/44/Fj45WwcQqPiEG23RmqxxmSo5vS - 63RWdPJX3w/4elD9CrxkxJ9ShZrbttRva6LPezbG+3JPeexxL8FbnOEXwZNmuPT6LQ9sJXEfg/SZ - GfRyl8KcvzLZRfDt/rAXdYYuTAttoOl9MxrKx1c9592rQRzyB2xoym7oP7GvwUm9uDhP3irYm2Sn - wTlWT/RqBKUn9nHioht0Q/pMAfNYuAAN6vaM8O2Tm7pQB1kMhd+4p2nCVWx+KqcSWQ8pov/2czCJ - o6S/w4D9yo/BShpdg6/u8qW2D9It8Xk7yLo9jZBs9cc4XUhR6xoVjsJu0me5C1u417qOxoU+JILw - kRt4WsovxmBkA7uutwhiTeJxUKxHJsSNRVBiyh9aysdDLVztZwZNyGk0dNLdwEiyd2H5kG0c7A83 - sEovAKGAP2IIi+bpSYLlZ+DKKSb1XIsla3U0Kvj7NS/8eJyHfCHD+P73ed4ZKjUR5u8dfablit0L - PDJe4FYRXctwxkZ02OVsOuk82t+28+/PFuUsP+QKnBZ5IjA43XK+lEYHsF3qhXz00moRwCKE8zzd - sKapr4RJn/lffxLuuTHS+b3LYHJ436j52Xve7CWtC7X5dcG6+pjr1YtUEZ7R80dgeC3y9WZGbzTa - k0wP8YUf5lJqHHjfXz5YTfZmPhx2WQePMjJDbqt/6pqrimyYneihUQVG49V1oZNIa7g/YpYvc+oQ - cDjMBb4fbFZPnFpp6NxqR+pamQeEh8w0+GqdV8jFSVgL1e1yBwpJA8I9Wj5ZMH3E0PdiipNLbDEW - 5eEK+Uqm2Hh1b33AKCOwGV5P6jR9BoRr8xBBF3MP6peZzCi3bhP/KLhvd5ZmQMHopmA1vSu2mn3O - 1vDLVuin5IHNqXl4QvS7h9A7X1Sqa7wHGO/jAqjKmw8kKT3q6y1UZah+Hgk9CrvtzLhRu6i7vSn2 - 7fvBm50+vqM3nD9Y756/mr+RsVO4DzKo3xM96X5+9Eayms1bfXoJP3BFC+HQXOgj/W7rraYNfCvt - E2u9KQ/kdMIVRN064XBbn6Ww27eS7H8hdpL65i07mbowlDSbWpH8zMfusY8hSGOE9Rv95EJ9UXv0 - fMQNtXqX10lzhxkMf36AYzHXdcH1jQ4t7tHC97171OcXvrrwoVyvVPeTK/jDM5A1vIDzPFjZmnV3 - DaJnuqMb3ie9PN168ND8N312t9BjdTQ1sGl2QVgdrzzoC025KDbXXsOal+NktblIhutkJNh4ntph - /qx0e4poMNIktpdhec+nFSmjY+PynKlsBabfwfByWalBmjFZW1+FKLi5OWkejxGs2/tvCUaBz+0u - 9KTjMshww9OJhU8E2DI0BqK/2466XP7KJRcdWoTDx5eq9MPY73TdlwqV9iG+AP7ssayaKyTu5wE/ - C/WTS8eOvdHQ8n2Y9lAe5iXe83Bs9AM2vcsDzKpw4pG0ORAcRAed56FZoXvyodS+pY+6WeJFRLkf - qhR3kA7LUSUQCjP3wqmsZ4lwXzseKcpRwRdfeHkzMVoe1uTs0Nvs/fIF1a8KdeJhwRF8cfmi89pb - PjTCTO8zXw6rC9YRZexiYN+ojFyS1GMKqVMt9HTLWyadVKGD7XlM6e24pkBYr58G2tNeo+Hux3ks - tA4u6qL5Sk+Q/rx5FsAFotXPaXJQV48ZS7HCZ6ZkIRdol2Rx3rOM2lPq4Ju8Vz3+cKAuPM7+hFOD - 3OrlO3cy+mSTSPHhIevzec98JHevDz2I85711XH7rxz54JJ1cV2wzMVioaKznziMeldnlaw0sHwo - Nn1ueP3x9DRGNs4Z9WR3z6Y/vTUMoUj1zFKZ9Llsd2i18E2Pu2RfD5KzELTxPxHJ+Zds9aqi2zq+ - cFKlabLpn1Rpu6X7Vz/f2hZClFXlD7tBVeRzTV0FzpOAaPiW/GFe3GMJ16RrKSbzL1lgBX0oPoeO - SJFqeyIIkAq1i3/Hh73ge4vwmRu0NNER36L0Myz66ajCB6wfhJwCbxBuX92Btz3nhHzw/QyjbhQF - 3PD/D29rxvt2ATUnq7Y7lOeaPZuxgqlf/cj6OIbJUp6XNwycp0WPo5p6SxYjCwXv5kjzgHw9fqVy - BEFsSVR3dy+P/T7ajIykqOlVDC2Pb5SuAfzSGDQBOBjWwY8MeO+FC3aof8yZYuUV8I6qhK/a/psT - f3dtocCtd3z4PnhvnujP+cdv+er4OTG+5zdqkyrE5bZe4lzu3vBybUd83OpDPGR3CLf6pHbsBx7v - it8ehq7+I09B3rPh1I4lbH7X23a2+ZOwAkQz2uV7RjXhrHqjdRBjIOn+DZubfhoPiS2Dbb+oER2e - CZtNFINK3KF/v3etTlAGNyqZ1B0XNRcXgDjwx08X72Dra5xAEf4+/pmq2voBy2sX+MAI8wNV78lO - n7Uz8iEIDmcand6uJ9jIVf/wifzTr1/wHEGx1AHd+t3j3/Xkw/BwOlFcXtWB+ceLAqN431L7ouhs - EaTtGR1vSyfSIdIYi/WegxeDnggb4Bc0yvQKkXK12lB6PFewTFUowpteI6z7iQRG/uZrcN4/Fnzf - T+4gtr7KwRJnMplm1ibLVeBa+NnfPHy+Ve9k+e5vMdBWWlC/aHYeczxk/dVzuJ4S2xu/x8GHRCES - xnlMEvYKnBEqmOdo/haselEf2IFmb31pwAlJPV8uywim3dhSuw2OgxQoQwYn7R0R9BzbYXaYOytR - DFoiog57s5qrBJb7iQ8JhokufIYwgke/1Kl7Ey0w8y+YAVA1FuFu+VNnhXEI4aaPaXZW+GFRiGxB - Q2MhDftnlc87sRqRJCLtT38kE+NHbX/JORn7gpiA+U//vhfexlYxOIl4OuE3KBhN6OGJq4EdK91F - fKkn1F7bOJFyCgw41XkZsn179MT30nXgT3+fT3I4zGocpahm9z4UC6dlzLtLPdj2588v1Wuvrncw - opJQl+M0wAv2EENeuRRYX18iWzVLCeGm7+hlWr9gOV2XAmn+PNILMqdhXpp7C2FGADVYXHuL/n7N - iP9EAJ83/SE9frOG8HV/JsKf/2SpGqG3nN1ofHQWtmhPWMD7Pv2E/Jt8dBYryhses9NML5v/IMPZ - KdGfv/TDK8zHwFAItEj1oVlS3/ThsIt6GKcvEI67+JXPZqP6YBWrA07agQ7TnKoEas69CqVbigZ6 - UlEPZ3f90WPvK97qljDaD5x1olb3wgM1zbcMg+quY0dlZ30+RocIsgC9sCWqeb7uFrMHkt9b1OSt - gC0nfDCgfvIHfMQtqcfPy1ZhLxUBPkDfHsTiA3iZl90LxqoiDovwUH1oxoKKLacfGEFTNSvHYoDU - /cqpvorBpMDvebWwLYaWPoUqZ+xb16ooLhVN5+XLRwR/fHU9sCafPoMVoZOs7kPFoN98vXpJA4tg - rvER65PHAj0RYSxbA+FtkwfjUZANcJv6HcWD6CcU0b/LoOmL/vmfBdW/Cowg7ii+/X5gvjx7Awyc - ccIleZfDVPU7F915eMP4aHpMzB10B5v/wYdpZ7DFDntRscbLE5syb9Ti7tkoqMzEltqrHgH+qdwK - qLlNix/3PExIT08tckO1pf5OeAP22R/JHx+F+/1zBxZMzzFwWhoEnF67ufgFVwI7bxSomwXvfElb - qEHvWlm4YE85mZ+eEoPN/xORtYdhtr+TAceXCGjQ85I+Y+fZKvOTd3GhHR02i4fKV9jrHYdg0BWP - xcpaIdzeG2zABevSDq0hcvZNh7WMu3mj2Tg+MEYl2vzsuyaVVBNgfkiOVcOC9b/9fT6LPhROcliv - VtYbgHyGSyixI2P/8CvLc3sS/vD/yFUlrF5jTW/bfo3J3S6U98tdsWmLB096m7YMNn4N5Nwb2RTK - Zg/dY3fH9qd39DWFEYSA+8qhJGuqvpRGtKKkwi+svZGjL1/tSCAJ3hX5zcRl0v531mDCLLj540Zf - 8Nl3FNcTK2rXiV/z3WOJ0KI3/KbPSb0uQbkCd5wI2b9fjsdbyVWFu2p3/re//O3hyXAAsodP99eP - 0fXz0v75gb9+nYeRibANy5G6e/fnLbfyvoIYlhJ2Petdz+y7K8CWX1FbktyBaMLtDr/iL6WG6Kv6 - ptdmuLc1HgdkN+ZzgagPt7yB8HPWJoQ1dwdKBy3BWi4LbNmrmQzd1itColq+t7QTaKE4pxwNs3Ph - LclRaOF2rTjk/l7b/K2DW14SnmydsK5Ruhb6QSngozOewG9/2ncwlFQbx3V1HDb8iuHnEF2wf5la - MM8Cu6DwPnKE72E2rPwh+w8AAAD//6RdSZeyPLf9QQykkyRDBET6ICDCTFAREOkD5NffRT3v8Jvd - YS2rykBOs/c+yTktVKZOwja+D8NQ17RF/ay851E6deqSDIcI7viQeBqrUH5wEu2PHxP1WvsqTbpC - QsLRNOY6v3d0cdxBg/FVfsxfR4vAdutFR9rtGctr6gIhbmiDMjbi9/znhWzcPl7gaDoSzhJeqBbh - +Iv+8TFNL8OQFKdKhn/xw42pNMy7/aAyv/hYf70Vm63XxUFjTlNyVr4GGDMvyYGedRY5FZUQbs81 - LaANaeGt3dVTu23lR0iyxPnzXzrnT/v1L35qpa0OHGP6Cbxkpx/GAz9mS3A+8WiJkyd+sAcKyNWc - 5eP9ozv4Utdfm9xVSYdmdayx/K2airBS0yJnxW98wcFij2xfb6BMgeWB52kEWwoLHc5Bo5A/vMs+ - R/0Fe/1cYXuMtqGdtZmHjnYyZmA8Z7Ds8e/f57L4Kmz6mM4LOIgeJHaHBHXtU9iDVnt6xHqkRrZ9 - 5SqAte6fsYIqWq3kYS8wYoc3udSnaiDrUOuwIGU+swu4gOUl5zWsuHrB8SxaYLuVwgP+0x/s9Vut - A081hLyhJ0p7ZcCgvaEC7JeW4Gxv578dYlhAoscDtu8KqkiIjRY8n/wNn+ZSz4STv+ZIvLR38pxz - iw5EupdgqtIXufRADtl+YyTIVAuDrwddCzcxlAvkYjXxVq6PKbd8uxfUx+hNYrtuq87xjhDc8ibz - WFFNshnDE4+coLx7W67a2fJeOx26jhAQbJRWNn19ZMDkLgNsXpjHnk8WDcnj6euxS6JngoRtCQqP - XN71YdceUcwyoC7pxTvsfJEekORADF7n+WbHCLRiPPHwploz1tPVzlbGTB7wZcsjebGfCSykv/Xg - D1+ckptKt/AdlNB9zxM2JrkKV0ZuZfjH12+H+ZTx+ga8v8+JO55xtes1IyztDHii38HwT08E1Pze - yK7HUdrlj8cfH58RIks1lg/ISrdzxOLrGMsZv+sD//C466QnlX/e5Qe6YlElZmGNdP7KQwCH8IDx - +Xqb1FEePznsmF7Z+WJib8RcJVCcswf5xx/Q1C7we25LjJe6CoVLozuwlc/KvC2/Lpsc78hAvp4s - nPlnZeDFUC5hUvaE2LY0qYuGJQv+zBzht1IBlWyCuUHZtu5e+mGaYb1iU/un76mfh5B9zeAywiVQ - rrMYsWtFr82YQw42e3zFTDZt96kWY/7KYhwl12oFt1cB+4FNsWmJAqB1bgdQPd6KOSyEG2U/+G2B - PZ5igxeykP4o78CPh2uiKdJ72P7w5+GQ713yI1BNWYp9sN34cd8vNet6I5SAsk05tp8nh+56vw/i - Pr+QwINDtex8Ttp4IhE7cwO6mb+xF37fw4EoSqVQrugFAwyPz4dc5gzZqy1VPMRhZRLtxh3VJRJc - ESZcac3MoXvZU3/VfEj0aJid5FPQVS27DZ5odMCOCBp7afDsw+uYnb3FlOJw2vU2uDgM+Zc/2U0s - eqR56YlYO19hL79JlyQ738jp5l8HaraghKcOQ2/Bs2+vQ7g2aKj7euaNi5WtySmP4OFe/bCJ+pu6 - XlHrg796gLp3xCAr0lh4/7Uv7Oz4hVxJzoOf+ULzlH2u4Vg1jxJqGop2+83DZWqWDWVV9yH6eZnB - +G/993uN1V0P2CwgjVDjK8E77PrVv3y513M8qOKBLs/Re0HlZBxJdGn5kJj3xwIvcZd5U/ZZs2kI - jw0kzybAe7zPpl3PAKZ4OJOzOgyU3ka+h3H/umB7ee9TgcB7Bo0TNN7xEB6HXgyNAqYPWhP5d5cz - Yde/oZNqHdntMVwqeZghbbWapNdHu98JBBr4qyecWntQJ5io/B/fwPj2YoeVGJWM9viK1dtprpZd - 34fe1KTecbHNbAngNUFnl74I3vV58uxEGTLhuSOXQwkrmonV6w+P4RelMV1ejfpAQ3LLPKltBnVs - b7KEvmqeE3k0uIGCUYmgrn+7WahP6sAqN+TBVgkNfBEV2d4i97h3jq79+TdnT3XLZFeBBb9o+OqX - Evjjf6ia78a8dtdZXdY6qCWPbG9y5hwfbCvgILy9lg8JjgmTkbUEI9j1au+4Xp2Q3xL2Be86MvHl - qvfqcpiWCPlIbokOy9HeRjCz4M3YG9EoVw/z2t8cWIqPlJwenw5sE4YMsGX/jU+aYICtbEVfyi/e - 1eO7X1Ctfcr2cH2wmQdsabKXo18uEBKmxC4TbPbi0lQCEuYZ70+fH9H7G0P9q4nEevd7TxfHgNBU - 5XjXo8yMTodKhj+7U+fJfdf2+tiKf3rE/B2m+j/8YnqtSd7de7W3VudeYNfv8am7ejY1pNyHi1FX - xIiuvrodVrcHqIcUJ3n+/YfnIW6bfo9Hd0DmbyoBgrfEg/IN25tmvXV4Kp713EeKq37+4tden/SW - 4+lTrfJMRDixGiVZwt+H4i8+PwTjTXQX1PbixGGOaHhS/9VHFxHmPeyYViG3b9wNm2nNDtj5Atnj - hTp6l0JGv7O+YvPDNNVsUyUGO/6eK+/9BFvHnGWpHR8WVpguruhf/eAPP2pLoodUhkMMUmwv/+Lr - zPdjBG05eGPtzRoq+1efkiRbIn/4cnPzlwZdhwv+4SNaTbUMkxSf8I6P7ZF8vgFQH32CT819Vdfx - 2Cb/9OjwdvKqzbNQBP/qOe4jm7PWoMryhweIHm65vR6FIkfxvR6x9odfCNVl+HK9DTtbyoXUOksK - bF0R4Isg9MOSflkf3Bnx7Ani91MJt+wpweFRfYhLyokuY9CPEG1eRtzTCNSpfcsG/Kzb7R+fXXc+ - jqLlGu5TBz/qUNxWDdXQYbEf+wXY+iCzYIrNBcvv0w1s5xvcYH/sw3la/BrMR+UdQaSeBGzWt9Le - BD/0/vQqfEqzBowa10K48ydiNK9tqDUmjf70m/nwcOyMPgLYA3ZtNPKvns0ExgbHo17uemEXzqeP - Hf3pn/OUiiPY1EwOkOS2IonDDf7HF+653P/h20rYvp0M1UebEAN8N3uQ6cagfX+J1i5btd3n27/4 - 6R2699XeXp4vw+/GHonq7pa819dRWP+mWYilii4B7eT/T48C8X+fKJAroSS6YOsV9cNvAyuda7yF - PR7VWbYtDy4xcyLG2oRZL4pXHgH1MeKzmRzAeFF4Hr0XrBO90mWbLe6OD7+uPRKPm2a66NyZhdb7 - LHscQveK83/FQxIr7zqPsX+gdTCvPrpTTSPyhjTA6tW6QKus/Fn63rxwXTsuh+3xXmDTN9/2qn5Q - Ay+GfCFRAx/ZHFxEFl4/4ObxB1DbkxvxMbj7BxkrcJKGha56DPLlqRFjfU8q1eK7gsz4/MLGOh2H - blYiD4RuHhG5LyV1/YlzABlYd8QFbQZoZAg8pJeGI+qYeRU9Pfe53QejwjrQinA6g0mC0sg03nqK - KrBeuTQCzeFrYb8ipc0HexcnB4ZfIitWUa26qGxIY2bL+1lpF64lV2kwYh0WG+XVCtdWm2YIBftG - 7OpzCenv+XUQlsachKZxzrjhIYnQ0PHT+3TjMxRqgXvBV40ncr4TZphKeizhhckdb+3GZyZceqlH - D36c5+/yhAOdXgwrBfe8xc/IcypeZZ8yhH4gzAeUqvZSNPMC3odtxI7vfgdhZAwP9Sexxz5Jn2Br - DnqE3sXwxh6/ve3VGoYXPJJemWkSt+rG8EYELtvqkVQGecZXkQnhelAHor/L1OaMK7DQ6cw0HgDJ - KWNdeYpgrU4rwdenMkzme9RgLLeNdwjKgAq88tQhK8khTiRDy/jw6/iQHyVrBjo1qy0ttwW+/PVF - MifUAEe8sEHQDWV8rqkMuNT7bKAj65fcbqOW0Z6rICgeFSXuSe7oeiCFj573e0lk1PHVLJoThMcK - aTijrJStxaSzUN7KOzFlNra5yPUtGD3jG8HfrASLzd9fe1eUBodjyVKaHVoZ0lVZiUbvX3X1f0WC - zqKhk5BXCFjd0NmgyyYxvgNnGriffg9gRJeMPB/qI2N/xWahJhlHkosvEawHGSaSrfURtoRXUdFG - UWM4fOKAxKJiVRspgAyo/X7OQJhYdT3dGAe+LZxia1BvlPLbVqLZ7TViMqad1dtbCqTbC0nzekv7 - bFzSS42E3puxY01WyO7+ghSRfZKz8vpUnJYXIhLUyPfElD9USxadNPS7NQIxZErUtTspDRq5T0Te - 7oBVoftRGV1WKZ+F9OfYQvr7+ODcNm+vo0NjL9yxr2EO6wxftorPKFclCjx37yuxdn8XyC/TIPgy - JvaVqw6EQc0hBGhK8UOViU0KpQqQcY4HfDr8VJX/2N8Zvc1VJljV1WH9/DYDPUP5g/E3UwBbO3GJ - mM54YNlAySBM42+Df/4H6utX3cDr1KDvm5jz8XDhwtFFlgVTRGxvfA19RZ1XGKFno9yJu0ArE+b7 - 0iCCw24+rGemotrZgoBz8xI7fmQD9jikM/RrKyFuOV6HhXlJCUgv5O3RpztQeujiB2xtyyLnQlWz - DR2HHN55ZvxnzyMRfQYKKzpgM9S8geVvWom2Z3DBUXLHNhF8T4E86yrE0dllEJJ0iZE3Tyr2Rjek - 3HzlZ4ij4I7P4qkapgNpA3h4Wzq+3lIr26rfpYGXTCL4/D0I2Sr5DCvt8RPL17c57M9XI8WDBske - 4mLP0hfz8F10bw+e+WZYf9+2hc8mX7BKnlpIH9E9gGkAz/j8Fa82xz1jC8ZJynuHN3vKqPPY1RN8 - 7YgN8TdbZSny//l3zYXHbEnmNEZRsX2xppYWmKl29CCMfiLRtxKHwpsaMzz6yNv96awS+Z15EA9f - j0Smoqt8WkoLaOibEu98kCg5dK+HFPovG58RsVV6yRIDov30vvS9fCgxpJuBanG/cwbSNuuRsEqo - lW8MsS6LUwnq0S6PP3icsZYVg82qz4v+L77aioTpFq1qCw/aXcKm8a7CRcGxgeY2tbE5CjndHMPf - 4E+sJ3LOE97eqhsoYdvcevz2uqO6uPI3RmV+uBJFcA8Ztf0+AVVbXImhtzn9RazcSOXGMHOn8jZd - h8cmgtvUE6IbUTysf/F/+DoSVtLHmi3MnIuwGQ1A0qXzs+2+n4n+lH2N9VesDKz6xNretbCfV1aF - 4eb+bgvSm3s+H2J3n0LhCg7IBCB53L7euRiLHk55uhH1VL8y/iF7PlzQQ5+h+EoAn0vHEn5Kzyae - xTPDdr8kIhS1T44fdHRVlnltCbpllwAr63XIVtk4B4iwj5pYjRPYy8UnCxCrvcvi4xur7UTYEXl9 - omBNSz3KKYpYIy3/6fPRxTIdcSyVUJS9bGZ3++BjcM3RqWVynHBJQ9nLyfWhTFMTp3t8Ie6Rc1Ag - KWeib1lnL/5Nhujl3jwc9o08sCyIDKiH9+Yffpim7dj+xWccd9sKKM2nCByOR5dY76IIeX7WFCBN - jwPBzfwe2FvUKX/5jsh7fqfuqAXoSIuBJHt8nH+OEMNvlhjk9fmU6nL9yDGKgvOCd3xh0+b6ZcHn - 7UQ4d7LAFuzCkY6Eu8Y4RgwzLIf+uCBJ1wySjIRU49/+gZgHs9CpIKzLd1GC/hYfsbl0fkgNU5jh - ebofZ3CTGpvYHz5HXCW1JNzjze+UiTra6OiSNysE6vJh7yN6J5JHnD2+LfdFEdFotwdib7yfbbep - LYDv/bR//rjkhZGjPT/PsPi9wJJXVQ0UkX96knI0wPhh7zNqzO/LgxvzHGjXmC+YHKCH5VuiZmt2 - bCz45b8tcc3upHJ89yzg7TKo2AUtAGt+eRuwP+VXogspVbdifjjwSLUA3+Z2riaTeDUcvI3F+qnV - AAt02kKbOZw8VhTkbP0+tQSKTV8Q03xO4ZqzaQ59dwzIeXnm1VaKhQKX/uETldPOlEsCRwLzLb0R - hy/rqgVCqiM9vDX/8i+PLKGG6nsEMw3aItwitlnQ+zm0RM7cq819084Hf/HM+t7mbEod0ZMuPl6x - TIL70JvLFcL5JszYiA4Z6PKmKBCjGjNW5LsMpr/13uLliu/n8ltNlFUDJFdcieVNP9n88TbFkLA8 - 8la/bAZ6O60NiJmsJGd6/QK6oSJA//AHuwx005ZVlMJodfCZNTpKH/ocwT+8q29RCTYp2G8Pfj+H - GcRGMKwnPRulWcnexMHxp9r2+Aet9yfFpnQXwKoEoQ5LN+vnAysE9krP7wTYm9ATmx1e4Xa8fWP4 - /pzFf/l7pnq5QfO6PWdmwF21qO7YAOl1Xck701SwfM++D7RhjogirXoo+OFUw2/Gf+aC2teMlRvb - h2pl2jOoPpdsxmSTwRM313lxp9hePODXyDbT+e/3w3VspACWObp60mBBe5TrdIaDJTrzL+pKe4OD - VMKnegzx6aWchvFxHz0gpcUd34UwBOxYcREYVy+cD3LwCKfneWrgjv9xXtZauH2gbUD6eodEPYJu - +IpcJAHOlU1ysV/psJTvtoA/b06wGpCmmvHJMyBvxRMxn52kLn/P0+K3TTxZ1emy4wnJaRNEzsro - 2fyy3Aqg2nxI1AR/wGYuKYR7PiI7vhuWebzWkNdfZ2J8wiLkXhgkkB3urxk9VCkkZR7WMGXMeiZi - 9x1og2EAk7Q0if7OArAmIfMCqZq8SPIJ5YznSqf9w5f4jhW5osekDAAX0cee/4yMi16jAyoAC2zv - +IP/OYdY7BNqEO27VHRfT4P4j+v85z8m8Rppx4NEI991WFM/jKXrC7yw51YfMDOXPId7fMBecvrZ - mzW3CaBLkxCDr5/hsugnBuz5iEQfWc9YXl1eKGGnDpvJFocLJfkGEzucyPmS28O0WOILJEvSkuwb - c9lX8bsS7viSaFmq0a3ffjJE3oniNH+qg7CsrQSNNv7M4+7ftFAGH66R/yVpo9V0t9cFjqsT4nDf - v5VzLB2i5+9B1D9/LxZ7QxoFzBypWV1tCNwUaM2ORxLm0KrLoZM9QD7JPIOH6NstKp8FgNWkeywX - ptkqi+UIfVGV51EHPKCxuzBQD4A7H71otack5F9g/fnZ3HTHxKYmZ7yg7AocvqyvRqW5m8qAWAUm - 6pFVM355n3JQH6fnPPm3gK7aBBkIT3Y3C1FXqmP5bkt4d4sFq+f4CjZMJAVcZvGL1XSfy+hkcfLH - F+Y+8Fb6Zy+gv0XH3T8+1ZQdZwt+Kg15v9/lZ6/NL/CkJIXlDO2BzcavAR7AK38jxiwjhmTutBZh - YHEe+vw+2R8fhLKb5d6xCdZsjcW8APpbqYlsH7xsLhA7S0K8vfef52wkgNWREEc6SbXGrIhDfg8w - PhaXJMmKw6WCFMJP2dbY+WWt3V3CcUbr+bdgW2hcyrpe7EPQhxZWVuusbrb7fcH1F2QeGjylEozu - pKNy6HWiebJv8xmsNEi524bzm9aFm1eaOtzxhXfMn9WwPKdjAsLT3tY0yMaByFgcj3v8Jm4iqID7 - SIcNfPlf663d927TsJMWqD3VtyfwnlrxwxTE8Gj28UzlJsqmsdl82Bn5TB4ZR1UqNaEDg+Hu40t9 - XrNhOA0PgBPrgHd9BNA3u/kI8n6Flc0g6sIs3gsa51Ujl/3/c71rMgDcw4ioQ20NgsCsItQ5+Yoz - tk7UrUxfLeB8acMW/ep0+aenmK1B9EB5qeT4yPauv/udzjiewi1j8hZyVY5JXIPZHoZN5lFnHC/Y - 2febXt/jfqD2snhSx5yrSfhKD9hptY7fxWYPbWR8Wijn2hXv/KbaGF6O0eDFGba7UzmMuz/Dg2P4 - s3Tp9JB7Z9IG1JWVsUxSRHd8kMNLJhKiBkSvuPF4EKEevFhPunRN+MfHoNNyMTF+hqducv7y4UG6 - N9jzPjblAXm2MOhFAUf971dRXh5KGBj3B9Edd8lolSw5AoikRHftR0j9KyvDSetLfGm5mS7Tq23h - 23JTomwxqIimXh9QP94DTzjAwR5id4EIvtknVj5Qyf7hlT7FH3xu9OewwTxRJOY2295UfodwUbNn - AXf7xbl8UAD7qeweyLl+JV74voG2aJoNQn6EWHXFEpCIkwxIgum4T63TKr764QZc2aON5TfyqlX4 - DRCOZfXC5sc92StiIYS7v+GTbl+qNXUWDz2b1+L9blwyULYdR3gaH8PMLl6ndqn3WdBcaxZRgZzS - dUjN6D8+VQQ83fmaj+51honbXZ/qGDLhhkBmw1kM1V+14uwjox0PkD99hzJWmkgo9VP8eCwK2Kr7 - pMPQz+1/eGyrq/EF1Jk38fPJ7VMxe7sFnvM7zDSqo2qDvcxAs17CmWItzXY8JsO/fJP/MsPmV0bP - 0a43EjzbRUaC/MRCvzYSHKxXO1wm+mah82NqLD8MmdLSWTW0KU9ALlZqZpN9zB9w9rQnseyysHmu - 1HqpGb8R3u3f3o73lwSllFmwadZh1b5tR5R2PDODE/xSGjz8AD0ic+cjYx5u+508NIiDid2E6e1t - PKYz2J+XWLv+QB+q7QD39ehmSdnKgQtizEjF5VLv+YvP6D++SloFW4+lpGt2nI0/vDQfPgs3rEng - iFK+gCeW2WOqjrLwjgH+BS52X1SgdDgNCZA3ZsH63HHVYt0fOdz3h6hfvrLHxfzq8Bm+JILDIgfL - +/JZ0N/7jG/sOux60wM+eP9GMpB8whXYpYGO7uE+w7Kuw2W4cwx85bKKg+oUVGx7OBiwle8Mlp/K - QZ3e3omHzHIcPJrgE9i6SivgHz+NiyAG//ThQ9nEM/fHr+WPtqEQuNe9K/ArpM/UT1BiXyes8RZS - txHYAfzIlwvBb/YUEjE/J8f+J8UYhwUEQ3YoFJTl8wPj43yj058ehorflRjLR7W5KJdauO8nsfWx - Ctfb+DQglnzV224tAqv53EqUT0/X4wqrG/od74N+xHdiP1YTcN9sv3HWXZHX/FAFlvsKX3/Ph+Us - umdUdEoJUmQZ5GIFqk0bprBQD6L9BDdj03bn93AyDhV2zeUSLiDBM9j9jeA3+A3TUT1L8NwpIjlt - l9YenuNLAX/P4x3fZbjirFP+6bW8EfEVffbjC3r8CczL9W1WNAumEYRC1OF7p2bZprS3VhKQUxPf - QGK1Rm5igKXf76Dv/J3gM9vDgY0NfGZjPpw5f6mlhQlEgvPjSknsigxUfftG/uLNYrVzAZWYpPOR - zSrKdzWjAWoDnmiGXYbTbXxaYMlIhv+97yuXxmCOGLjz+9cwsxXvwfqb5P/w1fqSfQkuKrTJZct9 - mybpsldEQhlfOultr0nI51KXyDeshF81XL9ZwEpK8Ei8EdezTQzzMMO1tV3snEmRNUmY+MJ1akLs - 5as20DYDLXC/oUGMkefoPzyBZd7AWlyeVGopxxysMhuT+J1tYJsM1ocer4KZ4beDPUpWvMGbXQ1Y - Foex2i5J5sAhPo/YQbe8yrOb1AL3CX3ii8M4kPtMCrjzkzk/8/ow8QPWpPtJ2Iis6RHlhtGDoN1P - OOzT4cF2SUIPukd7Ie6vuoVLcGIgNMxhn1IqnIelIrYMq8eVI3v8VrnlyejwerE8Yt7Blo1NPEZ/ - 8RAHmBJKCnmd0fi+eNipOrZaLXgooenFridgRR64SXM36H6vhne73M7ZFq12CxJLiHZ+qA/zMQQb - JMG1IFoDpZC8WkmE06D98MtrA5Wmv87/xw/O8RpVdNeXoDcT1Tuq/EBXsTZYSUE/wZPQWVG39GN6 - EDRJOUuxfA6XIdYe//imc7PJ0OJYKqQVfHN8atNiaM/fIYIlKWfs7PrABl5mDcEXmvNX+0B13vkE - 3Ot9xDo+IkrvWSdJe34gRu2+Bjo9XV/c8em/+DmZT6kAgfbadvtVKMvMuQT575nFuh2P4VwHSXL8 - ic2EVdP4ZqPUtcZf/YUolysD5ujTGbA4Oi22ZkiqXQ/3IP75Lnl/y05dIit0oBp+a3x21UmdevcE - 4fnWdF7JHwKwbO/NR3s9bCZhkdPlT8/li43Ov1M3AJoK9vL3+8T7EG/Y+ecIhG65YR0f1Gp5GKcR - ttxLxFbHfKsdfz/Q4EUZOau9qJLPm5n/8vF86AN94M5HGMG51i1sZfCY7XjRgwvji/jJjT/w2fUF - wCkYeWT0HpQeW2eDn1/GYKtxNnu86Yv+L17J13dXzZkrePD6ep69wwVdMqF8nQ2ID2+eeFK9DQuv - ijl0rfKETW0idN3//58eNsMRVOGWfk4OEuBmz1JOUbaYZlfA1yaWJBiqalhZ/PWAcyrfRGMvJViM - vZMXCGBITkoa2cMZJxs8X+eTJ+z5edHXcoRx0wZ/9a2Mvn5m9Jc/sDMp3bCaT6mEbsFcyAl+3XBu - UL6ARWXsmR6Evas9d6//8Z3FZfPsT4+C90LzsPNQaPjvfa3RyHjc/DGyPtinKqIxwETOIiFb2iVv - wV4Pwy+DahlLVy+C0iM1ySl+Pap1vjIzfMiTgl/mOoe7nvSAw3cIsaG3EMwZE/UwRf6GL+KVsan4 - ZBgAT2aHT3hrwSq9fgvc888s7PiSuEfkQO/Cfskj8K6UIpct/uKjV1REscdbHNSoM14zse96Xq3O - 5fxAYtj35NS9fEBFpxfB7i8z288T/eNDaLxs9z99vmINsJQwj40Y7/qyOn1+kgG9e+Lsei0TztJn - nGG5QWbXJxWVGOLQgL2eir1fDbMZz3IOtWJvCZccVnWRhXuEpEXA5E+v2/NTDnlr1WegSAQsndTn - YMlCxRPXt2tzO54EsYZ+2DJSzd64ItTgIHYmPouHaSBt4hdIsriSONAfw9Gurixyj+ZCnn71zuiI - 8wjseg/GZ/Nlz+SaFDDtyQ0rp5tF1+OhHKU//zK8sLe3b2FGYGOtZkbRpdnrAfKMGNh0RGU2N6Qx - 7gtQLWE5DwZBgBy6OIH696jiPZ+rm++eS/jK85wk65QO0x8/X38ji+9p8QW/vb4JLquYk8tjhNkU - nPztnz5jLmWvtp/wYyBhroh3uAd+uNLzPYHMAgZv2euhq3MO+b/8SgyoJdUU/4z8b39mGgJkbzcG - NmDZ7I8nHR8s2OtBD3iQbo0n7Pr3Vizq8sfHsA9rPVybnouRWo7bzo+7YWnnQYPdLFFsO49BXZin - zMK9/jVLM2dm43J/KVBQt46oSWzYo7NaG7TwYfPyzo9t4fecHBgKcbfX5wt7qa2RAR11OaJsmMvG - t62J/58TBcf/faIgFESFPBr5qk4A4QhyV8h7fHQkNmXjdwkN/O2wrT9/4TKG9xg6Xa/g82/9hdtN - Z3kkvgRr5sTpBPiRBzwQPpVBLtd9Tp0wPh+wpO2NaH5wCfl71SvQpeiKXV/Q1FVSXRleE/lI8K3/ - 2csq8wXwK23C/s/X6KSqcQJZz3VwUoXDsPbF1UKlxotEd+W82pRhhai6jmf8covfsDLbuwAR1D74 - iaQnoO7be8CkCY7EK84gJEd9n/vbxiJ2mgMJx/FoMFLF3x7kdPF5umhy/YKqMroe+5y+w1qibpE6 - Lcx2heekLhVtNoRnyZ23RwVol95BD/3c84l3mYKB424TC7/Jt8PJYWDtdXu+eBAKkjILKOqq9SPv - ZxBrmHtc0O13ZvSnBxzfbfF5OEnh8tbyALoxcya2TOSQHeLYQPrFGYj5hsTewmDRUMS+Ek9AkVnx - j2TzJHR5mDPVbxuYS6aIEc8yGzlNRWkLPawbtIShQdRCbOjiFhGE9KcesV2zssrya5Sj0KDzHDXD - YZjsTitQJQ8fjGmdZdzllXgIJiGHlbX/VOOGhBbVz3Kac0XCA+tcNgUGY4mJez4f1NVYUAFjwzuR - cAXewL/1awLP3V7xis1HJshsVyKR32xsVG8drFplJeAoeYiY55dpt2N4j+DyoTNxh885ZBXj+YJd - d4h2+7tkbC9LMqT8TyVapfLqlq1PAy6b9iVB+NbUMXfOAYJdlGL34bID3b7XGuz7QZ6MfrTnU9+U - cCTIIX4QWdXy660EqmRKyLP7VTY5rE8Wmpv0xDamAtiki5IgHYo18VvGsdkLkBw4TbVO3KrdwCKd - zwGaFWRi73ywK550rgNXLDyJ1bWPatPe/AhB/XCJ/QxrdZvwi4fsq1Dxuzz2NtupCw8bfUiJPDa3 - QUiy0YKYkxEJMrmw2ah5azDCpY1PxVmly8QrFmKOfULu2iXKtkosZwgfmu4dZgVXi7VaCbirAcIn - M1MyKsmChBz/cCPWzawH+rtEe9ckeT9BIekhsYdTi1rGGvDpN7kqr8zLhpz0bhPnmdwof7jyI0Rv - JcCqY1zAcvuVBRLjd0T09XqvFj/rN8BOSkc0Yx3C7SAUESq08ohNi00HthaOylG/MAm2HoI90Out - lJHOywY2au4+sLHqxJDItUo06eypHLPdC2BA84ATq3IGgbuXEAGXaTw+PozD1BixhSj/Vf/iUdbG - umqhPBEu3vZqu2Gr7moE30xiElzjB9j2/UZ+1Fyw/LlGQMi7ewCCYSuJ43y6cPn97AY6FvvFFsWR - uvBr9IIOeUrkkmZnm/18Tjl63rInUXTtDFi1PeVwDLzI4/f4w7OMmUCrrWOi2M06LNnNnGF1nc9z - 192naltsUYcPxj15fBlN4abM4gKd06TMAIL3QHVpaCFzbBNiWuyxImXMvKDpQp+oMv3ZVJIPEuzN - 4oXj05BREuk/BirOlBN7UyubHw5LgITcOnuLepdDNgssCT6/c4RPEjnby+xNFjSr3sJ5pedgcN/6 - A16FWsW3hSXZejmuDDw0MMPa5mSDgNBVQ93R/ZGU3wZK7rqhwOvJeuLTxY8B8aO4hlde67Chvxja - xW2nw7rqnvNByUOwDdlDh13IfmfaK7m61Ct9oGVwDCI7jTqsTCbLKLq1AFvM4ttC5sMY9Qfn7s3c - 6TZQMlk1fJA5I5eDZ1Ne8OgD3fxJ8PppakOaj7EOyzpRiO+NJ5VD4tMCQ8hNxGcv12FlsypH0vVx - xe65rMKtHn855GftRsJm6+wpPYYy6oZ8xq7UW2BluFcMq8IbvHBMS7plDgOBrff6vt9fwPXMOsKB - JgKR+bTPNmEJNlDfLAErohRVAjzqLBIWmmH78DqFnD3aMdzc1907ngMXLL9eecDXcqqwH0T9MG7V - J0YtdzKI3l6UjL8XgwfQ+ScSZRDGin6YLIfFykMPPhOOrsYt3KAgpjU5Sz/N5lxlnzN/spdZYuoI - sIu5QfSQxQOJ2KrM6JD7PVrR0cXhmCqAh0riQPZ86fAlxSalGYlElLovh6glo2WCf38+QGVSDZ8v - xo1uXyruXd5xTjTEFIOgXDwRphk+z1zQXQGHQMigPb8SJS8dmw22RwTTDG44pndOpcbdFxFn8zp+ - QcmwuXNhNxBeR58E4nzMNiZCBfwKmY5dp8nU5Ta1BnIOqoYvIWuH3PaMWTQqzMlDL/1nz/H7vgGm - cBlsjHNvb5b11mB/YDQcc2VRCei1z0l2jQS/Z4VUZAojBy12z8yLlSX2pr2ZGYyptmD1EI9gOppK - K+gXbyCJ0fXZGOu2gcpRtj3o3DxbEGwyg/On3MjZDD+h8EmRDx+cYGO82zf/HHsGGm+LeiAc+2yZ - 7vvUo9uUk3vYLuqqyu8GSmggxKIZDnd7fKFFemWziNYrWJJcGqFo5oZ3wEJgU63gAsn95gNOk+Kj - TuH1WKDw+spnKdielFpenoOKvBA5qfmmtp+X1Usj897waeODYfvDW65b9d6xs/cun9fNQW9eCclb - yzSVyqFioVN85Un64z7VMj7aBJn7zMl3jSU6+kkFkWWeHGy5uRsu5XFM4Mg8N3zqcGqvPmOMyOJ+ - 5SyO0jf8TXtXMzObTLLjp2xU29MLPd019I6ikQ+b98580B3xb6bKx1PXbLpv4Hb4hCSuFbbaksfU - gNfpQDG+poy9du/ziPbvI9Z0rKotJ58F0d/piN+ZE9DNqd0ccsU797hc87P1pggvCSq2PtMwkYbl - oxQiuojEJd4DfCk9zHcZ1sO1wWZnb+E63boIZg75kf19VSxHMQ9IPG/EQN94+LMPdE/TkcQn4W7z - y2Vi4Y6H/p5fpQGr1MgREkBuu/0L0V7xVXrqYF3Id/9KfzP4ZQbBDutt1WirvwXyOBCxa2vY3h5s - BqHZu8Rj378LXbBsysB4SwX2quMBzOhBLQQiQd3xFsgWYX72sIkZHzsH4mVjsD1ieO9z37vt+JqF - cqb/fT9RrmlTbUb8iKSeyXvs4UdHt0rsRzBBNvX48F6p3RyUJdzzKTmflSSkZ7mL4K1LaqINhko5 - nfuNsLcCG8t3Ps5W75OVcBtcf6Z355BNutgUwB5Vg5hdZVC61Lq1n2jb75AUYzZ6DCoFM7yHM1cV - TPjPXomeAWLrXTlsf/kxiw2FBOp0UJebYyzQzVeEXWeLs42eZP9ffrPI4aSSX0t5wLVCMDP5Na5W - 7wA1uJRsQKw7LtUlS+QS8rF5w+Zuz+QhpjFkVOZN1Dbi7D//Bo7wAF7xtX7ZXI/kBXa8iC2zbYe1 - KNgaYiP/ETW9W4BGY9rAP74Qnc0P3b7LOkM7Sg7/+S9AlxgYfu8R1XoUe35SGhg4hzP2yvwDmnxr - G2kaq5LI40MKV5l89x4zqUUewGgqYjsfDZ5+0YPgNPCH1T0fN8iOAfzzp2y08CDDIHsPf3g3W0Pq - SxBfZok4HEwrjsqn+V/8lYq+GDZPXQuozpiZ6R6/l0Nk89KTvt2ZHmIHLDdH3uDp1H7Io9ZnQOfh - YEByMVt82fEi8TRRhzpuPli2cA64RMQ10J/3BzFZ0ay4tnRK8Ief3gJXh9t4y1+weAytN2ptTNeP - 3LZwi2J2Ft+DYnMHvlug15oL/lv/8hpWH17szMLmqtWA3mUlge+TdiEnVx32O5EGA6HAHshFWdWB - Ey1egYIwCHMaTKNKcpcrkfk45MTpfyJYOzT78C1HD/L8zEu1fJRWgj8tCPe/r4YZHa4RaibtgO96 - OtmUj8Z/eIfIVpaoy8tKRcipuU/yjDfB/r5Y6Cg5weGNfMKlL68P9MdPQuSTcHnqlx7Z5fGLTya+ - 2Fu+FQ007mVPtAqv4WJcXw/ovmqPXLS3RZc9HkM0qi+P4+e1mk54n7vZBEcPQHAYVh+YEny1Weqx - jSDRVt7vrFYFk8zMzldnVxdj2J+sFntDI6hr5WMD7PHKE2O/ouSRihu8Glsz86Tyw/VoKj2kH+dE - rqcS04nh4hgIncRgb1qVgUuPmQJ/R+jMxbYWYFO1iAGeWmb47ACLCtdbqYBbUBrE4063al2bMIB7 - /iNp8PEplX07Bkd1vRP5lxf2CjX/BcXv9MPe/fJRlwvH1sh1P/0fPla3mTPy/SCNj62j0qkdPF17 - 5D0eAsEFdYZt/aU8vLfdYf95rHqnPr9QUCUjCduIU9ejY+aQWUpuBlp1VsnJ1QrYH6CGr2zyGorz - 21WQaIwZVhKprPiRpyz84yvmpW6G/X33gCNk9oQ2ISFFr6VEUOAPBAtcnS2clEiAUfcuwSewhkuz - GApkrlNCzl/hbPPn2oCQWYPSg9+rkdEBiQq8nd41URJJGThVfT3g5qQUu+e4tRdQr/5fvJw/p3lQ - l53f/OE7It+WhFJjJQ4c3BkRT7kr6kLw0sB7OxywHt5Ve/wZgwJFfrHxo0x+A/3Dj3/5ToHly55a - tWLgRo0rlgGR6AYYV5Q0r+TIpRgSe0ultJHeqM+xy8KKTuGUBSCVNuwxEoEDpe8QIkF9Jt7hWA3V - 8p3ZBgqhUpJLvZwpxYz0AG9cjyQg7/3EFoMKsO8n1kVmBsuGDi3/nDUL73qDSox7IsHPveQ8psxP - dJmicgNXswzxX/yfvTLQ0ZsLGnwq7VMojML2QE/dtLw4+YjV5rOHB5w4z8cyqA7VWhyeFuCb3JmL - 930LNxYoNfpcXIZc9HRSJ1iuCnqFm0awrj3D7kB7CLiWC3DsJlSln5zV/vG5P3y/MI/TC40n8CQX - xyltyj6LGqVnLSb+335cBfMh2ZsteotXnKlgjUj+wxP7lCWv6o+urMDNyeh886soJByvFmiC2jg3 - riPQLg9POZLLyx0bnV4M66eUZaABXvTGQL3Z8/VotlAIF4yN60ECVAj2KSU7PtJaflCnxVoLYDov - 3kOLwNtjvYIEFGXdeY2KoqHU3vwMbFAH+GqbXTjyQqCD+wPo2JOv9bCpJSpAa+QbxuU00217PR9w - fNQWjo9Wby9BuC5QvDMzcbJ+HibpM9UQw06fl+17rrg//Ux2xuifnsJHzpajQPvtUzLsrzpzcf1A - Z/O74t2+1KVafhBeltudyHv+XPysXOC9f/leDShnUybZJJSr+Rl7jd8M1MtxDdG42v/0uk2cQgjj - 8dJ56t05hFQ1HpH0p8949lZk9F7vU2BK9oJP5KFl3KpREb0WtSLGlR6qcWmzUrLQIcFOCi/DkjCB - hgx4HLE2vtjhJw7h+G/9FotANrpVtkHMhj6x2717lG1Ojz98jW/quOuBXBxD0B+2XX8Yqtfvc+hB - cXyf//h6teZrqaD0rMdYLyM32/FFgfZ8g58PNxoI2G9w7PrGjLqfanMoZWuw64MkvDvvjGv1fgO/ - 4rPt/Ky2t+u9DOCeP7zvkwmqSSZT/cfHZ3CPKFhOI+2Bdk4DonL3nK7T7RODP36ubwemmvLQ3Hv6 - KXdiXzdDXVX1lfzTT3d8Fi7hmM9g5ao7wanOZYufDBBCZsp2vlfu8xTHB8Syvu76WGyPqtmKaNGW - cj7cF63a+ewM33ePx+7peftPv/jjT3F/0gZqblsLUTW02MufV0qfU1fAwB03kuz5fkHS8z9//rPv - Wc+cEj4sucRX5u4NpL6pGgocdCZapI/q9vsI/T99J06mEGyeLM3gLHQfL9v1tanmlg3t+MNjq2ys - JrtzCng7PWti+j9vWHNfadEeb72PmSkh/2qmCE7Dyv3TW4lipxYsemfDJkzPw3z8xTHExutHFMFx - M24ZExHeGNp4fH/SqpXnUh4SrsDY6X8J3drOmOHZ/K3EjG9cNTHbu4Rp/0xIssThsPC3bQTbTf/M - bDO8K/r3fUMoTOR0mgd7X18PyfTziHp33uFoePtUsB/L4ue35MLFGRMPfH8cJLj5hNV6s+QSfebs - Skw1RNUkWowC8GwU2JnFD5i+10cj5cqcEDkDmioc5rsCVVtX8cWRG9A+/EMOjHvRY7142Dbx8kv9 - x3f+8l1IEUp1gJviTp7n89ve5ECtIbcWMj4/yjpkc+fsg/x3n4gdjn1I1e44AtpqT5x80i5b43J4 - QfO4HeeVrVOw6+sMpD6wsK1VX3u4NRkDSqlcPdDMSrbOQV/C1UCnP75h7/pNA6rCGbB8W0Q64/TZ - g9tny4juOnc6f6RYB9uZ9XCSNWw2D3DN4U/zw/1GyFD98TlwwOuF+Dt+24TouJ9j+l485iCfh81I - UwMevs8TSYenbW9Q8R04jZ+SuNuaZGRt/QcSmSTyxPdQqlTERwbkac16YNSoPVZ0XqC/CA1RzBGH - sydvo9TZtjDXnXeq1l1PgjwLN7Ljj4qtWcmB6qL4eF8/2ESbbUB1yjxijLOlLr/JdP7yO1FuJ1+d - LzddhPc1mrBxMuZwVeV7A7dSeJBz1CoquzWtIcG2GbH3qnC49XfMw0hP2nlh9FPFjeTQAwCCzju6 - dpFx0ufbQDa6QXIuVTmb//T02foF+ATPN9pWqf9Cf3r1jj/AXKiPGp7I6OP38e6Hi6tRR+Jn/UYu - xTuny8/ueGCem4d3+D/SrmRrVRgJPxALmSRhyTxLUBBxB6gIqIwJkKfvw3972bteejwohFR9QyWp - tkj1ZXElCH9x/Q3F3Y/9q0/8879CxewLLB9jLL9f4kg0fX7pa04f2X5GFkWnT30tdn/RAS07qUg7 - n8Zildo2g6Vvhchgmzqmyy9gYKASjXjV0yxWzU0UWLRdR6Jdby4Hbgzh1+rvyLD11l8VH+Uwvu96 - r3p+YszwpQQjH9yRernDGNdMl4I/fnRfDYM+/fCdwhTcIFH4E9HnP//vkfTLX70gZjuzDaETCvCf - /t1K0i+gH2YVednnQueofCcQZmcOnZ7WT/+ePtHe9TmM8GFyTjFbzu0AhXhDIQV159Otvmxwr4eE - s3rOi20dsg52qZwRlYS9P3oTp8Ayep2RvZzfdOuZlpc537qHa6/LtFs/JYaXfGZIMG3GvuMyqED2 - 076h+P60Ix3g9IXl7zqjHV/iDUmcBv/lh9czjulwGHNYBb6G9nqUvzaR7clC7593PTJQzPCJBG1v - fIQcfFsj+zldA7AqP5+EKHfpujZlCWKC/vzhj777Iymg6iD8t542HqUOEtvv8OpfjebzCYsF/PnT - 9/cT+Etd6Cxcf8sT6dwNAvpYugQeA0nC4Pg6x+MnsIa/9xkK9Ojr03weIdC9NCVGH76bNV/SVvrj - +0IXJD6+ad4Aj4F/Co9sRfWp5ucWHKVAxsxer8O7fwtUvp3JH3/E1RMm4F4wG9LlCMUbLL813MLQ - CIVd/60vM2fhVk4DsV9u4LMvI4mgtgCIbOAy/tpZ9SIfbtghuqHn/mTfSg2OySdHyWP+NEvajtPf - fAnFv/pdWjclvEixgzxfUgthZmkLSy99h6w3nkZhjh45qM3vJ/zWzuZvB6FL4OtKSqLZjOPjv/k2 - ttI5vKynR0FPyoeVO27jiE2Po77U2UmDF3OvgXiF6P/h/x8e736D0qxdbVTycWtZhHA40OV5iiaw - 1yPxgcIVkCIGDswj9xKKwTmmK39fLNnJohvSd39sW53jBZxm/r3XN1h9jkNpgmvkXJGRWIHON4lR - yXv8YMmX3gW9sF4L3VPYkD9/fNP3VXSTenwgdYFRwSso2I57vThs9vm3FBdNlK20ZJCbFHGxaF9e - kSO9acKnWxzB5JyfGcR+ciDR+5zs9QsCQXtCfFgXSqX/44t//HbPL/4ErAhDob5wRDO8ZiS7noAX - 44OQu0aVzlWHqwdzp3GIOjtjQ+tY6AB5poB4davR/YRdCyj9XCGTT4GO//gHFsCVuGHHFN3P71mp - F18SMpoiGLFuFxvsFAOGgBunsS/m1wYE/ZWFRzsbY0pltpJbpNno9IvKGHdfVYSX4JRhgoTtn16T - Kp0GBGkd0Xc/cZI4/Rkh88FcxuWQ6Cz8FR4JpWd8BIsTvr6wPZ145K3v2W+S6d6CvZ6DkgE6Df7Q - pZbjc1mSu535xZ+fDu8mq6MHz391ur7tBHyf7R0pO14sPBtfZNrxHkFKmsbL4aYNMrfWCjn1xQ9w - nwmmoBpxsPtPy7hqQc5KRTD/iJryyrjm9Jr9PysKpP+9ouB62k+JUZ99Q+1+qWRW0XPkDadmpHYF - ePBMzhwJnOGgL5OwXGTgNF4498Pa4Af4hTI6K0dSMpcvGGeRq4AAA5uUbnimbPC6LJDZyhk5hA0b - LkPnSWaqU420XEbjNjJwgaywe6sH/Q0mEs4TVNaTEm7JeIoX/zB7YFOvNko2n/W330vD8HXkeXys - xAZ0w0fKoHlNEQqnXPfX3+25waXuIVKm+jfSaXRTuMqSTk5D2MZUK3tPNmPTQPHDDQvOso9PqCfZ - Gsr797h+jRr8+eWy3x8Z18hveFgQ0cdS9v4VCwlnDAOiCshHsQ+WoD1tcHhhgzipUxXs4koThHTJ - kb4yPuD97+sC31mlkrvUXnRiC1Uox2GWkjPqj/HCg3qQrXVBKLVSoK+f2+UiL1rHkte3SwD1Pp4i - P+8QkBd9VMWW4iI9XiV8JqGynhvuV8VP2b1gjpxqFhY4Cx0GqPErDjdR//q88QWW3ExSTYwueIDV - 0T0GcnhqkRGEs74t9j2AEpDN8P04duPiHroOTjksUYmT3GcftvmU7wHO0Yl57X2LpTMrP313RMH3 - l+jbwt02ONxWSuwxfTX4WSEWHHg5JudkPftbFirwbz4RtfJHn58jCcv3YMqRvp0FsIywieS6xjxx - QpzFSx59IUyY+I6rM6bNIhv+F06lG6DcOmc+f3OFC3xkYkTMaQjowoWnHMxvHIaiUhq+4JjJU+5W - RcJw+g4jNWiuQf612CS3p35chSvHQmSOLTlltaOz4qlq5fZnIXJG6anA7VqJctSmBAUB+IBtXabl - 3/WF5bMFTQ7VAkOLNUJpOOnjUtgOI/fTPUWPYux1Nrqukdycm5AY7IMfSVDFlRyZ1Y049/bVEO+j - aTKrqDl64uI5CnKxYGg744k49F2P/N94Fq5fEyQTFlBhULCsmHxDjHO/jBP5XCzIlMuTpN/PZZzZ - fEqhac+EhG+l1+dTdEmgIq8G/m0BS3GVvnnZxGVGosIV9I0ZuAEUfj7jNyfYxSS4qSjP/QpRrua/ - mH4YI5XnrDVIkZcvnf3KeivHt6oiQS5hvdMVVZHvHDcRRyGLjiXEf+VGIwzRj4xM6atxFlCMdw7L - FQp9TjvnDEzVT4RKziPxKjy3So6eXUU8/XAdBUFYcpnEbEnuloGocHvlIjxKUo4STux8Wk5DBKVv - JKCcGGxMvPA6yCk8TOGxL7uGDnf9Kc8XiQmF41ECtF0iR55UPg7/8glVIK1leZwAsn/paRT6B1MC - CfydqiUs8Wpf5wHezg8fOTLd13qtzleiySCjPZ7j5XZ9lDChTEU89pX5bPvNMbhjZg6xaPc6XcUM - A85afYIC0wbCJK6a7JiWiXQy9cX6Kj9f6Fdhhhf10dHFdLVQJlX+JtqUVj6NUkmBpSBwWLy2u1I+ - GBIs0k1DNuOp49r3ySA/NrVGz49wB9SOAw9+8+KEJU7qR1ZXXA1mQ2kjZNbPZv0oH0kew7pEyqM4 - NpOdMjm4u5cXKn/+F2xns7Jktq1FpNGX6lNVdGoQ3+qKKFNtj0Jy6BbY1WggVqu0RfeXn5pbmCC7 - W9eComJWpCwLINIudw+s4lnjobY5T5S7zKTTQ2jW0i+/KMRMnCJeFee8AKwzbwytrBzJ9fRQ/uIJ - OZdiKta6F59yzJozQlBM/UEb+y98pxFPLppT6dztoebyjzBhyFiLTbd3+9QkmooOORc6jdfzEuRw - OZcGiURaFcv44UXIBr8nMpMp9Kev7H/hwcssotfCg65cwHZy9xMXEljmMm6vTQ3l4TUZRLU2p+H6 - ooXS3XsgFOl+VnB99WJA9NsGogRxpK+/W7oAfO8IKnmRofTDoQ5Ob65AmRprdPmwlgSvI1BxZIlT - sXpLFUC5fy1Icb5Q77xWvciu1IXkrN5Mn1PWOZG6oCmIaxkIkNGqNlm7HY7IfLBmw71uWwtvN+eM - GfeaFpuXNQa8cJcTsTlt8P/hdbs3eXU4tBXzNaOhbEbcEVlK54+ckSeObArfGq+cYMfCmGSl7DyD - EF1ppQLW5RsG4Ic1IO80Kj41QhmCv/Gw2LbwWcUdKugP7zPxZL0EXJndMjA6XLorHAUIWww7KNhT - j+Jvu9KNHmcIoYYF5OrbqeCGE3eR80g773xCb1bl8FCO/Ys7o7t7WvV1dLVIpk15Im5+lRqaX9dM - Pgy7Yp9RFa+HX5FDYNoopHpw9HE8mB6cr56LXs+upjxCliGbkXBEZnDo9GnybhWc0/RI1F4DYIql - ZwLdh4pRXHg3wMVI0mClHRRytdu2mBKmU2SLCz10Cs6o4F+n2YOkyt6kLNaAstfr3hc+yipSpK7q - C9OoplAr9z1+l18M2A6ptWyiTiHl7STpU/041+BnrgNxOluiM5u3qWz/Hh/kufZcbGdhSaE1GQqK - AFQLPhYgD5NfXqB4x8MtpIMjv3GASLbJiK6iXjjQta9VeHgakU5NmtZwQyZA7qbMxWLPwwbr44cN - lz1+twIME1zd7EMKFI9g8C0nl5X6vpAbyjDAjvUJZHo+aeSVpVWzyvaHlQHvbZgH+aJPV/32Bd8+ - fCD9WjrxdkJuK/OddCbaFSn+tnCvBeQf/Aq3iDnGy3FzPZjsDNmyn9VINytg4DV6z8R114YOgH15 - 0PhNP6ItPaOvi9NDeHzEEq4CoQZd0JoLlO3TA4tunNB5egEH4no7Ik3nyYjNu59BPjdVZO7zleN0 - AcJjNthYxHfZJ3q4lnAyL2G4VJzaTCMcI3DhohNKPhKIl+gQsNApZJ34ruo2/LpMG+Q3pSB5Fc4F - 5dT0KTNRkJM9Pv0tELMOUscSkWHRPsZDk4l7EytM4uFsAtZUzAqeLskXH/3tUCyp3UdSbzxk5Bdt - O67XjAaw1doVKSJV4nlIjxA+XmuIDOVt+ws6/1r4ZcQR3ff4WGB7ZYD1uCzIc5nJX81r70mv27cJ - ZbYSwcbLrAePF1klQXxyfF5CzBfGifUhDr7L+ta/UAgnOSDE3+wzxd91zo/VM02Iave/gtTX61fS - Nu9J0D5/lp7W1t/4kMf3HcXsc/xq8GKEA/Hz8uWvQ/sepFN/avFBVD8F1TyySSLzqImDPoJOdVXd - 5KvbYRSIitHMqVht0OzohYSp96YU3n4auPY9T55VmRZLFMAWiED//cODxd27brjv2sS0FmSwRAHb - QsY2Isx9x7SgXOaxUnxcKEFJPzVbez6wEMTiCw9z2lKcfHIP8sz3FR6gyPtTebyHgF0NmVgSLxdz - amU11Mliokj5ej4vJB8Lnt/whuKfY4yLuy6M/M5qlRhNJwL8OTwsOJ4PFfKaQYpp4BIPcuDS79W0 - dKR3Xl/gobKuYYtuoU8722wl0yYk5N1giWnMTwZ4X3hAQnxY45XTBQaKv29LnO900+knERegrEhB - 6hkAsC2BEUItRwa+ElT4m67lFfDPhUPMrdd9nhE/CcCN3BN3EwKdZV6khMONUrw+rleKHXUL4N/4 - AdFy4gnlUwS1XkvI6QffdMffCpjc7UbU5MQUSyylCdCYqUZeLGvxzm8l2K2ahJxrOze0XTIPzkJe - IvPaBJS65SmBf/nX4NQ+3rg6u8D+WmUk/+y6RjRGCXoHj0X6mh99KghiDlmaOkRZ72KxNuHdgEMF - 5LB6FPdxA+zNAZbh/bCcR7eRnC4NDxBhnTBSHx1YhMq/QHpGWshcY12nh0IOYezMESkeF7bAMBM2 - 0TCfCQk4D8XLiosLvIWajRfZYuJPSfQFNkN/Qy/Oj3xBF00NXm7jHO78vyGO0E7y6/cbd36tjbPw - lGopZu0ZneDpSZe5zESwzw8SB6pB/8ZDVjqDRztfAMtsTjW8VFQg/nP+0OWwdjxI+6oPxef00clW - HhNAZ2ph4ZfO43Z1twVq39Ul9uMmFPNTNBi4fuSNBNV1pfh1mh2g+5dfeBXoAcz2c0ig19AKi904 - N5SqdwZkRSegE+l/YOPq6AKZPmnIxXL2PWcHpZR8wU6Jssq+ToRBmaDv42N4dNcGrBL3k8BT4TdM - va/qs5kmLTDcwvefHtQXcRaeUNlXAPiYWZoFpvjyx/fCbeu0gux6H7ZD7ZGA+CLAWSF2cODyGCGO - 1PTzd7/6XEtIfyonfy2zVwYVWvrIdmW/WE4OziXrm0vECq7nZro9cw9G8lPc3/y5WZvwbMmf/jYQ - peLUkbbRz4C7/iXFnj8nLMDlL77/+GGMH4CEsqiKKTGLWtfZQ7M6QKp5iFAcOnS9JQEGyVJ9ULz7 - FwtqKkZ29eMnXFwvBPxvkjK4squG8tjSG3bHZ/nnP5dwpLVeCHt8QjIxH6RYyX1cFhpewFV8WJh1 - 4TCuhdeEf/kqZNlHOlLYdxmwPSlD1tS6urDrJVjSUEPWzzULslpKCftOLsgtq6yGWnis4M0yeaR0 - XNxM9gsYEvuDFNnT81Os3p2y8ihO7j++sI7bg4eVKzA7XvUNniNpAj4diz0/H/xFNBoRvsW3izKF - RPoSdjEDL3dJxMdNmeNpNCtFPlsfDXmc5DZTkSzDnx4ipxtz9beeWSJZMrSWaOpZjdcHFPb5ediQ - BRgNCIL36uC3HDK8APiOaRsRC7KYW5H+cHGBy0pP4fSr3yH3YD/NdomTi5ze4uc/PbbE3JhK7btw - sby/783/3iKwHeMuhPv8X2+JMUHfiRgSomRqVl66i//8BHWOtWYNrru76k0X8sSHc7FNkruA8NOV - 6CWThApyIU7wnV545Aq4pGv+1b5w09sLuVsAj//0+ptkByylyKDd5Sk9Afhda6QVbBhzB+2QwD++ - bK9XXie82Tmgu9sVXptfpveW5E7QTZ2FIBUpI0daNwEf0ZH2fMHQ37F81NLLoTFeB0+Nue4kLv/i - KULl2f/HHz/biyVq8xN1spJSk6Ii+CBjehgjPQ5mALuftCCNTTd9qx1+gD9eOKHdn6ELNYMAnl/E - R0588f3tLIgJzO7FhGyixyN9Ty4DR/ZEkfkc22L7nAIW7OOPpW7b/E4+00jmNr8jXhXO8coFcAB7 - PiMlLz7p8og0R75zwhRKhcU1W5uzu4PJ5eG7+Fn63/NCkXnVZMcD0D21SwnZIscIoXcClvzeDLLE - GTayRE4FvJlkuVSvtYXS7SI23+N3gNLhpR6RrvwGutrTRZH/8ONPTy69eueh8Pz9/vC22Bb7HMgv - X3sSS2rWeD7cmwnq/Gggtz4eCpK2JxHufhm6cKeILh8PJKDbu3QZ3yfWqfpFHtSaa0heLv0U+/hA - yevLL3oy97FYw5EJ/+WnnZ82K2ndFPKP+m+1DN+si/Nm5FdY3pEp0BelDrxN8t98e4bLHax/+pPR - hysy17c8ruWQbfAFLRVX76kquMOSWSDSjBI97NmL//iQzL82G50qqtD1Vc4tTEzHIWFWtsWkbIwB - Bng+I726kGYT6mSBwZfZV+j+WH3+8wuUol7/8j+lBOESAtNEWP5YDPj3+7FDovCdB2xDznMtyrfh - k6Dbnn857aUNcltMe/7VPmOX5DqUfzx3Ql7C0nibmkcO0JPOyERtGvMkOgSQHr0CnX5moy+/9xTA - z/Zg//nBRFfd3Z+VAblPn57SmG8t+JxCC8MAmJTjpbMkN9i+IDNw3Jg8mcqR9cE44NHWqP6nB0AO - fw+iB0lEt90vAiAMImR1ShrjnZ/JN8G/I8OFXkP28Qd/fEJ7oM3fBp2w8LLyF7x2hND1Ea77eU96 - EDKDo4zUgS8M8dq6yKPdT590A2ogzM82MSzqFhzfzBUMFivGS7y3zRG81wAQzE7IzY+novOK4AuD - K8BE8dR5XCp5lP7pJ5NJ+3/8DB5xesV8J3D+pLk/DQSm9CWu/XoXk53yOWCfbE+u002heLTXCi7a - wCLrgyndCjd/wluMU2Qf1CqmitdcYGHDDWn3mvHbMpEdmKtIRW4gffzV/Y0VuF41nejkcI1ZtGYd - 8KetJGbORPFavkvrz89Adh7y/lpAUMI/P8T7GVpM+wdfQvbuN3g9gwLQvHkb8tHKIJZ3fsht58aB - 52t2Ief9e+KEZ+9oxraBnIr5jevpOEtw7inc/YRLQYa7XwLn3V/QlQvPI1k8UAKtVxISLN9yXGej - WMDvCSiy52vrr3cqRdBNoBIek9+od1rR5YCrnYrEIvv2p/NUe5A5aCsydDnx/8X3SVTYXb87/lQl - UQqVzuIxAPuKDB3bLTxn7AknG/mCEVArgyf2e/znJy+R47bSzlfC+8ExwOagtwRPWBoQsqw1ptf0 - PknMQVlRWHzMYlGxb4BdD4XHYgn0LW+PLJRZzsTUJXWMAZk80LUlF3K7v8xrj6MImmP5I+F6joFg - 3QQPbrZyIuXrqfzhTwtvoWKT6HN4xtseT5J0e/yIn2DUCOxHqiEHop6cSG9Tusg6hge/5ZEPkBsv - zCGrwOm6vFGYlUYsqETnAfUrSv74FK9HXgjjME//xrvZzpl9AdWbZiEbgwoQKESW/B4PRrhd91Pq - PQ9kMN0GipQtEvRN+d1EeJvYFzEv+djsfnECiqNyRZE8rP4scUQCWvlE4bjz7bUDhxREz6Eiar0c - Y2r3Yi0v9QjJSe6WGPeMGMESzyNSd7wkyXo0oGqBECm/HAFsETaCVCs2zIa0iGn8EjD8WtAj18Qp - in988fjeziR8Ymsct/KYwt3PxT9O8/wtwy8W7HqHnNhKpMT4DCnMK/WOkIqqZtn66gLI+XNG//w8 - k4ET/G7pXiEL6pGeU6b6iwf0Ssw7paI5DVCAoU30lRnpEsxeCXa/DgP0vdHZWk0Nbjf9isLdj9/6 - lx3IAa1D4tbHV7ytx7784+/IW9MUzHW/lPDXZN7u5x/G9XAfsfSWlmTvil2B5SvrX5igh4r+rl/c - QzXIYXM/I6fg0R++h//w6k8/rfB4bOFquzlmLo8ZbJkZXOC2ZQN63hKmwdN1xlC7yUcSfnHWrHWp - bPB33LvWBN4ANpgdNlhefzVRJBbQ7TdtORw6PkQqdAuweksXgt1vIUbRWQADaz/z72aE6Gz3v3iL - w3f0x5dI8PO/dLkybSUL/FtFp344j/vvLyBqE0IyFlrFUjBGANjg8yRo0zBYOOWKYaCgCnPZXfPp - mpFObARU4i2ceNCtOI6AeokazK+HYPy7P+CS6PjPbyV7/ga7/7fj66PZ/dQBWDVzIF4XHmKaHLpN - Eiqe/unrggjvYN9RCqI/P3HcfmmoSc9HxoeH3c+iJwM6YKiOMuZsZR3Xy3jO4CkYbsgKpRfYsK4r - svRwZsxs0yfezhgMYGKKFzpd71+6qJ8wA2lf92FrZjew1x8u8NfkHvL6PqLTNyM1LFy3Dg+VZBbs - n35K16eOe75V9L98/ZfPSPF0Y/3PHwfBkBkYVE4/kpUkirzXK4mhW9w//IPXyyYSjZUM+q8+ZZhl - guz1mu5d5u8GLIjk//HHht357J8+CKW3GfhbQAoIn41tht2ulxZM1U02X6OD21FTwFhIZwaWbbah - 4Poamn/5+S//7nymWWmwOP/8PYNT3Xhp1M2Rh8Z1TkBmBbAptqoA8X18Ig013EhR20+wOGrXv3oH - nTsDGlAJ5jdKQgri7cmzgVyki0au7G37i98EtgEYMLfzKwzFipWX4Xva+eObbpdBGaAK8glp8npt - 6Db0CogyOSdu8vP9vT54+dOfeP0+5pi1wOUpK1/JIno/xzoP5IKF9fHHYlAdnHgVHMv541vo/NZ6 - 2kdJVUP/xBgEVdIn7nKfQvl2885I8yYDLEUiDhAajBYenp0Gtk7CXyjMuUD+8icWkWTA0H8I//j/ - c605AzxX6Yr0I/MA+M/vvkbNTOzpacZ8e4haOELP+PPHRiE8iSxQg28S3v/82uVW53/5I+QKDumb - lsgB2P2MkFGen2Y6rBUvN7wykUdHNzp9LSWB6uXSIHODxMe/1FLgF/bV33wfKcRxLle/55P8+Y27 - v65B5iN2SD9YesGvtWxARcs64qfu26+Tz8UB9UP5kaBZGdDvfvz/s6IA/O8VBY5MDHzU3j+A7YVf - 5Bd6AeQeq8dI3Vb/AjS4PfKDrKMLEY8eHNjmiLtXfm2WRjt/Zf1nCKSwYauPv+r2hcnpJxG37dhm - SUDfwvFHuHBp6yFerTx2ZKFct3D1XXdcn4dHJz1wpSPr3LCgg9sxAZyJXKTMtq0LPWco8PZofggt - Giy2ZPm00KUBS8zkAMF6be4OfB9sJWSVRi34LtY9+aucXuHRtoxxiT5DB+wrqInl/ORmMt4vDM+i - VoY8REyxneJPBSWMB6RG5ltfhSHkoRiTIMxWQfUpiKqn3HyvGjJGTxn5qdcs2RgdiNJfdSq2Pm0w - /InACwV17ArWs8oKhOYGUZjS97i8QZZDx3nLIXgsbbO+78smH510I6plSPr6WF48lGEfIHc+neMl - mZkLvEXwQUrhTJr9+kwWKDRJwn8PI22aPoC5TzQsxQ9e3zxX52XAGQ0y0PoA37LtQhheT8Xed7D1 - Wf/W5fIHvwISqsZYjOt1wjBARhHip8rE9F1WlizQvCXO0t+LVRgsFh7EMAjX1ioBr3+vlhxH2EEn - OpFiaRW/grdLZqN94Skg9vW0geoqsMQcS8dfb23Tyft8IcU3cHW6Pt6Z7AR1TBwm/oz8enA1ubk+ - j+FmvY6A5t9XBhtLycmdd7tmmXuaQMWcK6StI6+vxl0ZIHevbFQ477cvPKjtwdd3CLFsuDvjSN0U - Tow9YwBdFbBTztWy6p8QUStiA66pVglWV44lSJ6chlZxJEI5FyUSv6nbsMb7NcGj+XiSsl7e/lKE - TwieITuiZFSdgr0e40re4JKSJ8zBuB3Y2YDbXTtiuiWiTl8HXpKZN5+gE+HshnufoQHfB1MhtqvJ - xfylWQRL8yKg04OkYO4VxYJiPAeo0IRk5EKlLuH3k31JkY1XnzPPOgO9PjLI84W+PtXURJLB+WoR - hzf1gkteSwuT3eG0i7MVE+v8CaAKD+/wrM2mzt9vSwmvwDOJ+QCJTuv8osmeZTnEfvGNvrymSwv1 - jzkhdY3SYuOzrpXb+VKgdI+PNULdRRav042UPfOg/OmdsfJtwySchDNqpjNeWfkqtS1Rbm+HUpJc - QnmPF6JHmxOzY1fxkB/1iqDuYfq8mARPCOoTQs+x3vvAL8wC8/LjI6Ua65HrRT2FRhZ3JDA+33j7 - Ms8BFK/TF92Z8NKQyNoS2S+0FJWP5KavHWY9mdnwAx8nPqULnDUsi53iEe8jqSP3PKmK3Gi/DzK+ - 1PKFQ3x6Qr9QUvJ0L6eRlQd2AN8vHxGtl7/N/E40DxanFSLUPT76AgqehSibD6h8Hymd2cfLgPv/ - E3uqPJ+9CuYTZvWDJ6fTpwa0l50JvtpeJ1ZT6AV3PBqDfJwshDfsd2CdIZ8duzvasLTyNN60Gtbw - s6wKsX79Z1ztSl1ke+w84qDoPS5hkm7QrK0UH5EfjpS5xrUsl5IZbmV5GelpeoVQnd8aFkLuDbi4 - zDSw/z/yEKKU7vlXPt6X8l9+Ws/2+IX9Vh7Q9exw/lINQQ3P33ZDetJHPjlJWv33fMgJ72yxrYKR - yOY5OP3LP1tUXS/ydHjfiPe4GoDlIq8Ta6Uekb2aX7DcQkWDXtyUKDh5ur6k7CGDBtRNos5Lr69e - y7I7j71hiuVG30wuF6F+ZHx0IvY2bneG8PB+HTfkJn+nPr+ZAf5yLSCpKPYxG32GARaI2uHovFVd - MGN6gfeJNYjd9VosbN/lK+94RHS7C8eZfdws+FwfNjofpxxslDntpwzKM1E8QdMXbRYr+VEMBLPC - Y6K9cz1oMNP8EEPABzGXFmUJuCGLUGbKaN/zIu+nfGIHmUJ2BCQpjxd4C/onyg9KQLdH/tj7uMtn - VBCniuf9fchHCzh4mX5ssRrxRYOhTlfkR3sfNZk/S3KcFwzR/FMIWPRiNfgM+ZHo0jEBizQuITjQ - 64wMJbAo9/1RDTz6fQWUI5zottBxgbfSloklP77+EraRI7O6g8j1K4wF1vF5k/m974klkrPPn9e3 - I//hawD4Kd5c/y7KV4FEO96p/82nd5HDyHSCB8CPztlgPr+SkGm+1ShkmxjAiIwZhk4Z+uxmVgyM - 5/iCTIEkBav3SQaCd45QSfMfpWYMIti3pYfU6QjAMtZSCAO5EDHnBA+6PtyqBKLBhyiSnC4e9cu+ - gqU0rZCY6UZXRS4UmHy6lDia1enz3/uxtJxBSqsJI77flqcc+UeAErQ+KDcZ1JEH/m0gX8Nl3M3r - oshFCxFJ9zW8U8PDCBwnA6Ek2ftsH6lwkZvfNpGou1/8Tcf3RT5bF4/4+scdWc6Yc7j5mkEuN+Ha - TA0cRNBVuUn8hD0V/JBcOwji9EwUq7JHoXlsX3kJPguJJgbTZfgoF3nHM7yU1oduzwevQbM2UpJ/ - 8hBQ6/wJ4etyi5CiAg8s4s3fwLHrcxTb58TvVvahyOrYCMT58ZK+TU1RQvb9mkKoKLvDF2yefFD8 - FdkMUgo+8PY9OW5cIaQ6y7iC0+qBP7y9ufcbXaQG1HKorytBo7z5/+YPGj8xyTrgUh5yXSevF7nH - T7qwzXJmu1K6rWcTqbPG6vQzLZnsHDyMDHhvC3qO1ApWLush9EMPfXn/mCc0yUlFnh7X/kpcHID0 - majkPs1MQ+o816AhPwnxkLUfTyaqinwwtQgFugv17TxuFXyvVoBZXs513Jk3Htzz6ozS5jL6dDoe - DDC/hAPytrkaZ4WQ6Y8vkkc9Yr8TkW0cT3zyCMXb9PXpITafxzjME2QeWCbe9uf7G5+QPbdaw5mp - 9IXfK7RJxEmWP2YD2POraBIrdc7jHm+K/BOPHrLUu0InxxM7GRpvjVzP3Q8smMtayKXmhai3D/bx - pZ9KuN2VI9Kz6gboxQlYMEf3N/6eJRL3f/gRNVaIj953pfPAcRFkygOLTAyvBVUULYcXL0Ho+sVU - n6H+zWG0ygHeNOdVrLPXb3A1jDFklcACnLdVHvwm9YMEtRbo/D5ecGk2Ha+Mfi1Wv/4u8HtpLijQ - q7TZx8+SvrQo/vj4uCzdYYH9xbuR0oEK5WWaf+FjqkVijcIPrNxyVOBr60UMfSyCrsuyGjwOWYBl - 86Y0bKrVmwxNOCELfjO6TgbwwN0dHLL3mSpmoJg8uH45m1wx5IopsH8aSGqqEWTyn3He+YssYd/F - cf8++ksrlSzk/csdGzo3+RQmqiZ3THYkLvLxuMZhO8n42M0h34V1M29l8IU1552RwukiWN7zvDuE - jzP5+7zeZ2nv4z5OSAtcq+CX4yUDVotXpHCNP1LFPGqwOFFIrEte62RyxRqGmUXQH55wJ5LW8O9+ - Tfq+6JOaP7/g+XZe4UfI7pS+y84CmfnVke8PcTPAvUvDHEcc0YfMipfDUXqC8tYORLXAL56zRRHh - 8zwpKCuCuOCWq7/j0WEOqVTnBWVQK0nC0kQElaoyCp/7swQXufJ3PZRQ9ly8RFC/Dm4IEyIV84MP - SzgOHxd5nxzTKT8F5V/+JBbBaJw+5ubAz0IVoh9+PdhWIUgkNwIq8uaDP9Jsdr9w54PIEjO++eNj - IK68H/IHfaHLs9sU2WLdKBxnKWvo9gQSjCi8kfOuV7B3duo/PRay18Ir9nzjSJfJeCMlHlRfEBlP - gZEWmiSwhdXfAuM3wT++ZXvRx6d/z4dKh0XGzq/H5SZt8Hu2u5A57w4SSfIQuudnHVoQPYt10KsB - dPCA9k4jLx139ixB+qw6Eo6+AOadb4OfOYeowLlfsI/P/QlNJTXC8SYfABk2Dv7js7asZg3hiRHA - R45M5Lis0GxZ+L5Avbc0ks2XNsZX1vJkjYoAqfblDSjfP77/9Jj/WNpxDY7vC3AvYrDr0TImu76B - KTP0SF1/C6Ch3Fiwe1pnZBWnt7/M074HdMcH+8XrOgnwfAHSoaX4ADlQTMO90aB72s//3/P7uucf - aEzfLwp2vOVnLGJ4Ejab6NsjimnavxUYSnlNwuvnCH7cR1agJ+IGodN2K5ZnYU3/+Kwhaj0YS+4a - wKiuZ3xYI0PvjytiwH4iGlLnxdUFI7pgqIadgbzI9+Pt5itYTgG9ErddJ0D8hSaQYR0bPc/hodjG - 1ybCD/qG4XcqW0C9+bLI7OWLw8PkJ+O0LPApLduoYiENeEDe6fEJG9UHBIV922x9JFtwf/87HmKA - h+TR/dNLCfYKfef/HawfBwYZAmv/4bnGWNfo8qf36WKw6/CPfyDIFfGu1xj4eWkzsr3I1NmW/Yag - kTqFuFZGxs0VDiJwyIRQeppmnZ7YWNq7JPzQCR7Ugj8/7RCEvybEc0IPI50PHwzaHHbh4aLcx+Wu - khBmaRkgO+RUQH9dEoE8UlR0L5hTs560pZY3afWRPzdPfcefEkp4Gki+nWY6Da97B4vEsJBSqKk/ - fQFJwGOqRPTcD+1g4+E6yfK8hcRslKZZt4ik8HUNWhIn/aLjWq1Secd/Yg6fHKztc2SBFGYaejbW - CdAAfy5w1tk0XHLxAcaT5FX/4kHD+x7+mlkY+UMkfudfMp1zuHR/fkBIZwJirH68L3QmFiDV24hP - 58M8gXRKeHI9H+p4baqjBJM2nEL5LR99euezBTKhxZOwsU50se3Mkt06GTGM3qJO2bospTTQQmRX - xqehh4y1YKI80K4PGh33fljCA7/V4fwfAAAA//+kXcmWqjgYfiAWIiBJlswzBAEVd4A4gIhMAfL0 - fbB62bte3lO3LCHJN/3Jn4/SVmNyF2oUHrsaKwaX5OShvxs4hwIh2U4awJITPYGH8+UTLEY90FUb - 1AGeLlmLlYKO6rrlCaAkdkyOzOLkdG3mGhVbxcsxn3U8448wwdcrQtjIzpQul6FNQKeeLJLKxO9X - pe2tH54G6HNVVap6ogXzPZti7+kyYLYVAAV3PNtY09SgWk/y4QWao95OvJz4lH8GcBUpw4fYrPzU - 5b5lm8HNHxHpjoV46O7HDvVO9MT2Q71QisFNgiP93HBADh5dgr3vwJfMnLBvPeJ4BSn/gJr4ybE0 - fJKc8h/zJVrX3QdbTCe5/OPosCD2rjY2JPfgzui1Y0Al22CaI72kM9NONSxftU1ipdqpwzJNGeQK - 50V8tQaUkkxi0bYLbxIOcOuxISbcVrFPCD6URryPkziBm18lCje/q1U4cimMPaYLqCEe+iVb4gxt - d80H4Pnx8vn54UroFqWE40buQde9JPjnl5QuearkQw+P3/gTW5z0nPVjLYJ36dDgErVqvr2/GW55 - GVGUdlXn2pI8dKnCEHuwlquVzK4HnX084U0Pu99NX8K1vafEQjSi09wTQ9x+TvxuFtTF/xJRZBMp - xWEuVPl82Cpocb5vsfOuTHXtklv34xciKZEeL3EwTPBWeCGR9G+WU37gLDRptwY74jfKyY//YIye - gVgwTr7sKsGAw6PNsC7c7H7/0z+bP8UORhZ9d2rbQbnoDlgOvhzd+KuFmT/4xL7vT/lC1F0NNv8x - CUbi5AQdV0ZU5cO89Xis+q4oDzWokkOKPXcS6HJgQAhvo3ElUgQ9lXbrnoGcHQcBwzMc6Pl1mGGR - jGd80vYW4BKuCODEf1/E3/BsfATxA8FT7pJgCM2Kc70hBfP6lbEUvI8VW1yhB4+HwsD3vKiqhYkG - D+4+Z5WYeSuB6erFHrTAeCBR/YQVvc6dAza+IGZQfuKJGkqAPGzkGOeFWs2WrkhoyxeIrs4HlUKr - muFvPV5No66Wd3GbAb9DE1YnpLoUg5OC+Ncrx7I+3qsZzX203d9WE2e0ynyyFGVA6nvr+sKLx4pl - ppMH6+uDwbq/PNzlK1kG1PLpFiyX96ROV618AOZWnbBSCxeXTd0FQrqGBsGRdK2mjd+g52A4DaVb - x0SPt5bdOd8StcOBy4ZV0sCDBlCw00c/52yeF6CHrsJf3r0Gx3sBNFEVifNdvvl8byoGProhJnGo - xfEz2PsWlEujwu606HTlC9lBXfvC2NelRv3Do8IYnli1zhVd+/fzAX96Iu7SJl9EJ6zROyxSvOUD - dP9MHOsPT9T0wdP+l9do+XAjWtf5YF/XWQklUfxgOXgw/ffa1zN43RAziYkSu1NxDEL4lYaRaP75 - EfPaWU5gx8OJZDEb9ktaNAw4QCad2qq9gGkqd4lwQ/BF7NFf8nbl9zXozauPE9AT9ctEdQDv/Ouy - 5cdlPGlf1EHLe8RbHgzA9nwDlK0LmHgWTtWEu1YBJ51hiNFfTi7tNVn85ZMbfgz52niOBLJS2mOj - ilx3Pk4HTjRYNyRS7RI629IoQAWz+4lt9MUdkpEJYaKKGtFOeZcvO4e8RPZUKD98BdMCRQieA/Wx - d2W/dJH25wQgFIwBFx1tQHvNFuG8+Bes90WrzokchkhzuGQ6XOY+//i7g/PLs4Kncu6qhWOv9U/v - EJ+eEsDb5MFBNlFSouwPQkyr21qDN64DksZlRZcpFhgQfJ7BxFSNVLGP+iT+6gvTypuS246DnUHO - mYSAOV74auUL24KGkjLE3fKjXx4BvuX4nHZB5Lg8cwsDdB7OHLGcvqY/P/7LH4M45dd4tXewgeLD - OhH3+lJyrrwxkniAMCW/51t+efPUBQFx6flVUX+4BCCPugLj4Kv1/PE0W2J8D2/BDnknMDueawEz - m2WSidGFrtv4oTk6X4mhzXtama+DBk1gfLFH1DEeoTqlQKjfJ+yB+xHQdw0G8CWfbls/Y0zY7LLC - fWrcJiaXK7CY7zlF5Jqzv/XYL/PNcmD/GfdELuQVUOAsHGjUNvl7n6vGPyAMTjgPuHIMYpqjq/Dj - z2kxoyft92+kiGpCNaL7i+TySXEI//RsKY0h3epDDtz877TnCRuvF2ttoQm0L1ZCKVDX3B8nuNOl - EGfjPQXTSV4eP/1PfCn/xkRa7xKAYh1hXBtdv15UTwKe3y7Tnjp8v0iqPYCmgpAE53gCi2QJZ6jf - lgtxOKDQ/ak6OmjVRoC9K1JcuuUNcNMPwYsZ+Hz55dW/9cAfuqrf8lERbnkDvuTHJl7zq8PA1qYx - sS6nviKS4HeArQoeR1s+sObuvYOderGIFFFKaXtoHYBmTSFqEp2qke8CFrBBTIh1V4G7bvU9WJih - gu/zwa74oxMJ8KimHJGZjNAtn/IQcpSFKIp1jwcXVxOMx2NETrpXxfMxv4gwus4T8VXA5Usuvmqo - hMMOq2E+0p8fhGfrfSVyElfxanLvDG7+nfz03Sy8norYZt8iYLLuG//576ergICLMkXlVFbKILLe - JjHP1RKv2alLoZ8oHfE/itXTXe5Yf3nqj68XdLHOkA9mFLDXr1ftp3hmAIb3YuJocXfpyeNFWN4n - FuvavgX0509/9UQpExClu4ewQvd7SPB1jR50XZbTAPlgRROyLrlL84XtUO0+bLzlZypZ47KDV1v7 - YHc6xu6m3ycIgtuCVTXzYo7MbgDe6+ySfLea6hLCIAKbv8HOY7+69e19LJB4j9xNbzXbibPMAHa1 - nsjPj8+L6LaQjjtzQtBK1OHWSxoiHV9iKwoLlTUpZ0DZOgFszPHQD4i7CtCamyuRtvoqNV+LgSZd - NScxOTxyUqUuA+kaGTg4QTaexfQcwoeVPrBRS494fiOU/vwDCZ0LiYfb/cWixH+Lmz/8uvNbFy3Y - 3HsUsFv9cy/sBw3Cet8R1yNqPDY0DBFMWQmH92al9CB3LfS58+1Xz6hofFHaX14bHDjb6me5lQWo - nfcMCTa/v9wdkYHn6/2F7ff9+W/++/SKNzHuWgvGSxeFUDp/vhPEMFe5nx+aJ1BN4GleKy4WheRX - r5n2n7cUr6sVhpAvcYH90zPpRyD5rMDMJCL4sJcoebiJh65fZsbSvVnBMlr5BDv5UE7o1Qfu/PPj - BNlHorPYzCcvlVtohDkNgDhe+jka+hkqOE4C9NNX9PNlIVj6ibjrrlWXY2yxIBLNcyCKEQ/oljf/ - 5mPAWYzgzlt9Ej6dLYFoplhdUCKGcFJlGIjr+Kha/i6V8GMOVxLvPl/6ao5CC+kdRviU7Aq6yu+t - h0R4kLHmn6WY0u7oIFw4LPFKV8tnte9KuPFnIEQhdFdQTha4rAMhQdbZ8XzSZg46TTYTg3WSfL4Y - bvJ/dhTA/95RcCw0BhsPbazW7tq8YKKHIsEboi7sGxhweBcSiSaTVOuxOHcw5+Adu/jNbXvSryUy - Fo2S8uCZ/b6yLyukR3Ym2esixFQXjiF8tKcK6/T9qtbROzbwfNNkrN6eBzBrIh1Q9+TCSWQXI9+z - 7zATv/HcY+1qG+p8+m5dJnijw/on7t1Zvcwr0rOoJPKa+2COuJKFRmINQX5e/Z4/aU8REuPoB9Wr - xv1yIDAAZFobop7slzrAJyuieeBcbPrbvdRX490CVGsesVA+VnNGXQWWDycPdm1tqsvHmyO4qu2D - WODoxdMABgPmIPeC1gSXnghaJcKb/SkmakPX5V/k/oCnQQ/wmWGtnDs6tgOnk6oF801btiZAugjv - xwoTQz+jeB38kgHSnvEIjniZ8us3apAQMSVJLjLuqWjbM3KEJCYpdg75LIiFArlMlLB6Dsd4beNH - g+hx0Em5S2k+ELuYhaOHvwFk3q+cewetgl6Abckp6o1qZfM9A9eiEgNxL8J4fs5sjVAoP4j+Cvfx - yMOpgFUKMmycx1PO+ZXCoMmEEb7lVQxIv7W4GnvJxQp3K/p5vY8FkBqNJ/ZB1/phvb9LqHlaQBKP - D3rOZ9EMeV2uSfTcpy7vLE6E0i/ht/Ft3LXKIYRGcrwQ89pMKrWClwTLR2xMK/VmlcJBm1B4zqzt - nkEj57Iug0D7Hnssv5VeXd/4nULRZ2wSlIXX8+xNVdBISoG4DOLcVR4eKUzRWpFy2c09eXyPNUoZ - +UBC83qJ29a1HvBC9l9yb1vY0yuKWPC83mQsgVUGbLqLanRnko7kWroDy6eUMvhoLxVx6Jy7ZBW7 - CUm2NWPvYzHVNl9CJPYKIBJ5dPEQKk2Balv0iXyj33wJaKBAs2kZHMttC/gl3brSM4VO4tWMe5aV - pQxp37gnjpQ0+TIe4BmylzCclrfiqt/62j3EjgsRKdj8+VtfEWRG5jpVFu9UHBVWBo60C4mcTi2Y - q/qtoGScY5I9g1c8LbpSw+EwK0SBnxtdXRI9kHt6zvjIkFBlM/qe0P2EINEE5lmxl9tNgt0TAqyL - bJ0T7VOxCJ6lDwlyV1L36HIztj1dEVGK+VLtr2yooUpLFGI7XO7y7BQ7yD1FWfBdBL/n+OC5Vcxe - F+zctafLp/ktgp9QCrGZVEI86+7Tg/4YePjoRKG7KqGhwSd3tfAlqYR8KZyWQ7jo3lN4ou94doV3 - hG63zgqWDQ84Ig0DvBL7gn1bD3u+G9QJvYt+v/UU+LhcNDYrtLv8SvxmktS5daUXOgpihs0GNSpN - M7H5m1+uib/VdE0fFlqi70hwk+mA3deTIh7D8Iy1YUooa4bfWTQSScZ+VtKcSpPIQQeCnrjxU3a5 - udIgPGh3NEHD4+nchbKBtvVJzDlj+tV/PULES+QVsDvrVc2u4DRwceR2WsHr5s73nlXQhk/4qr6n - ftVU7gV/zyM860/OfTmJQ30/3QLRH22VNXZshNa9uwuglwQ5vV8NDuolz+ELu+25919tBK/VmQTL - uf70lAtpidL1AoOxaJOetZ6LgIjMPYiTwA6QDU+RJEbBxD7SDxiEryvATzvvsA9zPZ/xw3BEUFhX - HHfCEczcPi4gByOW6CKr5ZPtJwxAbV9PixO+80lBwgPu4j7Epiwl8RjxdoCyZKyw9D1/88U5iGfo - VZ8Tsa9RTPnroEy/+UFK5tiq6/mEO9hdPZcEZtfQ7e+VqHxYOcnGV91PZzVhwYaHWNtZSr89Pwsn - L0qINwZOzGlLCyGlfo1l9wry5andAzgGhkY00eSr6csbnjjVwhUf0znu98UBnGF04p5EHrCirsWt - HUQC9ikueaWJqX/VWVTM7IhvqAYxfd0cBR4KdMaqsjBgKm7tBEsBOH/za1R6TkHueucJ3vBmaWU3 - g2SaG3L1pSKnCOPh9298a8XBbRekO1DSJpUoz+XVzx0zC8ip4w823maVr5d3lkKGG21SHs1dvu5u - lvLjJxzMgp7vL/KoQcqA58Rb+KxS7tkKyEjLCVvb/FlK5hhApz5+sH5zEzr1V5cDdZ8PRE/2Jvjj - s8P7kxP78Tz1/D2VS3RVjCZg9UZxeX//sCDzCgtcVPtPPO/egoZOF+ph5xmO7mqay4QO73dOZCfJ - 6NA/gQiO6GTi0mZblyovqUa/9VHrrUdZ/kJnxEymRgJPStQ5CDgFyuzRxDJfVv3KDdKA9JdY4WKM - 7pR1PjcLmqV0wKF5GfoFXfgZ/fjnrKiGO39ENED13E3YH9ET8OeP48Bvi1MSTXaWz9fXqUb1rkhx - +pmsnP9mtIbyjr2S1FifFSeN71UcmFNGcP88upxfvVuonh8qOe3pIV9uk1Gikn1b5Dab1XZvaG38 - xnfi+hirC16lDoEa2FONZ9XlKsex4FDABh+ZUc/5nXIqRDHQWFywN08detoMqGuu7bTwpVrxpIYD - FGY1nJhHu3URPjBnuIsfb2wPi5LvW3nSAOySL5YEILjzMY4FVO8+Kilt1lLXeugy1HQ1IWlsVGAd - y4+GpmXnEocO74oqNB1gJVk9OZZiUk19+nTgNz6csco7dj6THNfQDOw6WI7PIyX5PSxBYpPPtGdM - UE05sDLkawMNHkb4zOc5GwRQFub0W/8xddQLBzvdvRNTPViUKysX/uH99eLc4unLVQ/EqsaBGLik - FWWLR4I+7brDUn1swcoHXwme4ruznYE/ubN+SySoOxU7Cc/azFef3c9wNzhfrOjMQufm+67Fq/Fl - AipgR+U6Ewyidz9GxBGBGe9JvkBoityJOK+LkBPlZTVIKeYHuUaymXOpKQ7wY2bulLxvVrxufIlY - hQmIZUEF7B+PwwN69xxNdd+XYPl9XgCyAhthleQLTaQQruqBmzih++QT40U1/PG592BuFSF1JsFG - hj2+3Kc6/tqXyECbfsT6nqiAt9CRQ7zU8NgUXywgpclNMGtnTIw+Ju5sa1EAGVmJiebtKzpzRtXB - cKd42NQYu19UWJXA1yZK9O/Ny9eYSTzRtqX3VKtl368McDLxbAkduV5DW91Dg3Tg1lRVIIDjkA9S - nImiB40JO3vOADQdxgwE0ZoS7Qixymtt8IK6Dovg0H1dOtOyNcDGN1N7ighdL+8og/GwPEgRPUSX - XqFgAcKHEvE2vbJs+gXWrLwE63MvuGS/s2q4Pni06dEin2OTKOB7L9oAjtEOtD++afy2JXLvPPPh - Oz5WsOlZbDBcvP1+FcF5gBze+Nzlw9LI4OnTPbHMjO+c6E7DQV4qPJzGhgp4FIwScGV/Im5QuvFi - Vs8O/fg7zASdrtcOtSCI5nTzM5++bdqHB73P4TJt/FJVvG40oLsGLpZL4Ut/6wnObqMQ1eK7ajyT - NfjTv7/5tljppYQvp7ljzRnHfEbPLBCzpPQJ9sYHWJ6nTwKnsLkQL23eYKblw4DR9AknsXC9irvT - JUW0sVaMnbcTz1VcCOCgBR/sub5Cl4qvRZC/uhvBTZnHRDifJziST0W0WM3yRbu7M0zf1h2rnXCk - C7rsZqCFL4j/5lNG3U1vH42JuwnPiprDkMLqWd2JFxV1Ndf7rISH9PUl23yk9OJsPWJ6ySVWdtJ7 - bmFvBqTn+BZwN0Hu2fFzt8BwEMeAN/QELJYhMz+8Ixv+0sWoPwq8H7OaKDpzBFQXAANFuzUnyukt - WPZWnv3hbzTHoJ8HqkmQVNqXJHvlotK6wgyUIyGeRBF8cmphb4A5uHr4+ONz4R6scH3Un2Chr4Pa - auJRQtqy6OS+zhGYzzd+gDt8FwJqHU7xuhiYge1VuJE8Pwh09EbL+OlJ7AbFo5qTzoygkTjDpued - ePVZtAKu6mbs5Na5//k3se8RDbJ5D8C60DUVWda7THz5rcDCvsNUvPsnnlhS+6jGsZVfcLHniJie - K/X0CbwM+OOZDwR5OVejN+kFVI5ahf3ZHsHs2fvyD+8O5SWJ51zLA8jdz+OEQCaqtOSahzi8yTnY - AcXJ6aH5ltDllu3WMQ64y3V/K4AYZXxw0Nq6WiZXe0Dqv8aJjVUxpsK5HMRDwfZE3y9Tvz4/Tw5e - lFUIar15ucPZ08Q/fHVP46gO5lErUKI7eEq8wzVfJUdyDqLdmX9+jp7OxQRLkw7E1joSkyCtHJha - F5XYTc9V3705T2jz5+Ss6DOYfv6N8NWZyIdWo/MkaA04vwcDnza/QWfzpqBIXvbE3PQLGy7nEJrN - I/7zn+NXegzgYUCCT8YVq5Qd5xKptHCI3p5llxOWHsKVFb44nriPW3bmVYGb/yA+qvN8NnfHBlwn - UQ6+5XXnUu0jO+DeKS3xXUZ32aJJZzhYQNw+7+n+vb8ZCxoOwSrTH37CVidGMBGq9UttRSnQPCMg - 9rC84kW7NyVop5ODjXx6xPPcZ2d4OzIutvd25tLPiUqIeeVmIAoaqtbBPzMotU5qwHTrtVrsS2bA - 7ppwE797dz19is8BmqVywLhIxHw4uPYLvJzRwZgV7JxWE8uiajQWjJvsTUefEUV4DKuB/PCSStI4 - wHWvJpt/e6iUXw8SKIX1jv1O5vNFm5kG8FcjDNi+Z8AHDCQDq0pdbDwMIV7yry6A3Yf7YGWO82p9 - HZIOOYQ7TMPlqauz2hkRfOSWgR1xB+n6e9+s8LpidVFidRYLNoF2d70SlYBPtRzms4D2p48biNH6 - rebvjovgzz+eXuEpXjkEHn9++dSenyq18Ge7pdAy8VH3cbWosC+3M0mYpADLPS9NIgtDmmBSeMmU - Eyt4KbATxw4X3vnwlyehTb8Th05zTB1lb/2932c6WWA5zKUA76cdDA7rTgArA5QU6oZpYi/pQE6u - aLsl4tmJAbfc5niW3voAl9LbTcttOxMtSt8J6uD1IT7RRndSQsOAxtDpxDRUx11eza4EoS9OWN30 - CRU0O4Bn0aJYMsJnvNxyAUKUXF5YDTV58y8BJ27rDePMCvK5uYQGUkm4YllVp3y5sqEBq3Ql2Nr4 - dxHuxoxec3wmflZYPYVQtMB6YV5k+/7x/MsjHspLCcRN//3h38PNi02v+yp3UI4lMIZ1nhgmjsB4 - bOJZXBpew57KyC57ISYHHTIFWPP4qR+5a/UCDTVsHC8KVRdJ0Os/f/rcxmcl0jAd3kXlTC80MPn8 - kl8GdOChx8pj8gBvMhcPxfDhEOWrXemc0XH48QN2+SnJu0V3avgR2iTY3d1anaVI8A5LeepwcDs9 - 43WfzQ0c3uOZOHfDBZxYLxPc+BCrr1cN5vFzscT328XBDz+rHuUcGEQ1Jdo9/rgjOosZvFz8N/bK - demHR5AkyLoAE8tRi9ylzvzgpxeDnvtSMLmynx4eBqcR7HNnwPavcwOfC8x/z++uWz4o4kMpB/s9 - USmd4qGGN2Y7A6hVQ75+FOpAYjivYHeVK3V9ttoDFntJw7JXHPMpg/oMGWBz2HL5l/pb70ix3jbx - 1tgBFKKEg+36ehH8vIp0nJwnizb+wSc5UsF+W78QTl1Pgm6qVWKOpoZqW/CntQdqtd+5+gs6+YPH - x2O13drojCxkSkywJZx9ddP3BTyGuRzQRWrz+Xr0C6gbuknCZNLAUjLX4LA0iEw7b3zQ2XouItr8 - Az4LQ6Qu93Ca4aNWn9Pqyma1vxrvDpp27ZGssJ900lTmBaDMh9hbj5JLo2PioPu6pNi8NoG79leV - +/NXke9aYC/4MUS320qJJ34vdPlGjAd381me+N3nlC+NnzHw8LQmjI+sp5LDp+FAPNDHRM/Bq986 - dgvQGowS+xKp+rV5oBcI/VXFbr5X42lX+hlUiWMSXCRZPt/sfAX+6HlkEwdgQYYHgRklEAesvdD1 - tHodNIZWJ8n7Tt3ljp8ZLIb+RLSLTCqqvPoIxG46YDytt2rY8hH4HNt0OoyiEM98ei5hq48GweP3 - U83YF9qDtlAdm63SgPWNxxQ0VLNJ9knVeP/TT1ejiomdula1XngigEuQONjY+HOWaymB9Ihy4qXt - XE2vQ9FBNYNz0AopD6jClhr8uLsqWLO6r9i30XWH3/ePj/6lH0M15OA73AnYY95KzjKq+AAxfDlE - +fljHORn0auKDp++tyEeKwE34oRet2kRKi3fg6h4ge/cmNg7XoN/8XJp9tokbP553fwe+OWD5qYH - v+Xu3MC4Egx8/fGfha4s4K9aiN2lpjG5bIWQOmoRUYOdRHlHyQqIlvg7LW9tTylP8w1vLx2Rvazp - l3d/S+DGl3jLV+PJKZ1M1PlLiOV0ZeIFHBf2sF7gC8ulmPTzpl9gNl4+xPHHr0sb3a/hDl/8gPzG - XzYbBaZorohcISfmS05loW7gdULcUXO58khZiJ9mTKSb8lGpV4vDD9+DdEKdOxm85/3pA+W33piv - KcItXyX2iiaV7ORQg8rRD/786mpDb4W6zhTYcC5W/JdP/H7/pw+53Asb8cYIx40vzX5ZV6cFkpge - cMAcrd96WyFq0wCbzS4EVJpSC74P9yN2pPOizsROZuiYmkMMO/qAJW+tB7j7Fx5rFJ3jWf1W261e - c4F1pACX/um1b/mcmLqu3J9eRx+hS4izzccVgVGDfTCf8WUbT9r1Xwkew6scLJd+BRM+hwMclcwM - Zit7VRQ97hzc9CfZ9E8+DudDCk5zfiSGdoRg1OXaQHDlVGzk6wnQrT4AtDA7EqOgT3WW92GJrtnQ - YW/XvSgB+SWEvpQtONCWKB57/RmB2a0VcpOWIF9aArxf3ocl/66q/EHgGGB3lkqK3STE83dyC3g1 - njHWC82uZjA+V5iDbccfGeRq6qxzim722ZhY9cHl4+ZHQN8PN+K5/gsskcUaYMsnCAbGHayMtw+B - 95mH6Zc/k1dppoc68DA2o8sQzziIz2jLnwL4YFDVnm/89BufYHdANuB//kXlRR7LOhZzuqROCcPz - g+JbKzzjYcvjIaoNL+DVQ0s3P5GhX150+hylnDpKVKJ5YF3y4+/hOzUO3PKD6f0K9/kv3xH7AMgk - wMzXpfGrDv/0U3T/yDGvH8oOmLujgn3hntG1/y4hMpuOIfJbesQTkRQFRvLjTm6zK1Sj4HMtSL1X - Ns2Qf/WUWT4Qvi1sBfOWx/cb/v74LrjQ042O99DTxGNhMMHrqx3AKtwXC7aZbGH9aXfuAiqbgaoS - yFje8lZyiy0RXol7mbhz71Ss+pWEP360RzGNqXxELBiV14rtgY7q+JvPZc6l2Fvjji6i9B0Eap/O - xL44KJ818SrBn1/b5oO71W9S9OM/gxzruE8ozCBOkwpfPPdRUeEEFUj9b4o9Npfz/TfKH6J3tz4/ - P9gvc6gb4Kc/9IRf+7XKswgYeJcEZMP7mU/LQuyxOhCfO9bqwl0lVky/xZN490MBeti/JFRJTj9R - lDjV8LzXJYrdbDvnG1X9zw/A5shKE+/5W9d7/EnRlmdhH73CinNlPwNHz/9iTS0edPmUlQF+esFM - 7gplm8u6Qp47jkQBjygfOkYQoXVZCyxfRlSt9HBroWnzL+xz8UTXXamnaOMfooNDDUjJTQ+41eeC - 5TKinmjneICbfsC6canz5f5kRHHz88HhYOJ8aeBYwJsPSmxveRLtg1pCG54Tu/vI7nwNJQ3l5U0n - G96rq5SLEC5AyYP5jpp4Nia5hMPxucN+mEQ58epQAh1nRUR3Cw3Qp3sQIX/1wMSFz2/FeZKkoK0+ - MFWh4cUL158TOI/6M2hSnqvIhjfgN1/ud1dzZ5KbDXQn2Sbntx246y9PYfSbhMN9K9FFu6srMF/B - Maibl0XHp3plD0ezOxJsfPbq8KsvW+xU/b1fOipFAZ7f5IzD79mOV0+SJEjtoCf65j/Xbz1PwDO+ - AZbHVHBnRrsFYjZ6W3bmJe6e+WIRrsMVY90sSbXhSwq5+z3FarB7gD/8bejlTlRffOQUe1wIbaae - tzwwoUsDWg12Yr3DmIUMHUsGiFCY5ZAE5rBUwy8feKsHA5uu5fSsYroJPFjLjvh5RTdbvivBYX/W - ib3V46i94vb/7ChA/72jINGSjMjl/KrWyZsGaLgzMzHm8q0Gw9MV6I10IO4gH6vWFfwSMgp3Cw5x - 36iria4NeoMsJOZNdsE6qDYEnZkSIuf1VK3Ma9bgeMVRwCa+TDmyP2QwD+sCG3M1uiPTflMYNjWd - pMJ2XW4WYAtofkynfPfe5T0zZg8oLHeK8dZ5ktJCatAQ+A5xA9PsefpVa7TM5y+R4/TZDwurviD1 - RxiAq65U82SiBhZClGNJ/yjqfpa5FTmm9MUBRly/Cs63g/yaks0BrPGcwKcIG5yzEyj4b08N1+NA - ctIDcozf2tbFzz4DC6fytH5fx3zRjW8A+ebWT/MaqYBjGouFy2Lt8UUyc5ePvK3CfcUR8YhC3C4R - lwf0Lx5LlOaM4ok+DwIknmQHBwnUMc1vrxK+b4ZEQmIQ2iqj+UA6OUQkdrHgrs3nNcD7fd9NtaNG - lK/bNkMYuT0xz+pMJ+BfMtGFkYbVnrwAawptiUq5c4nEaR0lujZzyFU4hJ0hkyh/MEENp+ijbO/n - 5S7dtXhAyqMQJ5+L3XN8ts8gvL50HAgy7tfoCBMIecnGcs6w/fpkVgbR4jATdwiSipZXZoLHYxuT - y4qe/f4Q6gU8je1Ccvrpc7aeHQOFrIXxNS5Vd3+LlAQmT7YkkazCas6TOUVmNDjE8LQ0ZvmztnVV - FHV8f8TPnP8suw7eJxxN39F7qEt+amt4/UTaNDts6bIj2CpqYV1st0TYLmGa7cxdx7xIPLyu7mLD - XICZXifkljyRS7hA0NBwCDtyfkmBO5JFKODH/szYbZVPP+dPkMIlkq7kDMAI6OE4sjA3jjMxH583 - nfbPIUPWIOg4unineG/CZ4qCCbrkWhUXdf1+8ABfcNEnGrTYnY3TLgK//3+TmLfL4k85wYw3ITFV - kQerLRUinGQ2IHKJ9H4hi1CC8nwHE9i97/HsPVMPnPepTQq0Y935Ws4OsjS8BuIl4sDwoo8zmuZD - hH3o6WB9upyCTmO3EDm/9P14vbcJGNPtHnN9Aeq6gp0Aj1Fxx9HTluP909wbqDMzQtxH+KjY/fk6 - w5EWDc4uAwSjux8E+Cqk47S3wrrqjCQQoZc1CfEUx4npUwEQFvJRIHaTW+6+LHcctO7n74aI737l - y8CCoXe6Y4kJL4Cjfe2giV44oggHGJOFrDXc8ARn/Cr3e+mpeOBZ5WeMz1WaL7dIOSPp3dQTe2zP - dA0Ku4Efi9ZYTwOhX/i4GtDVqT3iRVaZU59+FLSPdDaYbUpcNgyfBUDX/BQcSk5TF2Y/ZNC4nrPg - uNfbinKRxKGavY44+8o2nUcmneF5GPfE4yTH5U5sKAGxIQG2mPM15p8wy2AkPyssNy+754fEF6Gx - Dwxy6l2Ur/jusUCX3ypRVE6KuZTXV5TeH0Owt25mNTdDxcKDO5fEpI5WcSnvrzC+RiJWg/2qjp1t - rUi5hRU+jXMbD9dScOBlVb5EHU5nd/9pRgV2qVuRIHu6FVcvrxIdlwZg1yW7auHPbAmH8dLg++lk - 5LO4k0u05qmFC4Xh8jWSHw3yBCMlJjgf+z0fZhAq4TMhl9O3A3NFIw6FVlhh2zfyfHmKqwQNzIvY - liY5XkfYZpBfM4J1GJv5yl+GFl7m7EiwJF37wQSLB/fySSL+dvqC7tNXgo6vq0nUx+WlTgwBBnRe - 4gljY+fk++6srqiUW5dc96mvcl3mTfAkZjKR1zjrp8/nFkB6/UoTMG2vYpleZpD65kySTmufT6Jo - JVCrIorx27jEi5b5A4jKcA1Ks26qOWsLAV7tWSLK1+rzlatJB9ciSIg6EKjOhP+ugLSDjDM8RoAX - tY6D6QIO04o/S0zPuvECxG+f+K42cb4WzUVCG1/85l81M3VbHN5TLxEHxwNYDld+gFc3TbGdd6E6 - ukTNUBu+IHG0196dqwN7Bo71lUnySAVA6jVqYTklCo7MfRevk9cMEEBFJph2nkvv8c2DLaPsAng0 - cby63E2DsJj3G34WPX2vuoN2A5KmfdIy/do+6ABzMvHYT543dQWO0SLT9jusgngGa6QdzjC/rxjb - svWJu6ajJcSTjAmOEJP/xgu+Cu427eXI7vmlkc5IIT3BzoYH8xDU9W/+4mPYxHQ2LTZEVRP4AadF - x3z+jQ/35V3s7JxX3+XX7wOKuhXgo/Wx6ei3SYqmhZTTwTaXeM6fNEX2R5PJEd7sfhD1XoFdFeVB - wUmduwwnLoSARAsuai2JOaC+LbThDfaUOszXJw5maJ4YkVgf38z5PJ49FBfPDh/L+dWzqcBZcAiw - Q07yfejXN3OByOjMAJv1dQBLtvJn+C0pJdpB3HrmbHxSBKo57bb5yWe1CuH1O7REhqHRs3RMXkhA - GUe8hnu5xBb7F6wfmR3QIPfU1fDHDDqm8sX2Ph3VXjtSFgESLvjHP7SyTQZ6QR9iyxB3/YpbXkNV - FtsTe9wfKGUolGD+qLQJwatFR2bNO/iZmwT7ep26Q8VticCRBliZxShfK0GFcD8GPTlrdzYelYtT - opl9nUiQmXrFX5/SgOyP4BMPrUd1fqrQ+ukjEowdqobm3nJQ2MkB/uH/ovqhBze8JP4+cGgbhTGE - 9u3zxEGWWD99Z6DTkUzYroqLS2fJyICZJK9pthvP/cNDHUjOxGz4xL4PEwtvzveDraRre4rE0wO6 - SAtJhLMppgzvzXAULhO2kptereEpqyEzTRY26TL21P/CGUr9USCuezpU0x0XIeT2M8aORlJ18d5X - S3yiQd4+36r2ZJlLyL/7+8R+FlJR3c3OYEGitt1rWfbb/G3QrnsVxPqwYc7fMs+DRZERHPB7JeYZ - ykpo3idPcoKjn++D/JgiR6t1YuBudVfprVpwhQ4MKHjEdDVFiwXd0qmbqSzUKZFjDSrkS3xm97Hj - lo7JA7DPNMWXDe9ZR96t4O0LHv7powXB7X1h2OHgW849rfZ9BiR7ECZgnKSeuyvHCNzDnifyT4+G - aX8GqnVWCRb3jro8tToBizmOJL9pQz80Q8/Crnm6RNf7Q7+mY/wAO1zAAFBfj/mEEUtIr71ETL97 - gDkVOOenR7Gd33yXSuTdwGsrFkTBvhvzcjqfEb9jHKxEzSum1/pYwP5uGUSliUG37xfCTb+TqzTJ - +X5h6QTdx0XGwRks1ZDuxxReGvNN/NwwwUz454yWo+djpbHFeNqeDyqlQaadP7/yVbmILRS5L4ct - T5AriqSdsd1T+8ZScqldGlyfEtSlmQ/W5+zkf/g8f6iOlWf1yemI0gY+mYePLyesAX5QVweELJMT - 9zS42w4+vwDLMfBxJrhHuqTfqIbZUkgkf9yqfg3SmYNreDxuXbnlftNXCfT40AsOXbaqlIss9hCs - aCb+gUX06z9XAW74Pu147qpOb/Y9wYZdJeyeDtOmT/oBZpWRYvPtCz89zkLtVXxIsp60fj9csSK+ - QjOYICc5Kieiowaa6/TA/qt3wXKe7QYsy04m9trcVXpIuBravYOISp82WPfJNwO2k9nkb73wacFC - t84RNlj7ow58RB+gCd4tLg5N7dLnrrJgW4pVwK7Ws6JnkHjAeScHcmpSM+YHf8gAq78GIo+jWbEb - 3oi5Ec/T6gZyzj5R1kAY5D42rqzs8v5chtADJwurxvf9Gx8FBjGfBHuUnHOadWMBbqxBApYDfL/S - rSLxjNoX8Y6TkE/4PZ1hbTh7EmnctZ/VWH7Aq3grSFCOQrVUWslBPKT8xu98vtA6K+C11UJ8Vg+y - y4bbPZP+OW2J81In0OJbXSBzbVcS3l8ynSPjO8Bt/QasXXzpYhlB8Ic/KXM+xCstnw4Kz537hydf - uF9ERIYVERXEIV0rlgYgQnmA1Vu6uLOpRCt0y1XCOGDYfO2N1oO4b/pA3C1uv7+lFSeWMXaJp7qH - fLyf9AY2zvY+N7+9ROZRQD4VB2y0daXOka8GkHTJFftdtwfzZZA6qMBsR5zZM+ky4GSFN1YEm1+4 - UDqrd0fkRhMEtY8bsACFZaBwF1esx/s2p+SwJpD6BE6Vi1OVHk/7EDDRov/N17X4khX0sHOIeqKj - u+bncIVtTIeA+R79ar62rxQ46eeLDbd8q7N8nR8o6hUFS04muOsswE68RIKPA8AO+cKHEYSXfXwl - Vvpdf3rfgbfTeifS1cnUH18hTU1ckh6PW1dV7qWBOC0m4uePkdbM0hfgPX0ljB8PLV8TEzZIsoQh - IDQ0VE6pUSdKztaTiGZtvtr0yAFhOyN1ils95iA9npEVvTO85Q/9kr3Z5KcXcXk3mYrc41MAV2hB - rIc46HnpDRKgqzjH3vF5ylfa5qmYVVoa7LvLki82SUUIMb6Sbc+/+z05Zgs3P4VlP9vRNY8lBT2+ - ONvmu+4uMzNC4MJQI/EAd+qy5Q3AYm46Vnv4pnPxfIvQMbwbvkJbd7eumylq+KCevhLQYn7rkAk/ - JkoJ/ulLrv60MG4kh1jHku2Xel5DODfwEBxiwXa/QSq1wC7oCftVxILppwd7TcXYfwkTbeP4EsBc - v9fBnFw0d3UhU0MDqxNxNz9J9zk10H70enw7ZBewhzBPoX3Hh4nZ9ADtnKeDBvGgYPcmpNXKP88C - fL4+DtZT+VRRXW4N6D5314A/YY2uwNgLUOR6bjr4cRlPaeessPFcDZtBj+nAF+MMeyZ6TQIiczx8 - 3ySB3nW1sKcw53j1v1oDR248E4t4Sz6215ckPt+8iKWEGdU//0HzOMV+Poab/5NrqEsrPx28Q5ov - cL8IaAlTmRTbeqO386ZnvzDG6aGq4nli1BA99k5JlOH5ioeKZpy45Q/Y7HdNT9tjasFSKS5YXo1L - P39f5/o3f7F0dUSXHq+GAudzoBP1tl7UuaiZFvj7p4Z9nSnd/fkAOPg5vVhsUmau6M2eS6g9uzxY - d9rTXeXUcmBXixSbp8IEhB0CDm55AbaualpROAvzz69g9xS9+/XHp8Lcf4L3eFbiIU+E7YzrQLCm - dwrd8PF1GIZnFvCbnvh9f7T5B5IkvgwWf39JYdywZxLTpKFLmLxSdIzDHrtqFfUDX+EIfmKhCK6X - 40Nd3cPIAiPAr0Dc/Mk64V0hBo+mxpbzuPY//Ia//Mz1x2e1Ks9BEOeLcsSXt3Si81PqM3APvzz2 - R86mvBoINdj4DCv8QXVnZulLcO1eLNbzD8lXUV1b5D5tnzgXPaY0xM/wT+85M53p4HcshLt7XgcH - bzsT3JtpCr439Jn2B7CLx8r8NDBd9HGrADLV1GaZB45RecfKls/NAOMVesPugQ0tWuJVqfcdZOLP - cTrAs6VOFQsCuPM8D+tx/spH3fh6iD0fH0Q39Hs/349eBy3UHfAvn1ncXuzg+XvXpzVL7fzPf//w - 7+7PSs7+/OOG73jD+5hkn2KAnviAxMjyzp2U3M1AaAsAG+Xnoq7LmjugkO5D8Ju/3bV6hhDy3Alr - Ed7R77K8IIq5lcHyOG4V6Mc+gJJTaRO7/Zy2yUNAz+p6xq7xUvs/PwxC60xuMbDBb70ir/AG7B2T - NaZt7mQAVZu/3fiN45NcgPtbqOL0qgrV3KVDAls8m5MRcY37x69Mcr2R7Ls/AcLw3gqYObYn+Lm5 - KvtITBH5AmW3/ONbLe5aWJCgapnqn3+J9O8LzmdPJynnePGoPT4B1P2XEQicM+TDGSYZMvzrGfvN - UadDGH5LeOaCE3HVau2XQ1x6kI8KkxzXWKyWQ3z2oKuwGx8/KFjV5Cmig2MZWLdCraenveWBVXzU - f3nwvHykB2IfjRegbT5u9bkUHIpnFIjz1flXL215Nwmng0cpH3QNgNJ+JT9+n9os8qBorA3xPPCK - Z6l6rRCdmYVISj65q408A9AmDckR8rha2of6gvnzFGJ1OHFuK9hyBMvH+pno7o7oYnlkguyj9rDx - pK5KCfdt4JE5O1ibXp+qVc5ZCA6ieiaeYycxl1+fL1Rk82Xjn9VdblZowIWZQmxxjpfv8/Rw/o3n - tISeD0hiDesfX/iy27ozzuIBbuud6E36ifefMXiIR/PyIZpSTvQ77iwGFtl6wcZdRu4cSZYHHvRh - kMuJ88Fi2HUJv/fPDnvJ+I1JtTu1YBDKkljXEPSL5X2G7WS6tvllqxqZXrQgHrEacFnrq/vNjxy6 - z+VCts9X6WAqIljidsHZIsVgW48tSO+vASu73lHnLb+ER8um0/pEY7ziHBqA/Ye0K9lalme2F8RA - OkkY0ok0QhAQcUYnCiLSJECu/iye9xv+szNkraeBUNm19y5S1fDQl4dyozhU6xYeqm9KrCfX5ctG - eQXu/i1SHLbS1+9PXsDuD//nb77A24e7HvKFcWvGxbx4yt4jgBBUz998iZIvhDkjjX9+fD418smA - sTZpxIi9F+WcybKg0qULsuzJG4V0jQsoPx63/+ol/d0uwB/elkMZAko/Egv8zW3Jno/p0sieCXf/ - HQuss/dodHsWVrHQIKfTRLpSfMHQ1UcbIYkb9OXl3Hrgk+VOXB8v42benwO8b8oPqU3CNTO7nhl4 - hKWETuxLyTntrlXyhN0NcxwJ86VPV1a+f4mMUHuMIxZl+QTuoeRhfrrXLlVTMYGf0lDQdYuyZvFe - Dv7zL33gSca4+8s+XFeHI6ZAarpizQjl2g42EjA6S8enPUD4yO8K8rA+0c2llxhy0nZGjvv6ANKO - R+svPol/uRd07prf9ldf+cevcfbjAlg64xeLTFPkuOieGsT4ffK3LP3l5PrwtT+/ifghPDfrW3iF - 8mvdGH8Ijx2YSkfsIZIPwp4/v7Rrv8sF3ib+s/un7bgodaZIkVWbyH9NdsMHt6yDWSO1+MqKp4Yt - 77SHF+kN8ZZ9Lvl8NiP87/7/9N0SRfeLnJ/Klvz5ZYt/DwqoMVxD7Or3ct9/fKzhZZWo+XodN/Ec - iEd0KZD/C6Zb/pdPQatPV5SFUwNwIkShzOpSjJXjYNB//vJ4MDH5y+8Lw8IL3NRz6dNEWdxdT/Jw - 3y9I1wfWnaLo6R/54XfHImPz0UI7qsG9HoB0KVQBv/Nf+WodDj5fZay+17vaP38DXU6LkbNZX0ig - ivU70e6UyXv90ivwKAlvpCce1bf6oFRi/lwQceuyaRauAMEfP8Rg59crl4UYinLKk2JTa315STYL - t5KdkHXcZ8m8NH2Bbyl+IW+vZyzaY9QgeMY2Qn3oRlvg9gncSn7yj7LD6ngdj71UJt3oH9ppzenT - fjNAbYTCl5VV0+le3wGeuLLE9kwQbe7xw0Kv2bvWf2o56lr8NzU9fiHnhd50VV7OBfp0hf/igcZi - CoHa/npyglIQLfHxasnCst194aGpYD3ZRwhPc4WRbhaazp+8TZJ93ahRoTnDf/ge0ET3D3s+X4wQ - KsBtvjvfVx5gyfOH9K+eSfTH8q/+J+38Yve3xoaW0XuSmDp5EbvzTzplBnWBP2dBe32jyMmYkRTW - g94R58fd6PbS3A02QJd3Pim4U3p49uCCPyJevhiD2chOE+Q094L00vV1XrtLA5zZcEOKo4TuP3// - DZgjzpOIbXY/2IRevAVY/tN3fRb68mWSa6R8MaareZEvMNTuBF1Ci4nWo91A2VcriyhFs+rzFM71 - v/ylRtt3XJ6KKB7/+MPJNpaR/umnfT18Kbt+AYHSqECtMghKwkLR2U0wFzlxHY44vxxRGlpSADv/ - 22MxLk/jOp2GGm7Pp+EfG8TqU8p9UnhdW4CqXjg3tOszCQxm2yDtYKguu1FGgcdf+CZeer7rfF8O - DPyojkysokAN35ViAYVYHDHHWb9o10fhv3qHAxh/bL69l8G93kYK3O9HYKDc/qvPFtc4zKlR8SzQ - QEvJyRLmZjnZ9gbbNzuTP31B85pe5AeIekx2PbbXQ9g/fEaZYSF9sjnnAunXL4grpU20ytq3+Ks3 - YuKva77no02CAntD/rk1R6H7OBb4rlmNnHewgrlrXov8yxsd2RVvuFR7XhJ4EY2URLfH113ngwLl - LxUM5LFflQohyhfYR+tEVIXTAJ8O2ia79U0lKAVKNP75eYZh3dE5KRPADZdHDRtrsv3m1jk64Xre - hObvqv3xgX1/Z9P/54sCjv3fnxTQq3v1vw+S6/N5WgcwSUfPX+fEj1jvhRx4Y6IrQUd2aVaZ63lg - /JQv8hXXpbyAe0c2lLdLtME/5RO28QQMpXbRCX9YSoF5S2HMSzpyQSbrm5/feun7fZvIEKvFXT/z - q5bjy6shjpy9xqVQRQt+hhkhp/IiMJ3NmIWvT31FQciILrW+lgPP9u9Mgu+nBHQ4FRDGD0wJKiUe - 0LZ+8lJbrze0z+0esX1tfdnTZoAP/jGJJtY5YNh7Uo50Q97yJZfuklwYzQ1LQgKitTtrkhwu4plo - 9vYDqyleBiC+HY9k0nlu6KQNGZw9NUY6m/n5MHZBKK8Lp2L2sOpgK2SThU/lwqDbixqA7yEfyuI6 - 9+TkyLjZVGdOpDTqPsSJTxNdfIMGsqhgghSLX3U6uQ4L3unvSqLM093F/UyK/Gs/Ksle9RlwwW1L - oHUWAqRK6Nxs6fLm5XhkJZI+0jbHx4eWAhgwPI7fTj4KeL508MmJA3lmquJujnn1oXUiNrpwB41y - l8/7AjV59JHGuu9o5W5WD+tfgdCeynLaUl2TvSdwkHrCvb4WRi3K8an4IAtWPViXIjDlcw8rdP49 - zPGb0ryT78H8I8r+frjFnkSYpEeOmFUbjuxLtx05hWfVF/ffp1S1eHDK1JqYHx+MtFuCQs78JsUH - 961GfOh+NlnVphzd6DkZ2dxzHWjMAUce2E90Pi0PPTwn7B2ZztMfOT+dRHAK4Zvccblbsv6hh6uH - FZJWxRfMp6+7wDepXHIy8wtg/9Z/+X4IyTn2DhbIDQNIX/oRM6Q/jyyjHxUYHxWHnObXGs1tbPlS - iuIEnTpfzhfIuKbM3yUNKQL6RbwoWC0sSFuSLEkrfR1asvytt8+U9k8nB+xpsLwFDrpei3iknbhI - cu1YIrmL0ALsrIkdPDr9j5QnRY+290k04HZHif8pyCtaSiftIIpWhTwGQdW3qrIymcwji+GjYPRe - aRwNfrgtJZ46k4jYnxsvH7bExVTJlxFfbmSRNv49I198vXT6VqzdcnB9ZLLiWWcXE1ogh4pInml8 - bVjzSnh4r3UFafZmg00t0xo+tdsJOdxnBPTYRi2Um9zD9PSM3eUtMjEMjPVITndSjbz/qTM59S4I - xQH/A9vr0dTyOVBLZKvKMPLJABnIumeXuKmNm4Ue+QWeE/6OnsETgOWrERbueIQu4XZzBb/yM3hW - Cs0XJ2A2HNfZb6ja6wPZ3iaNy/BIWlk9lCekVgIahTg2Mpn3DwpSjSbP2b+/x7onl5y/9KXPS7vU - 8Mse9jY0fhmt06PYoEmUBt2t3M43h34gxPYpwUvxiHLBuQ4ZmN7piizn3lD2F9aVLBt1jkKxkyhW - y/QNDT/TSb4C1WWH5pXIQb/p+LgkckRTGnXyvBHVJ1erAxvDk0BS+VBBJg3VRjgoYggWdjkgLb1a - zQQKO5Hn1ChR9auVhvbWuYZu1ak+X2kL4I5wCeVCic7+fn8Rf3uwpiz3poKMsj9SwoYqht+3EKGg - ADd9K+uNgR87WtE+mBWs7Fq8odOLN3Irr7oruHtr/oNT30m+lW+wDZKO5d69E6QeDQlg9mRe5Pbb - IhTB9QNIeGIMAPg4RM/1kIE1T+MYSsLcEucS3N1FX9MYEl2/ElflMnftRuEiV9f4Qm4eVuiycMCH - gdtRTEVkuGzu6Y7sddea3MGaU1ZGFw3mP3HFj6OojsJ7vjlyPU8lca3uEgme8TGOROIMkgzAcekc - jaFUz7hExu+wRn/5AEJsnUg8+S9Kx4oJIKmMB/KByIFlSloNlsCT8NvCZsRLvjDA2B8HpAm/OufN - RDX/8hHJ2Oygt1icNxDSva0rWHNAlm0r4FCkLApJaFGWdQ6TWNgXi8TWc8tXEJMY+IJ2I+Yx6yk5 - 8HMF77MkEhVErrvGD04E5OSmxPetvlltM1Lk7JJfkfIwn9H6Oq2i/JMOCTm3Qgtocr2y8h6v/nEQ - Xu662K0Ehc5wSQXEG+AdOjPw2WwNJowYu3x/qhaoGHWIy8fpG23iJLNwjxcMXcMaN1m8drJfo9zf - ROOhb1+mbqVPUqrEJVPQjEGe81Ix6yvxDmfLZemR3+TboOrIOKwNWGR0UQDHqwf/l6bvZsyWlyKH - 127xt1LwADcGMIEzGDTkrZOnb6wpvmG3shlKr+oEZrLotTxnfovZ4ztq/uE18zCO5LbjLRWO+6C9 - hmGIV35/LpUmqMDx+oMoV6EeCVkps1AvmA/yj/obLPbxXgH48QySRepP/9E66mW2s2JU2cbHFa6B - xcLDL7dJwZWqy7rYKGRlnxpZ9cJtFOZCx3/rRZ7BM6dCHQEebPN39Jle4EZa+R5zTM5+5OPStl0B - M6cKfmh/Jelc9tGUqCSD6HY8Ex+3hr5xXjdAW6Uu8m5blNNk/kzyEt1f6OwGMKftMHRwde0YhYR1 - xq38RSk8fByA/Hhbm7/rv/1FXOJgSr3+6sAdz5H+enhAeFwgA56cNKDT9SuM7fcitdCqBodU0eWi - s5HcbPIRjG9iHNBbX8LHYdrb4uvk4hpWs99fD67jUSfu9Xkaq1iQwqOqtDGK3NMxouYrDCAYr7bf - h6clmv7w2U67EzI/Qtf02e+u/eX3/X00+fpoSAyyA+R9Fm2my4UCNKHtvSG5GJwYLfbxWUlfVs7w - gfXHfHmewATdYLLJ7cEQd0vk2pJv0Hb8fhTegI7Jjf1bH3K+8Ua+85kWVsf9kHo7Pej8yZgYRs9N - RL7Dsc10zd8KLLSHjxQrRtHMMGoojwg+kA4MQafaqlng0Ugccc7HZ7784SvH6wdigezkCnM0BuBN - cYbOvLsP2lWNvfweNOR5Haxxu/svQ75FA8bfG9/m63lae5nhAxvLQrhFuAsLA5J30vsMSOLdQsYX - IPWWTSqHi8eNuUoQrK9mQM4zVRquGwUf1v7DRKdwBC7545e/6jL6N/pLozW6lhUsD+JMztyZuuva - mD44j8aHRKFE9OWPn+z7kaDu6ufzEYoh0L7BkZhDeNAXfjxeQPupLEx3PrlFRTfAJVVi5Nnvk85+ - hmWTixf+IK0UZrCFXmpCtvn2fg+yj7sqZZZAfrICktjyhfIJLTPI3V0PeZ/brVm+l62F5aZwxGLP - a7SFVQBl8X4yyJV9P1wueTYbdLr7D53d4zla5403oB6rLbF1Th5XHr+gbFP/h4FtYXd5u78ORpCx - CGpq6C5JQTV4XiuAQ3Fu9co75qxUt7Twj7w+AqL2PwzNQiwwE6rPfBUflwuwl1H2n9hs3e20xQwk - NuuiDIM3oLdi4gG30pWggS7u7Op1BX/yqUSh+eQoOW+5BYd61Imdpu9xtX1Q/MMvJRg7Oi73joVj - mc8YmMeyWaXk0UO5NxQSWUEXbT9PuEDRYOR/+4vDyeCDXV8gM2W8nJ63yILdWBhE8dIQLPy4+lDK - 4JFEwK3zJWy1Sj6HnU0up3umr79yHaRMNU7INQxnpKpXGcDGMCOqG8/5fASnHe+XhtzNS0p/x22u - gWGTYNcb/khL2VPgV4cvtMdvM90/eQFjXtTRcwL3nIsHfoG4z2YscL+YrtcOXMCwrQ7JhVcXLbHf - YiCO99BnrLceCfv6QXDXgM/t8bp440OC2vnwRsa+31kxiQp5f1/I97qOEt5reUhvrIHM4MS6WFl1 - Buz4gfn9eqsV7QL+4tve8/tadu9BXr5fQhJtEAHdYhhAl232wazfR7SYbaTJ3LquSCNhD+b2oxoy - aQuCShmCfPm80wTWN18ldiG1+R4/itxr1kAiOfqOqxbsbcdTo/TpB5AR34HMw76vD+RpcxtdrO2V - yC772pD3YeqGhgnDQLENY3LOpC+l4/rb8X644mPJfMEeXxDUKzPtesYClD0kBax/6oD5tHBHAQlf - DH/yW8Py1NvNdv6qDHwdlye57vp6ZWAFYfAUVDyd7pI+C5abwMOlr5CCk8Vdj8BjwKHwjsQozVTf - 8dGBHw+25HYnVbPc9CsGOlpv/kF3f4AKayDJojIR9Gi0MV/6LhKhB38cvu36cy1WuYf9RD1ifW8v - fV3sSfq7fwyv+NqM4zfBR50rNR/yL6PZauGFoVX1DrqOi0V5RxYnWNXHL/Jf4wC23zqGsAznCh8Z - +NGHtDwMwJGdhlyiXHH5qFszec4uLdHWLHC3fDox4PFaMEm1N3apaZo9MM332S/osuU0aGAIvt/a - 9I8y4sd556fy+szfxP20dsNi1Q+AE55z5PqXdaRdOQeQy3kFxctPimbtzHby+llF5NSM6e6nAlr4 - HmiK3PzkAGqL+1iVV6H++RHuloVTDw9b7KKs8ijFp5PiwzcpXKT5vJev+HKvYL/qBXEgiulm2e4C - JXMakf0SqmZtw1KC7uPo421/vlWYhB6WIamIOYDBnUuN72DUqmfkhM9z/g/f1jLKka8ilG86d67l - AUwufif23sRFvWnyemUQMlBg5NR7Lhi0Nb35DB8uzXw8pQvMwvXrSxqXg+X4jRO4jJyMTrHkjmvp - 3hXIaFOLkkpbKB5dY/jzC4hNHm86VW/USs0qNeTSMe9oY1HKQK1aClTsfJDd9nHByYsXiCFAX9/6 - VGWAyKc5Urh3RhcltB3JfQAfIe1n6Vv8OZsw9Xz0t38b9qRgBuSeZZJ717PR9qYXHg4suPp8Y8Z5 - P54aB979zwtjzp/17csrlhy9jgo6y9XQbMulHKB38F8+u/P3Jf4tibT7J398kW7Sa2BhlL8HZBr3 - b7Pu+AonW4r9w/S4jbwznmp5/394jb0OrLtfIinCL0RXoeKibVWdHmKGasRQL0z0+zDvFOqI3pC/ - 86XeN0AAk7Lb87d4A9PPuu186bWP5QwUwG69LB5lGPtEmT51s0iuUsBOdjt/uXnWyAu4dmRm9BTk - 82HQ0PtjC6GZLTdilVfg/sNrk4YbMuzmRqdTlDlQgfGJqKlZjnjHB7DjG7GnshsHwWFNCfWq7y9i - 5Ln0JHfOH/74ovbG+j9+8ef3yLkk5ZN9vBfy9zh4f/pL3yxljKGZnN9EPz1jfaE3rZA92cjQxVQ+ - OmZ4EsIZV9ufvqNrLT8yeOPMC+beN3MUFpCJIP0xEvIHTcv5Z1EZMFbo9h8/0lnbAH94kDfFO1rC - h4BB2yQq0nSrpgvfBIs8TsTwld/efTl3tBTEelwha3uNYEnisJW3Sgvwz7pw+ff2OQUw0ZoaKbxR - jGTny7DYTxQYQjblP62xfPh8DYUv358vusH484ayceKJcc5xs85D2UvnsLWJm6jnnD6lrIJs58Q7 - XjmU2/08WDTsRGwZJU3DfNpOfpwUHelKvjST6FFFjk/VB9kWp0TrhsIN1sHLR9ZcWjkXSN0A6dYR - oskWHNdPU22wW/kM+Q/+puMd7/78CYJSnubYrF613DaxSm57Pv793V808KovnY+HCFMmUODv8RLx - EjKpvr1PiwEO8nhHpmYJ+tev/BQ2nZAh86Bgfdv9Rhgu5RuvW7bSKWXYRb68lAd6YtNweVFQOtl9 - 8wFxWd3KV/UQG/LNLCss734SawN1k1db9/7imXL6j4+htyY/9Kc/l/R8C+AUhMO//UNFESnwqgY1 - idHWufPZ9lrpL16v0mpHy1lmE1kSSLvzu29ESiQGcOdz5OLIh2ir54r555+FmZbqgyhYHXRb5u5r - FjZz7o/fhhEW0B/fmlduzWDPYUSs+eC4vOcUC7xv9pnY7kDzl1JmMVSVLsa8cbTz5UjYTZ5/6wEh - +NHA9hElDKyPVuPDpTu5y/eWKxA5HIPsgubu9lGjC7CH6ItseU0jepVvHRzjS09uTy1s/vBUWmMz - 2fOtqE+X7KpAb4D7ofS21qlN9qawk/8gfqge8q0WfvioXYYbOXWCFf3xZ7D7x6i482lDn0+fl3b/ - CYeD/4lowpsObI84wXz36KMlvfban7+OdK66gm2PF/BbtytRuflEhYkcHAjB54Hc43mko3YcOrDH - +86/uXH7dKiGf/r8z1/H5+LgQ/ZVvghay6O7PEY7Ebg2Ln2w60fhvLe6KA/STMyxdOmSqN8M5NYz - QtpnasbtfrffIP8MDTmbnA7oVhYY1r8KIfeWFvlmvAoDTOfF2/n90d2i2PQlNLg3LHzpy11Y3Cz/ - /NlLx2iRsPMnicfBnSTBKdYpEsgEOhGku/8e5hjvR7ZOZ/BA53i8N/RgBxMwo0Puk6oQm5Us7ht+ - NJ/i7+7n9ob2COAV+NmuVz8jEZ0tgMb6Moiy/lp9y8/XXnqk3ISsKQQNNlIwwOaXmuRcasRdNvAy - 4LlvjsRcP5G7IphC8H61EU6lRB15/Sxt0unSXTDt9eSfnwN3/uEfxtsKqN917B/+4e3utZTGulvD - XxBTku/6ZZ0e8QZ8QbkhbRH9nJDXsYMpShLMFm0SzTfTKcDoRh2ysc/rKyASA9nn7YFUZWibxYlH - R4oOJsJHJmtyWuR6+E8v/63vGnN2DYJBdND9QYC7+0OSHGmfH/HjAIE/vxnk5v2C3MF0I85dZB8o - SKiwXI3TuOV8iv/5dRELF32rNLiAK//6YsF7TmA1oyCGauAS8ofP00tXHTn7uZAop6Z0f23R93DP - x76grnX0pxdgfG8nLO968t/1dN68f/mT8nWqwZdhUFJE8osum6G28IJaiaCLoefb8v2F/+mRtn3S - tVkKE4JYYn05kWv9n/51v2blM7g13CmDmg8v1KpRMutrRFEIUlg0/ETM66aNgi3amlgHje+vbjxH - +3ps4Kn4DGbMKKSLMPgS3PUjcZT3MM5trPiAdC3vdzu+znxUxXD3X33Be14omxkDhvrrwmLmNQ50 - ZS+9D7VAaskZl4O7VFOYQFFjeXQpvCWnnufVQDH7B/rDE4KtIJSVTPr6a/h95b/67W3HXR9iPvGA - S6K9JHvXwxtSD9wFzIGEB/g7DDZCz1Mz/sWzyA7Z+8/fov/ixehK8I/PciAmCXy8Noy8yh7ob7Fb - EfogbDBUIn7cqkpJwZ+/vvNhndaatHcsJQmyTpymb++hzSB/uyc+I7H7GA0uCGTu7Sf+KqG9KQYK - N1loXk+SjOUItj8/ceffWGaqUqclO3XSH1/9x6c1/MiAH/QKetxOuCHmHdXgejQjzJ2OozvHA78B - w56DP/40rrs/B2bQa+gMkOTiXT/AUrd0YocxjKibOSy4nt6YnG/xu/nLN8B7Hh10DjaFTsOjaoFu - VDZyTsYUUaoqPPRPrUAUMZpd2jx+0/HPb4fjQwJbA+YAgvX3RL6lqA3n8Y0p/yQ5QWXanBpBWzVH - 5m+35J++mCTx5h+ZhNmQFZ7292vMJmxOOfS5P78KHWwMWVj/MP5eA317EjsEL8OkxEH4ptOiaab9 - SEuH5w9Tj9vy3I8cM9ORnB7FHO37+Q3751f+L37//FNtSzR0wY73h98x9O8Tg9K5tCKhefww1Av4 - QYrI+YAavKjBqxrWPkeWV7Nsht3BP7/JYw+q296k1ZfFWjGRV9YHulhPxoL095vRSb3bEVdPQS3/ - LkaLeXKYmxEEtSWLBpTR7tflcyiwBnS62w9dwiDK1z+/qgV8iVRWEfJ5rx/KF3XWUMzNMq0XJur/ - +C/RPs6Lbju+g1slS8g6RXW0MP2cgNe3T/f6iU439uRfpFhZN+QyLsoXAW4m/Jpmv+ufNl+Mr9fC - 6ppcyEm5wGZ9G6jbxww8iVHRrtm+Z9v402/krq5KxG92Y8LNXjT0NFaUb0cuCWEDzj3x3940/qu3 - Xlv2hJ5NDfVfzS4MfNVC5R+P4qtZJR1Xf34zPj6JEG1LmdTyXs/a8afVN8YO6z8+j26c2NNdHxaw - Gd8e/oku1an5ygLxD3+N5Sfle9MrC8aqf0dexidAUAxuAH980dUVEyw3V7Lg78wmKG6EwV3A7PhQ - HS8CeWT25i67XoNR2a/EdJ64WSe2TuWq0TE+3r5BvvOFt7y1afdPX1PdaWogkk/t9zGvjXu+t+TE - jjNiFC0fbYF8zyBDSUl2Ph+ttplr4P/zSQH3vz8pCLnziTguX0fbjLQBHMTMIRcUnXT2uT18WBnP - kJhjkepbjF0Jpt3z5jNDp0eClZud/HQsTNChPo6jfjyJgKp66qPsoFJus10RGMo2IvRL7zrr9lYA - TdawkeMzOMe+MC6Qv1xzzEvFBEjwWmv4zSsbCzEDIiJaUwvBh5jIfVfzuJhpusEnCT4kdU/LuMae - s8C9RTBx1STJt0OANBCo6xedrZaM6006dlAsoUM8xmvpkigvEwatsaDbHc0RLmexkx9+Lvmldu70 - pX22m/xItwpZvUTH1evpBqvfxyalOno6jR2xgvGt4fxtOD3dVXQYCfriJUQ+bA4j/YEjA4bi9kNX - x41dYZi5SlbKViXV0DXRRqQzD79LqyJUv8NoLYaogExbhMhr6n1y1F2ujmydMiS/a0+wYQ5cZGeB - kITWxOWrzb4g8BQ0o/M1Y6P11teV/G0yQjz/lIKPnwkBcO+27MvlyRuF3yPR5GeaO8SeP+1I76b1 - hpu5/pBpJxrliCl3UppP6m5RcO50DHAMVO6xIbQ9tFy4WoMDWTcykf5OjIjyhyeET39WMI+jaFyc - 4ODDyMMGUTnhq6/vW4/lz8yfyaU9F4Av3KKHvKSExBGNdOT3j0XlqyQkPhQ5K184PPfQF/0QH88u - yoUuBAYclCPEMvnZOt+UYSUnmR4ir7u7uSB7tg8DeTmSq3JMotXrwQI3HQKfnZkCcM259eHjIfTE - fEYVXZRMSuEaPRJyTQkBs/MOWHhIj4TYaFFHIUaeASP4PpHKlk76Bn7HCSrm1CGUNRZgC60wYNu0 - j3kE6jbO64wtUAowI0ZV6C5rfY6MDJj4hG73sYs4PzsEMH3AklRCYemsJCm1HNuK7K8XpxwXvbQw - XG+WhDJmUHMBsc4AawsSkuOvCQSnLCTwsXBAFLxGzXxHDxNynZEhY8g4un6+yRuWjteQbHtZ7nZw - t0w+vZkDZnNecnHhFsPfz2PR3Qp9/TSqJB/ARSSlsGl5X73NFI7MS0YqOg4An17XWJbE/ofK+z1p - OPzVfdgD6Ugs9xQ0XCXAAR5Re0TqHs9jdvpc4MOpNZRtr17vDsFZg7dqepD78Nii9csKE6QZeeGj - WemA+wVlBb8P/EF6IiXNUiWghm3TPXBngjoXLAQmqU+oRvzoiKOtG2gPhOOxRJGR5O5mRjELjx8K - kCJ5as5f7mslS2N5R0i3rUjwnqMPj6v3Q5fKovnSxldRLh3U4NflZrgc8DwfCkdQ+nSRapfDsWRK - DbukfmICJe/irzdASyISUjIfN0s8qZ0cyd99MK0xNhhblxTKJ3PCVAXpyPq48WHxDhnkL3ZEhVzK - QrCoSMPMrH7Akr1/GB6cX0QCRz7n7LgOHbxopomXx2nQaX2LsXzhmwbXH7/J13lLDDAX7mGP95++ - hnOagb94Wc6POl98PPryyVUeKMfiI18z52XBIu1Yn3G+y8gnWpPJF4o5ZAp2GnFB6XUQJzkmXteX - lL6WLYP7/kdP9+C5P87IGVge9RZpeibktIR9B8WnHhNtx5dFeSIFfh/Th1xtAtxtuX06OaXD15f0 - q+/OosOIMD52b6RL5RJtN/vVg07IC6TJQ+cu36S+QMG+i5hJ4gBM2fFcwFGU9njQHMB/zWsqb11o - kJBNrWhW360jU1kZiKock3yJTldN1nH5Is9L8KScfWBZ6fiSdMycn++RZmrQyTF2WGLCnI824cjW - fNQcTXI/zbG+vVW4wU/zbJEy/k4NO6eRLzWj4RPXBn3zZCRRA8SUI7925G++Xq8blstzypGH/rUi - NnzL2r/nsUuxzYW7qbzlpyuFJIwfXEPU+spDsEkpsvpKGvdrVn7ICCBDZNZm3fEBau5FJ1cRv8cV - jZoJhRrFPpe8X3S7V6opa66vE43QG1jHx1sDnOC2RIutRl/Z1wFCrUXUfzIU68u4Di0cHbMmioqW - kd4PzgWCk/0ieruagOJS6gF9tTIJ7qYy8vVby+THMdHx0hhRLuDfqYZGd5gwDx2d8m8VLv/yobbK - H7DwRfGGF5YeMB/dJpfQebDgudAw/gTp5i6OdE2hc/Du/kCGy8gdeMOUu/D62edKqPn2tz9o5yKC - tiEGQ6+TBUr88eRL/vuWs00eODLN5hemeFl0qhx/PkTTj6D8vKYNgcPnIt/jq4qUx8Y1dMcXeTzK - IykDGEfLaXhJsnUcFmJ/Hc3lW1eNZcqcWHQdhDDipK5oYfLuQ3S1NTTSZ/1t4U9bbuSZNT3YrvV7 - kjF4fVC452vBQnSC1Vf4kB2v82V43RdZF+0RhUb+Bqt45SzwqXue5I9jHvGHUBxgQSqEQbJ6Oe/Z - ++CsML4QVbk4gM8T8v6LN+IVqaaT/mZn8MHIT7wE9Z3OiC8YeFmkM9r7wIzTesILtPtiRd7+IdJ2 - uR8rqEcqi7L4xYA//PvLj5i2q0nZwZEUyClM44v749HTk3nDH2/1uB9XH3AvLJr/+JGaRgmgTX7o - IdIHhWQur0Scln8kGQdbiFdaGOPv1vcFbMInImhCW7Pu63es6aUibl/eXfqsSQevOK7Q/Rd4lNrj - NZXnEjR+bZgXl3YhNaC+1Qg9W/OR//rqwUDWnFj0ZMz3uG6aN0Dm8yqQEqBTLqSiy8Dyah4wyzdE - X+PrPYUluWfkBIA70snOL1AmwoFoRq4B/lajFMogmn2eFz9gS4SgkH3yDbFg2rO7JMf3Ap8NKyIX - fzs6WaJrwB/v9Mh8dzSfdvwC3yYl6HKZi2hp5lcon1enQ+64jNEmQY0FscuNRD3H4ji3g+XIMAlG - Up4Q665GK1XHQQHQp88FRBuqihQivVdIua2Cuxole5FVLt8wbXQCVhvUFznUqwTpF1+lW5o/C7Dj - PTq/zvE499UVQrOCV+L5rxXQYZYLUNEoQkqZwIb2NzWTtVjy0OWwz2nili8DYfs6E0t91/msBZEG - 4aofsHw3DZfaquDD4bveSfmEPV0umb7A7WduxAlkAWCJu7SiIt5v5OTJpJl3PgirbstxInyu+fLt - zhhez6WOqmO+NtsvW3jZKPwUGcexdLdAETNo4qtA/M8ndbe3dx5gm8kPcp/YmNLHgCo4ffEbORrH - 6WT49ezxZtx5oiTDuVkO9mLIapFpJMW9kwu6+zQAa1Upsgz/FmGZuVqyfTIrYp3uR7AcL9dJRvTl - IuNUnlz2krkLYIXwQdQvafN1x384ieuEv5aVNOvru/JgnAuKrPan6vTGcQMURPvoHyo2z7cqlXmo - tR4ltv7t8+2bDm8oscYdxeLVdFl80DdYPEaG2G87oVR75B38hSeAYqV4UPoSlh7aw+VGqlf8Genk - fVn4Tr3aF6bmnW8fQzfk0/119SXux+uUuZasZJTRm5zUpqH0+Z1Z8Jf/+PTr6DwndD6okHhAJ/Dc - xv39QvjHdzSNYfL5pAQX8JtfPcnyNHMXPXEqyAT5h9hhkTTrFicbkKO75evJr9WXg29geHS1L/Ef - RUXHPT/B78eKyONVjNH6BRwDghsfE0es13GyB7OFyCAOcp/fUH9Z3jGF8vXbohN7N4BQKVwAj67y - xeJ2WaN1+T1qwGSLRe5Xfo7WToMhYBgnJ+a5dyn/m20GShXzxOCytS7dXN+HUlRvSDu155zvnvUi - uxPjI+OWC3SezqkEHcby0JnjFJfC4ePD22bORGPTPl8KLTZgHBejL+/6hcqe6svg5L7I/ZAG+aqP - 4gTzlTzISQtITnY+I0vxByKtzBSwYbgWMsk1BcWRcsv5PAwlGLwCjXjqOLvbH99QuPpLnsMLNO1i - pSkc/JOHtCtD9eVa1ZnMrW+LhLXJUfqpToz8ym0dXX6tqguUrbP/9G8bOzl+yCADWuT88BAHU74p - BTtBkXUv6J+eWPhughv7rrEsG0ouhCTDwAX+4DN8pDfUNIkDX7/8SVTxcHPn38Vi4enl5ehM0d2d - M1/eIEw1hP700hJAI4XZhBNiVPOtWb/CL4Ef98384zPrX35ZJ+32Dz+oIss8PNXOFVnSzRkXe/Db - f3xUax6Dvva/iZVGK4bE0a++vhgQKNKul4m3699ZLgMFnpLqTLSA85stOHkaeDWLjoqqnaL1KM4T - 1MDZR8arXd3FpZEDRGpqWNrj7fssMgi58pkRz2O7fOnlYJOfrhiSJ0N9naTTasphx/7IlY8Ul82D - tIVM2fKYEQrL3X6djqEdvC/Eh81zXMXDyMh8LOXEYjpZX+ZrDKGuTz4KcK26SwHKBez6DuVA3Zqe - a8JNPntbiJedf/Mn4WDAKLtAdI/nHky5HSaw5C+8v+bd6FJGEhVptBKIPEaroqVcHAm2cvjGjPMN - 9vygOHJweJfE2baswcL/AQAA//+kXUm3sjyz/UEMpJOEIb10EgQEnAkiCiLSJEB+/V2c5x1+szt0 - HZeHkGr23pVUHeEb1MRZkFqLP33FyWbJO98JDkczK+jz+2Eht9Y2ufHCu1i6+cyAd9QZGMTnrlgZ - QxngrSYG8tIrW2zcQiDc8WvQn5HSCMZMNfkdNCk6Tad97tCHvf/lz6BbMK8T3zjXYBTFF3LF+jKO - xD6IEuIigt8s+4qn622pjmf1cEHG9xAX8+TNbyhSQyOJ+fjo2663gG+HHuRUj0WzOeXrLv/xAeMb - nQCfF1kJAZOa5ISKgdJ39YugzfMaMqIWFj88Zjwsi+KN/MQZ9Ol0cFLIPDoe09OPxJsh1RMYSZAR - 3TVWuoqHhgHLourIksqJ/k5tZsNskpSAoEhtuClqFnmPtyjhT7y+Qipv0CMbDFr4zht6Qf0d2vis - oWdiWw3rTaUICasvez73Yr5mi1q8HM0NL/JqF8IfXsnguQsOfFCAabdP+CrFLyrm6h3veLf+0wsI - Qk3izQc1U2A3iG0gvp8XfdPgV4FWxVwwW5WNR8kxT+CKOR15n64Yl1DXJriFD0o8fzN0bu2ICN3P - K8DiPc0An2cuD1tdY4lWhCGd7uzGwzLR3pgKXQI6UxAsUKlDiyxrb2v005YIVg/rErw7+aKPTdju - t/7qH3EG/PPGSUsgeBMLIO+1at72x1dbOXwjRb6SeMaFmMDjLdYxpI1b0EGxevkhMHcskuuVUmG2 - WNiTXCVZtkuiJ25Z5PNCo6A6LZxOHfUQQHo1TOKMBdtsLNNWf3wgGHe8K5hOuIE/fH69mPJI51YU - /+wRaXu/pCXAjS/9+UPVeqq+HnjDgB+H3v/Zxza9igUu/kCCQ2sdY1w85gWYnnZDzuyM44Y56svT - FLIBbsu4ocCVROgMwRWpfBs1a+0nNvQHZQzSq97oa86rAyxUPkDod2obWgdVJb1K6Yu5fmib3/3K - asfTLVCIe+YcsGmdGsnW+HSQ8bJznc0DN4Jj+snJeVszb40TVZP37wcH7rXz2fqUy7RJXuh04ecC - w4RnYM2r/r98yVYpfUOg32TinWrL452a0QDHpjxyd/w+PdjnGyw3VkWKvPYxfb85US46aJK71moj - DS7dBPHJsvFH9Kt4m1Nbkv4+1ymQ9KXNuxoaqsCh4JWYDfnT26oimZHqVPY43WfYQa6z7hj82ePJ - TcJ/+k3oBTcg/OXHubA4ctI+nYc97lHC5nI3A7nrZbpcb2IF17DtUWS2p5hj09mAEg9MZO761coZ - BQRmbV+Qf8HfcfvNKoRmMjUkJcrBG8qjXoKkPjREjR8rXcNW52VRqx8o0hgmns/p0MN25TnMFp9T - w411Hck7nieWVPp0fZhHH9CDkAdnVx4AxSl7h9cRXdAfXl3/4gvqTw9iHWO74F54MWS4qgeida9c - p3y/+fDVCmcsxoArFnjbJPlP77Wuuq6Ppha9QZkob3L6TR2gjjzUUBAMEqA9Pu/6hgZkiw+DibJ7 - 183n14cP+3kg5kG/jbQ71T7k7sNElPNv5w9Fbv/bb625ufoiMVcXLjdeJVZ1VYDgEqwA0zcb4jXe - 0cPbR8zhqTkkyF4XMZ7qNsHQ9o7HoFGfh4aeHmIAt2feB/Cvy8pSjjxgCiHa+fSr6JW7dAc18RZy - ep3YZmnmXwQ/V2QTo3CCZuNjHYo7P0RmhuZi6wbQwxn0d5LZLfp7/kB2qu1LbG8PpNdhWIDaWX4g - goroXNh6LGgV3yJlfcB0wgd9Of7Foz/8xorVmwUMSu/E4PimoUfycOHxfTgj9fVhxymThbt0/mQt - URagj9yncSQJlAokQa59AX1n+63VDAN8REnf0CsEEpCpOJPMVPpm3vUN8IdHfQtHYDt4Ug5V5C8o - arhGn5aKt0FhDDDAT5drtlEaXXggq0vOuG4bDLK+hXzjCsT/8oO3mGtvw1NWlkS7sxmlt8/Gwr1+ - gfQneNEN/Uj0l38RSmxrXJy4ZmE3SC0xBh7/x8eYgouI4WBhXOTj7AN4O93wKlwqnUObnUDt8KuD - 7/fNg8WeFh+OTCMTk2xbvA1Ps4S/i7KSS4WP3nqV1hbe8qUKqHDV4j/8Dj8pnPZ6R1BsOz+D8SGl - 6GSWasP94bnv0qlI3+1jBfbSwUMOCJ7LHzvSrOwiMKPxFBx3/X45HZwEeBP8D/8I72zUoNX3BSmP - 1h3M6m/IoTCOKlL6dI3XzdEleDsmevA7HpZi9jUvgLG0vFB0P03xKl5kG+56EXFQ0o+bIfUYGPeK - /dObmuV1U3lZSGi3dwV8Nm3PRzV04f2HkB8ewLz7858+hLz4bMWfMF+gHHczi/EgcGCTtQ8Pqy/3 - IbmZHenm1Ixy/LO/816fWCkvYUjYyUXJjm/n9PUO4HCYIVG6/h4vtqhb0NqSD9Lz/txsKHbe8JZp - EjJ8R9KpkL4M+RQIJdGX6uTxXSPnIC+pF2yJreu7fqIBcSt6ovtgnxOtfzeo6lQn2m5vsyXjN+ii - +BO0BX/3lvNp6+VHDOZdr1Mpt+M7WBv5I4AcM4HWFj0LePyQ7/FsAiu/aRuYqB0iVIRsMY8tFIHb - ZxBZpyMT92/PTGX/cpuC41c4NxQOsy/O389MbA15AMdQyeW/9ej99Qy2keTR334gT1ZKbztkZihF - epliRpilZgt9L4LXu31C4fgzRz4vnhV8ZomCbk+1p0uyVL7QdsUJL+xzGLeNe4p7LySXpAc8NL/d - 3kCuZhVCncw2q5rdIng+6DPSqrza9WIph7397jD057KghRTt/889kWvIjl7Xek7yx3eIO2V5vHw0 - ewHPLFUC2WDU8V/9IJAFjBQhNekvThwFMIvsIgUbvUe/Bt8BCO5voiqPR0ErPFkgu1RxIFj350h3 - viVHvzHDwsVRqTAlnQWW9nPd+edIV9EaQmmvPyEPqNE41eOdAV4cmcgQwnuznWyHgcgqMaZP8AL4 - 3k4KdO+nOliPReDxUXtIIFhtFik/He6/947kP/5/OemWLnSnPoB/+pEGUNPMDvtiYLUFDnIir/U2 - 94QHuF/eQFZ0pN6qmbYL93pBMH9AFK8KoO8/PZJk9f2n/3x+P2LHkzPu76kA5rJ5+HCvj+L9fTVc - 5n8r+JazjNifzRxZAQYs1C/MEMjB60Lnx8U34Fu+ZiiqrSvl+0NhQRkv3N5FUgVUP57/1YvwNNu9 - joenWcFB+9XB+vqwDfFlFEBU3WJku/lHX33gi5DbPhFyt5ets07GlXJVpDNxbbZq1vE2KLAXki+u - P08OrN31nINdD0YevyjeHh8DuErRioyCv+t419PkV9B76EmtM8Xit8nlP/219JWQbqmQl//0q91+ - x+ntnVMQXIETcB16e3/6G/jD/yGrX/aeyDn8x6/cXT9ezeiX/Ok7RIdfJeZtilxouzwhPn83Kfen - J8awNklJWUiXY9gl4M8//upZk0ZxKd3d4kz8OmqKP/wlf4NQQGFTT/HkZFwFuXHmA6CmabzGA95g - rLwpQZbS0LVsrr7MxpIVrINr0UWsBhaAmx+gm5Kw+rrXW47f8hUT1E2azt7ZjYV8RhykhDAE24Wx - MPjTp9Wi8zyBO5c1qD6aEPDucgMbwEECj8xdQk4bd2CdsVPBO3kZJN/1v7+/g2l4hZh/PTDdkveq - yDs+Jv6j+AKar2cMd35AbNwPBV3GeOdntzfylm4pqG3UrJxwSohlb0hjyhYXDZ6V80wMq3Oaga8q - Xvr/HCng//eRgvOZPxKTgxbdmX0rvfh2H5321RrhHNoY4iVtyOlsqA2+NbIL75kjEX+SDjGNrDWF - 4xF0mN/EhC4POiTwIVs2xtWJ6KvxKBI49fIdqVXG62vgwhZcwBQQlTz8Yulfeiv3RRkTrSBvj75u - eQvfDOyJSWrdm/Wn6kPA9Tkq3Ic5CmFZDlKo8zkxZtsohMoybVj4OSKlXVc6FZchgrB6DcjyQF6M - vrSl8Ph094bTyq9ZFXR5y9uxUAIR3NC4fN9rJYM6pSgwP++4D94LI/eK4CD/2rHFKhl2BJLsrZDs - edH0teAjEXgD5wYvT/c84nw7CQjRPcDHWiqK9esPEDKfxxUlRv8cuZCOKXT5x0oeLX9vlsGq+mM2 - 0g4f7Yugr907CCG+RATt73dcQAo0mK31QO4zqxZ8YtiLPGQLJdV4NgteqDQFjuZhxMz+vBsD6FtG - nnIlEdFnbwba/Q6PDtuRa8mUHnc5eTyUtUeHtH0m0PTMTm/IXYcQ6VYm6uuxuJXwxcVDsH5Umw4M - ADVQnFxBiG91j92CiYdX9hrgllG8cXmlWy2XPT0gw+gP43JoWf7f/ljFqMZLjXUsb89+Jc8TiTze - vTxEeLfLBAVV0I1crBeW7J5ucvBdM69YdfusQEsuYsxaRlhsCzO0MPo9e6T67rXhPpHayZz7+aJs - rjTA13rSwbpXGPJQRVdfnDgNYXK5PpFJ6sbjXtpFggJ3AFjko08xgbwW5fP5VpDnL7sW0/JtRMhv - IsSHkLObv/2Uw/WzkUfT582WASuBbyWJUebLrsfqtZrLr1pQcVduHt0+kukCO3Utoroc9LZmsCsZ - PvMO3QLwa4TifOshZMo7Ce+iT3lzfZXyUSx3yYrNdWpheoecp5ooKuXWY2E/d3ALjZAktWOObBaS - AAicDMjt/BQB1qpUg6yGdKSlLyXmE+0uwWud6OT2fjQjjm6TBdXL8kEeIFifWCHuoHReXnhQC1Yf - w+dyl/XqZOD13HUxLbxxgadXhnCr8LghgnXuYXtaRlR8fqbO5nDF8if5HMnDPqcxq/k9A8/nosCL - 2BfjUtaOJE1JvSK3xp63wMNrk9mT6ZKqbSK6nfJ3DunWv8jloZVgvUne8G+9d4bWOjYqVZGbSGaR - p09FwX5amILcm1ISaQcr5h6PggfeVdZRkjwVj9/eaAE32p5RxtiFt9ybbYCPd8mg4Cf6OnfMOCzf - X9k3OI5pBahWr61c0sJFnmsfvJV3qCRfLoyCD6n7AvxbvU3QHpUzMZ3m1tBr+tLkWzw+kBOGur7I - iejCK+e7qDTwrFPNRjVMnYEGV+FSe0L7s0PQ5Jcb0r7RotMLkQ04/e4iJnjC48L0YSc/j3lPKjQd - ik0RHhb8JWGK9CA1dG4i1IIJMGd0fpLF+6GXuIiP79YEQxNJOq1N0YX2oeL3ExPvglqz+ZbtkH2h - qi2LeF3gSQPTj03J3fpdAXs/2syfP+DmJNUxuzK1Jf/FOxsFa7zopyz9F1+SFArNQuvnHTIfiSJD - bCWwOTKXQykafkS/HTePTqVtw/MWxMSXlOu4HLERyNXSdch/T8O4tuCcwAuIFnR6Xt76av++ERzD - lkfKIQo8LlE/PpDgXSC+AwNKMvklSsdqmonaSpdiHlYOwti55+Q8cdb49b4XSd7jC/K88VRwRA2x - fLcVniS3+UW5QrQ3IXtBm1j99Qbo/Xh04SCEJsnm6k150RJ5SHs1JddCWMfN69oAjJz+RA7b+JT7 - hDEG6lhTpHHPEKx3jw8hpywOeshPBqyfyOkgx8gKUba7RTn3d4+gcK4t9Axh7XHmadHkns06Yqn5 - o1g+3RDAo3FqkGNBuZk577XIHxaeUJTebTrkQceDUGfz/XkuIyvemwWevx8blXT8xVu5MgycHwkl - z/Jy+IsfJdzEw5u4cijsowhBDbP0+CQBPvDxptMpgbPunQhCNdGppBAF5h9RJ4hvG/0nGo8QGik4 - EZN6cKRiETNymMcq0oxzX9ClTwx4YLWCOP1G6CLLQISdqFsBaxlLQYP6fIdx05nB0enCgmdaIYFO - Tr/Ieww3j1cdNMHbL6+J/57ckVtbjpffnjZj0Rj54tMd3RI87Ikg91hZYJGTxZbXceLR6fNMAWvQ - Fy83m9Si01y9AYnvl+2ff0dcZ8crUfNJnmj3wdfQSqhQPtJEPrZKvOcvqM9/+foWrFcs1Lk/soYt - +rCr8BXdclXRectUobzIVo2MUdIKNvuOORQZKhNnj59UvtaJPLGajp6pPhS8SWgHn5g+SNaHL28b - jTSUlfclRuk9tT32pDZYwmNZkNQJL5T3UaxAB9cDMoZM8pb31R8gjci67wfy+PG0aTCXNpcod3EC - 2+t6csE5rwyi94kK8Bo+AjCxio5u98lq1vvLaGXkzABZ1GrA2kLgi2b7uaDH6awXa95yiXy45ibR - T9SmfLkyEN7k20j0OOXpAoe4guXduCGfHcuCu7d1Kls4Quj0l081UQnlOVcDUiHK0zVwLCyboduT - 8/g1Glo4sgiNVx0Rhx3av3iiwI/SYpyHJS0W8+SmwG+NEYW0txtWhoECHXrfkEs13evF8tJDUFQj - Mhds6gvs9q5PSjH+29/te1xc+c4jHEieIIxLeykk+AiUBJ32941/T8+HbUF5vH2j0KMQ8j6sI3LD - rFer3rZAOMHS2FikxMG3oHv8kAPleAxWguRiC86hDbk24zFvaItHGoBYiEPuEvCxZBQYK/MblMbC - oh1fxvP95XfQQXoe8HcUNltkXDco6+mbmJf3LtmyhSbbknMh+ngoPCEd1BJ8rmJMdMp89aWFZi3/ - 5eNi94dt2MYeEvTsiJc3++hQ6dzDb3dm8CLcb2N/P9oQhvpdQjrnOzqV470RmVZWeLaLTzEejmYJ - swkZyAzEjS4W9gKoZob7lx+91YMShnnYVsQytND79bV+BxPqf3s+e3qbPSQMZE91T4q8FOJ1SVZX - Gi9KQp4hVPQNHNpQFlnmSeyfT7z1Juk9DPPpiU5rSAGlor5Ajyuv6HninYYTjUcEzbC1SJ6KKZib - URngXbAGEpghAPR3snj4Zl4uKRrrR7ejqTFyeUOPYFvyrplOAymPjc4uAavwwTjRhtrwwFwy8hB0 - 4G3FawthrCMB5/QFvGncfjasUjYjT60/AbZ/EBZWL83Y968taIRRAKdgnYnW4pe3HjWSw+zF2JhK - Ly1e2KNa/cND9le4jriJjQi+XtEzOBR5M25guDIwumoH5O72tzHy7w6t/uUjvbciwI43wQL798np - M5uUFudLDxXnrqDoB990exJoAKb2FvKXz7ZZi+//7HOVy8qjZS0ZYHOXAaErB+J1axCE4UQG4vGv - KSZdECfyefNjokkd0FdhgRsQayMnxhkaYF37Wwulib/i4YNl8Pd7x61lMqJUK1dQLyA8dO6WSvzw - 6epC+1NCmP5s818+nw4t5EERskcSsvLbo8P9G0H7ICYkf7ydhgrGcwPZw1KwqD+S//C0xiY8yp2j - 6GHdrbt/+Nr47LeaeAeIUOh4Adn6I4m38SQp4C/+hucj1rftfdqgKaUJQQ/2FPNFldYAKNwr+G6T - MQqjdWQhrA52sJX8NFL6Qi088QMbbDueq5448MFdqG1iX8RWn3Z8K2U8i0jM+T+Pst4UAeWN10A0 - xjReNL9m5E/yPZI8s0w6hpVbQ9eOjkT7YQoWrIWS7Ig4CzjjmgF8ugY9PH+dAeW7PfDOoQnB9e68 - yMkjvbfV93CRo6ty+MeP+p2/QAvK3B9/aVY4qq78q+BCqnpV6TZlPJbbC5Pj5TaMOn7LnARNEo/E - y64+2Dj6SUGsj1eEwGYAITK9EliJ0aC4bAxA5Z+9SQk4zUh/rd24faSzC3b7wMd+FAuSdTMGe/4i - aqINHmmYsYXtBebopAu0GR3logHUXi1yYh7quN25Lwav4lUQ/6emdN0jHRzWRiPne/+h1I2PlWTe - OW3HT9+CYt2x/vwlEFz/ANYbT0RgsvvQL1NN6DRnrA/57VkF3xu3xts8nzUYsfUFc9/7YfyaxR1K - 78PdIt5D7PXN7e8G0EiF0Vkpb8WQh+UE5dlYsJifl2I9jQ8bQufXEOeazcVyVYYafs+LQ4xbNxSL - 07fdP/6siqVXrA821GTTPB2IrY96wY2VUoM9HhGHbSaw2UPJSLs/BJKZwGZSfJmR/+zjYMuJzjJ9 - 3sEw4xoUFA9YzD/uguEfHzWrlxH/4Ws58dVjcGg0x+O1KlXgsMIaRRf/5BHkvi15XrMDcuipAPPa - ciwEJ01D50iwwTrhsy9dEw4i71fw3p+/QbaQL4Gsiq6H99bdYMeDyPCiTafiFrqyvL7uyGVD01u2 - yG6B3ocriQ/91MxwVG342G9cWDGdwFynpxS8CuaI7C9z9jgvjH15Ugw72F78IV4LUdnkHT/gLfVv - YJuKqIKFB1fkqkWi02cmYKgI3j14S+yg4+uVJn/4jbg7v9pES2Rh/L6MeFRUTV9P49WFf/GZnweq - r9XChjAZ4Y9E87cshoDtNJn2FYtOn/kDaExqQ95uAP+LZ//iydGNjOAICzUmgvPLYSF5P2R9rx1Y - C3bWYG42HFK69xbPF/PKgI2gGEvHyqL/+DgSd7gkobIhZ/dgwLdXeuT8JKHOO4cxhNiTHeTcP0hf - mv5jwZeakWDb9aC1k5YEjsBXUHLBV8q7sb7ACwgXVOrfd0Nv7cCDW0CvxPnDr/t+y+NHLP7Z23L9 - 4QjiZVHRZUBDM6WJxgDxcC4wo4Q/j9Tm4oJX0RQYdlUxrmsrs394FnNG04HltzE2jFiDYr4ek4KO - pgfh21NmvBasRBdaZzlMzmn8j8/y9ryPKIp/JrE0NtDJPEsYMp/ndW9nNYBleCoYuq/vgOz0EMTr - BjYNavQh7esn3rDjbVCMlR5AONjFb+0vHazU94ZODNrGf/HvpF0KZAmHg0e0pzdJdV+VwaJQAczs - M/Pl3iQhPpjG2NDq4SQAkCdPAvne6RsYHhBeC+VBAiX86VRp36lsLGNK7OFlxyv7zALgluRN3PNd - 8XidtgmsxlhByrxfUZn01ILfczKi4n3Y4q1WOwzast9QxAO14TfpyMIL18xYUOO2WZdYD2Gn/2Zi - wgv18DybCjSlJEG50TJgU44alD+q4pNykg7F5PRTK0mXdcZpPHExvbPfGrrfdA7AYw0bAkavh/f3 - oBKfPXrFphxdBhpjtgTfyBvpxlVPDTzFg4uUapDBnv86SHMx+rf/27T0G6wO8w9pmojBTHrcwT/+ - Ytxmlf7lS3nnwxhn41iQyDqm0OqZAQN9AsWq8fc7pMjWiT6/9ZGDvyKCuYdTpLowbgiJzxvY4y9x - m+jubZHxWCD38Tdimms/rl+uw//4geFFkb7pK1OCP7xnfEJC6XSPQhjwboDMS5I2yyvvc5h7oYhZ - cdzidcwZScpS8CTnCRNvmiy1l09aXKAzzdWRlUy7gjs+Ic+y+4zkj/8o+iCTU16L+uoydQvPUdwg - 5+T6zT/89YD9gOy3oNG//A7lFYpIM9/qyKkuEv/Zy2XXj+ZYjw3I8i5Dzq4I6bLjKdmWvAsyg7WI - qX2FCfQKbBGbj8yYZ12mg6uPWqIqN7EZ4tl4g8vn4GG8Lvtoaog0qNv0ibTmtjc+DtUAXi71m5T4 - cRp5wXxCeLGOGa5LKwBTWZUK2PEBrrv3VmyP016yO+ZhILNdM65BkCfwpa5noi1uNu761CIjhwD8 - uL+CeCtpywMaOwidmNTV6WObeonC44MUJmro5MKzBszn7ASrEDjFoldxDUr0DLAIa0knH9hPMMyE - BoMo0EZuxw9QgrmA29k2Yvqz2elPv0XI9Bqdfuuz9Mffgu4v/sqfwxsK5XlClhOudHaiygKE5Cn6 - 05eo4Pzu4J59c2Kpz4TyR/Ub/OkRxNKAOY4/d+igRkQfGRvC4wLyXvyHpxIv2jxij+4AR9/2yXWI - 1IJeaM6DThQ1os/FpPOe3Odg1z+RhxcU4x12w3VVSnQtFslbr0MB91ubKrEJcfUNqPcAyusJIutu - H711E6sIDlMvESdgN29jWiGFOx4KuEuBvSUHu6ZZVDE5Jfik83IfG+D9fKbELBhHp1I2BuCH8gDl - e7wZd/1BovN2C3hrTsf1LJQW2PUlTBrt96d3aHDny5iXll9cBy/PAE10YMlpDWPwx3dgzw0K0V78 - MyYx6Q3YWzZGl7S76aO45TbwislCiXdzRpyO6vBPP0puz4hOMxZzeI6IirfK+4A/vvmvnmBsKGhY - +yAvcOn9G65pb4/Cnf2+QZZtBQmUrG7WwGVbGGLFIGGgmCN1mMYA8vlbBRmUjsVra04MnBIzRqfJ - ccYlSc8sfLfXCunpSdXpCuAb2i23D74alJg7FpcKCOe3RVCR66OgHJcBsiV/Jsquv266vWHAXfsQ - 5W9BA0uSPJl/+NzY6w0ji2wFupFkIM1d9JiV9KiDSVYrxKiA3iwH8RGJf/ZTEetMaZzyChSiPEC2 - yCnjKF/r9E/PJ14+dDFu+31wwB5vdzzoTf3La+FubyiOHzheBTavYcTQc/Dd+f00PCJWJhiK5Bwt - l4JmAGpwEa4PEneHPqavbJhgEd4KpNyaeFx3vU063EMfPcPvrVnUo13BxH9meJPmrfnTl+GkWDby - 33QfZaYrBiw+8RupJE3oGgRhImPp8ySouPgeR89TD3d/D75BpMeC+VB4+IBnn5zuuhJzNT7mYCTz - kWjLBXlkKm0X6gGjBEy+cWDPx4osC9EjeJlfKV6fljtA8jtzxGUmu5mV89j/8Tdynr7CSLsgTqHt - 1YDoh95v5l2v/NPn0dM0xnGRoaXJNJrXf/a5jmU0wFis/GBRJFLM6jP1YbW0HYaT9CyW0/Ct/upt - O94+FvQcRDxM/EdGfD5oGyI8VB6W/Xr4h1f/6fMCX9yQX2q5vgoFroChVRVSgSIVvYV1H2ZayZOr - rjAF3vVHIJyyD7KORahzN0kf4FEU76hwEd+s9/dWytKFzpge+mncrCnjYTjNA4mtTPTIcCchAFbX - Ens19BEbJ5+VSjayAqYdhmJdZCiBPZ+j5Pbc6EyGpALt2QjRecfPLF+7OVxVc8Ib1Hx95u19kJRs - 1IH8Mpxm+dML//KnNZ4EutHgnoDA6iGx4r0reeE1C2DT30ROT3cYZ+rxC+DnT4phrB/1BT0f/lEz - cU1c2+zAGq11KaWM4iPT3QeXvpVbDYnZ28ExdMZmGYl5l0+vK0K3B1Ipu+t7UrPpfbDv57j7S3gs - ngeI3Oz18JYVboF8kwUH6X3yAhTLh/zPv/GXeagNF+2Dmx/fq7njf7+hTCPYgJiDjdfLcx82GSqT - HBQvnaC9/sTx9WLJwonqxPSTBmxrLEJYInUh7rP+6ds1erb/6lG3Xc8W7El8Q3Ib4796qvdPD3Nu - ZzPYFjdr/uGdtDqVWAT1V6c9xSm8UrAgHw52vF3IKYeLPZ/+7T+fgWCvzx7uRCsJ5+GSu09w9DDG - dE7YkULlrkB1ZC4I6fLLW2u83uEwGzmyF9nXF8SONcyypUDZ7m/UvM0G3Pkd5kiU6DS9PPM/PQsf - aakVK+m7FljBJiPjkRcFttVLAHe9Fd2ulUGpNWY9OBovFZk7H90uBOVQl7uUoEN7pTtfiGDbsU8S - KlSgW6rkCowfnErCWxM3FB8+IfwlUYpOqj/rm1Bp2jEPPYWc6WXwtgVYrIwYGKLUqWqwiTRPodK4 - KCDSw2voXz1ir1fgheWH5lURK5df5T1Div94xGuGvgoM/gYV0PIdD1kslkBUvtY//La4siRCI0s+ - gXCDPR0j/dpCtwMooHPhe3wp2K3UbE8L+YfTE9C7qIfQUy0YwK80FXt9TJNj4ROScGJ4b6mnBwvX - yU0wK7YSXQN/KGHJhhbJCLgXu97uyuvi1cTOLRHM4XLqdkWZR2dXLMFi6riF4lUacfunP2WXRIJy - Rj3yt57tmr2C4//nSIHwv48ULDY4EmfN2ZiOSd9J/PVW4er7duJNBdiFvbLaxIjQrC+f8BPJ6wVx - AZdtXLPYnwMP2XerE4Utq2JzHbeHVpNsRD25VizcHd4H84X1UE6drGHZwy0H3cWKiR8eLsVyyhZD - 1ix7Quqv9Yqt1v0aTs4bBZt5a7xlOts1jJJbisJgFb3t8nyksCqNE8mvs+YJzmoo8g1LKvHMCYGJ - piIPC1CGKBZ8BkzfUdxg/cEFztTyElP4ajRZ53oeKclr1X8X/hXAZOYZLKi3rll+cGVkXx0+uMU8 - Lujj/E7gT5U4Ep9GNybl7a5B/upT5H7W90hipq5gxLyemLcqDlAofRc4fn4RSm9RPLI/+4XlVZdN - kha4jsnxYQTwcKwfyPQeqFkyhyiwO2VPZOnuD+D5KlXwtxhf8mQ/DVjO0seW3/nVI2lKAdh69WwD - pZYzZHHw0Kyl2Vjy4EOFFAVuwOSo3h1kQeTiliuKkbOUNpC582k/Je+w3lL+LinUQstDgTdfGl5o - nRbe/WuJghCPYHL5IAF13qcouNTXQsBf5EK/6HTk89+pWb7jssiMq8QoG65nwJtF+JYnn6vxLTef - +kxwg+Va7Sm5h6/cEz40ZOWHJW0B+xGfHpcuniYHW1Ri8RP/ig3xcIJ21F/+7KXgrVL34b6fSP+l - YcOf9KML8WyoqPShNQrUrkTYiktGnuklienNzlkY4ZQlHsmugHV/IwOJUQJkEzEtJmtxbWgsWCN5 - J8BiOk45L32fkUGC7DBRWj9TXxarviDPrpNi6uZHCO3r4Y3UsrZGzgklDD51Bok2HuViLh6yDZff - EJIz8nSPvx6kVE7DJ0HqRX82gmkcEvhaYEQe42bEgnCoW/nKQRQcnMNNX6eL4kJTNXOUsN234A6m - +IZnRdeI6nvKyO77B8VTL5ILP0pgY5/DAu0j+0T+r/lSWu6z5RFdnySNZiteHpcjAwGdL8jRq0ez - fiaegekaWMgfrmuxCWSNZFv2lpny2bDb21eBZnF+YQrPN29lkbLIep9b6OYNesy/hGSTI2w75JLS - PBa8M2SgLTsLMg1G9Ai1UxFCHcDgsOlqQUNiDNCNrhYJhw7R1U99H+Z+/yVBBjVPyEQ3lHz+1KDg - sS3NYslPH4Lu5+NXXL5GIfa4Dv5+MSbmT1Pi1cz1Ft7lh4OuvBiMgnxVenjK8jtKro9m3P3BhV9a - 5yj4vn8xPZa3N+TfoUjM092g1IZ0knkYpLhtL2rBB8jiZat8HYNaEj2PD9TjIjGJ+yBOtJ/CnboD - Ay++eUcu78TxUgRnHsJ2iJF6N47NIr2DGnJ370sM07ML/sUPFtSEkSAlI6eY/cEjhE7M/JDyzg7F - dpcsHuL6yxAtD72R1XS5gnnaWch4prDZhgevwDZ5G8T2J1sn+HuyoWv7EA8HyFMCplqTza1YkGdO - BCyXAz/I9SZ76LJ9zOLv/YDX91wR7XX5jJxryhh+LPVEbNG9UPaV5hu05CgMNtbUY85o7BaO+f2N - EkHo47YtSwbKi8GhTEi/gMJ6SWA3Fifil8/GE+AcTbJ5Zz2S5NqyN4o2LDkdbmd0joMzWH+fzoAv - RQ1RRQXy7/1LbxjYyD7hfOSyW5qCxwDvyHWgCyb9aUM4HmhBjPXaeZv6fuUyQFFEPKHrilVLskr2 - rO8tEPVxBnQd7A6emLYnqZbXMWvEtwjOyWYRC3Q7hRKUuxQ/yxeJ2s+l4SNQ1OJUHx2SLaYFlkQf - WPh6XA7InIWk4a/eYEHBenkB70xTvJn9/M++Alkf12J7V6EmB6pLAjhcLzFXd4oF6b3a0Gn+3YAQ - M30JV1V1Sfh4KgXJn2IA9ar8ouLzfejrlyy5bDwPA/KVwYtXtXpt0IvHiphneCoEq3Z5AMpGQ0qr - anSdLxsvE67tSZKvZFz/8o8g5TYpH5epwVRwbbghLQwgTcd46ZNbDuF2wsR+rxZYdPE8weL13oJJ - C6q4576SArdn0RFHnqViHX9RICcD0ANhPGUF51zmHJa/QcNr/PRjXsU3A+7+QDRyooDOTFeDujq+ - ie/580id9tfDo4YNpBjgB7bi5RqweNUbUftNBby3LG+ZiO8GOS9lb5TY3yF8KkmBkjTK6PaQlVDu - daIjxH50IAhKkcI6H1KkXbWrvlwn3oDS6A8o/bSYLi5X9PK+v5hnpIDydylgoTL3Jrkh9e5tSQNd - WPHBhXgtR8fVaJRWzj7VDaXgd26Eist9eLEhi5Lq1cfr/DyJ8JaJFXkqzMFbkvAgwgJU4X7kqx3Z - v3ywjhlDqofy9ajK2Lk8tImEoleyxD9X7FtwnBWRROat0blg03LoZLEUcC4OgVDeIg3mTq2S824/ - a64aESwu6Yns8aj43X8TD5MY1OTfeqP+GcH5jV4I+dUCthc/GFDiUjY4vGsDsH/xWEyOPYratwVY - LFil7M30S04XPDVb0rC2XEVZQvT0aeuDVXoB/LM3rahUwC1vqMGn0lgoOO63sosXu8hD6yKS8/ec - rifu68p2NFyIvSVNvGh8vVNw18ILWzLxdj6/SplcGiX4fnlen6yF5aXn4+Oih/M60CkOzz6MzTTH - fRwMe752FSBWQ4GUYr91YpfD/S9+IdX36pEeaCVB14zVQAgPZ8CPVjXAvOF5zOf1oE8hcwvhY/TM - gI+fBHzwsZ/+1k80UN7Acj6hHY9kJVLd10NvLzQJ5RFWLvJPwC/YjXAtrJCiIa0ijb4Er36nqLqL - 4U1WRpofyQCa+J4FfYmMcW4FwIBTUj5REI6qLuTPJYAlPMTE/sROvGnZdJc7MXoFD6e6enz2rUMo - zG8ccIaPmy0IElsOP6ZALmIRg+Vbq4aMhcDDbJ/43qZIyiIzL/+9+/ebYq5+VFIyHPfZaC+P9sBR - t2Om5muweeBTrELN9nBK2wQV62mfbXdYKzn+5cr+vp9g7UBtybk/fANgy6tHeC9M4Zjnb7yWdTfS - PZ5A8bJq5NlEOKbqlk+QnD4voovHWceh8M2hzg08OceXvFmU++ACVH5DDBylAEvBOQp0TSNF+bgp - lBXN6wArpGnEaS8t7fvkcpcTQbaJ9skKb1mlrYN/+ChPn2Pz7/keD+mKTpoXerRY1hzMgEkCOLGO - vjVRn0A7kBlShaPqCTOD3yDru0PAHTOrwM58MOC1YkZi7p9Zjr4m+RcsATkVr8WjzmpoUjcGJRZ/ - twos5+NWwqnGVZDveA5nrJxCTXgayEzaQzFFfRbC3V9wUR0+Hn3chTu4XPkAeVreAOqziwslrnki - Rc40wAut2kL1eh52eztSojSkA3H0sdEjDma6CKWsQP1Cj8S/c4dxCl57gGv7OODiqfaWzpDbf/j0 - NBp+g7kYGHARTiM5m4Ubs7PG+PB8Y2pis7xJOXBW75BrLytRy2YtJuk62dJFLjZc73yGxofChsnM - MuThE77YzP7TwVsmVURJKisW3lhSIGS2El8hlvUZav4dVDRMSXH1XyM1R+kNPeG4EsVwlB2/rhAu - dLljJvCdgpO1gwGX57SiB8s78SJvVw3ectNBz3eDxvVK8gQKcf7Z8euhoQv/hoC2LSQJWvaSjsMH - 8Bt9Uyw3HdNsDG67v/yEvPUoFlvGyglwgCsg+0aFcekMV4SZel+RX3/E8W+98Pa5HgMK3SBe04XD - MEf0TMzjffXo/Pltf/krEJsmLH6POWTkZdp4kpK77M1PJrLhDYsqyWy1av7l65UVT1g6u2pMpUtZ - w1JScxQh3xqFnzikQJtfH2IrD2HEMRnZv7+TlIOHkcTKWYTD2R2RzX3ahkp7e7lP7VxI5S17o80z - y8g7X0Am/c7x4j1gBFt46slp7pC+lByYwKDfRMxBLHtUuiQ1PJCWQeVRnOnMjM9eqovugrzkoQFO - GX0XfqeaDSTnWHtjakwYpuwr++PTHiWBbABjOLFBJUiSjvVDFEEcXwOiBY8T4P2PzUrMK3gTD/wu - +hJguYJ0FSaC/CqktI6cf/wcWYx8HNfOdt//+IL6tZliE/OLJPHXgO721MXr1vUu0LnKI443Y32h - 6cL/4RlipvIr3t5VrgEZMgFBeFM8+jkob9iHMkVoE7lxON89FraXzgkWYWDHlT9aEzyyWhmApymN - iybEChyYMCdnbnyM28O93iGO3YZoo/HTv077GuQzawzkj89trPh9Q2/euyQcirRY4ziyJSwlK7L1 - caaEJXdLPv7EKOCW1I85xwgT+NV8BZn34D1ShoklkK+nDmmsHeis+2sYuTJjhGlIUMH+rvwCUVcT - 9CD6p8FaesRwSrsEedbep+XFnljY4UxDWvu26CzzSQ/z2zEj2tqNI7XtpoIf+6ARW4RFscmWr0hY - Slfk9c6h+ce/HGALBKHp5G1ZIbZg9BqbnIT0S4nKKDnIqrEOpiR+FDTK5uh4Ymj8tz6waVmby3/v - k9vtbRsejAaD/tUHI/it+qSW6H3Mu2XF0vk8ecSRuxx+n787Uvb3TxiXT0DWrwNSAnwudrwRQjEB - PULvBjWjr50j+P3dA4IA39ItUI8bmAFMSDnkpUfz+i3J2ae8ocSUV7BgISihDZc7seInotvztgbw - KZAEWTteG+fPa4Go6diA/7QB2Nz0ieFDvHHI+3wfHt35Ltj5GolQBPVtvV8iuGj9jFdGqJsleNW5 - 7LiqSxAdDvoaHJ4l3PEK0gW/ootplxF8526NGTO4e/gDcQiUmV1QSpJTw5f2osg7vkO33DzoNLi8 - LHhvXiNxmPLoLd+jycovRQ8xKHBDabGlG2wPeoPOsqDHaxgoPfi3vnc8j9Pvym/QJR+OmLR9j/gP - vx5s3yRnZsrGZbo/Wnh0PBDIz/rnbfnjCiHTvihRG3aLp0JZFnkdrwwKjJsJWJcrBqhGJ4P4vy5q - 6Dd0NoDTB4s0hNYYH/0hAHnD8uhsT2NDTbGUQPAJMmSRu6z3f/mOXJIrcgRTK+jzsbByaXZ35N8V - L/41+ohBNT0eyENlP9Lf8ar8i/9OVaneZoVxLVupoRGnCIcR5yFo4c4niesX72b7+iwrT61Ogvdu - 70vzvTDyVwsU4tnyRaeCz2GYsPybeK82KjinOi2wDw8UaVtxAIsaSCVg2sxGRnH40OV+03jo6ZGN - ko940Cm+bQZ8MUqKkANxTNfxA+EceCLei8PefHUQC65PJ93t/wzYRKCGnA4fkRimdNLXEwvLf/w0 - CHwnpqkxTRCuQEdu16V0O4lODm+ebhA3rOZ48irM/Ok7Adn/33rYu9SoJ0ZC3kzfgP6ODw1G2fWC - qqnRm0UU7Tc0FWnGTwcGMR0maYDD+h2Qo0puQ4naK3/Pg/wklouXY4QptFJLQ954UQruCrZp7/oW - EEcQPMB2YuxChok65Fd66m086Bmw66nBYiOOfl70sfONK0McvZLHtW/t6Q+v7/njoQ/l+1tCvzom - O16eKY3c3Ie7noe0Twb0mQs7G6KmZcnpq6qUT3KjhKZxZogi3+dxfbqqKIdnLKMzscJC2PGivGnZ - mzjjZxnHSt36P35DUExWSv/46/a7miiSwaXhtsMkwtFLHuiy67WczL0gjAxNCfh2+xRbViytXEXN - gaiTrnt0tBcRygfRITdtSvTFqzpGZpjHBaVarsTbj3vk0Oi2hqjZO9OXmXtZ8q6XkqS9vIr1pu43 - kHxR2PNL7e35FEP1igZ08nxXxwZ9d3/+RnToBgX/IRdf1uKixGLO6PGSL28f3Fz+hne86fFVF3fy - IfhBXF8OuMEW6nlwpVpCFK3c/vOH8+B5AatN4Uhuds7DlYsfAeMyEd2ooNmQt238f6RdSZuysLL+ - QSxkkoQlk4CABAERdoBIA6IyJZBffx78zvLe1Vn2ors1qdQ7VFKFMylbotlLPB/miRn4ZD5ZLVYP - LwKGNT8sc7UO0aYuV1Pavn8E7/7tuLWmOEB4733sO+Cjfxu/XuDxyVB0SdFH37RkXSCXsMnC7+vD - 7vMf4LD68SKn4Qba33603rtCbrfZgFoW2SDt0itOt7uvc99MX/6dr0v310ZbdnIlyOTZF5kfcy2m - k/XtYNI5KlatQ95ijbo5REls4JJG9UjGlYXw8tZeS2IWo86BPCnh572N2Kn5Sv/Hj3/+enELBXeT - wz6FRBvmZRuPj2j54ZHsqR4y93iYiDkkMLTsfmFP0tulSyaZ//xGNXp6BXezH/Y/f9ayVaalgcQm - gOahhXe8bqmO1A84ntgBZQN9u/hkHBLAXJyjL/8dakoej+8ADpBbsLWfB5J7nwqWz6lFpg6jaOIU - hgWPh3jD2clWXSpQIsLLwzKxe2Vcfbu5gwG2b0vQSZ0TSqwuL0Ee2bd9FjoLlmg5OuAXzz//fnUn - UYRtPVq7HxiMqxDnAdz9IHxJmoxyIK9K+NVONfLzyhhZmaIF/HnSdwFLo7Z098els6hc8VPPR0C5 - u6LA5/BFi3SwmpaGriOCnT9h1N4yl+plNcHTJ+qRuftbJCw0X/Z9xUZ6rxktF4pmB7u/w3PZ/ahi - 0112gacLs/pCZT6irXlqC3g+0icqYU4KsgyTCa24emJP86uC6IP4gQ/LeiD39D3pnAhtB6QZuGP9 - OPLtctqfsB1glSJn494RvTwCAiUDWf7RB127MsMEpR1/f3jYTpFGHFljkwqjJ2pHIv0VLDQo/0Gm - mE4tEXQSyCQUUp8/TGI0z9XDg0nuN8u688/feYR/usvj0+N1jDYT1SysvrGwcMa5BfSnv3Y/BClj - mkW04jUJ1n7j7XqmjuhdhAzsluGygCa6uvQkDD6YZNKgAH46fRXqM4T1ayr2K1wOYNGNTEBuFYIM - KVF0dte/sDc0H3tv9RTx0bLakIeFuhzEjz9OTK4xR/2Tm+gsD2jceFBD+Ricn0iLLwoVlPvJh3j8 - nvd6xTnaHFh7EL7lDns0GYvpx59Dpn360HnsXT++awp0oz0jw3vGu7/Q5bKI9XURI9+JqDnNPrwM - ZxebjJzt+iuIf/Wjnb/tV3LH9L/58KePlk3vevh5kxH//P9mvm3VTy8hfw614l996cfnvUyuW9os - mwalyn4h9eiEI8EVTAFq8zNWD1/HpZevUkLK1Dm6Ptd3S8P0yYBm70KtRqXasvz3mcL2XIl+bSMO - 0OKl7oNP1AnnUyaNtK7G+le/wv/4OZ++UqhaUMI/vFzFm8eAW8Gfdv/0CJZLdnWgXxWVv73pG2zX - UIKQlJ3rs0zmADqdx/5fPtk0aSxed08NIfnyAF/sb03puzhWILswB2zl27VYbl5MjjJFxb94/en1 - ozbkB/9+FIdou5ppD3f8W4gEOLAMQQ0hjxOITLMY3Z3vQHnfn2VVxr2TSHHN5dOWkf/yFyi9N5i3 - 7egf6HBwu4F5JjA/+zyyZHDb/QlPg3isKmQ5uTJyLKIlXHPmg06Xiz22v/XNay/HUSS/2l89FJSn - Lse6yGsFbVstlslpjRbe833K0ZxU8pv/MIsU/Inu/HTOInTwm/Ovk67rlHeDWF7frIbSTPV1YTq3 - vYzkJkRusS7jVm1uAMemmTA6WL1OiX7JYRwda5/f88v0rlXzh3/oEpZGRD1WtMFez0C7/xKxzaFT - ZJoHFn5GSqSv9zuBMhPbD/zLl9TjBvZffj8vhl2wnxoQ6VvwEbLv15s+Od8WQvnFjEj5a1x3Lo80 - lq9yti1EGOJxVXjKwkQxMuxKwnucBuYegz2/IOVEGP3zBCcPZo3yQY/MKCP808N2q7+R5jLEJXzp - xLC4vyK8r78uhE7qw8Dp7jjrrgbleZsxQGHsXQk/3aLTY/DlwTOvOqT3rK9v05H1f/VkjLi4GT+9 - GNnycr4Y6OlVhM6pkvUwUcxs+cvVhdLnt25kk/ge1gc711dluJaySXJhkfIroVQvJgXy0EtQqMmJ - TrzQ60CQH+a9nmFGbBKtMfx7nGKEFObpUr/ibWnTHAFdbvNpZLsyhtLwftbo8ul898en4fvUXpFH - pKrdeBgN8g//7n8xBXMRXkpYWOnn3/5utgiNn/5f5H29hqPX+PLOz7FScBAsiXrfYPE3P7C56zMu - 4+L6Vw/HbtRU7j9/6VdP0Iyhi8gTnPz/afCB+P8MPkAFweaLH+gq+DWUD7lyRebjEOlba1EGKu+0 - XYbkqlC+72kjP0mqoOTpu5Tcyz6XnSa0sZNcazARhd2fgDgTUqxV0wX9ea7hCi4tcq9mqQvViaZQ - yOwCu45gu3wajx/wnuIQuY7wcam6HBTACDxZWNHq3Nm+PkJQliWPHm8Lj1v3vfTwQT9oLxu/wXbY - S7jda6cEozRH26bWoczojwU5ofxXbL720uSgzy8I6X3a8s0pHeS/1Lvg7C/0RzzXayKPOzMwFfHR - vq9nTpNnVTv6Qim1gJ2o4sHK+gKccKqmf5+M3UNZ0VqEGJaha6dwPlybMPbLQJ3A+vexY1hMeYPO - dte5HCKLCTfhqOCgyk131f3PAr1WffmgWCQ62C+hBNPC3ZHfUaslj2MhQTrMCQ5jfhtXXz0qcp+b - D3wPX1KxHQwhBsmrw9jUPZUK3/yWyJ+n/cHXAJkFCyENYaFK72WxmydgGy0K5dkoCPana1wsk/5n - yjjBR+SCqNFprX9j+AnbGlkPch2503YbIJZZGZ1fJQBrkGoNxMW3xMqZt8EiLWUNu6Eb0IUPe0BY - K2Dkoptk7NJeaLdvAEL4ClYRP8vZL3hvikpZjqGJbpe7CgRHRD0UoXpCJ5vhwcqfNhG+8XzG1w2r - gPqPK5THL1cjW332umAm3QJ1ZmrRs1YvgDs0xw8oprTB4R9s9U189SVkNnDx5eMFFPTrrRJc6mZa - 5Jva6e8LtAMIo5uJHy8xAXSu1xgehTOPvXN2oYSGmSFXY27jG3jeo0U9ug4gjaeg8lXcAS8fxA9E - 8untH9k3dbv3yWJh8KXGAkUCC5qfBke+dkcOqZXbtbyvzQq8QHjA4Sx/dJIdnQ+kJ4dBp46nLe1z - zwDWer6h29xmruBZSgkzBUXYF21Pp0//r5RtmV3xUyMOXW3i9oB3+TPWXkEzLhFj8zDIbIRvtxEW - JCpvDgzK1kSm8fq4szOvDRgV8YpCjfRgTdrZgc35ISz8XxS2dK6PMaj66rVghq3odAm2Wh7QNUCJ - W8OI3qV0kfthDnF87ttI2LQ4hBfl2iLnpn3cJUymCuzfZ+GXTHfZ4aw08lT5Dbbfh7+RslPBAPkR - 1FivFMElQzJCaYmCBeUS3+rb+RKJssNH7PLxrmHBjRT60A/bFBuBr0XkFKQagObJRo/vSy14hyUB - XAFqkc5+gb7gph5giXxx2QLFoBwXUE1u/ceCrPJPBDMgOitLIuF9/nF+FYuG4kWWh6bCzk28Ae5N - Gwakgijik39BI+6uiSZbH++EUiOX2vXL+yFsophBKZy9aGPa+QOd+ZBhnz9GLnvdbjloPiBBTh+e - KFfHoQ0frnRDziQZgHvEigSPxr3GvmpQd1PzmP/3/zT7IFEqXhgJ/uLlLKwvl/z9qT08uybGl7cs - R9O12680QWlEVpcG4/qFV02W6rJEmd11+lQtEYG3Fc340shNIUhD5Mh8n5ywlqO05R5c2MhfU2p8 - cDWhvjGJ40GiaE8Urldr5Az908NK/JgoVP98d73lBxPGEHHYsOzryBEIajjGYH/l3R3c1UdxJc9V - yCMfa3sXFjpAyXs8PJQf30OxVh0a4Fg5PlKmegUUt+UA9WzvkhCzzrieTFeElmqpy/YHdZdfMqmD - uitd8GVj3gVFdKxgiYUZOWosjhtMd0sxShhslkZGeZb/mFCK/ApZ6t6IcTaNHL7CuMPa+EwiIeBN - Al65csYJJyAw7+sFxcY9+M/YSXRWtBpf7tVNR3Zv2BG1fSTCH74Iz30W8OFLctk6Z4XP6Fyu88s7 - 0aDuiheUvcoCsOVIyiOIgg0nVoJcWhTgAw4gAki9t6eWXE33AzUnuiAfF31RwuJvgLK12As59lrB - Z1BR5LF8N8i1WrvdLvvsrC3XLthwylX/5WPIfyeI739SRbfpajSwa8LAlyRe19ntkXkwnxIf+yy7 - z8ILrx1UTV7D3mbLxfw6jwF4mHDD59hj3M1JVEbez7vPstQYOcs/QqhrI/QP79tFZ/NFq+WmPVBf - 4GMfEND/bTCpR89vi1MzrpEx91J+ujg+vgJtn0Vce3JkZB/s1doK1ogcEmi/mrt/uDSCO6SW4skX - x/kija/rCAvCHEPuFPXL901ql3XZyodiX87oGmdRu8HJKUFlXA0U79+fvst3KrvgOvpyMh/aLVBy - CP2VETBi2ApsAul7eJt95Ze/xnXraQjwk3FQ1v9ZEd99Lx1Em+6iHX/G5dlfNZiYboCNJLIBn9Ir - lDtri1G14ddvPyt47as/XA1aXbC6evfk3LFnFBQwLohYpDmcFzDu+Uxt+UAJoSyOaYDcwwMVW/1h - E7iFyccHz+JU8I/HAOGenxfAS3d9KGjrAWY7XjC6x7ZOCL1WcqeYGCl7PAi38SnCduPXX/yMBEmS - fwTbckVh6oQub7WlLT82q8XnrZmi7f5siVwiT8ReX+vF93uGDbwVY4yUoHoD8nbzDiyvEqHr8Dy4 - Eyp1US6424Yf19kYKd8KjkxcA2Bjgh5d1c1L4VM4Lz4ziL67IrIY/37u8keik4naPhhij0WPGfvt - eAgVVobtASzfnS8tp1pkoTQ2IlKOFyEi6+caA6IoT1Q9879i//s5/GpvFhnnvi02Jzkz8DRWMVZe - 2kmfl8Opl/beRdgJZbVYrebjgOn6yvHZ+Q7jqpeeDU2j6JD9LM/RwrCklunjmS4McwlHrurQBxZ/ - ifmLD7r5LfOB/pRXSP+6S0Gr7NvDwkHqfh7NiOQq2UC1bIf9+090rc72BkHq3fD9+/4WU9/yjuxY - xPOP+/djFSud4OVpeEgt5o2Sq6l/5Lg9Fjg8FiyY9vMDL611XIB4Ju7q5HoM43P2xDqn9fqat0wK - 9P0K0X7eRxLIjxokjzD+l+8pM3Tp3mv7hs6hJUQbJoYJgtibUPJ1hoKmxZDDU1+vyANGPRKhDxo5 - 7BvOB8xbHQXfs0x4YT8vnD+vgJIunYhENpbDlchkdGvWIYVfU2xwEtqgINL6J0GFHf6wA6YA8K8u - 9eA3dmp0QWijZHzmGkyiwsfqWn9d6llKJX+/i/gv/8+Fm/PweL7qWBu+dkvMkCaymgsLsmq/LQbb - ETtYxnaJC3e+0cVINSLnN+6As4xVAe8gwYc8uig+2fd/bZgrK7/sxwOn02QVQuEHHuSQPWHz6OJi - A4LTg6pyHGzYd2fcfnhhqtqM1Md2bEdTYBKYY3xCl5tquKteGjZ8gYgu26MV3dWZ1xqKX6FDuqJT - QK7V24fve46Rvi7myA8n4ADmEbPYbu4y6IVWt2GbxhzKz24Q/dMTb3iwsCrfFcC+/nIecOtB9+f9 - PC2v6lLCHU+WI8e7dH26kwl2vok9gag6eRpzDJfUuy5brZ4pbxkv9shxd8lf6IuOiz05Hnwa93SB - Y10V1PeQAdwwLnFu35qRkMbvf3wTm9HFpOwvftmnmf74Np3YmM3hF3kQx9stpK+1Ovn/9FBhZHxL - mnbvPXQyB6waqT/++JN8mWIHFVb7aacG8Qs80Q0jTWZmfbL6bw0PytlFnnlaov38dCCfYh8/mk6I - qJzw/vHMoxo71ubobALKBa7uGaGsONoFxxbUAXVdxUjxM9XlvvCqyD99dHFPr3Fm8TeGlkweqJhC - sVj/PkoCSTETrAvWNNJC+ttni3M6dj24UOK/DU3mmN7F8dUg7nAQCha6ASXYeR1zSpt3FULkRNfl - s/O1yWdxCcVltVD+HEzAjX1Ado/RwP757RZ8E0IDyht7xI/jBUSYVTRPRshn0SnquZZu+6CJ60IA - zk/qD2+vvnxWtMiHfa1HS0FHH2b237zwZ7amazXkKdzx3Oea1QPU9i0R9GyfIQVfU0CE+kIAFQ6x - 3zyrtSAqDBo5UpUVq081LOaTWOeyGyblfr6eLo1hQ+Qhc+6+xPnPiIZrlgO9/NOWgzSsI32JUg6E - TpixEn9u+tb3oIHVmNrYPOyW299W5VLp8ioyDppYbFZbOpARWILOPhXAjucd6F5fC+v65UVJamgs - vApWshzZd6T/+/ufU9RgPTwfounZRoMUCYjBCkI+JTezFOElfBrIDYIloofZmuDON3Z+SsaNva9E - /nSzumy8xRWbn0SeLDATxeYI1mIjL5eB3juJsNrRdpzNbDPlUGEe2LFv2siLr6WUjDFVFvnrJcV6 - UD8arK/fAZnyrWzHnU/K9ybwFult0xY381cDoQIfPjRB6e56M5B+evHxuDEtdUOll2Hxrf0vrBzA - ZxwX/Pu80eF6pNj3kAk5vP6h62VlR1IBwYNj+WqQHjZDQWZu3Bvj/zH+6jUA4PVP62VGMQVsXfHU - btJNhD89teNDSPmfnhbKNvRpeD4U3wN5GLB0WRU/p4VGlK1IDbS9sbOdMgIYT1yhgc4iMXLCji/m - jFMDOUCR7ddn/kPXUb0vUOjzDPtdXv7DD2ieYIAuJ36ik3QKHGjC88Mnx8s9+tryW5E6gf8sK8Al - Je8TYuFhk/+Q5kV5RG7bMoCBfiL/PfCNO3TOM5Du8+GBnZaN3dW7r6HcaNP5t37jSoqvCNlLO2Hv - 7zq0a5VMPiTWfsW0gGxEv95RhHt8IIsgO1rt+0eDh0dm+7RpUTTu+QKuh/qK047D4wLaOIdx6p+R - CUy7HXv1U8OAWd7+xnpQX63ylsrnNZKRf2/P7TSclVoy7iNdNtPoi398L2o5C8UqdlvOaj42rCrb - QY/MXaMfv5Gumddivc0e7laNZip7eJixXwcooiX+8tD2i3ARbvqkr2r3gbBXiY4teSvG73K4dOJN - 5rmF/N2k9s23Bxv88EjRmm9BheeZ/NM36iA6LhEogCBNH9lP3+rroVxE+E+vnb24YK9i7citawj4 - ssfjVPBiD4uc45HzuXvjDHXJPK6KSZHrVA/9H9/++WWOa57HqbwKtfQQVBObbl3uJaMxhec5DJZt - oxwg/HiSwE/vmhgRsFRhw8Lf/jOHvQsI8CVPPqfxjB9qFI8keS/1cRSsCnvy+R1to//14M9PU25q - rW9tP4SQ/0sbfDbNLfoq+M+EBrqn2EDjGQjgWShwScYXUgSbjFsH6XYkQ52j5yxP7jilegibJ2Oi - aq1nffO1WYPhSVSQyeQffV9/FuZPM/AxFk8FJQdRhBI8z8hoeejSn14ojkONtd4Moll6Pwj43B86 - +umjjQf9BJvzU0DGX6XoAm+TED76/Io1x9/zgf3eZ0tXDx92L0dn1/Oo/PQUujNuP5KD9OfLQfln - ouRxfkX0JW657MeGsfMrpeWjSWaghz8zcu/d3NIq++vkwztA+KxtG91M9GLghR1e/j++d61JDybj - XuKLr0gubbKNhXXkJ7u/E41frvv6MPyCCbnH1AaEezSl/KADWoT3ee/adeRzOLpwxlqWDZT88Lc0 - pQobNbIi/g82NRT+9v0BoUxxngWx/A4fHkJ8bUTccgpSSJ+KgbRydiIaxJwtj8uqo0vYhoXQz1so - 9zeKsXEhZFzN962WF1Ew/dlaTV2wnuEGfvtXDkPQCthZDXnMvBGdglGNOMH/wH/8+JRInEuyo/aR - H5kd4eCmKjoNYtmR5I0/LuskB3TTQF/JRWzYu37ZXHJ76R4cXCnD6mpVOhHq0waPC1fgU9TfWkom - Z4HmdWx89h9eCVoCT1lAkX360uh3Pn76wj8Eig3YzCOi7HpEx+UJKS0VL7woZXhYfdG2Xu6at3wu - W8uBLg89LfT1JH7SvYtIi62d35Pzuoly+D1Ovjg3N30pnpwGpsprlu8wsu3Aq2sN5OCb4moQFz0+ - OacQcrnA+OUwkBZbE+NBZVhzrHqgp9vO3wDr2BxG2v1Ah1SRKyBdvxv2jpwF9ow/gd/vt/rlRAlR - IANvdS/61CZZtAL7XQKe9jpSwtaPqBePosSZfIh08+8UbQch4uGT5Ar2HvK4dzXQF0j0IvG5LDXp - 9x1mCczDp+0Lx49fbMDoDWi14I7NuL+4+GXeJFisDMBK09GIlEZpQEFhVXzNhZfOlc+zAvsw/1U5 - zXY+i+sAzwXuEHpAyxWAO7FQ/64K1s2/V7Hu8QxC4xYjIzycI3oIbR44r+GwnMrJLH7nV4qqYEE6 - U0wuzXtA4O6vL8y10nXWhlSDO75h/b7qOv0e3Y+UpPGK7oujjvRzlzQgHyoVGaejSPFtfP7zx7A9 - Te9o51s5LO7VwQdyk7jUjsMPPPXNii97PQAXfur94+PS6yhRDJVp+uV3FMF6A9MXWzU8jlWHFPF+ - Hqddj8PMbmfs7HxrY+9HAs9S42NkSqlLsjyOQcxVFlZZ1m45Ua9ZeefHPknmYuRtR+xBVFcBPtHP - s12q9WqDsPJy/Izej3Hrs8CEVhQ2Pqfhhi72cR5+/ssiFOETrD9+Wp9gijJhfemrKCcKNKmg/+N/ - 65NROmhGvr+IqT24q/R+bNCf0mohU32lm5qXvNTI/BHtn2/kllOaQ4urdHwi6kCHSf8a0DSy7l+8 - sEWr5aB4Op3PnN9j8SmvhxokrkGRWUhTgQPrOkk5POiLpGdPd7ud8xDaG7nhm3/B7YpabZCTKPMX - 3q1hMaWGw8Lb7Cn7/v21O1+Z5PRkNns8LhHhYEBgYDIL1nrI6Du/3cC3LCW8+48t22hFAMW+mpF5 - ZmtAurQjRz82Df+QZQvdz0cFh8y+42egfPb60pLD97D2WAeyFC1D9o3hT88EyQzajdFiBR6Gr7l8 - 4OwV3PvJbvDvXLT+8SIP+lr7KJUcga0XuXwGlHKcpsGmGFOMmo0F5NqtUNr9DeRNWChWUvyJ8n3o - +4V5bHK718MYeBRcHluWNbeUvAQoGV8u9l8Gex7Z1ND4I0zD7wKEgzaOd4v1odGXD1TareKSJNdN - 2XkkHbZ+67XvL5A/8rb7/ZP7mT+2cYRS5fjizy8thrPzjy8Ze/1rGe2qAj+/3/w6Q7T7wQq8688G - KZl7KfjkoVSynYYZPiH9EW0pzRh4OXY2SpXgUmwHVzNg5vEF1qin0G2vZ0iVC78oZjynJV+MalAn - r8vS7eebv3BqLZNHUCJznZuRqPd7BX3Hl/EFDxaYnMjr4J/DoP3KPNtO4VwrcMdXrO1+8q6HJCh9 - bBVdfuud4qCH+eOvW5off8nM3oajODj+ttEbnW7imsPMY4uFeXd+u+HyJsHjSfSwyQmYEg9/WJAP - tMEekJZiKsg+WDCzC3Q5O1607PEu7fVH/9aDXN+8imiQst0DGySYIrqxhMiBoGr+VqtfQC1GNeRd - z/gdGs+UGxiYQP9zIii5ML4uVFHFS4t/d3y2VfyI8Gs6QEWJ9ie/3h+YPFzz8q8edYdwBmTlWPLT - /0g/cx0Y6iKVIKuyBS6ZtNZXZl4J3Oub2Az0GOC7xXqy/Dls//aDD6ZpgbY2qb644x9J70cFvtjm - 5DNmNIIPZq49hLPnoVsRKTofx2Eux9VNQ6m7HMGm86shp2yjYjMfo3Z6p4z28+99Wlc2JcpnSMAr - oCLSDsc+ov7eFQ/95Qn6+YHcgdwM+Sp+NHzlhqRYj9tD/PEZf+tcwd2aU/qBAx0idD4F3UgVRYWQ - vDoBmefiBvBtvO98zp2R9xSNiP3hbXGKqv/qdc0WFbjjg0/eljsSy6L/8jXSonfWTp8LJ4L5fIvQ - jQv0kb68+iPb23Zb6MM5F1yavhQ5vs4SPk2zG7Fs8+QhKssNF09NitZGRAZohybBPzzll3elHXd+ - iE6X+x/9+fMAzr6H3fa1tfMvn3+da4YelOXcaT+fcLvNT2Re7Dqi67JoUDrvgygGnxt73NQfea8/ - LPxeX/jlB/jlIY/sb/oGOKr9Gngee8dxqywR3dBh+vllPmfbZ/dXH4Utf/ksoGPHcYsmGcJj36p7 - /VVzCZ7NCf78O2QaTkR/9Rz1+ElxSt/FOLy6wPvVv/z+dx7s4pvCk3EL/tVj559+EzKnWCTid8U6 - PygD7Q/wF1lPgUuz6jRBa3Vvi7QaoUu7+2fbG79pOJAJHn/n93+6UnD8v68UTFYfYkN9vSJyunGp - /NieBLk2N1JahsoGqyGAyJq0jeJmv/azyupj6XGi6LyiRr08d/kJ2wqY95EsVDq6NBSXzTPDSCiC - QwcDM76hwntfKa/dblAO2NcJ2cP8N3IxryvQtt/QZz6d55KqkE1obXjxxWH+a9d1E3NoWewR3S9X - x2UTS2dB01J56fjT291OD5UHZwa6OGCisSBx8WngByaqf4jwoSDz+JfDe/fRkRc0TsTiQ7vJOPEq - 7DADMxL37HXQz08C0l+kBdvDrQf5xGQq9rg3V5A+ER24ppqAtVN6cun5hhlYVfUTBcexb1dRrkv5 - /dlSn6e26fLmW1egmBwl5LdxUwjKFUrQ6uXr8ubCsiDH7+cDBPHrLCncS4wtm03Qf2wnZF2PC221 - t12C6/NxxKl4T1wafnRRjt4li+8hnsf1/tfHYGyibFlsuWtpbvK5zDB9gp3UCvRRcwQJCkH4Rd5h - awpuzJ4VvDJShy2vcAvKvmpHjkfphBT7ZuprekQ+tOKSwa6qnwDL8IsG7/WBQ9oTN4D056CSA5nz - l+72USjLKeEEW+ZUIu+YFQU9vi485JDa+Y9ndqZk0Z0EPJfpgh/dl47UFLoYIlJayGtlBfAUxou8 - eWduYZzv/or9sxHo0kDE8YekdOOfiiKn5+GL0Em46vxyvvSwOTIVcv0IFXyKpRi6c/rFVziCdmXm - zIF/VJGQNmf3QmjUtYLsSUuxA4s/fb5EmwGbB1h85nBuKYZG+JFbs2+xmwZay/PcfZJv6xfjy0l0 - AEdyP4EsbK/oUgvzuIpEIfK2lhhp1vQuyIFaNVTXZp8FNU/RmtxfjpxxHYuS+NBEXDqRBXoxaLHR - 1ljHuFtDuEmTiIwXex0JrUgHj+FJQ48S2YAj716DS/qn4zKFN5dmULaPjlo98f1yHXSizqSH9HP4 - +OLxEgMi0S8ragy4YG1q05EmRxFCBKmI9EA4t/z4GELpd94U1q6i5V88s9dg2XRDa2nxrCvwdw8f - yPfw0OLXXE6wNbsWhQpRIm7+0xM5QmaIs0m4U8482ATu8YjcItfHFT8mXuKL/QpMkzFgwSdswufq - /eGM69SIXAKxgt94abHjKmBcXkNhwmtyISh6l2rEAd/bX9k0PrpEJHOFRj1WcMx0tAiW+9cSOqUh - vDJih6q3aResYosaILOjoaeok5YuuWiA6k6+WBdFQKc5VhqZZy9H7F4RPxL80UT5suIEKX/8yWWP - 33qAZhAruNwescvz3HOCfXe3lsNgPiKiq0ADd/sdoUsG+uh7j80B3otTj653doioxta2rPwlKdZW - 91HwODI36FbhddmE57N9HZ9aJ+/xiNztrRSCATQevo7nA75abQxWiR8rKATBFxn86b0PbJGSf/nI - bb1zS9WCMWA1hBA7rwMT4U9/n6SaeX98Rn6YBduxBi/jIAl81v6bxun3/Sz+9MVm2Bcuf/3Um9zI - SYad55Gj5Pi5V/Cq3BpkFGYXbWzEDbBcpxllRM1cIcwnHwal16I06y8Rf7hFuexb786nIE9d2hHg - wdAgFKM+vhffy1+2yeKD0X1J7JKCRO+DBp5jHKJK258wnN9NJTdynKHHzKhAqKVTLc/uHOB74xjF - aiXfBUiRnS51X50puUbwA1071RHa93OYcneDzfBHUcJLnsu18y7p017FlUhKykbvg3IMv2uGL/FD - o+xnkGqofZUDspkxjXjVLTd4A7TG/pSE7sZzzwWa3+6MrPs9jIRzl/Ly9ChrrGQHqdjWTxjLeIUA - uZmpFgKcjhNw7VzHBvO8Ujq/zQ66N8VG6UUuRx4NvCm3XrWiy6Xk6RLotS9Ll+CM9mKPjq+6HkPl - 7fULjVUH0Pi8aLB4KqO/slcC6DlZbTl+2QhVTPRyP/SaStDPUwfnW3UB7PddagC0Kv39f7DBr2j8 - 1gudoy5sWR3lE4yZPMXob9pGKsF+glXVPPf1aCg+3zCEieu5uIqO7ihIcFmgP4kPVH4vzsimn1mE - YXR0keuefZ0bs3sp+1DjkCPAtdjaVkz/4Wkt/Z0KPoo9A3KSN/nCjrf8ykmapFbzE5/tjzuy7/qY - AGktbOSiNaQT94oC+G15gKw8OrbrIcw2cEqUGgeszRQrv1Xmbz1Qya5JKyRTFh6FUpxRFV58d/tK - ++j4pl5QZeWlvsZXp4Q5DRE+V/euXbwVmNB5eAChH567oOPhyl/fKE8toq8fEPFwubk2ugA+cOe3 - DTroLe6EtbR+uJzhc6x89DyKci7nXP5vH+SjmgmDE0u8AM7s1FSWX85zERrH2JulvE3ZvzoqDruD - N66gmAx4bR0bqaKeAC5XgAO3j/fCTnNJC5rhRwn/6vqNk/igRawV1Yb8XArJZ1aWa+knP/vwcyEM - UtMSFau7+gRs2nFaZI68AQnu+61Zj/TILcX3js8fWxZls8BWtzcO3vFe/jOIg3yRlICyiRDKPzzx - qjwd2ZN9W6BxPBBkVOJQrFHV2HKPkhpH19ku6JAMixzur3BUoVjBVtmODcUNDj88i166EIvyjtfI - KieFsjkVA/CwOoAeTo1a7iQfOngJzBFdmtvqEp9bNYg/04qcN6nb7eE8K0CockXV4dyCTfiefTg9 - qhqpWHiB7XArcjDPg49dohwKDK9bLOPJmLB9rztKYNMOEPVg8Ne3A4sNKhYL7Vnk/vFDop2utXxt - bRufpvFaUH7SWDg8FQ0HAQ4o6WeLhR+udxEKE2VkR5t34C3ZJHyWPFPfnqEew72dxFI/G60dv95f - I6/xB+JsuxXR+qJvRs7uiYHsIGkBK/l/gVyHnId3/kM3ZZ8Nvv/+v/yziamrwLt78LHx7YWR8E4k - whfdB4WdcFqszI2EMtiqahHenzclnBIu0jZ2NT4H+bUl+ONIgHsvGULPNNCJpJ57UCxnHRX1cIkE - TyurH39Y+j0+NzvxeJhcjdzf8XFc/TFkpD3/4uj5SlpWE44bWOfjCbnFrdrj4xDAubq0eMf/Yp+3 - xcLXI2v82yPIR2782AnwrVeHtO48U/KOsgFyBLbYzaDisuUEAmCW3xV7g34uCPs5bnAmTrOAJnEo - P4h/g9wsnoqy8vinE12lyj/8Us3TtcDglrJg50v4OW45XbPrMYG2VEt+tfPh1T6NNfxE4/6mTpLH - NZWCVBbE0fEHH/2NJFMDTR40a1y2YBFciu61Im9lZSPLt2xA/aTioSQ6zM7nh4LwENpQKtM/Hx42 - rdj+1IsDsD65KAmkx0iFqnXkBPK8v1X6qSDXiB3A8Ak8nAbXg77kFbTBdztEyMd1pG9W29Xw4ngl - fshxBFYcXPbh6tYZGY/cBFuvspq0aAPnA+v+0en3cN4AaHW6vCtQFfvnVyD57q9Srx1HaciNHehR - XKNT/VRGLprOLDgcbhn29Q/vbp63NbC6b198Rps3svsLm6Oi+Qpy7k9X5426jqFRocjnt/Adra9H - GsCqsDscs9l5XPd8DvWa9xaG64uW5Hc8QTkcvF1/7Y3IEz6Azbt0UfZ+L/pE7sYiWX6PkSkrccvL - /bWTZ2I3qBSA0FJROYUgvEcmspXTEm1J3hMgp3WOb20HKeFeUSifRe+GDHe8jBsbyR9gXS0duRrW - C37boloW3fPDF17QKSZJPXfwgQ/lwqRRMtIY+gH4zpaxMFYOXaxcWQno917DevrF4zSP3xwq6nHG - aczY7fSL712P/PK5vl4Bz8vjk572QSoTJfgwEnDBFw1Fd3cEa806AZzfm4IQh32X7bJTKff1wcMX - zezAQo5pDYOL6WK3uDGUOkuuQTBd4Z7PxYg2JdmfUfKZT7ZBGqedTwHGOZ8WeMxAsXEi7/3TRz+9 - wFur4cFHgiOkdqdax/ePtEFiCWekMfU4bhX586CBDLBsZ8fVyVKdF8hMpo6V6LiCrV1TE1bEdTFq - muv+qmRNIIPdEaP5phdCUh17KKdNjs0Lk0QbGhgDeMA0sN1OXLs+h7MJc/4mIH/RULu2z1d3nAzv - jlJmFIvf/sv/AQAA//9cnVvPgr627u/np1j535oZEZWWdcdJRMEWBE/Jzg4oIic5toUm67uv1Hdm - X+xLQ6KRjo7xPL8x0gJYYnpZpoU5p5ePBGsXVvjSVQ5frV0NQfmiHtBS2tKQLTnOtr3SK3QHI8Od - xo8bAXI5OMLvgaRJ8tkCIn7Q1s4Ld1Lk4qmmON7j3QooYNbdJ4PUJC5aT5mcTGarIlgbw5O69YIW - DNy7FLrfLKE+SlDCVRRK8BHCA33FU2Vyedvl8PQkFM2PJPvpY1tl8e1JTeEf2Gg3MvzpB20R9uGA - 5zj/89uxsrkXq8X22yjxa3nBljL2gPe7IYPnELjYEf5pOuBhAG0hARz4myKZnNBE0BxTH9vxawfY - rrjYMBjiAOvo/TQHNRhTeH/nayr0fdjur58BWhn9Yu1xAAUZvNJWd484+dMfdK9XJRB+jXruOSv4 - pikj8GjlGzbK5VBMenHOlOh8a3/xCxgffF+1KwCIapO2mLOnlauCB5Aa5AyMePU8AuHv0TY9L/l8 - xHsZ3ie3QKtKtdzf+wSK1u1QK7Uqn/JLGYPl8vYg8uP7Ncf7sCGgvniUOtfONnmfFRv4oEOFUXbU - k7mzD7Eauy9D7P9bz0iqD+pF2wwiv7QF+wBdVq+zANZjfgAzfPp39UhHhHFSH12uvZ81EJ+p120b - c9Qkn0AlPzOybXcBn1anV65k1e0t6m/e8/LCJRgSr0PsedcL5h6sUlU/rMSX1H6E9GLvc6gcNohe - jGAN+Hs/nqG9imr8wk4UTpp0H6DVre+oa5FosYZ9pzD57lFfS5OQXarPoOKxzagDlzFoP26PoMZS - hkV+KXh9fkWg2n8iujspTjE7TnUEkt69kHQ6BCEbPpmn/uqfdWk0IOFSkWAA8hatBT9hj5laUOh/ - eqjCnvPRQJqy3EsZdhBPEjmkbgpuyb6mOiozPu3qlEDV1vZo2hcSZ/j0WGwWq+iEE2lXmmRe8t8p - MGtsGuegYFGSZeqyfblUn/noEtgyW1mCZYpNyb+5q/wy3GF5FYc2M2CANYZNDfv3tENTW5iF/Fo4 - GzVGkkqvY/XipJh8W42mOaLaR6vDBi8VDwh+gG3NdkyGmuAKBO+jaPR8Pn0WbgruV5/QF6EJYO9q - 4cPLKWP47EReOG+qjvzpvbtihv2YnjOkWt/XC18a0yuk2bZzADOK0Hq+Xlxm4phA2zdHAsPBTTim - 2gY4nFtY6D8wQ7QZoP9EhVgvBVBz0UbwAa8dWrRxx5lPoAbZfnXAu/HDTD69pDOQFXG2drd1XJYV - zQIej0ND4j6vi9XtQ6I//XhTVmVBiuudABFP2GngO2SxGyB1TR8aye+ZavIXys8Qc9nA7qrY921w - uJbqfCHnn34Dg/reHX+8EHvW9tHLUXo6g9dQfeihBaxnr/Y5//EdIzWrkIj1h8HsZ/gg6m0jeCo8 - PSIJI2dfgb/9K2s2wLujYxTcqJY+cIPmRB/PrW5Kv/ga6qHD0fQyQn6OBw8IfoEWkrMxmbavZeh9 - ioYoflG65HzLS3XFFgW2ZLADEoqnThX5jV4ac/jjhWreyTY93lXCZ8EngXc42NjT1XO4qhdKBJ9P - YmMvHPpwfuyTM4id3R5tvPfW5fjoRGB0qU89M7kAZrkQgde+Bih+8LGYhvIjq/k3dTGq/bZvua1I - QJG4SXFSd+a0J0YJroEdU1dxh6SfDUmB16Iesak/z5yTmNmqJ10RNu6Z6nYbbsTq7Lkrsqr2u2T9 - Sb4NLPrvgfDGqsNfvQQeg+FPP7vrr/4+QljuDoKfpAlN1UGDvn29YG3b1z2rr8xRRT3CGKuPcD72 - /l0tynVIvjB0wp/fVup73VFH2c7JVLaEAd1Ymnhv+wtzXFw2PmwNz6en0/PKZyDbJfzl04s67/pp - dbrksJVviB4BuQl9W+QgKTcKFucGuPzra4a6WJTXP94qsZs3gO9wDMm+kHXAVlVyVh6n6Yv3I2HJ - PM9JDrVd0KBlJod8BbRhANIt67Em6iWNt2kHJ8RG/PMfU1JxAvMtTPFpqU0hHV6nGCZJx6j3mDmf - zHaFlJwgne5dXocr22syKHtkSW2SfZLxWygQeAfXRllvk37+8bHlsLb/eDGbX99YWevHAM27e2Xy - ul2gn95AYLTuLnGN7RVa2fgV+Wvqxf70oRV8MVmcqjZkH6etgdDn1OzRN+xW/vuodLflFju1djdn - UT/hJbwvEUguKWfBZuXBTSGf0Sp7Z8XcfRwGT7b8IYpiPPiU1XkJ63vZYfuGlmDe4c7Zdsr8xiZL - A7d5DtxXBQ/B4RRhPoWDLsHNnufYnp5N/8dT42JVUpE/OWuN5AlTz/Co1566ngd+YYBVILvY0/e8 - mOZjEKni/5NNGcX9eugqGwp+TLYa0ri84cc7oJqp0kOxctz52N/voDydJGo5H6+nOrrGIOxkin/P - 1/a6vEIniXMkL6MrXwd+r0Hh/8iqDOpi8m53wZ8MB1u7W5/MELHhxw+oK+5r7C7+WIPIPAVom97K - ngMliGEuWT4NBQ8dRTyAYD5nVOvhGM6S/VpAwRsoOnAzJGX2UGC5PM74sMmcfm6c6wAt5WySDeOd - +TmR7RM29SGjwUG/94InHFW885cY5/mUECNXG5CoQYIf6sIzZ1vKB5W1bE/k00IOmeAfII/6ipoH - We2bK+0UEH5TiR4suepJ6hiOqrINxLiO1skQIUeCnvfRSS307ZTVXf3jafQt8gef+gSCiPoaNVCD - CsZu1gBbA/lYP6zX4Z/fvTxbBxUi/qa2e3XwdKpv2F3jymS37WD98d6gTRd8ej8/MbyfFf7z82Bq - ztIM9fJLsLZzLcAacXGDfLhZBHqs/H2/uEgbKWjdlfhXLyOovn2fnmzS9vM6aTOokrhB609U9eyi - GrXimIZO5JNzK+gvP1VHgKlXXZdcvL8OzOfrDa0Q24eCF2pQ+CHqiHw7z6d4AfPd54St44pwwTtk - eHpcJWo40ZCQi3na/OINe2qqubL2jBewN12dSKJ/wlfHjCmp0wVYtx4hF/6dwS27zXRfzweTXBr7 - CUT9w7FfWOZqp65rZbEhDlIubsOnAy4HtXXTBzWunlJ0cRClah3IEtW178jn4uoTyOA5pp7Tv4sh - 9JbdVuxXMh+1A2c7ZQXhbt27+JR8Tc4irT3CSxue0GzldrKurVUDfHWNyGbRb0IuR+0CaiN8Cv6U - cYZWWwNiVDgULcLKZBaTGNhKmkaP2ScGvFzECpwXNsfa5lSYc7VWmPJt2J2+g0zn8vmW1xANygut - DmeT8zi6WhCY2wTvYdgkTAe+/1sv7Dn9suDP9tOpz5XV4Dt574vVsBQkYS9lf/6DHHs/VsfyvsPv - IPtwpgZVqj5g1OGw/rwAN72DBZn1Qvg0Lj6cSac5htXWXVL9e3yGVPTb4BjtZyTFflWMeWFZquCl - 9PDcimMsV04NTaRX1DbiTozsfjJV8FeKcFCD6WYTCK/1osGn6J6a0vOd1HDYl2cc6VWVUOnuPP/y - 9QkvuDkF5H2E5DOdqIunmQ/5uZuhbD5lrAckN4W/96F3D1JssXzBWft9aqBLmj19Yqvu50d+btTx - 9hqx5YXnnmWeY8EfL0fbPkvIYV0r0Na2F3wU+mO6zEMGy1O2x+efnjK+2lP99d9Ef6qYfVPo6QFa - +PTY7fvBeX18+M7tAwHLlvI5hP0RnhaXGD/077tozfMzgmmwSUh5W4tTV3SuqZ9wk1PBF/n863f8 - 6q0xPtYhT95Nqvh9BOjzjPZcSnLFht6aHLBRfEQ8d4MFjYfypbrjbgEV/kdVqqbHAXt3gDdGdv35 - C6qjNzQZPbk5XPVW9PMTCVm4Z0+lNudodiIvGS+aJ3hK6uJ9fiyTcYTHAbxt/UHS1xSb82Mf+nDn - sSs1NJYlxMqaK8CB+UTDj8d/ARt++QrrpRyb07BsPdgcHyb1qqTsJ8l8XmEEjBd1P5lnzga7RDA8 - IAvrOzwXE149HXhTsoAaBjL5XD9B/OsPkO1COgJZ8FegX15X7L3KB5hF2wUKf4n6X3399U9256ai - D/qQXKLqgQb/M1Lwr//6r/8jBgT+qZtXWonBgDGdxn//v1GBf6//PdRxVf0GC/4hQ5yl//z3f0YQ - /mn7pm7H/zs2ZfodxKyBqmxWf+MG/4zNGFf/36N/iR/8n3/9LwAAAP//AwCeTkPuugUCAA== + H4sIAAAAAAAAA5x7S6+CTLfm/PyKN9/Uk8hNquqbISAit0JAxB4BAgIiciugTvq/d3CfdKeTHvVk + J1vdUlBrPbdV+7/+459//tUmVZaO//r3P/96l8P4r//cXnvGY/yvf//zP/7jn3/++ee/fj//r09m + TZI9n+Wn+H3892b5eWbLv/79D/O/X/k/H/r3P//SzrnszCzzBquuSBz4it4Ln4ZE97mqQiWkAnMl + +etrK0vqgwxGznjAzvfqKouILiVCNMhIxpI1WfeS7MF3yR7JkaM3ZX2+jRpeZBthzbRMhe/zYwRh + Nyb43DON0p6oNUC2p+HE7smx50IzVeFnT2/TrIGKEji8HFDUIoOtSxuYyzt2dlBfU4PEtLDAKjTJ + ABXrKTpwnr7J2F+GEpZ9mGIc7e797JuTA80kAESXp4Oy7BaswVPrYny7t7Sn5q4QUTqI/lRbiFNW + sVhFNIFcxdrwLM3l9LFcAHXXI/kn65NhJX4G2+/6dg5xOfWzI15ltD2/qXFkOWGpO3PA+iwBDu3d + 3pw/M7Mi+r5N5HTR93QWnI6D1dW7EDlVLYU5j70IGV1Rsf5FO58O0N0hOo8meVxcjY7FQ5cQg3Yz + uVwVvx/cupQh+HY5xv1VUGgK1hLxjHAjqfa1wBSaqSbqVDGwHpVaz0LuIyJrSHhybPrQpO+yywDk + egFrXatU/GfIJZgXtxs+4+NSUU+/uDASjAu2xVdmcmxGDeQpc4Cvfo3BUtt2DZNquGKZmp652iep + hk0wGlPj7O90nXMcw2BQT8TlliRhx1fiwvotJSRnPlXCf89xh5ZeJdgwHztAH8wVouLaZiQxssrs + 9nLowjq2dxPSGK6ac77skCwPAk5lrjDZKv+skImHGJ+Mi1Ct14OjAvTZH4mmRe+eMU7ehNjeCkmw + 7ef48TwdXuWnSeJXCJO1GCod5VGWEGtnq8kq3/YuDPOjQfxCNBNivB4B5B4SxFrmXxN6tUsV8WOd + kPhZ4X5q+lATX+rpQ7Q3chRyfggrYq26wvfFf/k8ShMJ7s/fmeiX+1OZbfiWELKjhdgJmpL5Ha4y + qo3UxA98OpnMoV9jZLl5QrAmGCa3GFcHeVNYTav3dsHKHKvm8Iglj0iTcVFGwLcDqL/tjjzMRE9m + 8llFxDQdT1TA8XTxCsMAfTEYxNXn0v/1I7p/Wps8b3vJHMV01MHp0qZYP+hnMF+Eq4sIo57xM4Zs + NdeHLoY+eeTkuP/EFVcGrQ4YDBA2BFPuZ/9RRGisNIxNJk/95W0szd/1NfHgVaxWzy6SlatApH3q + AkZPLhOS1Dh0xO3vmX17DZCwHCZs1ErVc9Y5baAy1S6RFknymd6PIHT3C4ODIJPBcn71KTRiZo+j + UyIlrC2JHHpNKjcd8OmkMKcbMqD7EQE2NjyYi7eUok5cnxM3PGWT4V2OQ8ZY3vAlqouEj+5GDD51 + q2Hrqw7VnNy0EqaGhfCxvasVF14kDTX76wM/XeNFVxqcZugcmse0CvSZcE0fqkBPyydWLRQqPJbh + BO+nF49Nyz/2aygsHHyiCJMbc3qbc8E8OdgXk0GUtm4VKtZnDn0e/Jfg8zE261rnGXg+w91UhTHv + r9dHV4C37i5YrckC1kkWOhQM2gnfTjdqzmzz5mDHTeK0DMaSsDmYY8QLpHe4frV87paUHrIZPGI1 + ccNqEHZpA+6k0rBPQgDmN3droCBKDE6FSDNZ4+A5SIv1iBj7HTa5znVccHGihkTcpajGY7ALYeqd + eUe4HsqeWr0twD2SUhx0tWsux7dawl6QFBwLplyt09pFYMNPcgozA4wXE6bi0TixxKbEMNdXLEEk + Xw89Obucq6yqI2dIwfCJQ6WckjXpqhjJo38mUqLIlLte0hBkn4tH1P34AbNzLzoEvLAhP35aofDq + kPFNV+KPkV2t5UcOgNEpKzZObUUn0YkmCNNz63RZ3frzPr7rcMw/vSNevKKnEmFk1OjrSIyxn6rZ + YNUMWjZW8TkYC5MVrvwKdXo0yF2NbDr7ZmPBo3FmsQksJaHN89JCIXkccUZFn/KecfOAEXP7aR9a + Vb9qIomhpgkyNsynrLC7a1Wiqsjg7/4AcfFOPbwOmU/066GsfngPJ7vN8MNTrWQ2ZVsA/o7Jp9e7 + eyazezy0kIY6wOrJPySDyl1LcX4JI/Gp3YP1+ihLhNNjOR3ectmvPXAllKnThWjHWlK4JsECPLak + dei+n0z6lh0N/vjj/EGcMqPZ0YHb7zKC9+7H3Pi9gFD3POKoQmky6/7bwW+5a7d+khJuEQ0I6+t6 + cvZi+qrmgxlK6PZa3tgOdueEvZdHEZH5UzssEJZ+2Me5DvSTVeMs/6pgBmwDf/214cVMF1kOdMSU + UkDucyJUPz2CxkrFDlKOXzB7u2GGG77gPGU/FYMbTkJ/fNi5ebIs4bWDysJ8SKYKpTIFLiOgO3lp + OC0ed5M7al8RlglISexgzpz9RxuhTU/gW72YPYN2UgjG/N2TZBl1n2/2q4zSmXREJ1+r5zQDteDN + lneCL9Mx4eQb7/3V38OIcTXvI8VAPzxLQvj2t3oMkXvc401PtX5bqIMKL7M7Y1c/rMmqKzr300s4 + EPgZzG5dSghgDWNMoV3Nh2SwxEP6RE5Z8VG1WFXloIc3PLDGa2+wagbqACu1Z2KlJE7++HsKdhF5 + rtPir5X62KFl3X//6mvhomuEFN9iiPTOabXWu0VFLvUiYjyGvFqOb6uEnzZPJ57GeUWl54OB+7s6 + T8xsAb/7zl0HNz5woJM+qn6rdwTz2sQJvDxMii4CB1vs3LCtF2+lRTkPD+p99omy9Sf3iYAApwBG + +DwnQk8tswzQuzNEcnnLZUVfaHXR5fl+OM3qSf4kcC8BjlzwJmfLjPs1v5IaXurAx/L9wSXzo/0W + f/irdCXnT+i8V0Fwu1vT+0pZf/YHuYHhMr2mfXSUFX536GpINajjC0RTskBtZwC9Yu4k5Bxk0hcS + XZhU03Wrp70/aEVZICcMFWKLkWMyJ/+lo1GKD8Si45zM1/xoQZ2sFKtSqAByw18Gmrr2xvrQnXra + PI8tOB/4M1FeoDZXDhoDPOcuj6+DsfiLaGU7WH7cwwRvSEv46jyJEIvfG9a06NSz7Igb4ClrMK0c + O4H57OghHIncE2ede2UJb3oJrsKen/j1aShDUunDoW8/CtE/ewKmnz4bpf2BOIEeJfOhF2MYohYR + JfEkhXUyI4a3h9hP6Mi/zHU9qzFc+Up3+HpHzMF+HrNDl+odcen+41PjahowNsUEnw5yXM33OQzF + AjojubQs9mfTC9Q//RC6TJgwlzsUBe8wSdNSjGdKjXka4I8PrE+0M3tHOxZoaq1pArTn+lGfagZG + miuRm2ksyXd37Qt4fSzqNB8+a0X9t8v9+IZc1PSY0AsFJayu7sVZ++iULMKsG/CWVQ4+lzoPSL3O + HeTxq8VhHnTmfFJi+PM35EiljQ/aa4j2zbXCfqqdKGG9dQIACiwJFjvY+PvGwN/6f8//6wonHVpH + t8VGPAr+SvbV/MM/4jDvb9/l+1MIY3+5EeWpJD7dq64Mh69g4eeRP5r8q49UuHPy0VmrSa+mS+FG + EAF8J8bt4AH66l0NOt3lQcwqPld8aeMBbnrZga7eKuv1rIfgt14zK3d0mKx9AKwj35KLY8NkUfbY + A3x3FggetbCnsfKJYC2wC8ZNIPcruh1c+F3q5E8PrFBkW7jhm3PADqvMzoNpoXuMMAmX66ei1kHX + 4PwSR2K/0kvFJQMfw+nSgIm/dWxPpbGQEZHXnTODr2qyqQ9SOB+cBl+S6pMslyxswTlneQf5ngD6 + b8NZh1//aOcbMNd8b4fwwzwOzvo6dEk3CKYDD1H3IanMSSZ7fFsFuEuHYEI7U6Tk7UoeGpP15lAD + jWCNKpkRx52d4WjDZ3bzoxBO85+eSrptfxCn3Rqy6QGwHPIDhKd9o2O7cYmylMpDhqdUWEnSKX21 + AL6d0PMQDESX31+FxottwDXdCUSHa13NMhBDmJBudIQv2iVDi3aGmKwHFevz00v4jHsMULm7d6I8 + Hlk/v2RXE4Wpv//6I1nuTK2BJbhz5HyxqD/vzOMMZzOStv1I6DjUhQrHZZDxxn/94qD3Dj686UG0 + 2XXowo7n5k9fhsOzVMiycwe41SvWo57r55UkGcj53sHa5j8nWz3PkFckixiCWVbLp2wD+Az7kMhe + WlBKWD6ET9a/TAfuKSbr6yKucO+lNjbmjqUfbfB24FQ7g7M7Hj1lfchTCnP7u8M6dyn6xbgUGaAG + zaaiDxY6pHicgFhkT3KuJKlf5ovroXzwF2JmTWmSrFFKhE5+T477rOvny7kZ4CHNETmZxjUZ42+Z + QgBFFtu1V4AlvKclGuLc+vFvxdvtIsDHK7SwbQddP3gOkEWmaXkcrI5F6QkrMXoc7JMjCGdiLvMl + cqEWquzmHwp/GZdvBsWTaBNTNI1+IYPUilJ3kLEeFwyYfZDv4I8P7B8eXh9lAdXAn4mm27XZ3ucw + gEKe1dhki5uyCKW9g0tOPAdW6SuZ73MWAOneDuSqnRg6bHwPDEcssXGbZbA+P2Ej8g5s8UNNX8mK + opOLHq/AmhBfcpQeIRuj9m3I5HQsG/93P7B9fXOCv/4XrEnXR3Dzo5t+8JL5lwccPl6M1ZPxTbZ+ + lNCv/6TX0ND5zT0bqH3vJjG+wgssC4ssOEV0ItoHQH+VDkWGGu7j4/N3DXru9tx5QHkLBpE51qGL + pTgc5J5ajmWGlyrGXIUMLmv8/dWXMnNh3kHER0csscybrtY5reHGv+TCPUV/zg+7DhDHiPEPD6f1 + 087wWUp0w0fgz+exEhD1ThHG4nup5qSSJrhfNIlY+Ln69GibLYgKxsX5Chi63p6cC1ZQ99gryKui + gnHa8hwWE9mEFuBQm6Rw4TKL6EwgJ7yLOQ2cXBji3O52yp8/3AkZ+j1Pupj6p4XcU82xGcJTsug7 + IMFFKgssFczOnPMD18Kt/rB9uLPJcuLjFPBxcJr6I0TVmuevGWrstZ3q+/MC2F++tOxuJ3IhfZNM + PRok8TnusYM2/z2pRd399c+JVwdl/kztCvbfWXM8nvtU03fuWogthuDzxr8r2BkpiIxTiHWFXOlc + ZhMHh6wg+CS97GrjgwD88oetf/x58RQBZfddPhE/HPy5ewMdBq1UkodW5dXm12tE5neNf/phLJWr + /OcX7XW6+uy52qfAQQlxdtdQTWZRoOuf3zOn6fVbTwbOC3SwmdZzT7IbG0Jlalyc0lpK5ixOVJiQ + dpymeEf8zV+oMFtL8uMr0L61ioH5Q0nwmfHafsW7RkA75hFP3Jq4/oyZ2YIHAgsc+0BN1sesWnBX + 1CoxyOYXC7gEYOsPZ/3V41J6mgjv+Ykc7ebY87R9DaCO8W7yh3sAZtmSGrh7iiO22VqvOBVBB17q + 0HeaDT/XT0RF5Bzqh720BVOtR+0rIJ8kOVbMndYPLMfIkFH2L3zm3BCsqmNkP/838SQrAfu1lhD6 + fX3B+TUQAS2KcoIdN4gO0zYvurrfeUDyK+yJpM+yv3jrEAAmucYO//3W1dpySgrdHmZEselJWb47 + XgObvsP6Xkz69r5zC7T5MWwrxwtYcW6GcN/dNaJ4c1ytYGRcFFz2BCtSYJjcwy06ZIRWSuSNT8dC + 3NdQsBwHK7wkVOupj2W4u8IrTrnqXDGWq6tQlidhqt9zVy3wbgUwu8N8YuUcAPIZ7hIcmseXPPib + YlKFleq/vGzD32ru3tRA/V6A+O6zd2V0BVuH345/TeK2X+yLzVboldGZxHDfKpv+8ECmV7mz7vK+ + f3/KIkS6Wx9xNqqQjof8sINbnkqkm1P39FErM3I8viCGD1SfKvUaoSL0j9NeEzplUhHjoIvmFw7H + OU9z4qAxgc2/EzVMr+YyUpRC7ZV6WEuve7DlZQK8r/SJJVM4JMvP3+8evEFMF2cJDZjJAgrbo19+ + Z840Pbh/fgdES0WXc7XP4NMsNXLMD6W5vrN0EFXSW0TjHKRMojsMPz2NJf3g+fOWR0IF757ObNcf + uiSaqB6SdH93ULoEytDpfQMGVkmxfEtak167pYXXUYmJvB4vPp/unBL2o90Qk/ZhP9VXP4AKchRs + OxlNaE4t4Vff5AQH3h82vIUq0SwiH3rN5Ks7UoHKRRo2sddWbH92S3ivzY4o1jr4pHeAJao7fo9V + XZJ6ThM/Mdz8JXmmC6NM10dXwsjRDzh2VaaabBXPcKc1DNGeXtSzmx8Ft7N9I8cX7/bUM24uvGaP + D7nM+aCs+fXTgJ9eia7HBx2qNOZAP+IGYzF99ctliBj4u75ZPhzwyzsOCZAN5xvVks8togzhMRA8 + ou4Gomx5uwR/fuPkMY451w9Ngmo1zdPsPxqlf7u6J/7yycuWD7L6DsjgVx/sEiGwVEVRQzOPMmIO + 7L4ff/n0hoej6IM6WW6fbgI3ocgmOAqewhPNrqG5k674stU/93DbFsranJBYoW9/+fXXmkKB6Duk + mTR6hBF8fsFADLjXlblFnAG/eLgShZeiapHOEMJNvztLKq8+BS/AQSttVexu/LkYEeJE/eTUU8Nr + J8B7+tH7+XFi3VCTjP0h9ODuurs6cPudxj5q4L67aVje5Wa/mmKiw65Ka5xv/DbbQ8YJv3zodM+r + nriF6sFLffBxbF3PlI6PooGD6T0cUMXnfmG2SYobtG9s43xQyNFWOrT4M0eCb8UnfX89W7/5Bz55 + zGQSuDcjcdPv2Pn4x2pCke3C2YwlfFGWvqelASZ4e/M62fL6vvd5IANOuzdEFihKUj05TmjDY2wd + bqDf8qwCbvkQwdUH+OR0zWNozPOAHZAU1ZZ/daA7PRZ8GtOXSbDUDnDjI3L/oNCkzDsQ/vQ0rvPa + n2GlrrCzS57Im99atvkMfHe6SNTniVWGAzivMEQdwvK+qJNZN2iBPjdb+80Tqsk0vhHY8HkqTPJN + lu9ur4EbbI5E4zELlv1EVShJgDqTlSU9PfAlA0xL13ESLQpdxw8roxm5F3y2lSoZgoOyg4GdekQZ + HBWwg6oMaKK3HZZ57tOv71SfoM+ND3y5TV9zvYeXFET7VMYa5qWK3eoDPpi6xPn5UAK6ezgOVHLT + xbbvRZRO3GyA/OSciHOTjiaLXocJ/OYXm983Z35JLHC5zAp2ZXfyf/m/aMOQTmg4+MrSnNwZbfkD + OUvvlzlHSaHDdmR0EmPXoStzPcwwlB4ROW/898v7wHqVUodmamDO+VkQxI8m+1geLHPLI6QJbPcz + 8aV+B71zC4Vfv02vE1QBS+Vd97s/ImUc6Ueo7XTwOOCTs1TDRBc3etUgsz4y1m5tQme0kwL4e16b + n63W8f2VAJ9dEmz/8KoHkQR+/aZiiMz5AM7zj7+nfX8VzOXEeym6R9ieRHkdqllSPs5Pv+Gn1jfV + fAB4hXF/crAhBGs/3JQlhs/kesDGNJyTCVtfA6pA/k7sVs9L3O8y6LvWSHDRMv6sNkoALxBbW721 + Vf8aBxV+Ht7X4Qvj0q8tZ6YwaOWSGK4aVEOZNRy032+RnB6BbDKtY0Ww2n8nfKGZbxKh+6Zw46Mf + /1M+918h7PaJ5Iwq1/oDe48yeNGuhXMYvwylu48UIznTAoKt4pZ05ccI4Tfppj99PsdsKSDBL3W8 + +bOKafy3heaD1UwsHO7+lr9HaEBGiaU6E2mvN6sOi9t0xEdn7pK5UfK//nUecTlVpF/6+sdPOL4k + c7Umwz76+WNyjG2fLswkRWjTv0S97BzQxqdFh3x3EpzPyyz9qY9p+5ffyf2L9VecK4G45d34tM1P + qNWfRGjgvCSnEo4Ktz6mBl7aHTft7dekLM/FlKAbTToxjPTi0w2vQU7mAGeN14LpN09RunIk8v4b + JPSGXwx6K62D79v1h1voN7D7FGfsaKPkTx/tMUHvLnXEAvfRHK+3YEbhlBl/ef/6lQQBxrtbjTUB + qP6i46MH5fmVEdleep+MB9WAEufmWM/uKmDjfpcCnJcnLG/5FCcBJvtdz3l1N4+2T6Sk6HoVTHx7 + PFdzra9+iI6DZZK8vbzM5errMzxL2gnLkZ0q1C1UF3r3d+egB4Bbfj7t4PFSsPjXj8NxEnaiFo8R + VljZSNj66c8I58WJGHrMU9K/njGIAMqJ6Z9uCdVSa4b/+p0K+J//+f9xooD9f58oUFaoYAntFMqr + k+XBZ2xmWB/2qsLuSR6Cg48zctF42NP7sg5Qfyvnqf9WJaULOHSIGnNAHrSTTK6S5gblgu0TfJXs + ir0osgBPFxNMRFePPq+/HxN42jubHKdJNVfNDyA6W8pI7JW7A+by3LkwhV3lRHuD+lN4vhfw631d + nB24qV+HPO+Es3UciakWPVjyc+zCMNYZolyNxVxuJZgAE6yQHMvv0xxOl7qGp1E9kITLsbm+AilG + g3r/YGOVjmDVK52Dl1G4kijye3+ImziG7WxdcMAHTU+8y+yB+2dnTrw+yIBcfXOFoqW1xPZPZ3P9 + nPYhDOzoS+6Zp5qs09sBoOulxdlD90xmP2oZtG+7iSjBW1E4N9Zi2Hh6QKIDcH1e+4Y1XBpyxifb + 2vsrPLUibAZpIInIfPvF988M+ubySOxhHJJJUR8ifMmRjn2b5MoSPN8ayh/xRLR+15ijdrU0KMRF + QZR+f0v4HfMS0eGQB+S8Uxg6i4tvwYZ8HXysgOIz5mOJYAhn3QGrwfTdRyt0NLdgxjYoBkDFaQ2R + fr/vsVkcbLqsj5JB6yVMnP1VGvvZpdcB8l10dbjuvNA696sSITM7E1Wrm4Q9XK8WMqTbg/jFpwH8 + yBkaYvVqdCrc0GQ5TM8UfnYzdjgjPCrcsY9TmE+BiLEVbgpM4j30W6/38Nh+2W+JcfIKPGfnvgp/ + Fv1Gh/Mw5UQaorJnw0fhoEhbZ6JXWg9oKAUCPKyOS9zD95usM+PpEFgWT3Treq5GaX2qsK8sgzz3 + 7NlfVuMuwP4lFlgz3W+/PvSXi0TaXYhisWE/+HRtD8fP/bZNID/JomoNhwLCz1hd9DvluvNRRep1 + bklknIRqPIfegGq3toh9XJA5dHG6g1fnaOC7Zj4S/vuaYxTHdE8u0TMzGX6fxvArHDTieQxJ5nvY + lH/96Az8Xlls9tjC3/dnsj/2Az0MHJxgeiR3sdcU5o2zFcb2VSU6v9ZVDzu1Q+l81UiK8jddnnGn + wnYSM6J97W/y3ReshaAvfrBRn790Nk93DvYp9ElMGY9y2ce14O2tPbBqy0O/XAqsQxmRGG/1r3Dr + Sw6R+H1XxORyrHCJAmrIIbEmDroWPcvwAofWeSTbfpiAjyWWgbBwT/hqMlHPeNMgAdpeMdb7WaK/ + /gc7JGMc0Wdnrvv1KsH7cbjhNF0uCVc9IYcmoN/xc6qligVd1MAqfNzxuX36PQuEdYLClb6xo7W6 + yWgOdVB/ZsWJx0YL2FnqU5h2R0yk6Fj79HNPDOgMAcVWlE6U2rtVRgEqBHwG76la80ulw+gFKZbf + wSNhbIxU0frmR4fXh5Iyx1l10BQIr4l/SAgsupXFUL8XFrm1vQDoGeFQPOuJSS72WFSUPjIR3g/n + dnKNRKYr9QoLzrlyH5GnJ/6yjn5zOIbHnmCGOfbr/D47qLmrBQ7HsqLr52Z48KzOX4w5NJr8UD5C + +KnHDsvLQ/K5R+rJaO+fDtMh/lpg4dxzBvt9EuPHg6g+l/ZPDcJsF+NT+r2Z9Mu+DCQPj9n5vDoP + /PYbFZzcEUdND/70qYYYyvbbJEfpjKtJfmU6lPa747SO6gkQHtIS8DdfwLYQ36reUfUBtuBEiOrG + wG94sevgpybddNj4gc3rrIBxzbyx0z0EOgf1Z0KvcxA408Dn5mxB1UMbH5G7wFwpE98FFzrcptBw + KvX06isrUkC5EBuSWVlCrs7QbJxM4ht315/Q49rCIAY1VqpI6deORi60IvPucDks/SXJJgg9d50m + pvdKsOGHASFa9+SUxFewvrjEA7EmSfjxPPsmdzn5K7wu8EIiU1Z9HvedBW/p7YmPGBvVvOPlGbkl + q+PM5E2Fa+NIgDtLlCZ+h57Jkqz5BI/VQLFaW2ZFbyzfoHtRiCRkRK9nEptC+D3pN2JW8iOZ7HaO + 0KvmMTbSWOo5x31AyCVXl8jnITBHQ38U4mM/X7ByeX4AZVwl+u0fCRrUJnN7fDZgNs4mPr5I0M+T + nKdwP+oZCfRxNQfF8VykZvoJJwHfmYsmvyBgLMvGG/4lqxs7EZBoXRNr2U7k+O4OQpG2Fyxra9+z + IDl1KI3ImxxfhKnIzXg4YD1k3Q8fqmVc2gBxPrvHCm78hFvta4Nk+2M6pbaa/brVJ6xiS8OPXjJN + LiC6APUhiyahvmGF88JLgX56Q1Ixo8x7eI0h+eQ8NoYJ9FR/Xwck3581jvq5oMzrmUMIWFXGObNk + ycq+Kg9kblUTbL+TfqFraaGEczMcCIKa8JeDkf3xxU2bHsqQibWKbqYj4TyuTZPbB9UObPVKtvqp + WEZLZMiySkzsDjfmmoqtBDVRcMlVnM9gHZA6oc/pcCIPXdvTb6/ODlpA75MTV7tg5mfRg9fjd5x4 + o6C0tqDlQhIGMfZVpwbrQ/960DwuHr6dGLfvwDKrqK8cg9gbvq3C/uDCMyMKWAqfTTWfWLoC/Erw + JIyHoafiJIYgb8B3mhXxkdD6YKvQ08QbeYqN6rOpdgiR/XEjci2Hwl/LqLHQwLQKcd3rndLu8oDw + LFQxOY5LlMwQzBlae1o6BdpVlMKak1B1Oo1Ym1LLpw2Tx2DDc/zDM1LQW4nMkGTY9PrEXI7fYwMa + iemIZZofMNejwsHXWtw3PEh85tvyKjxaFw8r/ckCf/z6YIaQpHe7r+ZBKCGyhQeLzWsqmLOq3nbw + 6/UuMfeX2lz32oWBnWHNTsfjGqy0iSCUlPSGj9/8pSzHm8vA6BurzlVNO2U55DSE2lSu2Kld26cp + FARoQP40IeYETDoNpxX1+GqS52eC/Rp2iQOeJ9vD550SALLXvQExlmOTo2JrgJfadID7I0yJWrY2 + oNW1qoGciaxzKGyjp/z0iGD4pKHjv7kL/VvPrz4s4HOUdE1mwbRcTawVzgPMXkw9ZNZRQ4zpjQGz + fzwn2DfMsOnBPJnMVRFgzTEyOetDCWaaFg0qFi1zmNkh23mJswg/qQEchPekHze9CMtzVk1rgBJl + /oz1DL9LK5Nnfu7AmNFXBj+pDpz6ej8r3E1eJqjfb3uHrH5kriM9OHBH7uepYy52v07nThJD/kuI + W+adP1cPX0O6nTfTgYd3f42UuAX3sHs5n3MMfVrrkSaa/bcjzzI/9LMXAxdqey6dwOIOZgdPhQCL + k5hMbMYqtL8ZDwveD6cWn1/dCobX8w7hWjnMtK6tkizjvC/AsVCvE8crmULvizgBS1x7os1vQfmW + 78JD4c1pMe7ANxmrw0OGpcIcsVecwoTcq6iBb3dI8K9f2c8rKeEo6zuyXY8u5Rk48K0GCN8K9az8 + 8AOehVe86beon/ejk8LutV6J3K/7pHMyRoWTUvP4PKyOwjdKGaGNL0j+vvd0TmeHOVzObYLP7sNS + SHe5QrjxMdY+375fai9K4UvGYGL7ZVbq14VYoLNZj9iKUiXrTqIOPOrFTDDwzhXr+UILM0X6YvN4 + OoBpZmIddMH5gqVtP/7uV8OTTcy2uZvT/J5l8QH2Mbm8Urtf7tE+gl1uQCwzCzYXIR4GeL1ou03v + XQB7DuNBNGJ7IfrheKbzorwsdBjPHFGZ6kvXPLI96Ju7mVhJqSkca4sl+OGfTEsTsJr82gGDFw9E + kegKaMPcIygc7iesPc3TD38dqNvP5g9fJvkVGj89u+Ez6Ok9sDt4PJ5yh2uFCVByOjnQU04Nif1k + Bn/8XeliSqTO8vulZS0PnhcvJE7kfPvNf7bQOeoLfr4lxWR2bdEhTRRdBxxPDzo4LZOisCk8ElVa + T9eDetdB25gV1k259imTjSW8RFQglwepk4U1vx3K3s95EpZr4tOvN2ZwrFePKEhc/MFYiAw/BnvF + klgtYN70JXjWlopTwZXBn9/d/AlRKHkB2rCSBTc9My19O1Q9YHQIpfchdfj3qaaU42sBijSHWB/k + KKH0EYri5r8c1OFG6R9ZKcJMfMCJoz3218FFJbSnKiU60UlFfn48MbUEm+cqB/NC5hhm73x2xJN7 + 7BkjKGc41rO3+bugH6SOrcHG/yRyG1lhCnYXQ4OEBj4VO/yrzww2d63AF+HqKRQR34PVQe7x6dzX + dGpbKqGHmoiOyEZu/1vvnx92mvOrX9lX74H8NlvkvJekfrZyXYb9mReJ/IRGRTXhVSL5Ar8k/NqX + ZC7YXQTHvBcI/vF3QHQR5IBl8Sk0J7BEx8uKPoeem7rXV6m4+NV28AyDC46e5ZQsXunN4Kf/PVHy + zCmPTh5SpXTnUPMqgLl1iwItt+SJf/g9XIUiRNqIdSIZSQlm8MkEcDpkd0fU8rpfuDyOwDFUemLW + 17Rfpy8jitxl3ziElom5CKiNReHicFi93j8KpafGgPdBuE+snB7B6lF7BlDUnyQNzkyyihEWwXDx + KVa5e0yXj7fEsKQ7F0vMqQdLqzQp+j1/JbsUFVsjjkNLykzOKlgvZU282/TTh/i4WEayfPt5hszU + B1gO8csnvc2vEJlXEWNdfSVUWPcW5Hx+7/B7qeipJ44eZPXXSGwFmXTk66/0Wy95vqVKodl2gkdy + 9y7+5Sc0KB0GzDvpgrX9SJUWVbEMOSTUzszsA/+Xt4C4KgE+7avCXyafegjAu4alN/9Q6I75imDM + mRNRTrrtM4URyfBbQRFLQbP64zA8BmgptkmcafL9+V3NASrny8upF52nS15nJeDN7US7rSSUNkXT + QuBlEzY0o1Pos45TGF4bDetOTJXl+bUc+OGUgFgHw0yYKGF1QF+SSbRsH/ZLdDyuwFXlCt88Wig0 + db8D8IXs6cA6W6tFfF+g+MD56CwDj+niqtYMp8Yysa/tjz2vxTCF6/VgYHwmTT9r0lWFbxzNmx88 + +LNRqQK85zYmDh/pCUebaAe3et30atJ/N/0FuxVM06HTyn7+tnsNJDVkcFpna0+etZeh5WFZ5CK/ + Tz6NV7+FQnXG2Mp5qd/8pwFPIa9g+So2gMYSyyGtvNwcmmlPn5QT4UAbdS3W5Qj7FArNjIJ6Z2BF + LLcTpCNTQHKMHJIdH29luT5VHe3I7ex0V+/033kTl/guVjpT9Xnnpe5AWs7mxJ9jmJA8H9bDtehy + bI36p19uJZ3gQdaOTnKMg4Q2SheBQ/3ScfiYaUUfOIdwMSt1Yh7q7K9KZLQghKvu7JcH7mlQahzg + RFfGntpAQI/5xfrpS+IIsDG/jOZLcNlnMjbv6OUPhiRKoJl3B6KPB6uazsYlBaRw6IZPqzJ54bGE + EfWek1vmRsK09dWDs8yct/upExoZqwEJbFysFJ7lM/niNjDHxc3ZwYAB7ZN9Zr+8h1jBmfFH8RwI + yFANHUtGIgMekcSDLiSFA9X9w1wT7zlBebmjSdz0GiugIkaLm1/x8RmL5sK2bwFeInjCl5ZJ/WZ+ + C9JPjzkvNTVMyh5fLvTx2yOadmwqqghSja719Yjt8HkDC34tDCjuzgk716Sly8YnaMK7wGnEbDbn + DkXdX773DL41Hb2ZEVCmfU38+NUX+GQiNOu4mZjuxivknUoM+sbaa+Nnj859vTpQpE+ItR01Kq4E + LwE+hEDAOB05OhSGK0GjrxJn2u9Fc/jlsfzrG5Io7w+AJHznwq0/ncOAJ5/K1UdGbfk64qS+wmpp + m07/9eMEGt2lPErKEm18S87v/egTqQ0GIAXvdeJawaGr/RgzGBzEEJ+74Ewn6f6d4M20JHInVQfm + vLRbKL1B6tSZ7ye0ROuMtv4nKjYjc7aP8Q6eJSRiWbkf+sHRvrXYtDZyDr3o96v4iRlwKIQGa915 + AfONqLs//xk0EuzHnx6MUeITazATsLrfRwAl3L83fRmZlJSiK2rfpsGmHEC61Xv8e75E0Qto0uod + hCAapYZY0nik7C6ZaoDcOMBSMnyrOS9PHWSP7pdog1/Q9XHIPLionjSdCvVjDmPMilAswxxLrdKa + W14wAIaPXHK7n3h/ZfdRCDd82vRWD74/PZXhWHP273sPVhiYEtxZgkQCSdmOsgevELbgTKbm8zV7 + bvOTv3wTXzqtrNhu/y1AOEf9Ty8qi7V7GmDLv/Fd0U8mVziHVaR1O5I8p5MymdKkQdgyFIeXB+uP + Dy2KYLGoGbkF0AT8r563enc+EgwTEpQaA81iVad3+r0p8ylyBsjQz4soxt1NPm8LiaCzee/nH/uf + v4SHu2xjS3BlSh+utEJ2iYVJgA+umgVOEoFzjz9OW4hIWUe6WDCdUEIU/jz3xCgGCd466T2JR5ZU + Q/VBDtj0Pca0BMq8MqED5cTzscOPMliLxWrBbbdbiKHlavUFid2C3eV0nXiBuYL5dKkb6NSgdLiG + KAr/6mQJZtwS4xNPKdjwiwHOcpXI7XFtfNqm3xk22b2e4GAC0Mn2O/rpH6y71Y4u+13nwZrjZKyh + +lzNHfwwUEoVBR/fRlON+1kyEAbXD76Q26niGYNZ0ZZfOP7rhROO3X3Kv3zKqd0xmbbBKnw38Ipz + JR5Mcq/cBinrTsE2b67JaN/TGsiFVeBs9hZl5dhUAsdpbv70DN34BpLnO8PXWDZ92onaDqrNwDic + mLlKf762O/jakY8zS/w7GbSh9eDVUQxyfkhPOk+FWoAxVUKsb/qr5efVA8J1eWM8GFY///KYofXe + W77ImksYXBskPiOPhD+/awTlCoYqeJD0EtB+/Oqs9ssn8N3PlWT1jh8I1taUiIMc5M8Q4A5ueghf + Nr85jzESwZDhvcO8plOypBVbQ9YKUuJveL/qSwfh58sov7ywYkKZXeEhrwFxq4dHJ3mvWLDShZSo + ecn5xJR3OxHKDcLWVZXMIdrNDGKf+cGBWz2uLf/UQXC/yhM6MlLCidFZgPewfRFdwhUY5p1XwuGS + SdPOfUn+Lx8HG9/iJO+6ahpctkT0xOg4mUOlWndPPoPkAeG02EoCWPK4CND2QgvLGx/OgHtxcNn7 + 7C/PTbizcckg6rzB2fLc7cSpncHb+D1vfqME60drjR8e4CNBZ2V5N0cHvpx3NPHv/ZgswXNUAasC + kxir2CXraj9qODXHHbb9+FjxbAUNeD1gGzswYCj1LlveeuCnae/xL/DLL1kFFAuJNcMwl0MOAjCd + 7Qc5bf1PXZs1RJdYb+yo6SMZoeLK8Je36YX4NGfGGzzALdX5N69JhvV+hWJZtg3RuAv7ywc86L0n + 0akwGCmx+qOHKptpHcG6fqrl258hBJ9YdNb75UKHw7PM4MU55A6aaqlfRskowTZfc0D37P0/vdjE + RCby90vBgpiTBLU3VLESvCuTpuMIYeT2l0kY9rW5nva1LmY7q8exs4CNbw3xr39VrdYS/ucvf/MJ + ZxDLhCrmIYaJfCsmNokXsPGfBPuGG/78Y8HZXA1//mf7n5Rq4pqDAMjnyf/l5aMqWC385XX7uO6V + qYya//bHFg90k606TYWbv5+Y2cE+UWK/QPm+q/ElDDx/m494IECl4KwnNgfk508d1D2xZjEfn5rb + 7DNsSm/SpnRIhtDTJxjU0MDuJeOV/65Pr+odxoassjyCtUDmqTlO14C2/rLflS5Ky/duEnNdNGdv + qiV4crzAAZbNmjT67GJwPdj2FHKXW0UUPp//vj9/302wLBxR4cLEmEj3O1YIFKYZzsOQk2g78TuS + Ye1E1mv83/PyO9s0Q2HDe2zqbOOvTyfioMXrFyy93kew4esK5cT1icLZrcKOklxC/8ZenBkOz2qb + 3zIQO1Qk1nm+0VXemxa0vcDCv/npNq8wYIOCkLjbfHDtbpWF9Iy6+LLpl15YeedAvFc/iXo7+z3u + O+c3HyGXJbsmzYZHf/2b7h6OP2Ht2R3ixVEwvviqz+69RAPP/Py/AAAA//+kXcm2qjAW/SAH0kmS + IX0vQUDEmSgiINIHyNfX4r4a1qyGd723FOFkdyc59ET2bBp1ez3C8xXO+F+/vPsID7DnXbt+Ngd+ + z/+hLLTHv3pU6TCMDLTW9Iujt2q7fLxeFmH//8T+0y94GxmYKbcCm6dZjPaELIfCstxm0FUK2PhR + KuEYSoSkOx7RrLMccJalEv/1f9llkwN0D03F75hTle15wQz3+z8fpQ5H658f+z92FHD/e0eBrss/ + grXxV22hXQdQZRLic/1ZqKgVPnM4be+JmEn5y4iVxSJ8x7FPZPZzVTdze/dwci1jPunOBhYxPuYw + Gd418bTEr/j+LnCgkdCTOL9foLL0OhrwaqUH4pfTpK5jFtaIHE41NrfVAlws2Hs7aT75gh2sw6w2 + 1QykbDzj+1s9gm27lz04K+6FeKAVs+nGSgbkc3ee4XM/QfMVXA5y55zzj2rZu3M4azlscfcgt5Qr + 3bkwZweWzpViuzsSQH3VNJAcgJjojO6o/AmeEiio0uYzDHEGIsPBAcXNbYi7uFLF5B/GEUmVUf+z + 3HiwxdGnQUQaFSLnuTOwXhy38DwUJX6Z1uiu2fyc4XEaDGKc3DJajPdZgTRSBWIfHESXQ7tp4KzY + Fxy8R49uH/brwU5rdRILa52tIyfGSLV+hGgPv3U7f1kDJDzDJ1YSkdLtkk0OtCU7J54Ux2Axk0pB + AXIL4qrMDfANZGeUV8f7zHH8r9riRhLg15eeWFtsoq5fakOolyeT4MzmstWcJAFVhvcgLk7UjCdE + 7dG5bhucW75WTcldFtD2YlaiOy0/UDXtHuD01hnspR9Y0UsyhDCMeegzcY4zhviiBBV9uZHbo/64 + bL0NJZpLpsQxAp9hG9Q1RZLbNH6hnLqqcSFIoeeMKlYKS6Osn18O6EhOZywbFwUw/NMOIPipObFK + Gaiz0z81YB6fX/Lszt+MqzIlQWZ1YHwfbZdsvHCLhCQ7fpML+loV2X6SBlb8kIhydjJ3bWibQq+p + BOJ3PzViY0OzYN1FEtbinGQrdy4KFFiaTKIVUJfwHW3ghXmE8+l7jzMOKoKDlKgIcMJ8Dcra0W2B + J8pfiLYdL9XKJgVEAg0kYuqCkG3WLU/g0rc1ji/NBrh2uTpor7f9THvvcvAXJIh7NS8S3xJ32G75 + 0YA3cJBwtKxXyiL2ZIBLupzIi+nfGfnhlwHNdZzIJXUCde3YtwLEKbGxV0ZYXb6OtsHPNYyJ/b0z + 0aJ73xFdTpJJVAyFavGriEH5g8zYnORFXV9yWKJ3qJkkuhiJyixpKkC/RAuRDKBmNBk4DepBdfdX + Hx5V2o+Bg4Rb+yNRxx+rFV0CAQWWIRNFVN2BG89BiMZVePp0ezOA1vptgTg48PjsK2XGLoopgHfm + OXPDRTplanuOoWOmGEfvvFY7Y+xzUB59Divw1mQzUO4zGhxPwumZO6tceRlyKDb5GZ8b6gI+QQcI + ufr5wNmhYYc1l5cDWkt9I+YldVw+2vcoQ99qseFxtFqEb+Gg2cS2fyiOvrpMGpzh6W0yM4s3hs7n + IYAoM7jO740tclf3dTUgN8SJj15qpDKTnzUinauOSOTyzrYimBtoWreMONFTcWm4fZ7Ac2YVS9uE + hjnkhxi0IH0Qqz7xw2hppQXj6APmk6d17tK6hQF/2LBnJg9kwBe/UoTHOHticybYJYtT5ehR3+J5 + uyzJwJrHwgNd90M+o8hSxN/GZwnub6WZT8upcWf6kA3UCEaDL5Tu3ch4VVA/17/50JAGEF/FGrhe + +s7nGFl32fI9LWALtBO5FzSlm/uJejQ4vjSzQybSbb9+sRkbZr6oqFU3fekUWIHohE1TAoByGnP4 + h//KJyxdckrvDrTvd4t46ec5LC8cM9CSmZg8Lo6c0dsYl6j5mKq/Hbqf2r2EhwLNiD/7bBY2Fffs + 1gDqt/uVuH32q2aoLA7ql0NCwkfqUgacDga8vh8fYu/8sBw1Ifl3vzwrtbJl7J7CX30QGWZuNDQQ + jaBKEhmbzOcDlnyIFCTY4kx8JR+qdtCSEPZ33p2rp9K43DLoBrIlNyfKh6vAYvu2BDU3DvGlLLSI + 7Q63J3LF+olv29rSLSvCFIIJPGZh+oxgfsK0EdtQtbF27KRh3J8vajW7IzceNC6t9fcCDm0uESNU + +mqxbvITvS7Kg8jyYGbUmqAH6590wmrRygOpzpYk2kB4+bTjj8N68fczrITtSXqNv+5CPpcEIbo7 + pFa11DV31hRdmDQkD8O/RKsW1AE6pMndH3BSZesV9Qb8w4uLmUkuj8WvhN4tVIkD0xPYNtZJ4fUl + UX9epBzw0q0u0ePI6/7ge426vMtHDbk3V+Oz/WwoXWIlRtdeiHBWDzPgxnZRkJsf1fngFHrGH6cB + QkcRZRz8FinjSk5t0c/yznhfn7tivAcIH5iEpNNnpCRXzhw0haYjlpNe3e2hPT34yrcQv3I3qbiL + rTMoqACHpUh5gdV4fGoEDrJMcpAnw/KLHQ1uNXPFQSmZA0cPXQgb9VyRvVukbnXYxsg+g+QPD4bF + aCsBcfJRJ1gOuog5tKIGVeFQEy1n1IFdFwNCs+cWogTNPWNs31bQfn9IyEQboMWvF+HrIj3Io7CF + bB0e0ALHpKv+1fPCS/uZ+tkzcRApCKz5K5jRFo/zPpOFRJtD4wL1BUOIIly9asfPAKlMTLB92Sx3 + YeshhHOQM+QcH4/D+nTCA2K+S4bN9TcM5HEURkgjWSDPsauqZekF/299Ec8fS9rpD9VCkuQ9SYCb + Y/Wn14CJ/NwXKPvL5lCqOJSTl0PknS8n/eFaaOdv/Ko/rrp9jp4Gd73mHyMTDuQLbyEaueKC35H5 + HBZpfjxgvnKnf/psbORyg/v1E6Onsbq5/VagB2oORHodzoBR5MBDKfxciO56p4i6TiCgv/sT//Gv + MfZP6OiWRV4/1LmLP8YhDDfynPmZEHcJposDlKgMiA4qmTLS9w7hoR9NgiXDc+m92grY/+bB57vv + hS5HbYnB/vkk5OQVrM8ZOCgm8kie860cmFr6ilC7ay7Rh0wE88/NC9hyy5ckwq8YticManisK5W4 + IymzrcufAWB79PGFFqzZMheiCKzYU3C8r/flK2sJILR6zFtVl4CeryaEJ/kG/+rdXdnNmv/pG5+L + T9ny1NEB/uTk4qPhWALC+xEDsZhY88K5O5+RSwN1qsw+dy+UgRrHpIfTcm6I9hoLlU6zv0DkTyei + hQ5TbXpeOHDwnibxbahW9HFZe3gOQ4HYmsRWFD1mT+RP1MRW7H0G+lntDbxdoyJnvgTDclOdJ9y0 + r0ny+ydRN7yfkV4SiRAJXENAL4VjgaQ7v4gpWcdqaV8thK+H9SIxG3kZzV9TDbPkEMyMXr4jIhpp + IH7twifSPd0yeuQVBh1L9zpbBybP5qwLObBg2SVnpj9G7SdYLLQ/j5k9F4xK1lfnw+08Obt+ftE2 + cescBYz68vldXy1bZR5Evzwu2CnsNJv/9JZiSTmO7o49cFb39oGrk7t/6o6EbpHshFBy6wa/3qdr + tbWnaw2Wt7MRvefv6sScHe00s35ArLVqqsk42gt8a/4Py9ywRUs+ZBL85o5K5LcyZmN6/SzotP6c + GTXYUenq2gKoDTr4zHrZhm087x1ycDkR0/KouzKJUgBnNWtimlIGFvkrPKD5RME/Pco0crnA2Z1u + RN7xmRSea8ESQoKNsPGikY8sDv7UOiW3pDQzvhTbHjaC1uz8+snm7d63sDsvFrYOzCEaY9eX/u4f + ljLjkjFn89pCHTorkfcGIyfGYQ1fz8Il9y7z1cU8lw3iCHRJwLnXistuFwhVlG8zPdoq4H8pPUAq + yhnRE6vLFtLfF3H3EzNzbcdq8YZ3KtIFpMSWrbu6PCGbQ/i1PHLjb1rGBJZwAPbNlrHOYjNb4pch + wmj0YyLh5j0s132H1NyNObldD/pAT+nFQXBUrPmUvw/uP70Jss+I84d+A6z7ehnQMzT/Dx+rZTjn + I7w76UqC12Gi68htyZ9fwnZBBUpvJer/6ee8yMZofup3A20/7YmNONEj+pJ/qTi27UreOqeBf+st + C5MMe/21BVt2uxzgbjJwageXYXb62IAMKyrzIp5JRno2bf70BD4bdZ8t8Md6ULW+hCiKq6kLZoEF + nk+VYPe4z9D7qL9GfDTfDEufpw62Oms3WA8fk3i17Edb72UpvFqPg0+XlaVj4wweMPH5hmWF1Qam + MC/hH19j9eWpGZvN8Qh2fYolpLtgDKa7Awz98SReyQeUPX0OOZR5gfdZ/tOq1Bf9BryNfCZmY57o + 8qKsBE6cf8SqWLXR8FbqAOnfkPUPriEB7nwPNNjxV84/FqBzKarm/o8fCJb6CYx//LL7JeK5jJHN + V6H14UcRmn/8O/mn0wy2wi+IQbMuo3/8ZTjSBafKXyJ5HBvU81yINeuAKorf5xA6nqThl9PUbmuB + Twv2+sd+/Wpc4n6XHplcXBLv67rDmgvLE+nL8sP3cD+Dbk6SiIRgGwg2HsZA7fnRQ0M4Mz5w425Y + iC8q0OSSkpzbSgO8HW4iOuiHAWvcyx6Y/v1u4ENANvaT7l5tQW06UEySxl8/sKzG9NotgKvzx1/9 + Vtuuv2FxsxsciGccbfMHb+Do2uu8imYwMByv1Ojv+gPhHUQMc/mWaDvlDlZSw1VHlqsdaB+sGvuc + kKnb+Z7uO4JDjH20rdEmEjEGtyLHRFGvcrbpnsUATfEwdqJn6Y7p2+rhI9O7md3zje36sp7AO9KS + WFHzpbNItgSKL7/EZjNkw5Iz2ROckRhgxQ8P1egfaAOx/7V88KFbNsKc2WDJGRRja/5EwxXzImqu + vwt2XhdAt1+cH2B0Zxosx1YSMV6ZH+D9kl53/VtU266/wEr4nlif1z3izSOroSMB5/l0DYo9T7r1 + MPeOrD+b2s9d93wHRJVxwZL0sygzJqiGbSeN2Fcbom4XXhMR6q8hsXT/BhiXeXPAYX/bfNw2mM30 + YRuw1qoan3tWr5hzyT7A5d2zs1h9k2icO5CA8/mT+Ugpl6GwfVlCIykn7P7VgyKnHlxIeMfnyS4y + coJrDG+mgfy54p2IHbhMgG6O1BlctHJYzHPfwGXtLf/v7w2cLj60i3T0mcfWgU3L7RHWYfTCai4q + 2Toc4wThA5f4PKtXFclJ84QWM4wY0+TgTp917uFA6Yyt8NkOVKBhjr6aeMe6B7doVmLtIbbc9sWy + D9/uqt3rERVux2DjXigVG+nTCItTD4juayyl3z5JURGDN3EFDtI1MW0F/OGdmj2diPW9iwbla1b6 + 9D4P2TrZlxHufunMZKme8ZYdK4i9EN4nbC/QrfvF8x//+dvFY+ik4F8Kw+I2z8yuZ+fj9t0TUY8h + 8gLuQ2cc5UXQEk7D8p6frdV21mA/Nz9y1h9nd53nIIbzIY6wcc0tSkPfDuCOV9ipvlxGd/0AcRV/ + iV3QFGyDd+JgdMsFjDkmcZk9/4KLUGg4bjuULXgUZ8gHGYft3Q9vvMSloGXKHDv40LvD7Y58mPZu + 5UNFoWC+t0yKPvArYnt6/cBiAtf/ux7iv9ll2HY9KO7Ph8j69HH/6u3v+/xXBUhGJP3sQ5ntF39l + 7pdh10s13PNVvPN5xnwFlwEvNfgQmz8X1fIJFgfueRpW8sd32P2NLx6zKMXYDiuVfOE7gOe6b8if + Ppom+z7DlyRQElwTYSBZmGrweLIEHMW17y6X45L/5QlE+i1FRBenev7Ll0I68e5wO1wf8FaOCf6X + 1ySmLcFPJJ1xeKR1RvjbMxCjO9dgTZGLjIQ3e4Sgu3skYH8R6L5QeQAWXTFR705Xbd014pCtZN+/ + elXXJw9qWHSfGKtn7RnxLRIbOD4EgURJOLmz+4laMUtggHUtfrnbXz6U0ruPpcqpwYgrMYTq+xcS + d+K/YPu93im0WeWDtYuyun9680/PYn0D47B+qXyAG++pO57pgAq3bYb2sHHzAWr7DBfuUkN5lQCR + GuWTzbseRkTMEiwHo6AO6QFwkMDhRZzzaGe0D4QH8AzDJ9q9byLSMtn8tx7+1l9Ff/iqiX96R+U+ + /sC8etjAmtm2OXNju1oSt37CPz3iPn8gWuZiE8Ff/XhW2kbjy4gfaIaGN6PdL3eOnIvweiws/KCD + Ws26aj3++JtELXmqm62/8r88mpx/91+0eXj1YfrMeiyfKh8sr/QVQOYo6eQCMzebhuMzPv3lS9eH + U7mb8GUl2OQk3uuvivhLpzTgtH4donb8e/jjUzFvfz4+q+MENqtItr/8hLi+Z6j8jY0P8HsLTJyL + CVXHKvv5MB7XLzlbsbrvCAxiuD9/n9/95xDqFgODxEX/8HwdLnSEnndwiPW282GRo4vGbwlksSO3 + V7qA00GDWaDFvmj3eCB7vwCaFWR88VSgiPqr/y8/wiZuV3VT5EkDOWNKRJ9cCsYheTvi079wWBGu + YzWeg0QDW1b3RGXwREfZCXqAnzcZ//U3VqMqpT//RTQcCmp/OP98KMbGm5giLuhkZpYCmujmEB9q + W/R3P8DBaYr57/etuSDksLOtiLwPHKHLH1+cxOlM9PRZu9P680vwurYY73pd5RbmXMKy/8r+uufX + 62wvFqrLu4bNir7VFf8WDi1Ydf2Tn9iUQW3WwzM+2dg1ucvANc2NA8fzXSBm4HtgSU5VCTktoVh7 + liUdRfeowBGl55lf3q272fAJ4XhsYxysX1EdEoYr4HJ5iMRTvVXtHhw3wkMa3/F9U6toYS7fAu7X + P3eoge4YNWYClvbxmlFDXbqkq13CEh4I2flFXdK31MPMjXmcTVHtEucbevAvH9zxH6xf/RMjH54f + f+tVJZ+8z+EZCQF59leL0uI0bMAwN4ecu6l0tz9+LiuiY+saf9X56J9b+Hk6ATm7zpf+41Nxim38 + 1iydLkW5StBhv9ss2saZrmAAC1CBP8xctlXZci7ZFE3omPv9qXhFy9/6XOvriTwd4xf1ez4Ldn2H + zw8iRK2puTN4J/V15ne92wnwuPzxhS/+1acc3Q2456k+qwkH8Jfnw7u+QGIZMKFEoI8nbI3PzYcR + V6gb/AUxFNMxxo/1rtDBdQIRXTRbI/7tDCJiWG8HOj/2RGw3P2eM+DoK4Ofk8ezNQMuYmp8ecNBr + F19/x+ewVBnxgWldM+w4gat2HoEP2Ga2h1UYfbJ//R9N8bG/JcmmUiuLBSCoyjbv+bRLeT1K4Tku + juQeG+WfHn+CXa/5/OyeI/bi41mMvnGKrcD50cUuihjtebt/Wq51tilCXYs2H7TkorD1sJ3LoABI + 8DYi/fFPTpocnl+Dgs/QubjLmKBGPGcpwOrVwpQ26asQb6yhYUVxa3Uq29kXmypffRoyrLvWN3cD + MA8w3vVgtuz1D7IwzubT9vuqi921C9zz6BncSU6n9WeUf3nnDBZXGph8iCSoxvoH2z+TRrv+hFBS + 8oqoKi6HvzwJHBIjxGcUMsP6hU4K//JVI1ScaoHis4R7vwNHf/2Qgk1jca1vJ6yL93r41x8i1Z1i + K8mVjH/U6QF+bq3iC5tpZdtVKDz00svWB4UeRdS4vGv4kkT6zz8N/Zha8FxI68yLuADjdx4h/PMf + ZjOAat37OfDP/7sTrwP+Ly9A4/dOtGVa6Kbl8ogWcXNnd3GLaluHqoDXxzaSf/0EOsoHaN9cede3 + 3+pf/i58SxN7WjJXI9FPDbjdvBrHO5+NLvNmoMrVHP7rzzJpK2uIXi9HoqWF7W7St2Gge+UlopJf + mtG/69e/AYvx63XZ9eW4T9MMZWwtdzva7i1M4d6fxDp5MUOXZSj95+99TgDqnqcH6NyIE7Hzd+6u + XGcFf/0ZsvsFsHmfTQOGuTg+9Qqxms9lUKJiKQXsNad+9/t3C8BS0Im5/tyK4Z9yiL6no0DkT/JT + t0v2tWDI3y47XxsZPXtmAfU5FfBf/+JfP/qdNFfiPaskIsWpWpByCWz8qN3NnYf2UosJYkO897Pd + eSsHA+76dq5pRbP9bw2W/U+e6Z4fkb/+V8Idk7kivzTa9UUDO0P0iKaXx4jgRGNg850FH53z4o9f + A+DJtTSz9D3veZfD/T0/n9/xfxFfvAD334//9C/HZfwMUfVOiBoGNNtS7+DB2X4HWGXwmbKD9WRg + W1oLcR3Hi9bs+wyhpDwrcrmGtCLoMm3QbN/KTPY89s8vAHY6t0RSriadzGPho8EfffLe9eXKiOUI + /o8dBfz/3lFQEtf12Ud2otRKjQAK44P1l6TrKX08fQdOAhiJ+THJQNLwY6Caz27zmqhKRfu4LBHy + Tt6/f1+Fe23A0vcS8rwLTbTZ3HaA5ipuPncy7YrR6uIAA+BGM8xnX92yLpbQ7ZbMM8hAALjhszzg + S9xm7DBrCCjmQw0KrMljSfAnd2NoOsMMdT7x7kKTrXHUL1AVzSfxB/+sbjw1HagK7h27ifkbhtuw + aNB5I4Nkp3aky22MHXSVpcZn3E/nrooQhii/sS8iXTyr4hE7znAK+ytWW7xmSzFeeyCgW0+syQTV + Que3IXJe+iI6f7Ky9cV9RNiisCMuOlKwLPoaoP37sPq72xnfs90MzSOcyXtylYp5F5sD4amciG8E + 32r7dq8CDM2rx49VbjJqHK0NTstwIjZzOYJZevVPpANdIclruoFFVJkYOV7zm4tgMimzb0NEnLS4 + 5CK6SsZGh7SBF+nFEcdHVcY+35cEOd+o8w+GNdDegeMMhQH42I3Vnq7uVkpIJuCMLTXTATeLLAOn + T7dvko/nYeNj44HEaPawBzXVZdZMTZHZLAax25M0cNKh6wEnbe4s9GeOrj+mPsB7UFvkAbxk4Njw + UqCWP5hElW5fl52zTkFP7cRg6aBw2frT9BSRMYEE8yytlk3QRyh+gtJfskMU8V1SHJBJGRZfhR83 + rBMjSEB/OGfiyfzDHbcjEsWj4TQzM/lfl1UbkEPhagXzcXKVgaud5wLvaRKT3L+d1EkruRpeJPQi + 54/iVCOwZw1Oz6QmGLNTRa1uMoSnBhgsvwY2W7+fewD11HPI5arL6ma/+wdgoaCRyHD9jMmj1EeQ + b3rspZmmMtAkLfRGMyXGrf+oy9v+1KjMlhHrtJSzsV2eCvSfjo2vPpCA0NfzAYYbvJCYmXOXsw+V + gyZ/88mtKmm26CdgwCKG+1H3s0bZaBZ82HBPkeRqUtBN4tYc/TQ1IKq59BFlHJSKf/VkYzEcqOmV + GxTiviO6YF3pFt43Cx3vau7PffqNNidiY3TYggJfIJoiyp7yEk558CORhoeIq35tCwvz8cPallGw + JILtwWiXwu6ttimnWMaG1mPwJUHAyhUvwWMAX6RXiFwdjtmq2CcHevZoYv2R3QGlHmDgsf3w/inq + 3y43TZkAZDUxiE8MGm2TVhdQvQYf/KCgB5QZYAMXjBmsHxUxmuPBfCDL1R9YqWybMq28iYjUzYJ1 + BI/uxpGIQaUTB/gBKjQsbTtw8P4V+pnLh3vGqjoMgCAHjv+HX2xzHX1Y8/cbVmX4UZffNXBgcfaX + mW9AStf2/i5g1m8J8fXOdSnT7VPMkleIrf66VNQ4Shv0fmSYmcjOwOLdpBJ5xxdPpJPGgJXcagtm + dd5gqzTUbOh8YYGWfrn4DL2z2ZjcFAm9T8yF+C5k1XEdex8CdaD+ViOaLd7NKoHNMBl+fYUtIkYh + KWidOJuo2uy5TIK2AyzM9Oefpp9f8eh5ncFkSsrMqycmog90TuDRPRAcyYwZUes391B+FjPWqVpU + A3i0HPS3+4foopYC/hLmCsjm/kkcoTup4w0wJWKC6YFtoi2AwED0wDTcEqyn+1s99JSKkPMeL4yv + n1fGtKVowFLqZaK2nAvW0+ud7sJC8jXSWXSNDImBznUNyB+ebKFUOciR8hmrpSaB5cSFCQqX4ofl + Q9lFjOiOhejlH4WoU32izeO1lOhqMIRcstRV2bzyevgCwZUk75UZlm2fSePf5zeWHoLgzi/mWEAu + MSZ8/r38aF2+hiFG5uphjWXu2abciAPr5GATWb3lYEZeF0JIfYQ99PlmzLVYevRiDl+CGcpG4yrD + FOoP64xvr5uqMp1Zt//w/uEnFl3S4mdAXRjSfUZOAqh10p9gFSCLkwPYKAW2o0ByCI7kGg5T1NtS + 14NgtD4kH6Yz2JxsKmD3uKV+IRg0Gz6lcxCvstL40/d+qbbHFAiwmYIL/sd/7zdeIPO8juR6mlaw + 2daFQ3oSmDgtOlldhQW2kDQlJToXj9FykmQJ9TDx5uHUjmCrvr0Py1B74SD++i4XvgcB7vgwG5/v + wV3Vgyahnmkk4ob4k/Hg9GmQz11+xBqiTW31si/FnY/xs9KvLt1sqUBXTRhxFvffjIem2qD2JDr+ + q1uEYf0KHQMdz5SwHY6vYasSmUHl9Qnx+e3LKvf8XWskrOeV+Ds+/T70syHmh47E0ufFXd8SliBc + tw++Xl9pxFUkZfZTmyJ+TG0Blr5uICyns0WStOhcupH1iTzwXXHqPA/u8nGTXLh4X0KuCL7d5S0o + I4rBrGKXibSMdaMugFOsrSS5qU31jw8Ld4lJkMKryy5ntoDB8SMRr34gsPygbKD7I7iRe+937rJm + 7gOqlzQj73B/C1TtPDfoqY+bvzWPa7V+L4uAxMti4/vO7xtPsQNXao34ZZj3ajk3rYA47gOITTOe + UspWHtoMuSbnNuKi3mGYEpYTtmZqLk62Hn8XAxV99MYuGO1qOY+PFr4ZxSKh+TtktagyCbp+3gyR + Mu5UTcK91lDk+Bxxplai3PCQPDjYYvn3e+iQdmuPhNI7zmwQdNXqbr2EOD8ucOxHsboYsy+J5ips + 86+sV9Acf18H3b9ijx3x+3SXM+Nw8O95nRvJcxeNsRM4uMyX2I7RRVtEvADKVTTNp3Y1ALPdPQjX + 7vnEUmycM1roUotukmbjuzl8syXfUgiHyHTnjgxuxn86akH75Fs+PEiNO8uDl0IvFBfilQ0T0UNp + PmF4qCvsVfpVXdXz+IR1H7ezUAt+tPzcTwnJ5hpEkeM4++N7tE6MTaIv/Ln8jbYB/Hd/7OLj0s8j + XNCLSiW5wMbIOIamI/DMRSNvis4Z7fjCgrfic8Py42EP1ByGAgy3p4Cfh3cDiOTdZmgzXIYl4cu4 + y8k8edCxxg++pIkHCIq/JSLv4IzfNPcG9uySEupTOWL3ZR3BIp57CHuuVIl7Lc4um1xvPdyuFZqD + w4dXO+/2bODmR7eZSrevupyEYEHW40v/1We34x0ocPvAXqFyYPxdUwv477IlOoJvlV4qyIH988j5 + 7X/c9bpMGhCFyiS+wksu03HnDahZfSGPVTaiTRbHDaqvIib69mzc5RadLVB3vLzj54Fujne2oNfb + V5J3oePy6ekhwZ2/5jfv392NDzEEapGdiVV0sstf6MuDvjBdiP/LpWHjq2aDP/nbEM2yVErBekoh + hQ99ZhdZiTbW6kW4WW9/5n+nR/Z1o0+IypvY+GyibYBe1nyDX3+A2HhNPPint451t+Lkvu/4jc6r + Astx+sy/d9So//hQX04ezsK5VOlGTjl46llGTMM7DMtWIAc+01X0F5ba7pw5WQCD08xjS1vmatGe + wgLXw3Ig1+1p7P4DW1C9Oz/iO4eo2kYSxuCvflTzYg/8nQwpJNnDnMFpaYatjt1UvGh8NbP86g9L + Xi4NXEVB8JucRip7mg8e9K1QJc4qG9lyU8cFkPtTm4/JO6fbKK0+HK4FS+JNZIbt4acOHK6qTww+ + KtyVvy4LstyvjK1K0+i0GHpygmsoYhcVkbv86d/g2VrYFWdL5bMHnkGuqDGRgqQAi36iBrrNv4go + dR5WjA+A9Oe3fEG+2S43SicPIGmfJgdlP6PdMYjRegy/PuNoDV3P7q8E4VL+iHxQrWo5MwoHgkqc + iRG3CmDVtxvCtcuf2AEeV21s1xvwctYTcretH9gsYU2RF8CJXDk6uTQN+h5mmwKJbfiVS43vuqDb + WxNxaHRPwBfToqChZ2/zEpFG3cpUCtDhkN7JHWcr3TIBprD5Srm/+wV1C7tHCb/GaSHJ4bmp4/Vu + 5Whz7hdyHkYwTM2t7+GuR8jLmGO1f3yLGWaNGPhdl34yCsKlBXqYyjiBBXHn6lf0UK+4ly/sfDN2 + 86uBWfPoiAT3twpkq+edmim8EBfo2CW0URjYNoqG9dvnqq7K5RND7ieX2FPYbNiiKxsCPQlNIgnT + ma7P9yWGaqb12KqFORpxwkH45gUfO+fUzHhmYOpT83FSfNZcbqDGb/HgukwK9ru1p+OPCQTRKQAk + kvCNVYrqswiDx6xj99oadNT7x3gi/X5m9/jdZxg82RDAMrDwveNLd/r13O4/dclfU/TLqLknXDu+ + Yy/HU7bVVbVBxy/7GWQxl5GOby1Q/h5HYn1vWB2hgH34tx6CYJ+XaktdC3Y/S4z02AHa644FgvIZ + 4uC1PcHU2kcHiVOaYd+wXMoU9ZSDO6lP2B6orlJYPBrxsIUF9pCiVawg1Bza/SA512IAOIk7PWF5 + Exr89ve+059+MaHWEn0pKndJ8J2DXay2/vKej2A9YTYHXCotc9q8nIwVR36DOo25/X6ULr0bUIGl + Vpj4psRCtB2A8wCMPLfz0aoV9x/+BaAXifJLeXXHu4NYGk8Hh2Vvq4t4LqFIIif2ocyL7hq7W/13 + vdiABVbZxlJCtOt5LBfGPZut0HoCTpn9+fDbz2yLTCSCwVCe2OausNosJwigKVpffytVv6LG1EEQ + nX9Xn9kySldBehkwwp/U13f/PB2tIIFXrJUk6q7jQMbcrEXufqDYuPWyy+RuK4HdD/jJsZyi+dtd + y3/60LYtk9LOXxbYkUH0Wf8pqRtDgxkR+iuxJd9slf7lHeKtCWdyPjkVe12+Bry9DRE7tK7ocgOw + EJvm8CHuqfUoVx1WD3WqRrH7yOdqAe3MAZm36QzE2XIZOt80SAB/xbbpaRUPkwHCe1i4OODWvpqR + thpI7OFKzJqH7toYKvfHn8Q7ws5dX/tMFdLmHFbyraRroh8DULPvmJyLygbESO4PeM31mHjSeqAz + l3jMX/6FzcodswUK2IOe2zvzqQ0bdbZvogfNuQyxb2Wcus6RwMC7SL7+cLI9d20OWQMZHCBiyv7L + Xbrm+4D+N978gxc9s+3wtNu/9e3fCpmJeusu9LDTFW731xHopUPX/vPLjw3ZGb3RIoTt2t6wpYrN + sB0+9IEizzrNwuCm2fbnzxdVB9g4quMwDKo6osNBlOa5pV209AyO4Z3j3wTb+1vkUG5paPADTOz5 + G6jLuSlEdI3v+tz7bFfteYMGn7I6z7eiuLpLLtqWaJkzwEb2OA+st1QN6nSJ2/HHj7h9zDpwLE/E + McPxdJsFPoU3k7kSCfzCiPS1IsBdX2GlDwGY+FcBUYYGH6tKJgN2goWHuA++7/mFk03cobUAcpBN + HDDw0fZv/Y7k43NXU61a42ww8B4/faKqQq3O0wuUsI4MFZ+LQR2YPJPSP/2w48UAlgRfONSyxQuH + UrKB6XhbRlFQ/TPWrF89EMw/DDiU3xqrMvOLiPVrWiSwvxzbPlzd6QevDvjLR5Fym9ylV8kGbp6v + ELlUnhm7ME0OkfMqsQtPwtDu9QuLvPNmarhztpVBqsH6aFdYY8f3sGpR4gHHcRCRdv22iO5YAq+5 + YGLbP2tY3jhK4D1vNezeUxpt4Q2McNf3u1+u3Pm4T80+LMlrhg/OBLQsvAIeXUjwfZ5ssOvfHD6M + q/DffDGUKgsZWjQQpfWPbne1oQPqoL3jl6VCumz2WEMhaUasGB2kE2ekKTCXPMG+QYyMnQc5RZxV + 3EhsSY7anTNTBHeOfROXFaSI+fu9e73jSyZr6vZ4LQW61dnLF/pzQtl5sB9Q/y4Fue/6v1OWXgM7 + Xvui0N1dkq4fDr1AePWRJDpgja6dD8kJhMRNGisbi+tZg50BT1iCr0c2emax51dy7h963nCZv3wn + e3nSzm8OICWpRVAjYvpIZUi2uuLDg3seM7+m9gC6XzRtUH6WM7Z3P7ExlZBA8yAN5PJkp2GLJp0D + e70T5b1o0SbtZ2Kn0Jmx8r5UFR2nH4TTI/2Q59GQM1bYgAH3/JpYOsbRyl+FBaL7EfhrqcBok7NR + AZt3jYkTdPtUcSzmMPd7ZgawXKtp19siRCnFkfySMub0trd/etx7vCXKPveZOnueQ8yqn9TRV4cQ + lh8TY981pmjimbWAk6koxPrDg/FXOsB5VU/iTLbkMguXMpD0QoF9iVYR/5fvO46FZnCrOzDNykOB + jCk7eM+nB3bWghzueRr5+/zlNPcOhNRDOKcQqOPysjl4uz4GP3a0BtAuv1tQvY0u1i/TAL7J9dbC + F//A88H+rNE//7Xn6cRJIHLHBG3wFL3lFeMtvURUeh0K2FRahv1NEtyNTd0QqvpmzeHul9md/8FR + b49YQllGt6/UWNCQsi/xffzOtmFNF/Bi4Jd4Cguq0RxxDf7q2fr8lKHnDowPnNfniW3rc47W+V7W + gPMZk1wv00A3y0kDEctAJC6Sw2hjhrY4PRx8ICZ6K5Rdol8AVIRK4qkUuZR6lIPOBTjEbIBAd/0k + wNLInXlr/bc7HyXGgyjR2TkIkoKus9htUE5tGTve4wvWPz2PTFP1Bae+0UlTEQdDLlmwRhxLZY+3 + ZUZFcpL+4SGP9LMjFtii5CxFQba8b24Jj2OG/EV0ApcaubznK49qPjlfx138/ulBK+R/2GqXuFqW + W6qB/HbliNVxhE7eW1vgX977ly+Q3f8Ctf+p81f0wmo8HZwSChN78XkpyKptWIMNCew3JzJ6zu6k + RbkHo1v0xeddD1PYOstfPuvv/Rx3+fRvD14NjvjcoR7omjT7VHjPOpH8fOeruYbiAvc8xq/2/sp4 + ut0bGJR5+A8/x3wLDuDPn8sZP1D6GJryrx4wxugXTc5XMmBQ7GDGeCIYUpA+4fEJaiLHjZQxnT57 + UPxaLfH37/vHx/dSqsl7rFt1OzxcD3jJwmGd4XuV/D3Pp/pKsfzymGE7hJGEgjbMsGq4c0RxJzhw + 11s+GxAnW5bz54mGmbwIjnzqjp7ZWrCL5Zb802O2ET0gp1k9Du7ZldI7qR7IuU2RD+JyqKYnXg6I + tPBFtD3/pTDYPHhrL9W889vAPW/Ih7eGN//5//EX3UcQo9aY21l/qdT6QBHqcazh2+8kZtTwPz4i + jGnPS/yd1WVlwvRPDxMD5cGw5pcvA/f8hkSYR2BsC9CCPb/3j7seZgq9nqE6v2wscWFHl50/0dHS + OmKp0eguW34YAVNgSpyl/A6TN38tqH/EB5GPcu+uZIYzqOvijZ1dr2xjai/iTRdDn1lfYbR6t7iB + ahTn/+VPvQ9HuKKkxG76WMH64joRyKkr+7BQEzDufgOSPj3t+VRBaZe0EJKLd5m3yrbBn36GchgL + 8+/FVeBf/i5W3nceU7Gmy58/3fN9EojdApZ000Ug+4d0x8tzRu/+6MGmgR+imjamS9q/ZhAKAcXX + FX2jNYYPBxZ20uOzYd6H6XV4GCAUtofPpSnO1tP5qED19GXnqhtpVX4Dv4AoMVkfcNyHbkMYSOh4 + FjaS3Fwp+yr3SwGvZ+tN8GzXLg2m6okiGankrjlNtP7l1+JLUMjDZ7uBjoUvgV3/EV9fazorHBH+ + 4YMr4l80aupnA7/7bZvH+vECywdw+wkzx8WmxCfqokWO88+fKM/ZUJe1BA3YXnT5t76m62WMIQVi + jiU2tiLuouwnsMzqRJy1+Ll7v9eCPx1F2N7zN8rEtQTXhSjYO/ykgTAgPoA/f+nu/EULlKbQk58x + vqCnr25OhGJ48x2daFSZs869lAy6YPVO/vLB9asEBSrsuMd4rC33H57n3rxi1SnZaI2Z7gAbIUVY + bW+Du9wYLQZmzaj+n//hLWsS4dOOPsQVmzlaWtFp//I1gm9fUSV4LWIIeyXGEs/rlG7BMiPmcQr2 + GePvqj3PFw1dnZHFya3f870OOHDorwuW7tkVrL8RbnDPq+d6mr6AjD7x4I2eOGzrpMxWslAH5pJ+ + we6e34x/+SRjlisx5YQD9XLunjB/f7t5zVLXXYXOy/epHirx5184LOdcmOHt3Xyw94z6aHqNIID3 + Cv7metZG8Kf30VFeTuRSKjDbKv/eQlK2EzbRQa2Yv+/z9PhBVGKzoNU3RURfAyxEW19btGUC8wBl + d1P8Jflc3PUoFRYUZ4Yn1miL7mw5QYj2epipeq+i1XVP2v8zo0D43zsKDBZUxFWuBl319dtA1fm2 + vnBIBDoN3sOH26IoxF3HKGuP24dDYOUm7LyolC2D1nDoIRGdSIdZctn6N1rQWd2J6J/bTClEugDp + +SP70E1vFXeQCkN8mb031+zRUAeTWwM0vwSNWKqsAfYtfkYIk+gyM+/xTBcDX5/QTdUCy4nydtej + MDWQxKNJcnJ5uiS0BAY643Dz6TffPeCt8QHA5RG79igOywoSB1hvXSVmPY90Ozumgu6ntcB6sQC3 + Lfy6BysaY2KZH1Glt9EPIbWlkUj65+lu3+knQl4LOaJHva+ubb726BPuU7vHolAJRGcR9ln/9dEj + qMCiHOwABPDl4MwXS5d/W4EIFZU2RIpfRbWCU7ih5pdI/oyTLlp0VFkwKQQWyz/sRHQoXzMEmnol + SuQbdLs5uocyv3iSRPnoGXuMewjL7ffxfyf6ivifqTfwxEUz0fUrGgie7g1cw9jzT7HyypiGPnoU + PltpbiRnf89qi0dxCJ8tjqzYq5hW9yC8+r0w8xdRdTeOyxewkMOEtTr8DnxztHzED1aHI0jzbEUv + I0Xnj/nG+Li93U1W3BJq66zO7M/4UdocLQ90E3smr4vyzHhZsiEUju+BGLZwd9nRcx2ESFn6dLzK + A8sr5xiKSF+I1YtHt3PaUYLW+ix9eEMhZfICKfCmBhEOnk8t407TGMADCu15NVlbXW+JssB8OL1I + aKUaYIUXbVBWHmWsMbwEmAxf/tZ5Q14D0vYZPrUFOOdI96myHV0mfYnRALIPccqIreYhfEGoNLaG + nxUQs1VukwUKU54Q7XRLXCYyFh9KpIyJcYcl2BTBzJGA0i9+BA2rbr7NQ3ijzkrUJf5GS/0pUsSg + 1iDPz0AAjQ5wgyYOEnyV0TQwxfYL4VoGGXkdnEfGVPrmIKdqJ/JIvwKgd3MqxHni9vdcXotqOWqV + DyP6CEnWfp1oiXqRAeCYveajXjPRhr+zB2cC7tiGSqIu5FY2iDdmnRgF/UTZgelzscvuh5lxpG4g + zuFXoDMtZ2wxplNxfd0kqP9pb2I3h0+116+AhHNh+mDSjxVdKllDjZ3zRBlPRN1EO2xQ1b1i8t7P + OfD9IZJQ5JX5vBi25/JOfWFAlueDP9+1JqPD6LRQR9ID4+DBDdvjlSowWkBIfI74EZu0mQW1JrTx + 9dgbgKMcFOBMTnccu9YMxhCpPjKjbcQKxqrKD+V1RgR1EjFOieZS7qBYiGnGEjtGqvyHtCvpVhbG + gj+IhUySZMkkMgcBEXeAiICoTAHy6/vwvl72rpfviL5AcutW1Q25gL8VRo2ObXDH+gumg/BNBR6O + oDf94z1o6bpqSofYA3HnTT/yEQkzyf6LP38w4r6h/qWJ0RmHCcFXxc6F22XpUFHTeRZUhmk2N3Zk + 4Cpxg+Vv5gChH+8ztIl9I8YqXsCqVnYK9G9U+pvxG5ptPvAlPOqJTbR3qTk0HEEB9/uZ1/RuRsRq + Kwm65yODFR35Ax8ocY1Erz7jJ9cEgGBuYuC/+w3LZRCKbEmQ/bVUrFZxRNnPL+mh0iU3bB75Zhhv + tZlAjZQGvuLBzmmLPj3UvuWK5cQQ8pXrZl0yrocYW+5gDWx4l1uUVtAiBU2XnBwg2WA3HXOfm1CX + r/fn9wtZzM5Yqc8njaaD4MM4C07YSn8Xh5XTzoD384P6x45Rhq0UvzZk0vtADP75Hhah0l1Yv/WX + P5XL0Vmr7z1BIsreWH+OHpgr8W7Az4MeiWp/ccQLljjDx8lyiXfsT9p40AcfNuzRJ2mdG5pAzhn7 + L57V8i01I/L8Xkpuko3tSnO07RyLLqyZszOvVltH00M7uUh8MSM2F7MDgyIrDJIMDxENhi7lz/Hi + S6n8W7F1YgeHly4d8w+/8Gfv44mVpv0bH/bMponWUuVNdLxwNj5/jYIuHAw6OAX6RM5OyzvLestr + 2CGux49yOWp0DE4J+rfeX80h3yQra0E7uwFxkuObfvhR5qV9fuau0Ry6ZloTgy9iCHEGJskXwbdF + 2AcmwI78XoeF+UIR2rSFJD8XGCwZriRkiWGLT29GHfjL+2n+jWeWihY2G5NxC7qX+W0/FV12uOvy + qcCEmt1FfnD51D3lGQJ6pMTxhjIXbqO/d40Iz7OUvlPAl/avht977RBLKJh8eyupCCsWFfg5tZ4m + eJctRRPbXLCcTYOzRiUXIuObNUT/DJeB+vfDCJ6n4IKfpzaOfpc1HhGjiAo2r5zf8A9bbFFYEmNe + vOpA+8mSaiiG6mOm2LH3//+qELn7Bc7Va0cFjn24cLkrFn649ceZjOfVRQPLG8TL059Dk1aGqHSQ + j/PrKg9smuoxbBfckXAM83y8sdYXWWZq4Gd1WMH2lKcK4N7z/+VrVqh0H6TaWSaawjwH/iDfVfiZ + bZWcu7J2FjttQ/Q6pwN5ziemmS7XWwb/4icy9Bfd6mhJ0NzeCd7X50AJerMgltwYX6h3AX/5+chE + xwTfVGavYFJrQa3KmuTS3gidrPKgQ0XawLw+V1FrcxSUIBM6EcvjHTfL5XTrYZcchFms884Zjytf + oCPrf0l8MIjWFoNpoGxuPfKonmG0Cfx5RNxPxcRkz32zvPpQRPK3OhBDJEFOZ+5bgcsN6NgOEztf + 1pdZoDqfpvkoFGW+pW9aAK/pnv7ezTYfR/22offndPcpMR7DUiArg59zgPEfvi3Sc8eD+doR63pR + NN4sUAUX9qlh52cAQOOA6HBfDwRnJo3odJcCyBP2gu/1baKzIpYVfG0bi3F01AF7wdEXTvFH9ddt + lPNFYeMYPq9+RdyjMUVrq/0q+H7LEVHWR9HQwZRV+CoTTCx9PFG+LtwZbI4XE3v5dtHvvd4NpGpr + 9y//8vdcKKB7ZcVZ2PPtmrrGgqry/CXyr744AsvcXTAQ9CG6d5hyAl63XpLQecGWq92H77N/wT/+ + i0+OngzDzFUVam/BiPF8YoYfr8YphOZy+bd+yZuLQiQb1gvLna04bHd7JLAubehvyqvLKeEuJWiO + ebOfuv8GlDJViLhHdyV+5g7N/ncgxcXVweet+DX0L16L36oRHZN62N5R6EPbvhzng5mHYDVAVkmB + 7TzISapfzWIamwrrs5diK5QEsOSvyIY4ivqZ/YtX8Hp+wf438SO+bLZvy2UQrS8Ru0/IDzMnhzz0 + OT6f+dj7Ufoa3RK4zLqS7L3tXc0+cgt+uhQTVXkZEZ8UjxYGtKzm+adcBuHN5QE89W9npo57dsi7 + uUAQwg7PjE+uw9/3Ufa2fvPrVV3+1kcI+csx9cUOgHxs6W+Gsc868zu+1M5KVamGlfWO8DlelWFM + UzcBShff8OPxjQD3Pr4L8DmHeF62X6bNSfHo4KORr7h8Ar1ZQuS4ED3OETnBbczb9Rfz4PVb9grH + 4Q7WWhPbv/yOnUD9NOTHzjrc9RCRt5+kLXyVB3DggUvOumtE21eWNqkuTUh8dfUdwTVPBTBfdUT0 + KnqBFcWSDF/nbCCuRSqw2OyrhTVUTwRXZRVx2hPEcOfb8yonEp1iqangJTiSeTi573w7TmMIvadh + kfMljJytb+cEgJdYksgFcs4PcvGFcblkOCOVTDef1D5wmmeGMWOZOStUrguSIn1i3Zaths1etS+K + uXYmXhY0dKnSS4c6D7lEoeypYVPoM9JYuZj4xrKCpe41XipC4YlPX+7ljAUtCuiOW4HP12MHNjp/ + KxDdmJRoj/tD21j5JQFrZHtS3nUj50x9KRGOLj0+Pb/X5h8/vlnCTJQidZ1p/JolOEzmh9z0SQBv + 6XMvYXiai398YEmhAaHHvVn8zBYt5+LkK0HHrqu5qT9ts8X2EMNFb98knH9tNDNtPULzVUX4OqEu + Wh+uZP/xZaJsYxUt137YEOvd5rnw5rZZ7x9OhUCBmCRP/ast60sugXVJ13lro9sw7PwcQOOq+sc9 + /tfpuI3w50nM/LlfeLDnHwYeL4I9C0y2OuQ2GiHY438eXufU2VAolnvfeR4rXtNpNGlN+I8P2PFJ + G4TscNFB3/6CmZh5SJfLq2CgJd36WWCdmo7h3ezg2i0L9jjtklP/8GPAKTE/2KueW07XwUihf5Xc + ubGKla7AKWwgU3jE2nh9NSQKmH0H/l32G8f9OAv6aYy089mZNxcKCB84NciHw4Dt9C3SOS7aL9Ij + XvLX0nzlWyTzKfTdJvWF1FoHipvxCxa9exOnkLEzZde2l5IiexJnaWdnvhDd+Mu3JLccSxu/v3MH + 2Nr1SMFjny5qrUGYUb3BlsJ98t/n6s7oD19V7+lRzpWSAKoZsfHZ0fRmBY9rCTmRKX3uzagN914v + BoqzcPcjjMDhNUJ12N6vGy53vb1NwtGG2ngwfHHnx3TIrBjs8Yn9YzeCMYasefyww0SsldUAvyqy + Cvuf8/aPinfLaX2Wlj8/Yv++1vAnJ0xgahvXmeuesUMSXg3g4TLO5N48qUZfmWZC+ngGWIc+O/yC + Z5798ycUEcyA7tejW+TW2I0Yoq3BdS5hWE4GMf9+/yXaKpAnLSaG9rMH9uuvIrSl9oKfXpNqWy6U + X4AO5YpxSc4aHTIlRsYhPpPz7g+Qbw14GFzO6l++ijbxAL/QogsmxdGY8h68ZR411uuEldvG5ssC + Jhc4woH44tfStOmtZfsZcK2BL4PvO98bq3zhwoshdkv2Em3OIidorcMc+/XWOKTPggyiQfZmyHBG + xPmrxIPLIjA+o1qMtsrVvYDNSV6Ibd+Mhvetw37kgkR9/gW6ZvWeaw0/i5USZfB9bT0qTADPkLyx + JwCHCkP9GCE7uAK+c/TT7PqphF/+kBFDXhdnyVFQINYU7uQUaVm0PF66Dl0lafA/P6q9pF+YcNc7 + sZANovk7rxmUPBz6W6eN4PdKZIh+VfDAmMRqLqAeVfBWkRprO7+hHsepUn21Q78F5yFaYh9V8MIt + Hk7uUAXCNIAOiKIUEFm83ZzfTPgZWnA5Ync/dXc6/2zzX/48LaxO2YN76P75RbayYm3zIgDhWbk9 + sC4f5WHh9EmG92Xj93xzbmh6qGzUnNTFf01lClY2Hhf4Ptbf+fjC3+ZnJuuCRvA1ifY53+kCT1YM + NzKI5HRQeboN7S1AthJhcrqppUb0Q7OhX54zM0vN/YxScZWR2v/u5M9vo4/x+JXUybzjm+ypwxbN + SIVv62tj++KfnC0uxh4seW3h6PTwtV3vVAB42mFmoR/vO1IDZj+TJJnXfbzbqsgy/JZyhR8Emg7b + +EaF+p/1Juc6fYI5eFxYWFtjivd29dGyPIkIx3ZusfmIZEq9wyqjV8tJ/+Jhzt5jBjkRlkT/2JXD + Ye1tS93xesVqIDzAetJmBu7PCyvNktN+X/+SIA6/ebm/35TiPAiRY54uOCvaoqGkSU0UXRsLuyH/ + A+t9/THAMWSHKElPnHX3J8DOr2co8fXA6b8qBIp7aLB+vPHOilRxhtsiqxhbWk03OPkmFM23uPMZ + bvibX6nVhQf2xsedTpfrMwO/IPHxqS8FSuf74IK/8RpHgWu2ys4KKBkYEX2T63yu5qsBx6N/JPZ8 + eTjr33w/r26Fw2u5DuueT+EYL1fyxNJL29JoM5EZfe7zQXXbaKmqNwOXDmo4bw5hw7WPgwvZKUJY + XS4HbX4UqwTR5f3zmd9PGRZ+2480ltoLKWcrAcvLv3aQMbJkPo4nm67lwm7o67wvOKzbMlrAKUjR + 4elNWNVspO35N/nDW+LhTGkmsTvDY+/MCTbWC+P8putioBNSM+z6ONHIn5+w60eCkaI5wp9fJE9K + TE6XrGmofpnMP77nL/wXgcVhwxod7NXy4R+e3UmVgd0PJm7IW+DPH4DlO1F98n20zlLQooRjt/bY + ddLbsOsfCZZ3ySRu/NactV0rG32cZX9ndMLN76jwAXRLocanQ29QGnKYB0wmDQSPxQeM/F9Xtnsi + EjmcP3lfz74K1Mm+Y9cQ62j704s7fvgirfhmlR5jDY0ZMf/1L/n4MQKHE384vfoZoC6v6xLTxW/y + 8DSx2Rj5q4PH+evO6KLCaPpc9RlWNXPGWmPy2py/H/Fx92+JHDObRpLWZOBfvjhfpMZZ+3huYRjh + YmaWZ0P5zipdsPMNYpi4jiZV9wwgiZ8c/90/12q/GvBfHv7hgzPDybAhubsFzk1NAwvaFgnu4yG+ + 9QnyP/8UcslHxs4zLcH2sc6mtPvpWC2gRpcXjF3peQovfg+7CYyj/twg+jYePpGTM7Tgl6vCn7+p + Q14fFsfIRfCpsEUUweWarbFgDHa/DrtoUrQ/fQfCi5mQDM3UocElDmDhAGnm+OKQT6lrbJAazYiN + ZRkbavO5CanxGrE2zFNTYdyPQBTFgOTaY3SmMX5WcIy361ykrQHm90REqaxySmxJiBv+zw//0x/c + +bSB7exoIdz5CPFX+Rrt+AJhomkjcY72aViUOpfh+uX4f3pX+LGzAY1G8olJXhvY9UgMj4cxxPk0 + kWZ2VWVGHN9g7MwcS3e91cNzPwc+w3jyIIgvtMFTakG/dG6nYSsU5wuYCCQ+dx6NgaxnZ4Onw6ki + bugf6fRXH1id9IMvJgyjbY2sGL5+m0Ws4hvT1a3kDsqP88mX8HOgq+JbuvQOHM4/ypOq0Utu+fDi + i/cZ7fx6y95thrRDdt39m3XoA5KbEummAuP4nuW90+UpfJfGjM27Vw5LlB4riIvRn1/NAigpzjiD + v0nwCL5dYrqOkrVJVsTKJN2v//Nnjrufvcc/75A93oH7CrfdX1cpq+8V9P54YrG+BJO2d69jj7Xv + T/jkN2+HqLnowuCrdsQ+WQdnnoSjCZug6LExqKShE2ZCWN0qjxSf7Lvja+NCgzs2WDvmc0T8wwvC + cDXefovP4fCPj+38YZ4hU1D65+fWx46fq282gOXoARZmt/5H5JwL8okr7yPY8xu2nEbXFnC7jLAK + ahErlH03e70kQ9WnKIjOV0Izpa6//fmHM+KpMXDh043h2+ptLFfwOKzmlxqwWdIjjqtIAW/99w2B + zGsHvy7fWbOePZf/ywfYvaENzHs9DXmm+d7PyO21qX0IPgS4OvjCpzvn7BW+dWhpT4Gc9vW7+EhM + IalsBavpdfnzR/2dcHcz1bwmWmpDcRFb+958jFWULz38FVB6fl8kEpxmWM+ezgNm3Z7ECrN62MRc + koEqthExS3gbhkOQbpB2D+AfzrE10ONQjzCIqgvWGmIBeuaPAfzDf5c7/4a1eNo1lLrOIP7t6mkE + Dm4Ldn98lg7Mo1kX8vn+1c/mdX0Uw7/x734WNq2ARv/8CpDBo789XT//9VLAwj9/S1drIacVU7DA + hNDF1+asO3wkMyl8zp5NfCxklLqZv0GFXBV8jfpZo69RL+EtoBG25wty5kGOe3jt9e1fvloowAb4 + yx/Kmfs5K2sLLLxGlj+zu9823m8ogH/4HVnFha6JFBf//Jx+r5fOkhW2f/UWYhnXolkC+k7QQ6h7 + 8uefr7rXQ/CcsT0jm050WwUNojbcbn/+fMPq96qGO/5he5H/1StMeCtHl5xawtBp10vwzciIyJdO + 1cZdz4K95wdW1gccJs4N0j99jXEUrhqlvRAjN7t5e37VhjWRigLGn/U08398+g8vv9vz5B+m1nN4 + JvylQBB/P3xeYz2nNh+ZUM0mG5u6OTvEDoMKKS5qiK5ZgzZdkwuLHr/3QrKT9XS2VXD2+/NsfA6G + Zz7mKC3guaAJdozYbjY7DnXpZ2U/oqKyzxfxdzSB7zOf+UCjTuNtNdiQBNR+1zNe9G986PL5zVNN + ICCymcT/6nee2WjRlhTXDiIJFuRaLbkz/dULC4tlcXrl5uFDmtQGf/Fp7PXROVUWHiDcReTMRV9t + 0PKXiabpM/oH5R00f88L7vzRP77JAyzk10jwUuR3Yt3XJCLCXSxgdh6zWThSlK/aCntAnKj2wcyx + f/WgDJr09fXFF000qh+a5U+P4Vv/ONH1VV4TRB7jSna9mq/mF+iQ4UP2z0/XloYuC9zrF7MoW3Y+ + 3mCpwiYoe3JiqTlM01Gaod4Flv8KQOJwxvPhwr/1JTNz5Sw7ngIoTRxRnYUdRv3Fiv/PjoLj/95R + IIi6SoI+CBoiuiSFYxtzPtQN4lDWxjVEKfphZTY+0bIyQgJzbKj4ZFmfhrKJziNny90ZXb8KEDLR + 4cFVASYxn7etWQQWZfB+Tq/EHqSzxl4fkgrZ7hpgLXc1ujjOJMOe6kdi00MHtpdkVICh8YTjxDs1 + BH35GJL71cVJD4dh9b4XG13FXiT29iyirZVWiJwVnnB0fX+GZYLPApAifuHH23oAWs5zBg3AH4ln + F2DvrnOtUcFLIsYfi2hz0qa99EqmjKi8xNOt39oSpg/X9Lf69x4W8LBGydn7kmp6q2jbnTM2hL39 + jJoSSbR3Q6eHv6t9IQah4cDVpcdC5/364dt2ZJ1NIOUMhNumzVuKfg0dcdCj69stfGmwV7qczsgH + zP39wTjBUrRtwuhD9M5OBB97OeLSG2+iA4UDUfwfyRfBXXTEyUbiIzWwGnZFqiSNQmLPh/uDOlO3 + 72ndLXjieU3t8N2id6gIHJOcfo+uWXXUQshFhyPWWlHW+H5rC2ROGM0B7g8DeTVxhUzpXGEnpHku + PJ6mjzKIOWxi4xWNzuHzRf7C93M8jXhg2VRhoDdumDiee9A26/GooJhmCrl0oj/w4vmSwvg2AvJM + cJYLA/erkdTUDlZ45+zQuOsDoEt754grtp0B4nOw+6kzwef3KRJe1lTCM/nE2L3dzzk3mJIMyxfR + iJK/eW3NN2TCi5q+yS1pNI103jVE9GCm+EQcdqDPWRHBPh+keL5FMEZlUkMnPHnkbhztaEs2O4VM + oNxJBKoazJmPROjx/QO7h6MAlg6HKeomsyXPtHMd/jhLLuR41iDGZ97AAsW3j+rHamFX+TqN0HmP + AKZnXBIv67JmbU7dCIck84gh4VZbJYnhoRsGOr77TO9w3HfZoFtEd+K7w3XgtMS1IVl0RFLhWTn8 + +DnokF5DB/vyU9c2sKg2su5MSu71I3a2X7vNkL+ZJ//w1HG0cWMWg+/KI6wWjprTr/qRUM83V+It + 13ZYjpgtYUWqmui+eaKjPl6+KGbKAeu25Gl/40HkODjEfpRXyjEoGeHJ60JswOk8rDxfV+jY3GJy + 5m63Zh2XjAcPL/kRD132t5bXKkZH3InYvm33gWXXo3oMUj/FShA4gIptLaPZDM7Yc7XbwPF6kcDF + qjSi9Z2vCePpvIDr8XTAca67A8+kG0RWw3c+n22jM4cWb6P3AalYLds3GK6+ZqM1+5j+MTd/A704 + TQCtILWJJZTZQLPRqFFVGAa20RYDYTl/enBfu5qoL/UXLTnZ3yn5xW/sWe9Y27xjW8KJu0vEQtrJ + 4bRaKdCTow9iKOMJsO56SaGgJKG/KOeiEcKDlcIuCm7k7J5XsKaJNf+t//k9x1OzeYKowlfTIh/C + 3xRRJxIX+FQVdd6c6JnTCoAvLOP0TpRSOzbTYM8ljLMxIKd79HFWviQS9JK4xLf8ldMRjh8JfnTl + QdwJNw73Pe5FkJU5+ZwZyo1wdG0Jflg/xoqGT862PpANrSCzcbRtz+G7pV0Jhdui4cuOJ/t8qNAX + ghzrepMPwpG56GjHI5L6yaiN5XZj9pp1gXXbvgHCNXwLj4ncYzf7yNqEfz8Dau76mLcqjB2a9ZkB + s82tZtibhUa/Mi3RjqfEnl7asBRXWUa/rQDYiy6Bw1b3Yj9mocr8j5pfh236ZC08p3NBjFpwKL8E + Woaq+0v0SeZ9o23RDQMejFglmU0UjZMmzwCpvE4kA/El34hPC7TjMZbdqIk2pTtXEJbxlTzC7OdM + Nm1k5B7aCbt3wQabrTMZDIae9W/dVDcbOzIs+PSJsc/3G3BpooywfRcCsflHn9N3qvYA27OA3WMe + Nzw78iwiKsgxvlyUhiu6PIHTq775wkP0hvUhqyX0P/cGpzzpwXRuXwmKX2+LyONHzTlQDSFwnmeB + qJ9qbBbYgwJm1wT58KJylJZSM0ND5NodP3SH83lVRAluln0HVwwE0d4gIrhgSByR2lmPQ9CjUFZ8 + HBQPFbDUTl3ovJsf9idi0a34sSJ6ZL5LdKbTc6GxUQbGCWjYkJIrXRxLbOH9LBTEY5Rq4CSJYeHo + ffSZ8cML4CXYMAiZVU3UA3EAn9IshnYpbzjQr1y0+c9A/Bdvl6tgOsJJd3ooKjAg2QcenXVsHxX0 + 2cjAejzl2mZxqYnaw03HBlWciO0uBouuSqn48NN0YJLJeQMy82PwiYAfWEoX6zCS/RN+ru+q4V7s + Uv3D+5wKpJlKj3WR/QHyLDzMNKfhx9/A9/xdsMu20zAG3jcVRG4eSODZfU6uvmOi86FwfYnlfYdX + OlwDLqo3opjgFfFT/gggLwAHW30dAb5+Sgyc9J71pX09LE336lCVnAoSSNmiLVjFHXzM5/2UwB+O + 9vVYIixI95lJbpeBNok0wlGIbZ8xvNDZ5IWVpPVTDDhyfxWdyvuxQmLOP+bVDR90kR+wAN9LzRC5 + /bHRkHwkXzLqnO576sOBCqvDA5W/jT51l3BYcKa66GWEESkCoGvLJQ9tRPgfT+7S+9VQNk5TVETm + g9wAJ1FC5waiCnIulpvN06g1whQa9X7Km/i4O8vrYI5oYw6vmd/sNuq8J0qhkHo28YaK5JNWKyUa + hfXi0xYXA531IQAnEXfzghuPbml+m0FS3CMSFC3b7PygBn/jd6aKcZaAe49I1h/bjg9NQ5vltaDP + +XHEIewibZ3fUwGr5Fz4x9EK8pVBySwVy/M8H4VSGhZFq0Q0HzWPnLngTbfLcpZhtv0+WIu5LVrP + 7S+GBJ0/xA5B2HB5d+CBhreN2CecDDuFnxH7W0eSnl435x9/2/nH3/1r22XeFeDeu7co5wsQPHBp + oc46LlbPUAWcvn56kDkFwbqINzrT6LzAnhpH7EAF58tYAQgP2sr6SKJnSpF8lAGBfYW1bTsM06HR + bBRcsbbjLxgWQlAP42wOsDIjPyfjw87gdvmK/tNyFcB146DCO/NxiRyuXbMcTlIl9ceqx9ZN+1Gq + 5hkLZmXvHhqAVvvlzFbC62uTiRyKaUSp9Nu7RrVvcvIXjbJv4TZCczEcrJ31JN+CeKjhIFjRTP/G + Z3n8F4ipYBJ1dU1KO9rZUDFPJ6KS95iT87H0xQSScN4+Hyb6t147QwDE8bh6oES0UvhPXzzZg7aR + TFwgrSeEzceS5FRMlgCKOfv4h58TzZsaKFsUznx9ThoaUleHp0m8ELXYu4b9dLmG8uV63a9/NWQ9 + 3hNYV9uT+JXEgnn6hC0Q/AT6H1f4OJPLkwzcmqeGTUf8DhTmegul5Pslf/hPPXDv4NfXXziJHq9m + 5bAyQ94bGWKmRxwtkf4pgRzsjuDnWg0L0usObkNz+seP387H8qVBzhtiFJUULbF4auGJXW0S+lkX + TZd+lWHyZjPiaedgWJ6ttVtVHZz5C//OZ+09yBCmt4Go9e80bL+bzEDvt0nEk6R7w6Ly0sNEbYyZ + B3yVb3dPKeDjMzAzNHk9pwk3MBJ/+7gzhD8vX//45KsyX6RwnRks8uVgwm/5+mJr+0TDFJ9EA5Ii + eWH/9CgAXzwOLQglnBHdfFkN329jCW5QtEjkqG20PBJYQo0/9P7X6xJKR5x+IXjZ7MxGRHVY+Xdc + 4GM+Ebzz9XyD1hrAn0NsrDhxC1bVDFOITrpBvOk80CUHqQQh+B6IeUTawKn1m4HlTKY5/93HaH4n + 1xrZ4FYQWZ1FsP0OfgBHuc1IeGeXZlG0rwT/8A1DswGjv71itP8eLhdvyhe7dW246yFyWn+ptn3R + nYWrNgakkBwLbIafs5BnC4Kf9+QVrcz1kv2L70syE235HYUO5fTyxqdXaoAVjFUHGxD2xDova0Q1 + nkngUW194nu5Tek7tXtYcs7TX0JljeZFvX+h6DOSz1T2YaAaZ0lw0Zq7D9QfoL9Q/5owNbbbzIqH + rzOSs5jAd+F/sBebQrRu3EEH37L5+uKPttocvsQNlnPYzSD/BtGGJ7WHBR5l8tz5/myoSQ2yk8rg + czepAxsogwGTHLoz+VUVoEvUMuARbTn+Gy+7JZsK7ItqkpMvXJtVnZsQ4ll2SDl3AV2eKyjB7/pO + ySm4Vfniu0EJo/j0xfiVvzSq/fQWfR7HnqgbPWnLE4mLlH9hgHW9+NHBA5cO7fyIGOHk5vTE3/l/ + +KPn+tj85ve7RIfoO5KI1izdeMMqoDLz3HzY9R5hiriCkeyecBgb6lBz1UNF56OcY7mt60bIRI2F + xr4jVENMlxNLPM4glenkA6iQaMu6pUbclB2I5qhtvl6nVAJ2qW7Y7cU1WgRXNGBunVKid7eTw7ul + CWF2kV4+VRIz//e5bIOGyG2tDsLffO/4jY2x+TqbZL5i2POGP/elP2ibXRxVeByPNTm7TErXmT5d + +JevjXOkastHXTrYnj4HrJBJG6bvJDHwbS4Ofm7FZ1gliWeRtryOGFfbYyAJ1zDQ8N0AO7u/sMbX + MpACJ+GIezjeAN3xTlqRVOB9/dN5u+QJWGMV+1w0w2HtQgpRxd9zXyyroaGPiu1h2CQ1Maz11KwP + 2S6B9xRHkv7h71H2WpCu9wG7O1784YcQ+LGNbfdBonlIU+kf3zlulUIX7lBvIDxuEfZicRzmSgwN + BM5hhxUTKBG381101JSrf309xWY7ZCSDxlzjv3zX0M57hOCFZG2eGHOL1hsMW/Ted/TKgzDSHS9V + FFW1TtywrqJeaXMdjLdHiJ/3B9WWbxnr6GOrZ+yncxOtf/zjo2sPoufsC9DLrWrR8x0nu95P6dIP + v0TSluboM0J+opwKHzKEh3NO7LjG2vfoyyqU5IGZr4drrI2K0FQInINuJuOJ134oVgpkzIcEa/Fc + DUvoLzGYT+HmN7SOwXwxrRE25wpjbJwksJwMc4M1czKJVmiDNoKHMoIhykQfwRfvkF51UrDzPb9q + tslJzYSXADoEIS6Px19E2Fq1wZnXDIw/x/a/8/M5yxs2uOdM16VDGXz/dBsXm9E7i/xbF7gY9Uz2 + z8Hk9V4LG2YyZnb3zzjiGTH8ROKVqP18itjWVwvEGQPe8827GcFFz1AxPVb8h5drcjZlGINHQk4X + /5Mvgrwt8HlVb34/fbmcHl1VQt8e6njnH8O25w+YlUcHPyrnpNGdT0Lf032/rOxDQ8W2lyVbN9/E + rpkqp5fbt4Mpqs5YyUs959FBY9FxBDXx9+tHZnQyKZKEFOOtOA/rxwhN9CTXATsi5Yf3paQjgjrA + ZI8PMA3JsMELzjHxvkEL2CPvJX/+HU7Y72fPH0YImzzfsAG8gj5QQ3qgmOcTcTu6Nlt9rFX0fCcJ + Pr+Rl+/4UaEHq2c4gGI0kFGLErh+ymGW0KA5ws4fgLy6HrnO+TPnP02/gXOjrH/+jkOXZx3C39Pq + /O6AQm1cV6+F+hRGuz5mnc0NtR7Q9xSSUzQXzZ4vQ/Cnz8+8zzRk9xOAJYU3oimJGa2XkEmh3YtX + YvRuElH+Vmwg/+U34r5cLt9UB0Do5L8cF1xcgwVc3AxylF/3HTMJGBXtK6JI+77mw5PVG348rDMc + dZXHZzW/NsIfP5NQmuKYf+nDUljqCF/V54vdjl6axZyPFYRKQcmNF1RnjSaUwR9XBviEPz0lTFHU + cIZyjfOd75IbjnQkZSed2Io0auvOj2Essxq57/xj8wZpBnb5OPqxbQtgupNlQ04+5D5y6Ujn71pU + cGWuDbHb0R8W5RJ+0bGWPH8+qmoktK4XQ+HqccS2+RDMRna34dRC+o9/7H5xAiWe+RA5n7yczUEq + wgWRty/ef3qzeacf/y9e3R0f1nw1Z1hMz5VgiLlmMllcw9N8TcnjTqJhXbZt/OPrs4TUZ0Nl927D + Pd8QzEqDs+NXBz/20yfyk31qUzMIHeyMlMXXBHIRzR9iCEZ2hcTUtKhZPEeu0fvXXIhppIw2L7pv + gF1PY6vPa2eWoeRLu19GPDHTI8Guzyr8OaGGz/r2yfvTl6SgAUGPtUJznLl4CO3feiM7XkTrWP8M + kBrLjZRL/HTWNYvaP76AdaZrI/5zexdgcvBEFPHXN9SRrC8wxPSBb2D+OX/5H/q2cZyRJN0HqtCV + gS7VbPwXXz/rDhjw+SSrD66Smi+1K9XQMpDmS2ho9ueRdf/GZ4qPozaGPOrBUIU5MRR6a+bETVTQ + 87qPH9abdXb9WMDwuETE4/Yd0kheZdCU9zMphzTV6EE1GbDjmc8cqtOwNdHdhGl7UkgCDMeh6icw + 4SDfmz99k8/lL8jQJWUTn41Irf3xL/DudM5fPZU6U6X5LDxk+E2Mu4Mp8eut+NPTc5fXSrSKA7Ih + F1UbCT+fMvrn99YfP8DnKbyBzRL0DsA39onlM7a2zLPl/uV34gwbpvN160RYS98Ra/VrjrbiIXTw + 5Gt3IrOjqgnPKjWlnyiN2AxY3FDfPvAQr8V3Ro9Jafg0f86gP9a9fzj2VS489jcGA2eFxJsExZn/ + /PTx9gyxr3dXOmyRXKIish/Yd/S7M/F8X0HmIAY4sZQgWstPE0iwTK5E+XYFpS9y5wEt+bu/Nv2V + rj5vi/AWqB9/65bb/sZA1QGO5w3ilPzPIbv/hLzFHcm515/aHv8p7LqRYnv6XvP9eZngqhQKdq1p + yHd/uYDNh/exPH7qaGXIyMBpbvYz7PDJ+ZcflBh+Scx/k5xGLvDhor3uWGma1vnHF1yHDf/8Nzo1 + ApRg9qV37F8/MJo68ZsA4fW94FwO0uiZKK8EKocIEs0OiTbdG1qgBL8WjKXXORKGX+vDwKGQnB9m + Gm0981tAqq0q9t7HaK/Av2K4+yNYLh41fa9dICLmIAUzs3hexLcz20N/yjwfHOyvs32a/czfq0B9 + stczlkZORyhsp5TY2uub9/R50qFVCResjtcXXbCvS2ispPsfP2sGMR1nOLAW8xffufBqigpMufH2 + +f7UDlu3uB0Et2nCZWU/m8WyrwaMGlhh78FGEf3KoPyrf+C9HuUs8kWw/+GJ7+U9nY81K8HpdSh9 + 4aEYA78+OBNE1cEhul5Ye31rLIA/CTF2vvU7oonyS0D7LgWitbholsKyR3jftN/MrT9Rq24jGEGQ + uimJ4wk4q1dE7D8/Wvl2EGza+o1hH27SDIurH/Xqge+gPk2ZT2+Mo5GUByJIP0ZCVDZ7NXv9bJFu + P4mdmUqKwcRyWffnZ/iHS0qjMRa9Ftz1uzwv0xto4+8otH/1QHK+S4eGfD5uDJ7itmHNDrG2/NVz + Mr/UfU4qJ4c+44yFchz3RB981+HEUxvAm3QDeMdbZ8nO24JY3jcJ7u53QHb9DL8xynBire9mYd9g + hG8DI/9YP1jnz0+G8etj7fUvJRfOp6iFjGVXPpUWbxDs+BECKem//mtKNmeDzTeG96+TE9vpTGd2 + 9LsIdj/evxTFI9+K4MSiXe8Q7cYMGg3vDxVGQgaJP6SiM//pIesOU6LFs9zQXQ8hlRR096t7ugnP + pQLf+JDNtJA2Z6p7x4RSg0L/YEVRsy7MoiJLCm7Yyzpp+De/fN+98J9/SIyHNMLwXsQYp52rCf8B + AAD//6RdybayMBJ+IBYySZIlM8gUBFTcASICKjIFyNP34f697F0v7zleFEjVN1RS9Vfv2+933tjs + Nez5u4Vfv2z++SML/9U6wIWvBzZPSpjzSYucozQ1VXC2gZLTR6yKyO0qBtvYj93t6l1ltPvNwdk/ + Si7ReCaB+gkeSLFeEzpqEhHBJQBb0AnPSlvGikKo4WXDXvd6gkk+hj2k24cjO7/P5+umZpAzfxgr + a1JpXL5xDvzzo+zPe4g34fLtgAECQDRQqXRlToUJ3o1R/flpzT88tnB82acgMvnP8TNbeqZAwv5b + 9dzZxsMGa02EAWfVg9tZCG/AL8AtoPg4xJsrJhU6k8jCns8+NKJxigiDx+vyp1/y+cK0gYTegvcv + /6wnn+mkvGNC/FcP3g5yzMJ4qufg8LkfwT9/OPZ/PPakKB+qw/PXgt0/xkk6nLRJB0uNBgxzck4v + 7kBbJxT/1WvCGny0v3oGUIb0js0/vNr1Oyoz3iE+W1zjnS/1aK+fEe1cfQG780FwzRmPuHGzDMuK + HFH6q+/4jCIPm//k0v9nR4H0v3cUVJE9EKerfs1mLnKF7s7tjn3v1gyUfw4SUChHib80B23xyRKh + enX9YDaldXf0hAC54XgkkSx/wM+sLx3QP6NNkuPpTIX0ui1QVO0R7zKD8g9LGdEwGzVWohzni5x5 + LOQMCufjJajdcfH9EV4seAhE+PEbeomnDFxeioXvyGNden6r294l8jizUvMaBvmRJdDueoyt8Kbl + lFzmDQ7CG2ElLb9g45tTBqfuqhFj/rbxqic/B03bpOPorgc525jHveJT/ILj89nQ6X5y967U44KN + 1SRgS58ND1e7DeaDf/m622OZZnjlJhEHceCCdTF9HgLJMYhseFXOK3Y/QscrMmzWmwuEeDtEEA6s + QsLj+xzP/CsMkGWEN5I7/rHZFLue0fQcA1yiK9DobasjdNvnaN3P/cVdp4skI15gAXk6qMrpiXOZ + IweDM7EIPcdc/dRK5KkZR7D1hYCEh5MJLnYeBcvt8AbsewQmes9ZTeyD9xgWZ+wlmDBFi430NGkr + 359CuD+P4CdN3bCJRjfCo1cU+Ha/ZC7PMJcMyXOU7++L5NvhqLAoyqYfdq+vmG7n202CbqRsREFd + pc2kfLJg7O4xKbJjCDa4VCIqKL4Tk/g92J/PjLYxvWOn5QSwHCYtRKVv8sQouzTeHttVhKFwW2di + 3Wm8uidQQwNwHr7d9NRl5cc3gIophsQio9dsJEMlGOIIB+ugaYC76nqJ6NKJ8xEy/UBFOVOh/Wwt + ki76D6yH33uBRwJagg+2RYXxtbTo9+ExyWnou8RNZBGZiTrjk/l7g62+wwWasW2T65Cz+fL+hfv7 + la1AVB3dXVbTZhCXHK+4gNov5g3/FaLEHwIS1DafT+6JVujQFClxuqjSpnKLVMQ/f3d8Vi/lwE65 + PMNHLvjEK9t64NOTJcGYsV7EwSIL9u+bkUq3hmj3ZnHnKdgc2BVVSW5XFOfTg4MZfEocIac5+jVT + PtQhpOnjOo96wtLJaVYeFSKbkqvpCPHiiZ8AFL9omLuJWmCm1kdEnLFCfLXar7Zpc3tFls7qpOAv + T433VNqhhyJWJGA/E+3LXwWR0q8DOSGDxFMaXD/oo8YMsd4ColvkiQvwb6/jzPWcD4SW9gwcph/G + 9/3zNH/UFZpkuyZusV2AoDJyhiCXFKT4JpiyqiSJcHD6DD8rpXPp5+qE8PiGAo7vPUuJkxs9+hbf + OZAubNesf+u/fqooOIBWAuuZVDa6kNkP/vLJUj7jD4IPW8J4Y/2BN0SmAG3bGMSsj0uzBonfwyz5 + Odh+TIK2fF1RlZSQZzDu9SreGOaRQn6+VsQe76krfKVsBhhEbDDf059G3/tJ92g7ukS9jtYgcMKq + IlGJTKym6DesgHnX0Oeu2SzCZ0c3bG0B+rvevh7c9d06MhTfX3Y+5tOUL8dXwsBU33bG6ysDndyk + RxRzL3xfxDtYhTN0YOk3p3lF/G/gjstRhc9Da2NFvZTNGh0MHgmh+sA23x8pscX5Cippe+J0n5C7 + okw2UbTtcycfPyVfl0z8AOWoPokWStYg/PJ9Dt4c/4jKjTXoiuvWIyadE2z3yprTlS9YqXULhJU1 + d4alUjYJ+lpX4ni0x3jbmmsmnTZGJn6r5PFyLl4jYF/SawZX8sinkB9F6NmFhV3lMebb2IklEr3X + iJWXFea/S3H/wBcHeXLe8wm79efs3/sUp70i5+R+L/3F8/MvP/yt/5MS6uQ+65VLnYJn4WIPJVZZ + N8jn/gQ+cCGVSXTqlxp939sOXaNwIf7FWsBy65UAIb41iHNh7YarK7aTbKqEuKAozdlnJqvQOO0V + haUP4+USfEaQCy3BJe4ZuoTvZwcn5ZHj7GOrlKqDycONk9g5s/CY0yKTbZjerQVj0Er0h/I1Qmee + DUhYZYbLPpipkF68UBD78fSHOfKWDfm3Zj/TlBkNP1O1hRYP45lLbteBHii14T39+MTlsj7/h9cq + u3dpX0+bS14jDZBprBJWZcsdBMlpbXQ2Pu8ZZoMV8zTrChT4MMB39qK6AjrHEvhYZY9Psy67tPxN + LNByqBM5GzPAhdSp4O/lhwTXcwE4Xfm2QFAuV6ySXAbcLxo7GMbiD+dhuGlbLPoQFmEvYBt+/IE9 + v7gIpR/pjBUMNUpvbF4crywX4di3V22tH1GI7mnrEzW2pWaRCiVF0ssNiMV1Vbz+QlBCVT34wUJr + EZATzzkQ6dIJR9d3TYWfedVR7Aki1h9sF8/cICTw1EZHckpUAPb1n8DfSZnxWXJvQHgNjgrnNpdJ + aMRvdzzpoo5CaDrYATF2hbCbHHgb24o8htGj/L4FHzKyXpH766e4rG2+IvhGEJP8+oqBwBdKjdSz + p5Bn8QDadCnOH5DcTj/ieiVoxgdkIzRfzh+sDOcp32hWlVBOFgWXcqIMwrHzePi+XHN8778C2Moh + s9Hf9S+riekmnFwdPopzFWzPS6gtknXtIb1fIHY4dcrpiWYbTOuTGEgfbA30/HYWGKvye//9Ixgq + w85QoaCFhAcy57MUXzzE1D+VXIu4aujkGyzi543Omxws8fyxbxmgX+eBteZjx2sRnFp0NpyI2C4+ + DMSgZAGuFZQBkzNHbdvEkwOLXBGwJ2TVQGNSSBBw95EEYtrG3XU7OPC+7V2mp5zRtuXyE2E2f4V5 + 0mCb/xbTYKF7fj9nrnzFDfmVgwf9hyNiVQ6WfHx93ASq+VvBSrupLiepFoTnaTPn4zHb2w/uO7xg + HPgBKzXKv/8H0nXx8UOXQLx+XCjCgT/rxDndTw1f3+EGbVnOSdxMk7s1Bz5Dg9NlxJKf0F2d2u4g + XXoR423qKNHrVESvUZzJOfINIAjGu/27n1nShkO+yfVPlrpgQth1q3ZYr2ocwjQYCfajl9zM2nCC + cFURxqbVWu4yj7cWHpl2wNkF7F34mPcHEGZesHsYRnfZ+ahUFn0TSGkmAlpobfB3/0SHwM45/lLW + EN+dNwnaCmn0Z+MIglNCSFAr52Z+cWN0hGOUEOeDvwP5mVdTCmH9IE68hhrVWtUE/CT6JM0vYSxk + NW/C33LtSYD7Eqzher5K22fNZh683u4GH+QqacGpIRbzEbTF6dcZ2XIxY/0xaQ2pfyEPefMbkRN7 + qTVabeYGGrjy5Bq9r/n2rsYKPN63jvi6lMf0xGkQxX1gzoK5ILC9q7aCx7d+nvn983TbpEJyLpAj + cnkbm62SDizEa2LNw+fbNvP74Thwx7NgixUOzOf+XoLfsiDihQjl88NI673roYnLTndc/va6qNBe + xxuOANKH7SYsDMpRrxA5zI8u+SJkQsZ5VljrHlKz/K3XMJZ+RH1NV7DNLF3grGRu8DqiIKdpdrGl + PZ8Hx0uzxEt6hjrIZ0YiuMBrs33HLw8TpmyJ/DvftOX9S0dw07MDPgknMKx3hw2gEeN0frRKnq+z + 5BQAA2IRWVM1l78b7+q/+eMweBpvK8/iHz84FNdrTOAQeXA9B9qMpPNJm8ndC+HzyiTEHdcXpTR7 + J8ARmxtRpZXJ6Z4fQRF6LQ42S43n8lcx0ADZEduP59TQpEsdqN+cHFvh26MreaEE8mK8N/vTfvHi + EzGCf/z1aX0hXTzO5eGuNzDm4qO7HIy0hPpntgm2KtGln+Suw6YhJJjU3z1frptgg0fGfOdjDq6A + nDiNAQ/qnALr63Rgvap5BAUZaMGCQk1bSIcC2LrHkDw5j80ns7704tuLYuJmGdYWEeTRv/g/iIsS + D4ajLdB6/m44vjehy3o8p0LJPowB4LI+nleUjEjp6UD2+8/JgQJHYuNhwvgklnTn7xB0WnH7w2ON + +nznIHPSOWwESelS516UsNKAQFQvf9Ptk6cMqI2qCQSOvLX5uJ+h2PnkzLCfCSyGUo+wqbkT0UdO + GOZnbKgQO8eVaAxY6ch4Dw9cbuY9SPd8OqK2T6D4dl/zPsyo2dziyADhVwnY5G6dS0lXXSEq04Zk + VzXStshbFmmi7o3gT3Si86+WR8gLPAg2x2kAHVBnAi5Rl7/nk3P7nlo4xHP9pwfpdmuF7A+/sPWw + loaihIng27K+gShZqjsaWi7BHQ/J3/udD0LaQUOqY+zExYu23CYlcF/vWH8A391u7SGFvua52PVF + N1/XEZcSfDgSwYp9bsbVkpx/eGyu73NDP8nZREY8DMScD0q+BQEP4a5/SeZHLRj//ID8UlbYaNtR + I3t+Q8FXvhJ7GjWN5VbFBpG8QWyrZ5vSK+/14E/PFgr3i7d9faNI+dUBivgA8J7iFPBZHVUcN0+t + +YfXQlguwTSUWs5adbrAvlY/2HX8+0DDvrwCqzt7s/j99cMKgOagkxLpwV9+Woo4DUEh8ikO7ulJ + Y4N7coV7PsFu5hnDKMRVAQdDyUnC92a81k+3gO+jz+9TUpJ4KrC0SEadbNjQjHe+NE7MoswJT0RJ + JImu0cHnYcFaB+I/nZ82+WO2gMHQcuLdgoNLv1AToSz6J5zcVkz3ptbqXzz/6Yd4/LqLjGz5qOAT + ZJxmuhtVjzrOiYlhDJdhUw05QQeHb4htJ0q8SqrFwNPlu+HTIKmARfjQQsPmbzM/H17x6mJs/ul7 + 7IanKZ/lj5bB2/ipApB572Yjdz1Cs4fLf3psu4L8KgU4tmYYlGe62cqtAFvgvgO2VNf9fekdRF+R + IfiAx2Z5HO8ikmw0Yh0rakMl73KFc1ZE5KnY52ETrLsIgC0Wu/5LKDvl9girU81j90oe8fZVoh5u + WhKRstt3UN1IscBTGx7ndeeb3aw4GZiyV43txQ0awVVwAhVr44mXy1wze6iTgXv+PufNfEba7yCf + lj/8JoFH5IFPi1MBInmBWKc+o330ZFalonfPsxCYSsxBoVug3XUYnwV6doU0ezhwW2KOyAUvarN0 + HlVp05Y3Vnf8WUjHeXAdnAW7O1/+x+dks/Hx7s809HKGHnTProfd7uDm9B6nKRS9/cxtSuKBLkGv + wtPlveGdX+XLJ4ILWDmrnNnjaQU/q6Qh+sNbTf5M8aJV8AMUa+HJY2me2vZ+qDb6y4+s++CaHX9r + FBp+HXzig6lxaXNKILkeauIUhjP0x6FO4J8foryCi7vpZ61Hu57CGrwoQLB+di/dcW3gh2kqTb/7 + X9KJ+R2x9ct7upZbJKMBJldidlyb06D48XD/fX94O2y9efbQKdtKgg/XNZ5mQDvYnwQdO+V2yMd3 + MkE4dcsVJ+41pHv+D4FzqWui3aJZW7CCA3ivUUCuO1+h9HJfpO7dfnD8KIZ8yYsggMGhc7CXxBVd + 0+Z0hb/91IT2BHyzXK0Xg/BrybA5SU9KG+k7osKyC5wR8z7seiRDiXe94NPONzc3tzfYFaY7V21c + 5fzp/ZXA7l/gp8g4lIhMtaHXqNo7H5YbusSo/ecfuTfQDBMWSx2Y/DvEmDNIs9V3doHPw8cmyvRj + NXIQLjUcDX7Fchl+6eb3cwFjF0UzS33G/Xf9FH8vQc00LJ1NWotILZQER8zFzVmfRj166aFETruf + 90ueFCImU3wsV4TG//zU30mbsSGU15iVH8SDD/opsB28G42ac+FB/ndiib5Uv5gA67RA+H0BEu0n + orZLyppQyxl93rzcoPxrUyQ0t0KMFU/be7PzlY140z7M1f59W0gmFVxH/CBBfAkbSi6fDXDQO2Os + 4GtM+NfFRGyDM6z9BCee+dBiQdOVNlHN5+ZujHJgYcKo55lbTUI3JllTtNjYDQSuk3O6lXiGe/7E + 3nH7xuTp5AwI8Nki+vl+ynl1eVRw158zijojpxI+zH/8F+ut4eS9/IUfODO3ieCNnYa1OA8MbOH4 + IcY8/1zaK04FHca5zodu5XJSX28R6N6fDzGW9TXMSXEtwZeKPUlzWdVm1VyrP/2P1UGgdLkNUgb/ + 1o95yKqYRqc4gtpb3LAOWW0YvgjpsAeNjK2se7tb/slbEHw+GjGf8iUWxpfYgueiFsRk5LChkjM6 + //wTOXvz7u6PVn/+DwlushpvRWAWUJe+zSyKIAdrLCr6n388b9bxRXnhpOkwVtqIPEGbgZENXtLR + tS0du8r1OyzvZGIgvd8gUd+fyCUcyFOQTdMZX9LwDP79feO8C9G2uchX9Mw7AMsnxSfp0wBatlkI + dz0e/CDTNz9TsDPwp59Lpn7lM9wiE3YFs2IDdfEwljWCkK0T9k9v5lPhhRmMW4edee3IxWttfys4 + N3Ca88x7D4MtfhJoffnjPz+ZqodjKxHrzgW5W+kDbdd1g1XkDH9+VbxcrR/8h7fuMTaGBaiu/k+/ + csbD01anObJQOq7qvO1+wtTNhQP29xMcFMWjrNWeIPhbD7rhxYCFw9eEu74kEcllumyj2v75wSTZ + /aVVezx16au9vsT+LjjmvnZWQ3LpfsTe/av19mlm+J5ZDislOTX0waQt2P0GHNzPeszufiW4VC1L + 1D2eefvqBPBjqTciQ72gS3qzepBcyTWgQV2B6asvDtI+NyPg620AO4zvfuVGMY6BoO16ZOdTRUVc + XxziMbgXCbjaywVHkbS6u1/P/+Pjs8Sw+WYrzxJcKudF3L0+sTg/u0Z/6wF3/dIQxrMTuPu/2BbZ + m7bXG3QotiTAJiDBMKlc68Hs0iwzIO88pltpzXBvc0IeupTn2yTh5C8ed39RBUPj/6770I92niLi + uNv59hSBQgVKTAGJ2rjjN5Ts1x0HhK/ifSpiBnZ9gG2ZedBNJN4IVdX8Eu841MPKWEEF9/oTzvDh + 3mx/8e14qkV81hq1NW2lCoiFcZ/F8Z5qBMWGCR8tuGDlVZTDIj++HmLXMiB/eLCdxF/xD28VO725 + c/BaKig82xM5GY/DsJCvp0oiTS9EDZOXu9Wp9oHRj9Owe5ef8XYQwh4V/emMNbEPtR3fAyi9TsE/ + /bn6/a+FJ8+47X75BDZy9yJob/vUBN1i6F4PmyGO0ZF4IZ8265TIPNz9fPy8Cz2gyQ1v/+oF9p0F + dLHtqIRnng92vZkPW/6yVaAWQCKny8UEBBhhizZODnD2wd9m5XslhMLWHogF5a+2XZFeoR825J2f + RO52ehMR/Pkf5bM23e0xsxXAzqMkfsTPYFl8Y4ahgev5cA7UfMGHCzy+Ccnng4L5/PdgNQ9cJbGd + 93gCm6eoJTBAeiRWcbS0+Xx7SqDmFw87QveIl6d96MH2iA7EFa1DTIUsvUols227fliHKXkCCDWf + hNjf+TuN18CU9vpAwO/5dWPg6IFbsB5m/lquw5I0578eATdsu/g5rPeTJqOv6s0zWsk7ps3ZnYFC + 8wqrsvyhO/9PADgzbfDrv7e/fBbBY6GeMO76sJk8+qyhMZ6fAVd7Ri7MaxnBX23w8wt1ssb9+Ud/ + 8Xvb9DjeundjAj5hzfk4R79hbmEio71eSdRY4SiZyduEHDIFopSdTtds4Vj4vMIEWx695oQTjjI8 + ZVcX68tdb3gdZyWs7zkTMH/1x7/n8aefewuP8dr164bGLo/nRk81MCxBrcKugCtWvbpvlj+92Z+y + 9Y/PNGsVyzb6qyca+HvSFvFY66hjZ9mXTrMAtl1fgt2fw26xcWA5F78RijS7EGfrzX2KSSFDFp5f + OCdvEFNzTjyU5KJKystna8Y/vQi4fJwl3620CfuyiGIaBVh7BC+6voTwA3ljHvEf3tH6l7IAw1NG + /FfuukvGxleoKn0yb2Y6xcK2beWff0Sc0zfWOCkdRMj/XHam+tNutlm82vCdiDa+q0vf9GO3lFAh + tU4Cgt7ab+A0EWXN9fyPj+9+Xw+TXFIDSiR1WNVj8IHX4SoQ1fzwdMKBpP+r92o+5middfoCdn8N + a+yhzOc/v3vn08RfiRELV6/qYJs5OtbPkT4ImdCxQLoFVRDLnynf8rbOYH6R/YC+GaxtA0Ee2P3s + gPH4d/znpyHeGEcSsRHV5l2vQcW6Nlgp+TmfPv5Hh6t2r//We76KbJyhrqjL3S+X4/WYPUwoUrbD + Rg60XECxr//9TVSSV6CK5c0DUhV2e/1JdueQTPL/s6MA/O8dBXZM3JlWeufO3v3DIp9pjlihzSPf + 4NwwwPlxAzb5pIuXe3RyIHf6RvOXf121zfida2RCViDZayjiwZC+M7yOg0hsX2G1FdXHDr7pkwvQ + d/3RtbpoNsoORzYQlcMJrGvtiBJ92zo2Bodxu7P7C0GmUQ/7x8TS+MZlbVjdb2+sH47QpR4xCri8 + WJaYhEEuzb93G14MywxoxSsuT3Jqouc6PYPNqHWXqlYeAnh0G3JSMqYZ3eHwgYM1t8Fy2vcsfXJj + hFPF/DDW2You/becoZ3kfXAfdsfDbqoM5dOqYeU4y4DVxshEp6sOcW79/P2MUzPD6SHowRKsXS40 + rTeCho0gxqf1NSzHQiyh3q1ssM3HNt6EMOSRLfUbMQtH0tYYPHl4GScP41g/UwqGwIS09AqSFj1p + 1uKSpsi4hAa54OmQb/t4UZhPVJuX35ejC5k1Hkkf+4stN0y02krSAEbJMcM46VqXXSw7Qx7z9YlC + 1I/bbYPXQ9KczaAf3ohSKa5MRMqtIY4Q3POl/15HmI+ZEdCD8XAFJ3ybiIqMhS0QE5eW9lBBLe4s + nF5PxTAKwqMHY+FuxPVTC1BRaip0Vl8/cjepTVeTvBJkdtcLwWX9Hrjgc1RRtl2lgJLzESxRg0N4 + 5MWMXC9SR9dXGydQaqYa44bj6KpuVQ3JS7RxZt9fLi+Ztwg6smPPbHXm6Lx09ysMkPWdV2ZQBu6c + GTWaH8aZYF21AG/fVAce3yeWOP7r1CzSKHfwY4gSuWbCqWHL23OB/etRkOIYvdxN/DIs+D3GEYfB + aud8VWoVUs/hldzcHIDlfPb3PWGaNguFIsZLll0ZtNVbjA3ysRoeIWhD7a0YRC3ZQ06CpAuhCXkB + O93t5pK0D6/wbf313OCTgVM/aggdmf2S3BQSwPFzLEEl8AwSvs+ffK3sVkJ/1wt8ScuFpqz2PYKA + ElcYbTo200WH8e3QB4UdGTHrB1UB16Y2iWcNMV1bHKmona8WOa3HRluPXb3A2+B/sN67t3x9tF2L + uCef4af6Q/Ei+l2EOE++kUKwHo3QlB2LZlY9Bk12CbQZFC8W8W7YEuNsnugaq1GE9nglXmLaDa+M + 4Qzh+1YRlfKGy4J1rCHLrRjfzDiOaV6Vy9/6w4GN6oGNR/qB5dD0BDfPvQvtYw7AVF+++HzvQzpz + bJ2gNM2u+NluV0pBlzhIeEfFLBbcLV5enrqhv+flMVgBQjutMprKpsHe9jFztoVTBJ+6eCOP2PUH + 3ruyEuCPfET0q9I24/vy4uGU3w/YVV/veDmstxCKJTrgkim5Zvq9AhGOjnkh9nB1XPbkvCMYKStP + tH6ph625dAV8ropMVPmt5bxrtTNytSCdBaT+3MW8hYu0scIyHze87e2svA/k2gQRmz+8h20z1wXx + TmsQCwqvfCsNS4WHL3OeD00fuNsqxSUKGN4P1qaN8j1eIuhf/WTeKrV2hVtuOyA6/HTs/VQ23sLr + t0d7/sARy/hgrelQwwQVB5w8ExYsQVPUkBVFiuVyiXNyNlQeLi/ngoPjiwXrZ2kT5P1Sj1ycjGhU + nI0I6Z1xIcGN1QEXcxQe32Y/Ye3w+gxb7y0OzK9CgU9erdJ1OJAQ/kxqEPUZdnQ7FEkLQkUqZ5Yr + m3j95YMMCTe72Mk/G1i+E+ZhM2v0L/+C5XWee/i1Ph65rNUv5h2uryFtLRR0j7NM2WHVVChLqUqs + V6Y2vPyQazTSfUoCd7oME/C+JlTiu4XLOM1zKqJHCfXzaSYm1NR4VbeuQu85ovPBPnTN4MZPFba0 + Oc1s5nkxP8teB+LfGOIbDEOXZU+TCS/abGN7GI/D3L2OJZSexxLHRHS1lY2mAnKnd4RLizzpdMo6 + FSEvtma+59lhLVL1CpdnPuOgff+0UX0oEmKEARF5vgdAMPXEhF87GohTPy75drguM0hVbsL+DZmN + 8MFaBsIe1ESTiN+s3NMdYVc1iNgAfnK6+rKH3gYMSHxJp3yyA2VDZhCfsK++zzlP7oqNJrvTsDUW + I11l6yeioycEWO+/MmBP/i2AjXmfMJ6kZz4fruIM1WhIAvQYq0EwGNGGqXE4z2iPHwGFlQT1JI7w + STwlOXfQdRm8DSbAz9+909Y0GEIIv7qJzY8OhlX9OBE8xYMwL6e01NZLKY+gmqUAP3WfND2v2B18 + aFAMelHeGjqZuQ7fjzbZ8eRLyewyDFwfEcKaJHH5JFhhifLbC+BHWpYaZzaajpL1rGE7r03aPbxQ + RvxHxiQT5W2YeDTqoJzCEMc7nnHD4Ruh32MeyWPi45z64nFBrLc5RK38E2Bz3s8gKU2dnA9eSicX + SAkQvUAjhlz5g/B9GRV8n7b/4gv3ReoHxYf3Qm4gJhr9mdUVpaN3n7fw/mnW+cg7cHnZF5JPcpAv + zp0rIctRjLUeOPmSQHcD9PnOcBHV1/y3sb6MnhkVyInPpHhRwqGDXiw0AX1aX238tJuKvq94wQq7 + yq4QOZ8Z/uU7W/EXsBZnzEgxqmOSKmna/MU/KqaJEBetW067aVgg474Sciu6U8P+sDiiMnPG+VmL + nLaty9eWVvao44BtWW3Z8QR9i72r4WS07nZL1hFWsxjg4B49NFrf5hKmywixrbC1uynvMgF946nk + gTgmniLqqHAp1YV4Fg8ayjxXHTngc8Z6VgNKrUqt4M4PZqjATPuLX1BtY4SfR3/It/v4HIHiuwxW + E+kB5kDEnmR9RI1kj8sIftIcdMfSTH7BsuPldh634Kieoyv29+9f9vuDnCg8g+UoqA0fu1kPxVC2 + yFmPwPBmMajRkxYGcUX2POz5RUZfGznYBKYSEzp0LWIkQyVZp3wHWu9ntE/4lBArPMwuOYtjBUfe + Y7DJ9zewWKPHAtmr6EzKaYp/mHnK8Jya0Uw1btHmK+DsPz6M/dv1km93GplwX684kVbakHT7OLBa + zv7MrfoTrI184uHaeu+AHzMT8OdejqDaSQXBjONpAii/PPQPH3k+aPk1py1vsvCdu3jnTxe6hdli + AoEfMuKaAgsoKAkLn7p0I4kRyg3nuc4HUtcUiW7kXb6E8C5DT1aqGdm9BPr5JDLga7X7rIhWjtk/ + vNUAHHHQgbTZ+XUEDl5tEfvcvXOid+8PsPHRIpf+wOfTuRBKwImuTLSL/x7m/awxos9vNsc7/6Py + MC5/+XHGCR3A5p7PKoK+LBGjZ+dhwVs7otluSSBA4RUTe/N6iNX+jDH9Hd11bSELuMf9QqyKObpL + avQSrJbDiAPGNl0uDZoQzEW2YZk5uO7ySn/qH56Q0/nZNKM02j3k+XnG9tdVYzYFfA3Xl6UQ5R17 + 8fz4zB9w+MJz0AvBPV7Uq1WD/Xlj/ZLF8SBdIxm8clkgO9+Il4vdm2AgSU9UafrujR4XCGtLOGBT + ruOBM7e9It67JNgMMxs25X29SjjRMAmah5xzX3WuQKHLHjZeRkK5aAl1aGNgBdzzKoGpHJkUEsHY + uzLf5mbOk7GAIaOYxPiol2FcTlsCXVAjgqNj725s5+lSNAgK9qfBHbZV+NXQ+Jk2dr4Zr22lgWUA + he2NzauxNDSwVRm1xfsV9FNy23cQDBL8UvlKrh8dNNN7sEvofYdPAPdeAvRb5u0xWdoWe8dIcVki + 9TrknY9BvEewuvQoWwWs2WtIVOfZgu28lToYy1bA7vec5B0m0vb3vgL0F69f1gmgIT3M4MaPD7Bx + 65KB8+8ZEt/uMzqj9SHBeko78ofHBGeeDVBzDPC5urqD8DCOH7iwTBp8r43srkVwlZEcF/m//x99 + nbX/9BpWuEiI11+nRDC8qCpJpLzVpsfjEyD5CxE2QlC79JlNPbT2MwMnQNth7dLVBBdttLHMpHc6 + 3XOlgiG6frH6zJdh/eWNCreSwTjQtApsR+aUQvPzJsTXPLWZ7tWUARdUaD4cGwmMVKgl6MVcQ8xM + +DXU8akNteT6wVZ4CFz+tIkf2HGZRbz0HMabOK8e5ITyRYxcdvO96waEn6p/Y9efb/lGInOBjxFB + 7Ka4z/uAu4Rwc/lhFkzbbfr++CwBbAcFy/F80oThu/XwsbIWdgDnNDs+z4hxm4Tg+zIO058eq23R + xLccH9wFMPuUuYkhQW3UrbuWfD0iJujFgJXZmzs9j0Uv9dWGZsZ+Hd3JJL8rtN4CJMHRfccrOCEH + nsfdcbvAGcz14cFCqzsrJOofGd0+sOxgzx0Y7NitTX9ct6jMwIcR8QUAG7qs5xkudRNjLWZzbeuy + gwnZczTh0+1uaMKJ5T9gfY4qsYueDLSjuAM1m4Q4bJ9TvHx51oEftuzwyewUl/fuH/7Pb5jfq34A + 22sxejDwcA22qrnnK2ae6j/96Yql6i6G3xaAOKGCL5Xka9s4hDXy+tXBJieWdI1+lxEqn2r4uz86 + V/m9hdq3cLAi4dSdbAunoLMqET85VRs42TcW9Kv4M8Gc2jR06Xc7cWlbkk2nRZviQxUhXrRGYjyv + GaAf7KZgxz98Hd/BQFXHCP7wI2B7FOYDZKUUOL+Th3391DQLZRcGSW4GZ54TGTr+8DIiV6ZxsGgl + jEdplj6QliLAKiOSnEo5EsFceTwpf7daW1ucqfA29UPAOrM4bJPUjfBLZ444deQ320uwVbTr5fnw + I0KzqStspUPiBNibfu9mPei6Cu3vK8DGe/xok4jnEG7Pfg7qPT/OObZbFP7qFgdMeRmIiC4lLNJq + Jg/hPbnL2+UqWGeHJkBBMNJt1+OQ8FmP9cwb481RbR7seohEb8cZtj98YUUvIU7qt/H2x2dfW89g + nDK0WZ69mILNniwStk8/X1AxeDC7vXHAZZzWLJ9WkuEzHTO8+0XDdnONVKxy08XK4gT0L3+CPZ5n + ITwEGlu+PFM6HG8Yy7G171iV7RLyT/NLdGKL2qj464yiwamxBcorXXd+B0Xn+dh/vxdv+nMKoB5J + CfYaO2oWQbJaGGpxgU/IvLhrIyu8VM/0gwOLHMBy47MOnC8/H/vqcnS3v3g+gTOaBX58UMppQQdv + d/tE0hc60BF/ghImy2ffAm1CbXNUmUUPjRHnhTkMGo1vOgPxtUiIoURmw/3F+yv9bn943SydzSfw + 3G1rwJzKI9hudlyi0086BKDT/GH9qp8a3jVHwffrd3R/6zOEf/4MDppHFRNSnypYsUZINO5ruGyQ + 6FdYz+sHP/STNvDCBY5wFnhIHEFbm+2+VDb645d//GuRN9eD5udLsLHjX9cdZx0+MysltqfH8Vw1 + JJN8HI/EQ1SMtx0fpGxibzhk2CZfo8+wgPvy67DP3syYdstjhppcN0STWoNurjXOsLixmFjKK8s3 + +Wra+8bE+t96HP/wjw8fn2DNihNYFlVgoKt5KTYz4TRw25qbIFljDfvixNHv/djV0JJ7sHdd5+Ot + bZdu78EYEGttL/kiSLgF54SZZ/QQ7HyKwY2XenNaCf4F1c7AfhVQvMcTKwdPpMso5yH0u/5OtDD3 + Gmpapgrf8yEKFrYU8+5uFyx0k/cVP+erDbjY8AIY3own8Y7KIR/5d1z982d2vUK57wFWIEplBmsG + OVOh4gv9jw/jkp6bZn2/CvvP/yPKM1DB/AxoAu+qIZFwzxdbpvZX8Oe3mJ78jadDWEeoy/oCe9ZF + j3e/SUbgnbJ/+NxQb4yrf3ou2f2Wbc/3wMfnEZv5Tx1W882paLW3HLtX/kmp+3Cv4H7rG6I9j5VL + ztzWIjUQwpmH9zPlqHYJ4Y6f2OloNaz784PM+1MF3FuY6GjNzAL0zrpgfccj9suqHkwOok5OQ3Oj + 045vMNXbeOaLT9OMo7zzMbX5ES27BC57+7EZVKEsY1xOfs7TOJWhDZVlbg7CVaNHGRfgz9/W3sxv + WB5nKsEf2yWktFHdfOf04cHa2GrsB5qhrUZ1dpCOzRCbrvaJV//W8ZA5Lw/sPpQmXi1mrWC4FB7O + rfLjLk9pnzqZpldsXWBAefvm2PCsOANxXgOMfyVfzzC/hy9yKl4+EKzKqeHBDz47/jBgAF1ig53P + 7H5TNMxjW9pwKeWFeOylirleOBeQ58eZXLwkBGtr33qQ36PX3OdrNoxcikLxZsrvv3gcev359v7l + m+uT7eNOZ5IAXvtPHkytdW8m7oV6eHyGMS5FAsCmjOkIDTkH8xrQOZ7FL88DGPIMUePt4i67foWS + zysBtKrR3e4000Gx2BxWdv62TMVplna/gfhMQZq1TZAImaATZ85LFkBoO3swTz/q7sf17p9fJIme + p2H5otyHsc4zCAYq+Njhxb3e4F5ZUOVb/9/4dZrfBvHhkeKg6Tpt8Q6hh/70GfcKi+EjzscA/vGZ + 4eEN2sLXv/aPzxH7zCRAiM4vEzZkuxO1+YjxtvuTAPh6QC7PrY3XLj2aYL/+fPyqcsPqK8dAFAdk + 5nf+PwjdL/vLdwGjfoWYOu7J++cfKuxaafTZ3iEw4tdzprs/wLN1FaBXrgr/+NOu53RY3HgcJOFj + a/75efYPxkQ5dGrOlg0jS+NDTImxNF3z5+/D3T8kOJjreOWpsAEflgX2ulEHXBGU8hHhdAgkVbuA + pekHGySjrpDznUubletEFbk3NSdBo/C0eqU/GbYb32PZUOdmnuicgN1PwDqRzu76WcYERMutDQRP + nWLyVw+CofOcBQM1YHn2S4qyA2CJRs53sDJMZ/7z580KUndTiNqD2R1jUvpSEy/9UxZhrmn3gB7G + IF4e+AT/9PzM57+6+c1HxpEeFBvEsQrZZUf0C2E+pgZ+BtZZ2/7e53MC+bw0E6utGhcV0LuGHXa+ + OIiXT+7P8M8fep4uqTtfjVeFqKvv8a10dMeXdD8he9v5cT9sd96TwdGzyXxUPWHY+ZEM0lEUiTvJ + c754hzSAX/aeELwYKmVtbnVQzyEG68tLHZa5BD3EPeSDtneFfH1qioz4KPAChp6bYRPrjIG734Dz + jvv8+WEm/LJ5QuR719PpnPk1cGNRwEl/fbrrtO+oIoJ1IupJpM3We6ID7pqtEF+cLpQILyKDo99M + xJQnkG/il2fhk3QKfvrwFAtIVzt4vRUC8W4JiZdxnwqLbw4lf/l4BqH2gWd0jsl1z5f0BQQGgnO7 + EqzlfL6sd7WCn8dLxoZcTQ3907tyy92Jba41pW/17cCvHQ7E32jiUvpUr9LuRwXLYnd0co92Bjvi + MAHrOqom9Jelhh/uZBH5GK7x0mlZAff4JR562IBuWLIhEvMFBxuXuRTUYvSXHwLwNb1GuBzOPbhp + 32redr9oG26CBM/jh8X7+wT/+N2e77F8ShltwZPNQzX6JTh6Gi+NXhNjgc97dpxZ7pANi1mwPTrI + iYvdNNs0klflBp+s3WIHojhnv/1F+qsH4IC9ezG7v19wue3IFXRmQ8MxiICVFAx2autNm493LlC4 + lB6Rd7+KVrR3wJeqV+JYMt/Qi+p2kH0dvJmJ/biZdv2P7gYusTf5hSbggjfh33ry9vw54+DO/pcf + GG2vbclXMVF0GPSZffeVO01fqMITvOpYz26stp23qw7vt26fKjdU8Yq6RwWPjX4jxcRO8awyEYui + 3x1i8yJ1gNKnk8Dol8PgoLMy4OE8QIjCtf+rR8XTwV8SFF07Gd/3+sYWu1kHjeD6INqbvugWu1GH + 2Po3BBIvnsD2W5UO0tZAxFj1A90+pqtCRqKvv3pp868+YIH0TTTn1YM5U+sEsvUwzHTXe1ybLxGK + OvKY0Y4/ghnYKXR/hjgfzU7R9h5r8j/+7CpS4o45jYuj7OOIqImE6NB7uof+/J5/+Sa9DT20LqfH + zLtB4K5Ubq5wro6XPX/aw87fR1hSdw04Am/uhs/uApNrkwa7ngITN/wgLCZCiHrou3jxg64AOgBp + sMSWAJbydtuAdXEfwSph0aXuk4sg91YKrOogonTXa1CNLzQ4ftWq+f3jJ6N3Jxmygfba63OQP7IR + Liw+b9YlknY/8yRjv04Pzaw5q4P2+iKR28QYaJ/2JVSA5geH0oTuOh8ZGxxadiJKtvco2esL8Og5 + hKgBl+T/+PX/saMA/u8dBcqnZbDBalOzQIev4encSkR5XH7xCkdgQlkIZVKyM2nWqP/0MCFdie2x + 5OnCcqcSuUlHScmerUFIpdsMt3VZyEU5ijEVDucQOuajwSdW2TNM9vrA6p4q2L+rR0CR0izocAvC + +eBYZs7FWlVL7MkesNENpraM3SrCQNsVpJMO7sLdqg1ZYlYS7bb6YOM4hoWqosRBngf+IBzdlwTN + 8zsLZvmMB+otMALEkz7ER34dj/6rlRAqNhe7BncFVFONAoS30SNWgaZmvd5cE5JLnQcH+jPptsZL + BJ2yqoj9Db147k7Qgc6NeMHL6lJ3HBdNgsYbFDPrpK7LcQRX0ENcgFOH2rmQpHcH3ieiBSh9r5RK + mSHB4gMwCeQMxcujZDbgXySPqGamUOH4Uz+IiaSSnAMTD0sd3heUiGFMklE7DlRoPRX6ZS1jdcZT + TJ9x+EHqazRIstwoGOH0WESski5YwbPOhV+Qquh1hB1Jh9ZsNnFXJHzwBcEx/cJmMQW2Rbl5fBJD + 17hmJNpcQQ3T++6AXHI+7VUGiTcxwudnl7hjpSsekufOxYF7KQZKl0cLpMQWiPfQ9YHwT6OEGMoB + iW0+GNj998CHcmnJ40hTV3iLToRW9SZgtRTeYPN6D8L2dL4SXQ9mbdXsWodcfbPmVegWjfZSMqPy + erWxTFQzZ28bkMHrfBywdgGDtvb4kkJrYk7Ee728QVgLqqKH7YjENiHvbiccprBRri25rMd9LvxP + aRHyj0eSNvdM+02RXUFQGD9yEyaYL3RRRdCrDxXrz1UB7GBGHXoFYU8i63EY9utlUKuFhmixlA/k + R50ZHY10wZatMHRLjTBEhzCDxAiHXpsXiU/Rjw98ovHjL6dDG6hQF1MGJ8q3A3y9O2wpkxok5M14 + 4JpjdUVSlY/EhfEnX5ituML7ucAzP7IW7U/XPpW6VEYkVrZXTI36HEGyBvf5dYBOzLv1xkCRfkKi + FlMH6NoaKrpJekzO1n9Iu5JuRXEo/INYyCQJS2aQKUwi7kQRBREFEiC/vg++Xvaul3VO1SteSL7p + hnu1Z0rul2cL94KokYC73+iaEq2WqXmeUdKbUcoz7QvL6HaAxJ7rRyMUx0mBnAQB0nKrGTB+p6wM + WOdNDMdUUg6ygQWNXZhsivfU8KxWO3InKyoxdVJ6AuBSVz6A6hR+VCEYhJOtKvKZfRYoTPWHx1v+ + lMCVbN9MlZGYzpMX+/AWMj46qteoXG6vzoBFfnRQbPeitwZuwcsOJ0Ecc8dXSkfrlcunk+aG80EO + AP/N/RHW5VIg72hEgzBLKZbfB2EKH1n79thbxa/ws6AzQedc0ZfanZ/yUdAuyA5enb5+QwkDfDgM + yBgOn5Soh9mRL8lrIlolmGDbz6s0j2KO1GjKKHc391CalF5Dzr6h5aykrgTZKx2I0pdqyRdLBiFB + qYx5NRbockSLJYOr/SEKe2aGDV8ieUnfdbjf8HE2528HOef2wYuLbuUcrawmy9fZQ8WoYkDnu1XB + OEJ8KJnNu+RprfDyAr63UDqigy68dlkig65hQuCnYTkbUb7CLyY8Kubjx6OnT59AjnZzuK7Ne6DX + Q1rJG76HkmxkA3t/PESZjdeamOb8HUjKLbxMy2+AOU96D+NeKEUovM4KQnfZ9Jb9k2Okfd6fUUmH + eFhvL72Ay+XCEu8xmt50DgwG6Lb3wqIvv4Zpfy5quNJ3hLxESlNsModQTod9g8JT/dkSNOkCGf1+ + JNY5Tqmg3xL82x8keW8OsMt2XygcHI+EO7+jM+qaSh71sSS3+NEOxGjbEWx4iExu1ob1+s5ZyF4u + GQmCwE15WewhHKVzi3wxBsN8TEgId3feICGORB0/30dWorpyRtUVpwMX74ccBnX+IGjSVLo+b2Ih + /fZXvN2AWY+1ycp10k7ovN5AOuvtRYNxeD6ioPkwgOi5g6Gnly7y8uXVEHHItR/+ESuhsFwEVF4g + F9VvEtfmtVyZYTf+/ozS3W0YeulhhvDw0HTiIPs5LAVTi/L6PL2Rw36acpHRpYCiczuQolN25Yza + QoOp7PlI5Y5muZ1PAwpe88RCcs/1+fXoRRmuEkbutn9Wk1FDmBiPHtk0ylLsxAMPsnA3EmtkbfDH + Zx+zKYkp1seBVQu1kpOxe4U852ge/waRAbXoekXXSnqnq/rqDdkwbB8d/HXy1pMSY5mDS0kC279Q + jN8lD8zyZqPqk/feHM91Kx9Ne4ebz9unbB6ls/zpqEHsA07pan1NBu7sxUa2wTaAclQZZZ/9NugY + x3e64acD9QDuUSWJ40AXR5jlRGZDkt8ca5v6cRvh4RtipNzqBxBY7Lrw4ngFyaX7xaPB5dXKn6kt + ULGLnFLYzWkLNeicSYmXR8Mdz/lTuuL4QoKmjj3h8uBaiNheJ0k+7sv5MPGVvOETuZ/8J10RyCxZ + j98SBl8JbVNg5q9sm8DHL8zpnqDGrgMHYHQoC0ezZDn9VUvs6LMoZZ9+isW2G2WVLB+85pbeCNEA + RxihIcS70yo2M7PHOUzG9oUCZ9ZKYWhDZas7f5CSeqI3W5dUlDe9QW7G1dFXMl4u8ueaEVLaZgPm + BQmG3MbAI2G9zZHlqDPCG7x+SbH2KcXgsLjw9FRzpIzioZwD697D6GI24d6oEjpt/ASewbvHy6CA + hjw0p5LhKuKw4dGjXM6BD4E16pgcTpGRLnP85mFVkDuxd6JDefMJIBy3pmunfr3pmBq0lWnG74nC + W7SZ5WbO5EeBd0gP3B7M+fBRYHzSXeKuh6NHq2OrQFEdOCyjk12uTsGxkGX5Dwp++grAlyNxyZ4J + 2Wvo6izvjIZkalxK/EqyU+5uLhDax60L5MYno/kpOvmn7y5mY5d8rFxGiKAW4rQwnfSPH3erFBI/ + KDTAK/WnhlwCGFx/qru3DIEKoZkkV+Q672xYX34dwao5sHgfW+9yTIS1he9XMxD0ym4pEa6SAr/N + OKBMKhr9q42rJSPvdEXOhHUg/PBWylwBuerIedi0O/zjf6IFFfFoeX+60Ev4lFjZqaHzead3sI7W + ADmvy2GYy4lWIBYTSszz1S/paaCjpLZzhWvuMwxUuEqaFB/9Lzm360HnlOb+BfMbPEP5yIwDLr4u + I/lQw1vF3gKrcZMvILpbJ6LJAOkcfjNPeHbYS8hSyWvWknUskFOoYjH3CF1mR7tA1Z/q7XxJ3rLj + RR+UBdnhNTg+tvV0a2iNKg7lPRW9sRLE9reeITV215L6R6IBsnVSkjO8G3rrUopwuBc90YLjo8SB + G/Eg3Blv5Kx9CnDqNwmsuZ5H6ooVT+isLocnc30gU+heJdYKnof6X2Jr6oDbPSEESnHGxBdOXrq0 + TfyVt+dHVf36VRimEZzZuiDpBN7e59VHWxfz4IN/56PJHnwHhIPrIZ1sN6TbUTCgdQ+1jV++6dSR + ZwifvIiIcvbtZo3H0wW+v887UvfrVNINf6Qm6QJidkYN5nE9ZVDS8hMJRucFlv6kWPAe6DGWHNdv + eG6MC5k7iStyBd7VlyuAMwCs+0bbfqRrWRs8eKzdjQSJfUlxlVsYnndNQ0z3exlmUoH5z68pz0tM + l/Oy68Gmn5BrKaScNz0NqR8YeH/culLOdCygdxMqoiLaNvOx+1aQuSQfYuklS2fHMEP4jUWP+F5o + Dpx7CizYf4RbKDFbzxWo73zwEbUpXE03A5t/k+CRKV4bfz4oZda39qfHNbDEYBV3gIGFNjqY6x49 + +OPDo6BcSGRZYJiNoVUgjv0PuSvWSV+m546Bb+pkmGHj97D+9F7wefjo+uNzfqpWiC7zK1wfb5H2 + RFIVWeOOJrkJfgJWPxRG6EZADOfj8ZjOD+EuQVa+3kiy/X0cjqIlv8HqIEXb1w21RDuB+pqMRDlp + bjpPwk0CY+WSf/3jk7u70qIdhTA/YwDoZMSihK05w1LSN2CWOOUqtaXJE/209XAL3ssT4vWaEPc+ + KSXND9cK7PtqH9KVO+ljD49XGFnXBnllOA30c+IqWDUei/kwz9J5Sobwx2dYbM6STs+7PJIEwzuF + Ytq6A+WiTwU3f4NMnQBvMfZTBmruy4dgfLfNmvHbVAH0xVhObCldpbRqpeA0jkTLznhYbTfm4d68 + zOH79Xp6eNtfUL26H6QZ00jJM2qv8nmQGhwt67mkozXlInjmNjLYsPPoV7pi+PMvlkeIjkGsuzCw + 7jrxpISn349dY/mWvAKSl+UMpsoxC3jjhpyYoWFQarQtBq9jb6HzKWrLlbGDrefXhyN6FuY6fymt + CD7udYqMJ3MFBN2iEdx5kaBbRUK62DCq5Ozou+RQH1WPr5YSQoHvPyhv9ddQnuyDBuVsc/BiXA7r + 9j6Afrto4TbBzFvShxqCMs97EoBt6plaiTOMHEEinoke3oxhdoVbA3F09ENNF1iBdLDIT06ITcYY + VjImBfC/YUi8N//UV/dlXUAVxi7yjXfdLKf9N4ffWPKQ05wvHm2PjSIDbmeHi4vkdAkCi5Hbb70L + Aeuc6aI7Xwu+zxGPxbT9DhRK8Qj1gNmjILGlkiBpfwEPxfQ2v3IoqcqxrNzX3xUdOtjp0ytwmb/3 + oV+K1Fv85tbDR+NlRF1xrS8H52OAHz657k0o5/01/ALOspJQ2PxwF4/3C3g3xEMbX+o/vgXm+ftG + 4cMrmzXeblD7zUXC73dpUOqLVgKPY2siyxYhXduvw0DYV2dkuFyqr+szi375zKYv33RmmU6UJ+Hk + hfuz8GnW7pkncE6uGrmW+lFfA+LVkGlHBp1cpqbrVxIK6JVXG90/HmrmcgLVH96WeFEHIeAk9o8v + 89sLe3hYYgaWYfxFhbLu9Xk/q6L8WYIzOczu3CyQNQ1oqgrFrfp2wHyZQ/EvH6GJIQJ6kNYCbu8H + 6RcOeKT7BC1AXCiFtHjOKT1Rc4SPYtzh5XY8lLy7P3yhZvNvomTiVI6VmlvwOHYmsUzH9dbeRx34 + 8aux6ZO5Ng4hLDyRIp1Hj3R5mSL86XVkoU4t17OIGekcVwgp9B6WC1dF1h8foLDF5b98wUtkm/NL + 6Hyr+FnOIpQTf/9whkU5Sz7gBem5+XGgr7JmXeVJ+Wqh1GWvZsmyOwN/+sNdxkDnPy/1AhRjxVis + YOLh5KtDadPjSL2Kask6vSDB3/Og430Co3ZPKyCw/AHFS0X1+Wwde9iWNh9iFqNm+bxGa/983y08 + fVum3PIdC9qnadzwxAecQ96+LF2gRzRvOVPaSrcR3nfPBvnjPvO+NX+pobxjs3Du4lZf3f2h3//y + H/UqbvmHMXdQMA4nYsvYA+xBXdath8oVmcyjBXOXCb3U+ScUAhoemiaTPR789L8mV28PNy/3Avk7 + 1yK/dRZAmIDN5J1NbXSIR9mjAE5/eivs156CqcuucN+puUF++C9Mc97BzX+ie2FRj2rF1ZXcK1ZC + YJs6XW3ibxV1LSYa6kdvIa/GgoYr1eH6UBt9reW2hqSbDeQox9ibYPxi4cYnm75/pvNBXWa5R2eH + hG/fBdv55mHH8A9i0VZqJqCrrOz1MUXnytO356k6KF3XgWi7vtWnTZ/ITdIGmGskvWHRxFUwuBsC + Ohfva8PlQJ5h7TYEWULpUwKi+grd+qSG67vvPXqNpivUDh+bFCfRAMtK+nAvGRPGaxHVdL4/HpLc + RsaAErDEdDaiaoYB3T3wujZ2w7e5iWH6qX2SDtmDYoevnuAukm377pVtvTJXdpF5QtbtFXrLE9AV + ptZVJ2ngOoAbsxTKmWRRYhSnE53LBPuwGUIV0+ZwLJdd+WWgnrcYGe3OT0lo5BKw69MDC9X3OSxi + dobQc8MKIT9uhkVz5SfIi98UAVanOHoFFxjvLJv88HiGnbeCs+z4JPGyBSxrOUKgJRFEoXxf6CLu + /e9fXrftd2/lxvgCL42QE6OUSEMx9lyQgmxE6HK+0VEzrBDqb/aEuV8e7h7yCvqXxSTa2rwbSo1C + 3GvcyUSeAjowJ9cpAwLLHsjtfdJTPn4uDHSyISVe9naa2el3Ipia0UPazZ3BSl5KAX/+GqXHuZl+ + z5eztRi2xUkAy+2FDeha9yZcL83QCLfwou03fCapPOcDVnWFh1HbiEjJX1rJHrvvFdykr0tCQb2U + S9qXoRTqxRdVVjk244J2lrTpTcy2T6MU9vO1A8M+sVCI/BD8+A+ep0nHYPPP6+b3gHiSEqK4lyP4 + /OoHP35PvOUMVul9ZgGpHIR8wNJ09EItg4mXQeIQUaHCUXOvcMuzsbxsUyDddhjhIwYD0UW+GxYh + nwqo3AMN2Ur9achtkLD0y5fcembS2bCWbE8744n0r5EBetCMK9TK+3vzoz1YWT9oIZhOSdhv73+9 + iy8GfjLYEnXLU4XaSEV49tCC5y42PA7r+lZv0FOiZu1bp1H7HeGWn4aVrH3A+E5GHzpcZiKD3PSG + h7LNw934mYlt27iZkFMbsG7PAQoP2kIXzr3y0OOkK7Lz3En5ElysP33hRa4ysN/rI5fAeUyIcbrZ + w1Ky3xn88o6A3Tv6r34ArbwNkTOvsTfvkt6Hxb6MNzxZfvn5CC8965KD5b0BNQ2xBZv+RW5c5HSl + Bu1gieEVKbEKvAWO1IJTUj0xPVaNR1+trcm//Ezb8oj1AG4G/OWfyU/fE+mgQH4/aSEzfFZArm09 + wrumWSG9np/NeqgRDzc/S7zIrYfptv9kwNe8mPhdCYfxJhmavPknpDDCESzBww1BkrgxcbP1oW/6 + ufrl73/1o0ny3xH0lXxBpvRNGtIf4grA/aiRqzKH5aaPfSgxWob0Y6Xr7DF5hyAvIp2cfvlyOYEr + dLJPimxWPjTzM4pXmFLmgX71l5HZd5m88TWeKeTL6aaACwCxUREF2tt67LIEbPkEcUrzDtbngXMA + vV0nvGIUlKRPeHH/l2evdExnM9TzX94W7uNR1r9+KODf+wl30/0AhBv1x9/6oFBQpZKS6FvBTDIo + ulXdQ8dbHg/1ufJDcT5+9BWM0UVm1J5DhUSVctMnF9laI5+Ece7rpOdyF7pBIuCmOXDl6pU9lG4D + Uol3GD/en/6Kd4aNjuVBTXkprTrwOz8WbS8NreYlkkEiMcTivTvF1Vdlfv6RJP1TTMc66HpgBcwZ + sxH/HJYsO8E//cvay4v26qOT4Bfm9/By5CqKk68HpVnX9uE3DfcDtWPV+cvzLdP5emv1PTAwqnMV + GbqUDqOfOhJ0kb31yPq6DbflnbBTMwOh57RNZQLyDF4Vv/z8dIqjvdODz9QVyLsVX7oy7TSKD3ub + 2iTK8vDTt5AQhqCtBZW3Pm9zIev7XkCB1b30bzNeLzAtomZbzzr9q6/NBndGSJBVjz0cvFn65Q3B + 51EPMz5zIci+ny9S4XkdaDFLCTgopzj8DsOtmYuGyaRgOI1E2fQKxYfoKt3OxeOvXtTf1lWR3aM0 + Yo4knk7g3ajkFOQjXl6fZphPK1V++hcLme+VS4VOhQy6B4P8wyNqBDGQc7DlEeh3PpamSi3wxRO/ + 3TTWKPs5PVdYd8FEXDZNynE3OxJMDs8rcodBbtYilEdI9+SJPLPAdL2Nx0Le3wVj65nxKicnCWt4 + agT+50dKfLKbEfK3a4AOmx+bf/jf76MuhPcTKpcwCWoYP+53ZF0Yh9I4zBRZOxsR+a3fUqLZkNH4 + Mn95q76s2QXCJ04uITW2L65UGFfwaJo79MsDRv2mKKCv2Ji40zYlZe99JLjVu7Cw4Ttf73YMfC6g + xISPfJ3ujlb2y/PDdg34hhw9IoExgwY6ZjujXHvf7qA6yQdySrTQWz8vtZB/9Yv4TZVmObLNCvqK + j8Nx/3CaccOz/Q9/9ObApaRPGBH+8mbrG2jN7HTjFTRcn6O7eDmka73bQfCnt4IK6eterp/g/DLR + Xx5LlzbQpF1UQISkKfNYp99JMEKfEGlaQxoc3UDxq0chY3nXgDpF6sLCtO/EsfK6XH9+FyXOgrT9 + O6Nb3mbAmPQM8iTC0MliBgl2/hGRnz4ZbQhcuK03svDXHThjLTOoCIlCDo1J6cQR9ATaA5vE7ZZg + WJTm3v+fGwXyf98oGMat66s1P5vF9pkRujTWMfSCTzqej0cL0oCORJ+1uPl0X7mCYcWU4a4ZOn2+ + uvuv3NysiLhz7nvrfutS5yAHE63Z4YYeC8WB4jeNQ5r1KuVEcr7Ane9fkXo4Tx4m5bmAPucwgXA9 + eB6rD7AH6uei4aqJFW802EsNDdBQpMCUlEsKlKesSLJLnMNkD9zwSVu55y89MV/vp0fqWn9CvOOk + kOUWLV0u0+0JrwemRObrrensQbNW+QSVD1K1jB9+zw8PHYtDQTTXdDGiBwPd2uYxs9qfYe0J7ADH + mSGJZsWgtO4/F4APs4JlfIrLtbU+IfweuAHv37YOeO3es/CDahbd3skFCLeEarJ+3CUkCF1c9r0T + t7DMao440yA3Y6afIYxJcQjX09jqi31bKygFlkJul92cfpvJruX3bp+QpJDEcmUDbYTHTn7gzzFM + KOuV/UXWomYk1uM+NxOuRFcCl85AhxN5AsFexEr2t7RXze9fOj5MhZc/Ky8j66oolH8eyxaW06Ai + 5KpPbwW+X0Ow/0SoPJ0OA6eV5gWOtmRu64/K9VuMGXxoxgFZj5AFi+Gnmnwbj4TofJY1i3AJMfyo + fUpS3DwGlr+9rlApxoXc13Uo2RcvWXJvOAglRqaXwo7RIpildUWO9AzTZc3mQmYfvUe0QipSXsiN + RDb5xESZmD1Ktj+RL7wYIMUt2boSsce+hWv+1bEUspXHnlXRgpdndCVV4R8ADtizAq0wf5KrP55L + asJShOuxzUgxDfIwucgxZOeTfUl260KP2It4hR8yEBS+kvdA96VXwDkdz6Q8WROgwkeeIbfKM1E+ + txfFt9K/yMmhNVFlqMeG/8BHIb8q6JHkfjvpS/C+j1CxPxpmSx15syDvEmBUrYnOdfvy2IMWrvB6 + o5Dozix6tKI+D7mdExLDCEywrJl4Ac+xkTCfdvd0NRcnAvtiPJBEj1hvwdXsyuDdrKEkfvgBf5T5 + It+MOEE6Tkwwr76lyS6br8Q03gPAPFNEIOjvFvLpFejUzJAIB+163yqoasrWrKnJWVIREtCyToXi + cRghnJ0OZWiCYPrAqwjlsoiwFF1aOswWI8HnKh2JuVPcdLnpHoSj+xGI1amOx9LxzkNX1b4o1J6v + YZEG7MD+oN6R4oETYJeBdWXi6jxx2BA2xP4kLTwd1ghFKVUHgf0kBhAjO0decy7K5VGsuZzu8yee + wyqndLkeOqiYTYvUlyEOSxHoowwD0SeHC1OVy4cKmvzkJz4UOEo8TtXjK+gKlIZc8TDSpSP+BQpY + GsJYrvtm1e41L3vZbUKVFh/oUizODNfzmSNBWLoe5zEESppzD5GWnM4pb/bfC1TMR4tUXj4MnGcH + Ery+QoscR14e6HceZ+BfZI24uFNSQfhwq5yN/Tdk0Mlu1reXshDHbEUC4hoN+xZuK3QRIyGtixc6 + Tlq/yiiJWvR7PnIsHBeW3qUnfn3MPd6ebhosh6Yhzj7xGqFuk0qe1Q4g73XZ0eWytBVMgrJD8TxY + w2yIj0p2hquDyvHOl3RQ60729muxdZ2MB17UXQgZzKUkHi9fQOH45GUxjRrkMEtZUuBoBtz2IzKe + ZzVdRt65QAe5GKGzY5ezdII9BA2OidHk54Ec08WHBjMpxN9tc5UfxZrJjDnZxAXlMx2X2bPgweiO + CN0v251sh65/5z8Lw0Bn8eWK4SfBGvn9/wT5cvh3nrjTzm9YZlkYefeubFK91AGQy3Zn0W4ZirwX + PKXUuk4zqP3+GUaQ6+ha91cRWtFVJYEnDt78w5P12GXELSVAF8H6YBBBQ0VXxUk97mtIPFx2aI+X + g7Ok86nPL6C5Kg904U/pb38pcrC7s8j47MVm7d/5uDcYopCwqkZAB/89wldvFEhFQ6SPn765yGYh + QeL7MufNHs1ycDseVXL6YnEY++3OMGUyDZ117pvO+a7rYdKsKlGull8ufTr58PBad+GSh0hfDF12 + 4I65cqRgw+uw4PXoyqdo3mF4p0y5sg6dIbAvAgpd7UpX49T18nQIvsgT0hlQTfgk8HJ2EfJis2u+ + nq5XcHdQEdGPGfM7bxnM0meFl21/8/O9zmXTJAQZGx7QtMp6mAC2QhftkTar5bCR/ESdH84kiEua + izEjNzLykGkemnJgzp8aDnodovtOPOgk7LNCThZa/a0v1YheyNXbUMn14RxKckuABs1Su4QpVr/e + ygddAdv1u6KjYmap8PyYhtyDWES6RaKB+kI4w+WTSATpgV2yijX78v76+KKTNT8H4WpZPqQIuOTs + f8dh8Zg3lH/nORTPI1hhb1/gTfNY4t2kvqE9W2hwJ5cWhtXLLbmbrkPIP7ZvZP3IGnhuyp5yPlU8 + 8Uj89MhZLTsIe8sJ97D203WmQQ5pon2QOZympkcGZeWCZAs6RU/ZW4+WIMFDSyKELuZumMePbcj8 + PT1g6aPs6TqqVwPOLNAxV0ROM90H8IVl/k2RFby2O/Un+oU3fA+QC6WknGsxhXAou4HkAU8pJie3 + kokVHonxdMyGpY9olInU+iSsglhf7zp0fvqIGHtFpuOlK3gox8cI6ZxVN8vjEfnQfgrH7SMxt/mG + UQrhQ0ofKHwSp6FXfrZkwpQT0u63k0d1z8rBt48aLHOe73Ewu0nQiaMAc9XTa3g0Viws1WOPDObY + D6srveofn5Acv3A6l4w/w3ogGIXFzWyWVyi1MGNWByFvmYZVF64zNOKjSHx/3KdY+foR/Axs+FsP + fT7LH0PKvKuCzG29BOY2VxCt5R3D00Ka2bq5CbAnxiCo7qthsY9ZJ+/88EqUOxeVXHm5+nD8WASp + paql/KhmhtzS8UGiYxOUPCnjQk4fkUkMIVo9KunUgZMWwpCrlExfuKcjgk7PdeSWUklHZmoUqPra + Pljk2mmGs2y0IIivBfrpSfZ6QRg8UeujI3sbhmXOZQZ+qDiiQDXmgY63oQJHcxawfKyVgeclNQd2 + TQRipy+jmc0C5GDTP8RnazddhdyIQAPMiZS3zwhGp/NY6HUvj3gFvx+WKdGz388LQdmbKafu3Aom + H6IQXY1qsN5BHkJhUVwUZFNQLgHhOugLyZUc0sBLhXqcc7mvchd5cf5MaTqoV8h5rEWUTrIoy+OH + D91CLcimJ0rOR80KY01XURBdl2ai/a2AkLdfRAe2DZbKe7DyQYQ+8q2DlE5vsITwvWoLZnLvWdLl + JPWQuCqPwk2fLB+602B7rl9I954NoMCPFWhfZiHkM+CWy17jKxC9BXO74fcuF0vuOygydYBuR2QA + 1jZXDXxYpiTaefIammnyFeBEClAC/S0RZ5MaksdVITduaoZ179U8dAI1QuoMtXLTVwWkB+iFYJxX + nWpA9Pc/PWjLnEwHQjQRbvyLoT+e0+mlmStMdp8dcnYtHqhilSOkqVUgSxJFivdezcKUOB254KMx + sM75rkm9a4dYDktXF3ZaHAHlvNZITaEH5ufn04FtPYkir3d9qW2+heGVl4ntLK43n7L9BQwTPpC/ + 8zK9IAv72JaRa2cdnVSJ1sBjPj1KlnfrzQWn+1APmSakuHk08xAYPggFZU+SG2On3BTAC/hQaSTh + K7EbfuMHiVt3M17sj1ry+dXtoF57IQr5j+pxjxlHcI8/DkJd+PKoUccaTHnvGHJfLvdm/jZdgc+H + UyjxljCsWhlLshVm2xztUBwILaocqnnIkeo2nIeZM5caPrPbjbikEZt5ihkexnwhbvwulCs5uVd4 + OswRisFd9bgW1yMIRaMn/iXDQ/9ps6vM1HAlx91TpYu1P/dw098hU/gfSq9WGP7+PbkHj326Dq/Y + lRVO8xCS2Is+NNwiyX3pysQ84Yiu/kBdoNQUbQnW4q1v9Fx/fg2p6MKWFO0LB0pM8g054+0B/q6z + rnSO3x5Rq8d+wK70esLwJo1EeXvPZonDrcJJpfHn1+jylFMLuppxRtZl4MDS4hpDJ7R2RI0Cm9IF + ZSvEHwmQH97RY4MSaTnqTNiq3w6sl0PLwInvKFLluh+WrEyKn7/AfdUWKc2HlwOqhDP/8H7F6m4F + 7OPrERvpkze/m3mFDxN8w/1eDtIVZs8CtGb6QSbZv/TlfJ5rWVGxvuGt6FEB+1gagR8gy+PGcjn1 + TxGm5e5Mgje7lpved+Hnu94JCh7beXCbr3xpMo+kFzseVitOHEDEKyZWr5GmjaahBuX0URHKecOb + c8fv5Hy68iFpBksXhI+8Skb7MNHGz8M8MfEK5KTYoSKnZsqFynKRh+frgrb8YZih0m49Is4Kyi8H + Jh0F6xhCsxAhOtBLWLJmATLA8k2JVHE6lnSFZSGJrpOHUvpeynUMHQkOz/eFGAc5LgcbCu2f/nDq + 146u9nnWZIEDF4TgwfTmEN5EAC6tQSJ53elL6uZfgJSDhSxqv+g6PV4SPAjiDeV3Yvz8XSGrS1Xj + QbSMVOik8fmHn+pRTksqunYPb+voEoW7s8M8e88M4o8IQpm72qDf+ByMPj2iUBA4Dw9yYMBCKBHy + p5E0w7N+h/DLoGcIE9XwqPqsWrjXToQcsvLeLP1Vt2TzDAd0UssT4LLTNqVhAHssbvnEuhiqKxc4 + 1pBLmqJZNcyLMHztXGQzp2M63+teg088FKEUXQy67u8mC9NWF/Cu7qsGv9F3hY8nMjb8jxuy6XFI + 7vkD7yGaG7Jfdxl0dddBNmDzdBGfbQd7+ZwTtdEXbyI7FUr5GUnI7plJX67P1YB42Z2Rlu8jStVw + aeFrdnkMNn84Z3oM5Z++T5LTvly5pang+wNTVKG+SdeW0SMZx3xFbL57piMzDZokHZ0KGeWrG2br + 1Tvwe3dyZC/xaZifstVC/ezeNzyQvFljOAYa1XZDIHNO+i8vAxP3MJB92FUe91UGCSZRxyJtZGe6 + dKeogjHOLyFY2IdHf/7t509MQ7SHqbqHPJRfrf/zt+lKR5EF8iFaN/3zGuiG/3/n8YVGTccfRbzA + +jgTpPeKRukkc8nedj7nUPjURjPLce/Im3/Y8hd1WHa30xUOPJuTqJM6+sMD+V5EAzocwwTg13GX + wPO6cGHVxLU+l3uZBVaWPkMgaJy38a0iRXumQV7Bn4f5Uwc1LL2iR0EvPhrq78ZesgUrRud7faTr + SRkuIG1VAak37UC5FDg1iEsvQEivdG/JTl4Fvu+QRYH9Jhu/r72cfR8+MQWQ0jX5xhF8flYHqSKz + 6IQzjwpsyb0Nd5khprMBxQLM6/LCgn3d6VP3PHVQix4j2fRzQ1xJUsDtVN2R3U5x+cM3uPi7GoVG + sqTLsnt9IelOEeY71dHJ+z2EcNPDaMs/h9FXDr58aD4PYqXdvZz1AX5/+g398pn5+bp8YWHYNl6/ + 9FCyNRtoMMvaAGXcopWsjvYr4O1w/OP36f4eR5jqIiSH8/wtx59ek2Qf/PSyPoshsIBJwDcUWu8M + hkO+/f6rdERKAHfpxx00KK/8yiD167yb5clyIQR1Y2AgnhSd456KKEfdkiP3IuvDnx9Oaz8ntz53 + vSV+dKIcme2I1KJetznxbgXEV6Gi1JkLnWseQITulOko2/zrcmD8CDaHvT5Bdum8OVqk6x//lrp/ + LLffBwPDPR2w7ImeLpiZLcnq6LHIAOunWZ5734HnlXK4xsOertfdoYImH5nkRB4exUt6CqHohWY4 + W95Y4hPMLvJVMnNkQ9Fs8Ad+LvDnV6zsvIJZrhkfviPWJkVcSc2CseVDxNYyQdmR9Tb+lORerC3k + 6KVR0ulbRKA8ti0JEvmx9TBQarnjv16487VDM3/a6xWQ6yELGdK6w0rK8wUsd4MhcZP5dP2IlwrY + 0n4lWr6fwZhcnj506LMj6gyf6fqY1xUqBV6IK3vYmwV3dIFnXSNyXx+o2fqYdJB0xwgZh5Ebeh4/ + QhgL1Rsz+l2mK9jdv7Djew8FALv0p+fgT087ftQ1Q4kvPrhKdk5Ct81SrkvVp/xG8+nPb6wqULRf + voIC9eiXwtQdcpAjncF9EgeALOi6Qv6QuVv+1nu/PAxOejQQs6LvlO8YDKUqIm+i7SXcDNFNZGDp + VyeklJrszb5ROOAb+RYpRj8AVMzZClrjaYcs7vzRR5blRpAAviKaGYNhxaowA3uCBlG/jt2M98J1 + ILkhPZRxH+h8RnRxH7zLE9l+vv7Lk0Cojws6J0O65ancDDY9hPzq5abLntY59Nx4wfRSTOlciyUD + YCaBkIltmpK1jmqYD6etR0nUDWvWdQp8nvovckO20n/5LAiWd4r0XgY6LXESwrDhxnC+9g1YQz9Q + YPJdCTmcqrdHv40AoXlmBoLenlySj80ZkMsVjRzY4EH5anQcqBfGjLTuGQyCc2iv0EhvOQmex2cz + u6fzFbwHZRt1ziQDJcQVAV29lijqh6X0+QkseC01FzPC8dYscVKwUM9Ag3ReFylVNH+F5lM/ICsD + 33Q9ieYV7LqiIJbXzsOaE9LBdzj2G99yKWZMUYO29QBIbW2l5JjDWsli71HM3o5Jue46lZXPYSkj + 70CylN++AgJbHrPhRe0toenksK5mBVUn59Is8sPF0C+49scfw6xYYgiRGnJEG441XY6gDeWZgysp + my+rf9WTC2El6wpS92ikM1TGAtLMtRFqhs7DrfXxoVxeImK90VXHR+GzQqzMhKRWsNfHyjtmkH+f + 3li+kqtHTt5O+9UXwt1L/pTj6ocaJPvnjRixZlOqCY9EFsFJCT/b+yJ3w+mhEZ/EzQ8N9PXLJ3L8 + fBFlVlowf0cpk375upM/D43AHC8dZPKVx/EtNRtBWNMeslUl42XzU0RY0y88Ma6N1G0M3apati/T + 9dASNRSvdOZc5fpbH6I8bTrU/endw0E5qsSXHvFAmdt83d+KOgwfhnAcRmsmCbAFI0YXVWsAbhk9 + kT/kQ3BwRJs+8mpero8r2fKY10DZGvrQYu63kP2Ws7fuvZ6H23lBP3yb+KVi9mpmnvCyunxKc1bX + IN4JEjpcEhXwjqTystTvdiHDXFh9vj6n9pdvIFVejJKDxcgDNbNPRHtUzPBlTFH56UHkfQOqz5Ok + 8SJDja1+JzbN+r2C6Je/4L0P+nKdcILhpr9JcXvX+hKHBxFeHXFEaN9Z+lhq6QwXW3ls+vflLYZf + alCaiwNSHOylf/tty6O2fITVx+N46KXI7MZwaydc/uGBcUgv4a6BKl3O7e4Lgt2NJRpng3SB2XHj + p1wn4cmRmtf8XkZ5xeM/AAAA//+kXUu3srCy/EEM5J1kyEtEQIIgiDNAVFBEHgmQX38X+zvDc0dn + uJd7iZBOVXV16H7i49TXbFFj1YcSWyB25++XMet508DWHpAG7zk0F145O2gvBGkgskwfFiv8QUjl + imCnLw2Tb4tIRfpSPnGy0/qYZeW6/l0vWLZ8fwG8r4H2GS/Y/Wk3MOf1UYV2cj0HLcjngt2LTFU3 + fbH5W0OzbL9PdYX8RXEb7M01kV4z5A8l3uob5UC8fJf9+fHUzoeEzYVRrFCTGKLO5yAVhOi7GZRf + JBPunNEtS9qP0A2Ah13kBaZwO+c95J7cih0KzmDd/Ee4u0QqicUL3yz8+eTCSSZnssge2p7PGqDP + 8ffEe1chbH3sJgeOO5PgY85x8dxeTYjmy+pQJ2sWk8rR9Pzn/23PE7Bj3vnKn37486Pmv/zpr97E + E/QdJqoCDQ56NuPEkDRT8rdhljuuEqij6JixBPchVMqmJ1KN9sOy+vkTsv5gB8sn4WPSCJ8Muhiq + uHDrQ7Ncu14F1Rs22Llause3AbHgVu/5p7dF/epyUJpESDXnjhueDlkJ85c/EeUZ/2LmREYK9+qh + xfYOfsGLdfccyp6/pzc1+HnscZ06KES8gItUiLxl/7YhAK83o0ZbT81apLcV3o7Pif7lF3MVMx/t + hrgjHb7H3oyPxgw2Psa5veJ4Mr+qD29uW1IvYE08V4ZUQv1kd+QbrEvBxuTUqpv+xiewswc+U3IH + BNb6xFoSLcPI7vqMkINNvF9La6sHlCn8w//4xH+9WR9CiA4NsLC51c9FEwzbCY/jQDf9D6QtXlGF + dI3+5aPvcFEruOWvWAuqFIjl7ljCbX8H4+YPEllMbdjezgY17ty3mJOvOv4vJwoE/r8fKQDkmgft + UcibUen0ClD9fgrm/RzEInd4BFDqvmcajJ+ZsfM+44AjvTvs1KPX8M4gu6jbBi/aZ9UapvTNdcD7 + Po/Y4CeeMe2dZFCeaxPjGCJzFWO7VPOMbIPGldlj6un8RA/91lC3EV7FcuFkCzbkhnHwWM6A0i8/ + QyGdzziLXrLHqNq5UPNuB1oW3h3MPoEyvN5dRk+XlwgWtQttQM3fBQfhMnq0CvkA8ZPOkaVprubI + akpgc+sLbPRsLdjwOaiok4oLmV0I4lU9GSoytWxP7d3+B9ZRGnvQsvxE43Vr4hCHbg5tX0/w6Y59 + r9s1zwgp6qgQ/vawvNVSRBl6MES4yj8WEFtLTNE3e33pIVdIMx9eKFBzUf1Q36vHZpE+jY+wbVDs + rmBmy15VZ4B44Uyj62SAWXtDDbXyUadhCQ6AH3Ujh+69CLFWggNjyrcW0X14q/T+Nd9g5JvVB/u5 + eJObOBQDHwLYwvia9TSrrB2gJ/kcQHfAR6y/PdPki3X14eQwjI+or81ZTbs3fPcjxjfFEAt2jZmB + Xk3j4X1RdebSDU8egdu7xQesbJYVN9volM4ldn+9AppAAS06gHNHXf5Qefzf+kA3WenJtqJBbJSj + je7TZgVQrwPr13ZE4B1OL+rEXzCwStBK9IweV6KMsd6IRyEhSKyyHFfgkw6iqHkBrDheoPeDm5pS + o9A3LIznFdvDNRh4kZw08Ousmoa94Jpi1tIO8iOn0TuPvgVRqmGGt33lUeck+4CvcjNElwRRGh7F + K1jvdr4Cj2GFsK95GPipVTQYfLojPXV4NadffhVV6dyl2G1nVMyBB1z0F9971f/F/OuzPb+HdafX + aVeZix/TEbbq1Qmk9ftjU3mdDMhx8IgvxXIZWC+GKrplmkyTTnCAMMldDan4/NHH6W2aq2LIFoQN + uwejrbzi+fXpWog8XaNR4ermasRyjuhLYkRUVBj3tdsbMFPEG9WuB8II4z8iwrJqEf50mQfifx6+ + qnf2hI3CfZlMJ9kF/tQBY/vB20wwE98B/u4p0/KbnmNekh8iNK9XDQeGdBxW2eue0L7+DljP1QEs + dxR38BnGIVHg4zIsusZlMMJ3mR7rvBoEvMw5qqoS48qQfsPyeW5jJOb9HduZ2g8i3/gczI6eRzUh + IvH8zVoenjv3im/iAIa1hI8ZPnLhhA9SmHg871Q5/IDZDOaJ2g3/lI4V7NfzDR+vSC3YM0rf6NH9 + bHzKEzyIbmHlaI4aHetEKwoh/D14+N0tLtVq+mzoFm9w77Aca0C/mzMxxhWirYQfR9gBqxZ9ZOgl + ek6AJsQFryh9ClDardh7nRv27/7+xWf0VBmRva6GD1qbNOYC3ePDbklRZ1U6gUcexYxv4hYF8GsF + vx9swfx9PUJV39catnYHvRHnpxOAsrvssKXEDht/NyVF38m/4+jItGa9hNITAq43ApjsZsBrRy1F + QGL7AMzXOJZyYBloMFod6xyvmiR/6ASe6SHC5/Pvwubma3Cw+A4LdjY8YCevrGG6nUM9vz3Tk0at + mZFXyFd6ezzqgUW4WdH1faAYX2+gmOC+9VEvQoyv+q4tpsiuLHA7dNF2/zlY376VwZEmb4odeC3Y + qZUv//hDn+63Yf2kVx/t+MynxdvT4sUyhwgWTyIS+Xo0Af+FzEbv7PSk5921YNKXjQbM1l1J9utP + H4TnlLjob38d/J0f/+1P5axOFk0y3fUW1fJE9RVyFdZe+hIv4e8hwh5f9jTOzBdjy5ULIey7HOvz + VfTm3S7m4C2OLPJdXnYsLtdvD0UPDHgfg2ch0uVlQ7E5YvoQey5+ZzJaQe6qJ7yXq9wb3Sl6QnCC + PN72L5PW/tdJrz5zaJwna8Eeza4EblolFB9OXUz0I6pgveYy1Y+NV8zvJZmB2oGMbnjaMIQiiL7L + LsInL3w0i+ydZdSE3yvVn+QNWJguPHJskAfihX95y1u9iPC2Lz0aX4tkO/SMOHh5GIy8Ebx4kicF + I0wAuRF97b7mnMlohokjWWR3eR+9GaGlRexY3ANmuhmbD+isqfnjp1N/YUnTnS5DqzorWOlhtRxP + /JzaFalrYuL9SX97c//2HbBvkRKM5u7NfvZ10dDukdIAqOQEJPrwU7i/2QY++cUpZsPUVdAQYY4j + xA1g0sTmifZS9CL8+IkbCfX0DRkpFRo5+yVeRvdYQYe4iJ6W589bvaiAUGECxNc0NGMe1VsTHMH4 + 4P1LqME66VINshRZtHDtPu4Fh3Xox8YLzhTp4wnC2+Hh6Xc90tgddY/XpneJiuco4pBWSSE4tSnC + RyxHNG9PRSM1iVcBP5D6gMskYZjXQYtU/pziYFqeR09kg5BD+S2faVpeO0aLAG9HCASHHr5fk63n + X1vBP/7ERI+99SgkIwqS6wsbPoEDe5t9C2/akuBQ9l2wckNTwvvQqvigukuz4cUbRCCL6F6LCWO7 + /Bz88Rf2+/AERF0/GcB8rgPGt1n0vm+zf8Oaii69wpcfiwfYrIjIZk3/+H35WHSEejAYVCOREy9p + afvgkCsGdfjx2tS+7LbK83a54LT6KfES9fUFPsNzGDyFrW3/atsz7HG6xxp+f81hjL8G7AtdwNl+ + bYq58agDTjwEgbr72Z4gSr4Nh1sNqWGc5ZgJYiWqgCQ5WdB+KJbQAiM8s/lIb/hCPQaZ5qBAzVDQ + Dage2Cf98PCYHxMaHAOr2PTMGxbw8sWHR31j1CdVCJEjKtj4prw5pVKtwWhNArzX4oBN2Dyn6Gj6 + OTbivWSuu62EVXGiQLXk9hjm8nVLEQnZjlrwtC/46DWEYONPbGUXsVk87V1C7Vm+aVJUjseA9bIQ + v6snMtbuu2Br/+qQNIUHsph0jYlBRwsKp7QNFi26FLSEJAN/+uF+5S5gVU+uDD4P6Yf9j6Ux3s2/ + LhSfyMHuRQQeVSs1h/RucUFknLOtjSaqYEGehBpWx7zZuH84EFTZh167kMbL01E0KL1PJj3O0AfE + FbsAxN4sU/vz28VLAZQQZJpxJDtkm95yHNMeLvssxcff1ia8fW6Df033g924n8AyUdmGpUw/wTdi + H2+1/D6F+1MZ0pue+0zyS5TDRy6dsP1qErac7nUHl+YtUHtPF3ON+hmiqjlZ9LF/3Ly/+IO1Tnt8 + PCyHeHlwogb38+1NDVqigV3GF0TRmesIv0Lirenx1sLt91LXMmDBFosZ0ObUnvzFc50phab+6SGE + 5c2AfRwJLHfvmrDH61Gw/QP6YAgfcpBs+LQY7ceAj/Po4eg61WAx77AFvDzM1P6qczHe8VzB9rmN + sbEtIZ6kz+BDTnuYNICnemDI9so/vsUuiT7NYF5SGe7SeCBqO9/jGSHlDa2402j22drarvzVh9XL + 2MYaIaeRFpbbIHo3CdZd++TNgcccCHlrT71GiwZ2m5fgH97Fo/Qc1iRfK7QvoiM11jQ32XNac/VB + nyZ207dbzDg9QXBwnyX9W69JpqIB44/f0Cz+Fk0v6dMbhL8hpMY0BYD1ObLgrocvnJZXh9G/+6Gp + Y+Jz01w94WTYPOwfZCA78r6w+S/+rWA71K/v2phVdWIDEuBzoJaZGQvLCkUINBcGshECb7F/NxUO + P1Bj1znYheS+zRK5ogiwEbK2GV+utcLynFk44B7Mo5ueAOxG9kRYKt5b22fkAH73nOimf4b5yxv9 + n97Y4kfxlulShjC0vjyRBXyLV65mBnJWZcUaibqC0OVloSQKKb5YLSjmm+pE8NUFOnW653tY1z7W + 0L/854I32fM4aRA/yluwXDQ6kNycVJj61o7Gw7iy+U+vGe1vxYaSPJtl/6g4OGMupoF9+bIlvh0r + +Hm6EVn8+xds8aWBQGunYK0nByzVoX3CWp96wpm5Vwh+/CUwwUQn0j08xmvt1gYknPyglxUG5vwQ + OAitvAXkd0VqTNQEpHBSyjvWjHj2FplyBridj4DudyAzWXp8BvD7yN60wm0VL4Gvr2C3m5KAfz96 + j533IffvecTP41Asn45BGM9iQrKgIM2s+FMHy5Ke6P4VvcwlHn0CtLofyBp3Geveqh0ogzeZwfIk + Flu+SCfwg6CL78vzaPIfkI0wJskHe8W9B7PseRGUw1NBBEo/5m8n0B6EV7uhJw9rnji8Xzn6i0/9 + cw29uQw+HFiWjNAYy8RjoWWXIFtRGZRpvQ5LeBpd4I/QCzjLFMFUBrBFOGcNxT9wbHjvGIRg0z94 + 37yXYaXpKfzL73BZ7dWYFL9LjbJiknGgxLYnbfwJ3cf3in3u5YL5Rc4GenW+ji39iLxVnv0OlvHb + w4/7iY+n7PKMoNI5PsZf/eQtLyLVMOGlkuJtf7AIDzN8YvmHNct4mAufn1Tot/uAqOEJgzVrvx1s + n6DamoT8iukPb/1GOeCTXhyKf/j2GR4F3p97XGzf/0S7fFBIueV3SxfuDSTRKsAHvbSG5Z3MBIzq + Lg0ETZwbujt3M3znt2+AArf0Nr2dwy/eQ2w7tgfmhyBCqF6cNw43/UseO6uHp6EJ6al/NtvQRlyq + 5a6t//CtWRRF5iB6Wnd8xYoziOTbukAWIonu2yowmZrqHPjTa3r5yxlLiqOtHq+7AHuUHNjceF8X + VlWF6abPG6EKKw6cnv6B3uCDb2YuhCpEvHQO5lOcet2m76Hxvg+kntzJ/Mf3Wz6LHZPr4y0+e/i5 + 1M+Ar4btJUsxVNXg8OpwIkUjmx/nnIe3pu+xV12/8VysagB/jFyCnXNLBuk+7J9o8zOIsuVXTDga + kfpdUPQP31dt17+hul5NevDOkPVJvpZQTK4p1u1fwPoSez5c+f4XoE+SDFRdhO6PX7En1BoQPsuY + KV+Zx1RPz89mDfww24jpG3DXwSkkqj5dNF1uOrZOl7D5uz7MT9aFOhteUtMQDchgtGI79JOYaKLq + /stP/M3PGk1FX0Hx/S1UK7PW6/qRb9Wf+sOBIEU+YKra2vAriziAfTgxshO4EGRRKxJISxWQSZee + KOb6Ez0wlrJ5//NC+Kf/zFy+mOsrjko08lqB99t+HYP5EUGU9uu2vipb9+CYwy2/Iejb2gMPMxeC + Pz1q/nKj4JWksuB2vBMbOhGb+UVuGujb3xffb8e6WTa8A28x1bFnaE/G2E2bkawM+8Ay88CkH3W1 + wF+8mctzACzzjDdK965FfuaIipam+xD278cT+5AVA02cZIS9yGGMJWEAQ2M4AXzY9i3YVdmLrScj + qeDHOsnUChfC1uF4equDNTvU7YVDsaRaXsO7F1xw8Pq4TDq//B7anNxTP97z8asM+Batl9DER2LM + MV0spqHvI39jY8u35+G4in/5H9bvvFPwM0h76CgrpeZ2/Gj1S7L++S3YadfEJBveQRKOOj1dC+bR + pFmeqLNKnV4/ymXoLs2pU6ve1gP2eO1iGrFZgzJ3U4jg3LKYsTC8/OWD2BZ3WvwLlOoCz684x9p+ + JvGKsmcAVxMVRLkHS0PgnucRgWOGI1uxPCmNwh69e4LpKVoPYPlxbwsd/aQksnIxY0nUziLy20Ow + rY/GNn/yAneT2+Fj++iaWTUFH6afuv+3f1Z1oRqs0+xJ892v9WjfTE9V/PJ7erMux5ilxErR5jdi + R8xbNn1OTgh/W1OjI1t2f/zGwTUtXRqLx6s5HG9y/4cXwWF52YXAn+8V3J1rCR8spQb0HOg51BQ1 + oBhEridMd3+EsvLbU+ebiCw/790LZJUdE/7qHAtW08uK9OTD4ePjYQxM+fYiMBT3RWRF2nsrVwMN + /n1u+F4O5v3PDME5GTpsfpIsZpa6r2F03pq4ZnLElpF8WtVyg4R6nqCYZL+G8J8/cuK2tvQAzC3y + z2lOzcdrV2yDLHtFpWtCrQE6JtuDzAAxLG186YOMrS+Ja1X6iPfkAk+feE3E1v3HxzuVdjGT75kB + 340UYf2jngG7268MDDA/U3vu9lt+QF3o2Eq+6cfJHMqnSoCLFhHrjSZs/LF7/vk5//Bs8/cC+Oef + GHEng+VWAVve1i/gZoOa/BA1ERgSl9CNL9jysb4EcGocY+NjNcM80V8F4k/QUFtrLG+Z7j6BWzzh + 0x/fFM/RAs+rc6LlqigeuzOBU5N1SMjy7V4ea+5Mhh/PEqie8kYsfCxK1CDXrjRZqou5mt6DB1LO + MryfQVRML7fI4Ls1b/hw7q7NGtfaE2z7P/hdc7lZbt9tbKceAPKTxKPZB3dlK1HVOQ0G+Cn+/G74 + l79ufoQ5m4o+q83hOOJg8+MmkRQ9/OOjYDaot6bay4H7dqdQ/6vE3joUMtyG7+r/8ZeGok9VKEY+ + 4SwzZcKff7vpjwDuvdVb/vTy5ocQ5Xf7mCs3DCV87ztGoywlBavlfQDGhb9gB6FgIFS91VA69ymR + pDAxJ/hTS6De4xbbqyrGM8xc7p9/GcjzO16Cixqor7LFBMRq4/3VI9RU3l/JrL1fxXIlyhuMru/i + tPCBt/lDKqrYp6fOdMRgZjUdwRkCD2u57sVi+jlFwNXZg+ySfhxm89upIFGeEQ63fH5Ny5IHn4fw + I+q7GsF8U7UQ/unvP7wlqfZykS8P4M8vHQZqZh3crheI4u7559+FkLvJ06b/9uZyhp4Pj5XoBTJ/ + TAAb3rIBv+bMaPEk9XYEdnnCKfJVutUfvPmzNenZ/FycStqDLX9+wV3JWcCR+Gkuf/ggxeI9ELd4 + JLfv6v7pZ3zZ9MGSnEEGX/t0pP7nawz8x9IDxfRoEKiCMMWzrtEVwH3LEf4RRGy1FE6Fxny40z// + eawOmgE2PytoU42Y5OZXF/hoy12gbPkuH5gugYLkSET9gp6tmz8LJdt4U+O0jZXrRSOCyaUUsW91 + c7HEaHqDBIw3fFfaqJk4TgvQnx+AOHwHXeNRV4mcGhEpIMAjf/i04QE+VKkPxhlUPeQ47vhvP7JK + cEq5KcQae0ZTNzN99Bxsjz/1n56V+B2O4OZH4H2m9+bvrV54GNH1ScRVFYt/+2nzn6jzMe2YIZRz + ILfxFZ/ARWcrQlYKj7mXBHN4Wpu/9Ud/ekrd+HO1kmhFYaVX9GHFo7e0LJihrg45QaN8j1eDjvaf + H4aNao+8WYhuKeAOFw2Xzp40dPPzAOyqmIigGway+WHAvd9Cav7lu8L5bQGhzkxsvmTVI8v2iteW + L1LnycF4SY4uBN3VIDRwhrph8PpOwZIfXYyND2y6mCfPP38DW+JtjNfitL0CMECRHqp0BItXOqES + n7hdoG7+ynocpxDe5FuFD8mkNzwvxDb6QSHFdz7fN8J3vwaoCT9X7IbzMtAiOKSK6tTrv/VlUny3 + 4eElcYH8WKm3fNGR/OUDpOOeYcxe5a0GM3FXeswvicnsqzlDIkgFqY/sOaxB4vBwqxdSP1OmeAWr + UsMTd0CbHjcG/kXOGnK+gfEfv+B3Uy5QlkoOn++8E4t/fof+kVusq14A/vHHVWyrQFh/r2b9w5tE + l49b/Y3zms1fQFf3bWPv7e/YWtPAgfc5odgJ12Ms2r/nE231MrJyr6npwGl20M4cOex8ZXmggfG2 + oB8IPTYVMx4WLbpG8NJVFT52gTSM3RD56GLeDBy3zz37hBYb0bH5aFTX7y+2XsbiAqYigdi/Tk9z + nrx7ALpnecMnKzHZutrBrCbFbcEn+MTe/E5qG+6VqsMufr+LedNLcMfn/p/eimfq71poCs2DerBu + 2Z/+/Od/p5teEtprbEPvs72Shy/YW+jJDuClYR0NamccFstsQqQZ4R6HWQzN39NZDPij5j3gd4dX + M+OKy+FPE3dErGypmeXKfqLQ+vCBsPEL4/j6CS3XT/BFiTvG7FUqITFUh3yCeWXrI38+lb1V+PjE + VmWYzMRy4HcwUuy6txT8+cXgaAY5to7BwVtPNHfgJIUpLie3L2a+UQO4/jSJ3ju8enNa7N4wH0JG + HYRIs+BlztA3p4RA2Q0L5gznGsle2VIczaG3EINlAOGFD7ZJDIXU1aaDuOaSUa+0xXgBD6n+u99/ + /MxizhXB/3KkQPh/5h7cdnu6v219HpW7QcBtEV2qUWtv8rL1i6DpxRF16iwzmRR6HGwl8xKsPW/G + knKzW3SOZ0KtkSpeZwytA4yDHAd54+tMWiZvBgVWe4xP+GoKpZ5dIHiWDjZgRYpRht4M8zO6E1g2 + kzdePq8n/GW5TbgVg5g6p/INb+XD3t7ynIb5W3QrzDZL9Zyr87AKD3WGr6doUv3hJ2DxSKCCize1 + +FhmdJi1062Hl2vmUpcUb8bG6GVDAT8pfizmxCZucVr0AZYbkFBvzfVV8isajKjCpjazYQk+bIWc + /znSuJ98NhdJV8FdjIUA1uXDW2SdqPCwXmLshWA3rNmscOA1TT/8MLSLx5NSqNCRXHRaSucmZs73 + sMK2lXWsKUsUM4ziEvpddsbGI6FsHWtkK9LH5+hdaJ4eu6+Dj4z9DGk5WkLBHrsXBPfSHLF9C/l4 + FsLtIH2gEupAsfJa6/D1QSzf1YDXlNMgQSc10HSKXert4LtYPLWrIJeef9i/7w0m/A5IVMt+tgKE + PjwgfcJdwEtXGMb7k1GIVay6UEzMrUTbWPF6dTUNvbxyR9hJjMF83iTsfuwtavr4a86nZ0aQnnMH + 6oRVCcRCgdsRBTmih4uUDeKFH1ZUa7s0gOTuFEy73zv4eUQxEQ53XPBVNVjw2e4h4br0GEtzV1fI + +dAI+2j0CuGTHQMIjKdK88pJ43WoihkeHcgFi52UgE/J24WX+bAN56EVW6Qmv0DlsU/obYsHcpQ0 + GepXgVBn99AHcayRBfkp2tO0bvfm8rzeRpit8xfr4cMBgjaPGgx9TzspSbEAEhwDH1zPZU5182B6 + kvC7ccgD5R4n/LVtpPeZhvBx1O60cGfH5B0UPtG2noFkoLu3XKhDoN+GKs7Wm16I5i/voX8fKb20 + og14dh85oO3ckAYViU2C86MNeVe74UNEBLZMoK1hdRAamiW1UywuXnMUYAMSwdc3Sm7GFu4qOSPz + eCzjZSe8VLST3zJN+scOvE9LW8KwOHLYKMx+oNX9fEGXxerxQzumjEeQRRAYtUpPOhc20jv3CQSt + DLCe2snwG6W9D5Pv28BV6nbNd7El4+/30VBZ1ngGx+8MmzpuiIq3EjEpUQVpWX+wJY1pw3Z18YRu + I2aEGL9nIQi8K6teetjk/oXEq2iYJcCn/R1ny7fwFv544WF+iAG2kkovJG+vV0g43TJs1JoTS/d1 + COC4fn5Yv5usmJV2kVGvH95kOt0tT6T83YXDOS4DtO0nae76St3iITifonxo4yMi8FN6KrY9mTTz + 9FxadCh3GOvHejDp7eJnsHuphCyvJBukg8Mi6FxahG3TihvBGtUAWAbQyLIPP2AN4Y3A4rTE9MyR + Q8E3j7yFwrk/kFWTenOtvAtBpowr8uNRUyzCSXRAPnUadWT+F6/Qy3IwDBAFa/F5FrM6FAHyMv+G + 8+f55jEjfPnQeLUskIJyHqQmaXKEHwGPHVplMW/lqIWUPxBqe11lrmg1Ulj8vi4+4+E09Pl14KDO + hg8+7YhULBv+wVf5vVAvuQsFW+yd9g9fL9kIvNnKhRY9zm0X7L7oVEyyTmTIMbvGlu/MzXKtlxI8 + /aLERodabzFtLYRO8wVk1uIQbIXWJ9x9q4Yoa+QCcTkuGWKyatHr+XA0afh4u0ge+YGa8S4tFluZ + OeTR5UVLuXswMVX2lvqElU6E/dZn6yPMNRoPK08DyRTjpdTDVH7Yik1Lf73ESx74K9zWHwc22Dei + XsaquksvAXXF+22o86KzgfOZomDE3reYd6NBkKxrAk2eF6cRGmMywKeVSmy69ruQskyr0btXI/p4 + RYJJb+VLhCzpM6xrvlpM8K3zCFUDwKdPuDTrZ+UcmBbQpLmS1cP8CWoDHvNDHCxT+vrHP8iSI5MG + P5R6bOIXAk5O86b7CNZsyb87CBNksuBy3RNz+RH3DU0leNLteQ+LNao+5F+fmh4+7sFbClnlwefk + QHpbeW2QrlOUoyIyDMI/rnHBLyR5QorpSCRfMJko2eMMN76j+8r7gGU3+RUMC48jLHyNxZTtXedv + fUmvOKvHXmTJYDIoVfAVa38Q8oG30U1fPng/7/Vi3n/hBUYvCVMrOsdeB450hrkmOAFI7knBh/jp + oq2xNFm7Yo4XLr5FsOd0is+kyNiIuY+P6vfJwM4TC1uf1I+DSJEM9Mqki8nW66Kin9rP1LcVwxOi + 3RKiafficRKNUSzJa/mGhxM841uZ4WEW2u8bPm9+QiPZ/3mbnhkRvB0/uNz4Wlomc4bx9/qhG14P + f3iFuqcy4lu11MPSGB8NuDdHpNWKi1gkqdPDM6kw+Yt/ASJBA5Zf+tQJPu4gHLldBcGbvak7RkZM + 9LeSwvAjPIlY3FI23hnk/vY/vj7lF6A7GIxQd/gZ7332LNiLKDn8hhOPb1eDG5aaMztEXJySpatt + xuNt8lvt1nXAkcfAVvNT1fA4+j1pLxz2JPHi2PD9utr4aL7SYnZi3MHgnWs0Fn0tFlm3V9HGJ0TN + Mxv0HXM2C6TBFDfHNWZeBTvloMp3uukzb/05uxY6NKzwDb1ObD5f9BJ9dkUbNIfCA8uXYw7k9RLj + cJBSMOytGwfNBPI4HnA9sOvh1EP0S+54048ejx4eB795rBFoPam5wtehhGLrFdSZJG+YX7PnwL0d + 76hjuQYQm88ug+eajYEC7A9YO6aV6MGkiCzGZyrWh2jM8GrPMtY0oW3GAw8sOAtRh91ixwYyyAEE + diAT7Men0ly63ytCf/yzp80QL86zhuBcLyP1nqNcTBrfuYi7hgO9LA3vsXAvc8p6ZDBgngfiNdqX + GfysT43ebpPkLXb89tH6+TLCBEjB+uCePjKffYrd1Nabdfv94MoTG3tiGw9jjXQZNuLzTA8cv4DV + S+4luJBdhL39CBvmsFeK3CE6Yb2LxILxRmdAUbkdqLHh/yTvG+Pf/pzxankzkiUX8jf9SjNKOjZX + GpthT42FOqYteVPZPKGSHmhCD/JA47F/fkO44Rcp3d95mOvgSuCdHE1c7aQlnvtJE9EfnnkP+e4t + j0jOYcNuMrW54QqW7n4g8Ce/bvSOPhe24hOtoZL1NT6+e56NNTrKyr4+iNRF/YGt8z600NeLDBqd + kFtIFaEW2B/zDB+L9yWmG38hyasr6uhYASvCy4im09nFxnHYe5LueDPowvVG//B3OQg8/6d3SLs/ + pfHi7/QVXPYhw17+0tjM74QWDioCwZygYmDi5y5CXJ1WatRaV8zHt1vDonGu+HJ474HAuUyEk0k5 + ehC1lK31D9TQaT4A3x7irWGSGI5w9eWE3oj2GdYi/vJQuf6egTRxtceuuLGQpKMoUM+GaLL+cX+q + 9/hRU+8zN2y7Pg8aVsgEni6uyZ+WtgIyQhrWbWkdtvXVYKkwg2ovnxuIbYY+OA6njhb+Ly/W/qZW + sP88PvTQqWmz7sJUBZWez8HpdH+bix7xBPZt9aXO+5WzH3g867/8g0YLHuIZ8okIxJW7UNvVl2LS + OvsNuXnnYQ1kO/MhZ78M0qFpcMCF1iAkpySEeC1fRHS3I3i6cizB7V46tMDGFK/tfYyAUK8lPTxT + 3/zTu9B1jBfh3tbbm43tLfSTWK749FkPhTD14Yy8Rx/gI9zJ5thvkyrr+xxgx9A1b725nwB6FjfR + 4Gh1xXrYXTQ4Nu8h4EY7AyxTzy6qEXjRkpfDYukzeYTNj2bUs/YU0D9+29b7b/3BWi2vEi1g1XDy + AkkhdWmkwics9e2t7slbLudzhvq2/NKz0gP2eURyBjvwOWEsJMxcHtGcI/CsHHpObaGZd3uBQ3/7 + w/nEuily5VzB/FZEVGtD1yPzw4tAygUTaTa+ZCi5zDBtGh8HVNcHUZnSETo0qsjuFmoF/zPyFeRF + /QuQdjXZ0vsPFzJHelBdwjGg6kHmobAs+T99PboIEdjBFmNvWrNhdpRLBseoSun2ebMM4JjCgOUc + DTb9vYapz0HpmyZYOw9iMUP+LkLq5SE+cQd3YMoteMMkTi4U464311Q5WWovvSF1Zi2IV3nJefWz + u7X0sJdbkx6opkGfija1nl7w7/tBIWYmvpfcGC+teB9hB74n7N7ExVsvUewCR+E0Ih/U1fs4zx7C + 2xHn9GQ822LlFW1Fp3KO6NU8nRqy2+k2Wn7dj6ZDrnnCR5CfMNJGleyawdn6wjMCFz71qC1rj4G5 + cOCQ77c5PRgImfOd8RBOdRfgi5/p3na/PGDvX4pL97c0v+wbrej35M4E/cXj+YwtuN3vX74yjMul + TiHfjErAXeKhmMcyC9U5Mra+1lUVLwLvqvAY908ir8cQkHLS3D8/gGq9dmsIifwafCS0YP3++Zms + Phv2X7wG84yuxRJXe/7P36BXYNXFKigTB5QmtcjyKNtifsnPFlJdsjY85Iv5csMQZvSpBrRNtUbk + LrHxx//4dKbHYo32l/zv/4OPfBDNybKnEsjv8IW15nMefkTDsmqzaCav7Yg4XeydIYv3b7jhTTTQ + 8/tUQcuUDXof6cdcgg+YQX7e3anpeUU8c99Xjjb9iXH6OQB+Nr8lpIZo08A79WyucyWCm/7GutID + 8EssSfzL77AZZb9m+ovHIqsEgpSYNpsf8QRcX1+p4UULYy5sONAx3cSGb09mh2TJgW2r6sG7fusN + 71zNGR0LK8HVD4nm7OO7CI8OxwUUfbN4/by6HGr6ycTnR2nHwnPxZfj4eTPGUPMafv5BX+6Uu0jW + WnMK0RLPGbrH9zoQ008BRteOAyjS8Ytv56GOVxL5TxgJFqCnPI7B6BlXC9r9+Am29WYL9/5qcMNP + Anuv8bbDoRd4ZZOFtY1fZnwwRojU+0qDt2WZ4gE8ZAjiHyaLd7wCYa17EZoJx1PnZ4YNqQ+1CqWd + +iBieTeG9m5IEfCe6xt7WvKM57EMo7/rBdTmsdn1P2uE2O566tpJBwYNWBCc8h5gXS0Nb1GDqYfW + 9H7hQCGE0V8lX2AVNXuyw53rMX/fdihTg5LIU5Kw5WGnPFxDx6DFKr5N5tbzjL6Z9wtSuRbi1TrQ + AN4fzp7uPco3K4msGiZnjIIBG6eCTy8zB6bfXsd5cEUDQ7dMhog3djg4dxFYHT/i1cfvOOOSC3Rz + ju+WBYWF5fiItR9jm/8HI8elAaf4ijmNt7sMeNe44eB1GwZ2XxsfJUQTgvfjGserd1dlGAh1gn2g + R2x1Q975+31BzCeNuYi6TiC726eNv95/+Zar/la73fCjM3uEF6J81lqjZlEdwVznS4T+8l88vzJT + qDo3gmdRz6jZelePxdezgbb4DiAvz/Fyvx4ylJTyExs3fyq23iEcTJuXjw/zwQLCarEaBusNbnhp + e3yWVO42bVrE9ovnwASFRwsuzNfxxm/xjJ+CjNTruKfJXjSGOW3tEb72hk/6d1PF89t1iNov7pF8 + bgc1Zs+7+IR8cBWwvg/3jPLGU0O7WSP4OB6d4p+/A+5BQRalL8DyCPjwD09x2nc3wN9hlKO1bQXq + C3nrTZWO/vmpgXQ7IjavuyyHj/O7w9c1PMT8Y3+34Ob/Yv1RtvGMHh4Evyc8Y3x8fIfl5y0QEnNu + 6J0ibujrH3uCKPjWVBuH1Vy+L1NE+miV+PIFiBHzl3fwaq8yWT3+0PDp+ozQL4knavj2yZydx88H + cvZFwYYvYC7P7xTCsTjj/eFO40Ufvyo0Tem+6Ten4FGjWWhvn3f//OfVA7X/x7eEuy5CwTa+Rxt/ + 4cNT1lk/DVENUj2sqa3fWzArR/cN/cuxCY636eqtgxxwYOPX4PMIISB3Qwph+tvtqPkIbsVaTpoD + 06M40v3eKuO1nBwHytkH0WNmu/Gyw4n7h4dUDywNiE4baEBIUEP9s6UMdJizDMo9vWADQDmmKLms + UIO6FNBJ3DULvXUB1PnuG4D5fjZZYRYi2PQFNhOz9vqw6nOw+NL8bz8u3e8XweHdONTb5UEznyfY + Sd2DpdjDxlSw0fU66PvvnD5iFRcLvT0DJFLypdp4hAX1j/0MjkbtBUocUVO0JgDBlR9teiaINNPG + V8rdqt7YvCWHQqBnYwZ27RZ0/3OaZq5T5MK7cT1hHSZ8MZ44x1D/8l0sfMxByPlbrT7qEVHD47/D + bDWFBisuBUSy9I6thAIRMHGeaNEbP5O8RArBKlEXH+UpAmy6uhk8GdaCbzxq4mnfiRaQdUMI+gMU + mtm1iwC6e8Wl/tF4s+l7yDqYRrlEXXHqvWVyHAce7GdJde94Zat3X2XoVO7x73maq8Th6I9/sfP7 + 2MUcLvMM1Vf+odZ0JoAF0ZSB/HaLqBc8pWEZpZMP7rs4I8s6VaYgwO4Cz/npFUxiJ3nrptdhywP0 + n/yZkz4ZfIf+Qq/UVLyFp6833PZDIF6vhsl20Cbwu81xtq77wFv//PBlDXjszZPeiFnwS+GFBTo2 + mv0uXup3WEGzLL7kCxE/rMHRDoA0MScAm3/P1P5YAmWQA3wuXN3jraYwoCaNBc3erxyMfOtmMO13 + Oj68uyVeN/8L3t9fKTif+Lkg02kI4Ct1Xvg6lWO8ra8Dp942qUHtbvjDI9BOKU+D7DM3s5icRWR0 + ZktPze/dfO9h9IabnsXuId+BCeqKD1XzfsVuntnsw04hRJM5caRWmAD+8hEYf5MPvT1EpWHdCZXK + Hx7u3+0JMOXuEmiw0cVFck9i4oE6gMn5hKh+ivJmrqrGhqRz3thoo1PD3tqthjYQVbwN2jQ3P81C + DheXW/3h4El/69ldsR9w1mqaonFwDZD3zZceh2QyVzpIBDbO16SaqNeMunxQgy0fClqJ5N46w/WN + /JFOAU97ffNfVgPmEXwEcLx8QNtDzwavhcuoY3YjmGFe96CDb4xP84MfSENKHjzbA8QWkUHzI842 + l/e0PfWVnpp53YWZQvE00oPresW4/Y38NlLxv+eBmy76Ww9svq6l95dfqJu/TrjMVNl8uoIIRlx3 + wNFD2g8ifOEKBu9Mw5eIdYyFOuSlQfMORPn4/ZZvPjU4fJ4ujZe+b4bNbwISB+7Y3Z35hu3rYwS3 + +8X42ldsvsM8g7oWtUTslnLzG9cAZj/7QB+X8lO0WfC7wPPx4FNjFTNzXb7dCDjpxgUC8rauwmUc + wDfFBB996RB3paRYAD8TF2tc3G194NsUlKHd0D+/YZ6y0gUPrYoDKHcPsMiBVqEUHlKCLrnO+EbZ + r4BTXgl1k/fA1nh2S/W1EzTszsYZjFv8A1JVFj7utq4bO+GnwvTIj2TlpFcxht6owS15DZZsCTzB + LHYXmL8tHptSA7e3+tcI5YczwA+J2Kaw+UHwWr8p/su3qZOsBvzY5IiduX57y62perjhI3b3jP3h + jwuL2kuCly1FzeprZgv1+BnRcz/84gE3XQgHh54JcXgJUIdOPuRv5pWAbf9LP/6b//1Nj0TbD/y6 + cvzf/gqU+hWZY3z3LXh3lSt+gCppeOkGXCgLmYgD+WB4c6OcVuBlwY10Sd3F5LXb51D19VegTLNg + kruxiyC3P16wC14fk03BCGEQHqNtPRxzq0+WaJ/XEz2wpIrnP7/Rs+BEvhERwJJV6AK2+iI+lp3m + zZibAjjfqgVbxjOPN30ro5aWHr5oyqkZf+8mQwOxLjTb9O/65zf++VdbPbcgjolywPnfY6A2/gtM + vdgZIOfmBKfXw7mZTfjTgDF/ls0PToZVfysX+CmPKt377K/L886F/p1Q6p2nPdueXwapwdu0OtvI + XGdZLAH9+gecD0HajG9ELXXLV6kXvxuPtZo4on1jyfgq1mMzbvVZuItPQsD3bRqvtUnWv/oKtYpv + w2YY7X1U9qsVKOZis/ln5DMIVSvA13ZhbA690VDM3S/+86fNzX+QYcs9jti6BSH4w38AFC3Cx13m + eZLwhE9QvgI5mCX7BliuchdYHTkVW/e5HdZq+VXQJ4K1+bfPYr2MweWvXkHEv/rUrT1rqDX7hJ5W + +TvMz+9E4Ja/0uO235c/fysKPjX2eXn+x3fIvr1DsghZ2rCfrhsQOGii5v3rN7+tXq7+L0cKxP9+ + pKC65Co9nGOb8XV7KNXkEVrYjoHR8GnZEYhwW1Ofjnoz1c+TC035A6hpP3bxcgnPEdTMa0ugZF/Y + 3NlqBpdbYJO386ImCzzvAsNiyrH+8kVz4YD/BjApA6olkQ/mfGzeqCu7mB7jQ+2tueO8oQn8H/XG + 1fLoj3s5EFxghu9GtG25G0zVYGqv1J+RVYj9uLfgdH9jeqXxnc3nSY1gqL16fMR9XvzEn5HCe5j7 + 1Knor2FTvNRor6pcsFQED+z1PVdoTDmGnav2bH7pOeTQ7GMHa3jkiwW3cgSuia3RW/c04vV5Mx1w + NxUroObiefSz2iogzA2JCMLCm7Msh1DtTgmuwuQxSJdXkUJL2S80vwp5s1hWoCl6B1qijrpksubO + hZCUK8He96UXC4oHAxbvsqfJ76QXgqB3M7p2PKPnxtwXwoheEMbe0BNevNbxHGhmi2zfT2jZxJNH + 9KTP4UuFLc3xUgBJ+IAVWm/9i0/vFAwT4KUK3gQjxG7wlk2WqkoGH07RBSw+HZseHIo3GE1fw6co + Nz1xNUsRVr+7RT6d7A3ruzCeqGvADpvCeTewY3lRobLLrlh/iXrDmsYk6Ly+V3r+7iJPEKQTD1E+ + x1jX23YQj5pno9/kHoO/75t3+aTB4v9Iu5JtZXkl+kAM6JQUQ6SXLiiIOgNEFFSkC5Cn/xeeb3hn + d+w5LJJUs/euIlW50bjFbOhO+6Stf++D91Q6RSKTPN7y7F4/OOMEFQlSWj8h3SoMSTvD0ZbwlYSw + 5/0Cq2JSuRzjPgTIxQzGed++MjKfpo38bR8ZuSTJye09VuMAeyUamYdlV8uWqht5Dm8LOePLpaKS + IMQg3ZsjjvvZcXnxNF/kN7/A2MHLpfPhdjKRaaUmMU4NuItG7ELeBM0bX1b74hzt2kDGNik5Sb5H + OUk45DKiG8BYvF+0aZvTFAJvZ+DDYaxdYS/Jb7iQHJOzxRiZgDckQD//Six/k43FUVChd6mKd4Ok + RNyOTQUQSa+Sk9ZX3XhNPBNGq6+xaT1HjSi36g3VND3HSm457buso5cCTzNGZB3eEeVfaAJHyfD4 + wcMYked+aMC1lA6fDjtDE5TdYZFretuS871MNE67bBjY87gYZzJm7nJOr4LEN/WE9xN2s+Wg7wRZ + vOwcUuDrekH76bl2jTYPcpC1vJuZD2r/1nt7VPeI7J6zIlfMnq72mP35M+L2dkLCI2dGor4gCQ2P + k4ZTcWIRrY37Bm30ycfJ6l9zg55vIB+bwX669zSReqdRXuNPMDfo7i5dsatl8aI5eNcg1l02ZiTJ + q/+Oclo8EHci2wYwo/vEDbprNX/inSqnx+6GrdjUtJm9bhzoL6GDD4o+aNN4JCV477sRhKxduvxJ + tkN0j15XbD/8SZvzdZT7WynEcXB2Y0e3g/KW40vTkCI8sd18poMJthgneNdZuiY+A2oCTQ4D3pfW + gLroeLE3G0Z6BMN5J2nUem1MgHW0lm69ni51p9dT5gqvxBcty6LJEkUVOfkmIaGQnhBnE5sB730z + xk8TlBUvaaUj28+jR/YWmqPlffgkoJdPggvlKdK5ztgU2jml2DnzUjdZ4SkHZTK/ROH9xV3XbwO+ + CUeCY/7UTZnCHeXylL6xJ2ZtR3n/dgHnvUy/99NoY52PsL0qAlaen8Dln6Vho9gvROJuF1yRw2ZR + pOORG4i2uR66fnt+AYD0vBCd4il7nOqHJN8aOcA6bK2Or5mpldfnkWPYPKggipdG9CPPJmb8vKJZ + 9b8BJDVnkOQbP6lYRrYArTMn5J41czd7lDORN53v2DXI2mWsaG+UaCHFSrcJO3rMTA/eT2WPs5PP + oPmIr2+IPHlHVGM2Kd9Ce4SFmUwceknp8rc4VH/2RXCEb+7yzp0A5q57Ykt5yHRUdodJdpp1NJnp + ONq3st4LCjX7QlLPPCBRAm0CLeZtnL/NbzTvh5GBAUpKDj/71Iidg/kVn2TvXEW08LNbQv193Ym/ + 9mzR+8OLoZkyizgmT7SlggLgOdcaMR77Z9W8lSEEVrcsonY8dDS8R4z8PlU77OfQZMs10XWwz2ZG + dsVIqum2QwD1nRjBlpmnbMb5LYVoO+oBR3GY8b4qxmBsPx8c+OLV5TSebcB5wIPsvi+nE7XrSZDz + 60JGJLE0q9d8j5z3NGEff0xEo2Noy7wd8xi/nQSJAnsQ5NEaa+zeb8+uvxqqii7U1/DxbNraFJqX + Xu56oRiTzRJT4dGYsRxWl4gcyIi0QfEeT9k1hnhkfdPrxPpkezAH6ukXH+hkqweQ93laYic7qhmv + 77Mc8MliiF8ZG7RwTyWWA63QcOKc2oxnPrQFm3Q3EuNviRYHm6GcVfsIn5+N7YrHMmqlPTQZiaE+ + UI7MkQKCza0Cqyu503SBFsbXeV7PA7vcuh644tFZ8UyP5v3wZtC6nwSPm51L/HkI0NYINZywkllN + rz6u5TW+Y2Vzqt25EW72htFeBxzHktZN8vUVyz/7VmJjr/H7YQS4zNueOGkj0OWyowWwr+aKTT3N + M86flUTuNirGeKzcbGn4MpTtlg/I/e0IlDKeOcqfR9AQTbzp1ZQ3Nw6KU38gvpPU0fwwPzpc7YM/ + hsOeZnT/aBP0W298z+2Kz2+BDmgdXbcvc61roZwb8Pp3h5Xd3dDojmVHOOfnDu+uyxPRgpkc+UVZ + EixCL3bzXewE+C5ejBVRf2TjnCEPSNoJI8NJYTbNShJCILjpyK94Z3knMAE5mhzGav3JlpEeNvLV + lIWAf8ty9rMvyFVLHOVzQtC4No3BOz2FgSB8dXek56FAlnvh/vy/vyfeG7gduQZS7ITVMievBcIm + eBK8Tc1o1L5IlT9kG5Ldmt/EsH5c0M/+gvOyjso0+VoeYh6RG1dc3UVn3Ab0WvsQO9oEHaXerQfB + 9OWRge81a5H3VcCaRmkt6ew1+g6lAp5T2I8fT62zdjvwORTfu44DyV3ofPHdAHZJ7uDwRUp3WpZ0 + BKVTCrK+P+pSsUqQEU4ttnzh7tLsrjPA6JuGJHUrRnMvPxhJMSAmqc2wtO+1OpavW+FO9IdEXHos + owYsgSuxH1cUzQFHJ8jvmxO+cPaecn0iH2EsdINcPl2S9aEZrpL92JJ9ziI0fRpTgI38csh1E7Xa + /JaekmzU1S0QfPtdDZN9z7fSPpwD1lB9NL5JZMOY3c4//3UXhldDUOaLMr7R+pVm1VxtELjwTLIv + ayFu/rActH6qB5vQr7tJ+LLBLz+S/VSvt7Bk7AVKtFgj705qNPHlrgCNtzTsnb6JS2xbP4KqvO/B + dstX3bQ9vxi470cWB8pTRBPZbwtgKt7D2nQ6ojW+JWj8MHcSmDeDzt/m0MDQLAr+5ZPZvPU6Aqsj + xLisVwqUPk3BRdp1lOOgcKfWknRkvuMWq0WJojke7gCMf29J8Iz7aEDHKpbFujwSE4VIm69cv6CV + v5DgI+nd0hX7Gg7NeBmfzkVGy33+ltun6ZwJ1nI+m1kHC3Bzkx3Rz5c95fF7Cv/OZy8MczX8njfO + 3JZc6tPT/cu/vRzH5FKQfTWlAbsgNWGUkZ8+cUd3TtpAZcQCvhfmxiU0md5/+NqLXNzNLx9t4KAm + Ijara1xRRdgDej3KiITPz6hRvz8vkHzbmOxvXysSVFEo0ZpvgzF46J3YHbcc6FJmB1z+7bulkO41 + LH7ABYu4G6JC3zAekpzaJp7p1hrhKHuUuo2CSXK8ft1ZesER7XfBFMhXLokm7TIxck3vW3K+nY2q + k79SCeMsbIk/AEWzEZSSvPK/YIrls0uGfdEAfLYtTjfGCXHDFMVIG4cH+eW/GZ2nSb7VNktWPOd+ + D89nCezG4HEQnthqCcnsyGJgT+SA8K6az5k5/p4/strcaQMvGsIvvhFrcPxsTm2+QFu1O2HjsDNc + 4at3JWJedoWL9Xzn9mSP0l7SBuxe2nc3r3wZvWPcjtz3u3F75zUsaM1fxDCd1h2Gl1v/8SdtbUjq + Lmg20cHam2TlU928V0QGHeZDRvbHW1JNsnhwoBWwutrvi678LZVU8lCx3pWfbCrtvQkvr7ADdtiy + aJLj+wZJO54jhsHHUf846yF8alIGjTbN2mxMsgrzGIbjRstQ9uGPLSdlxtMk3ug02p+9//CjXxkX + 1J5ir4fr2Iwj7fTJXYTLYIN42NbE2/RDNhuCk0Nj1XviXsU2owdav5Eypwpx9o2bTXhR1B9/JBr7 + 0DL+cgwbNB43J2KUXI8mbvQYyfSCUwCxBVVPdzdGBi5dAmaxYk3cDvYb7s23wsr9Dutdc4cRGPHD + YvW01SMh7qu1xP+VA+F43bui+HgrYB7CEp/32Hb71lrMf/x1f8y6Pm9OHLh2omKH7m00c0/Zk8xq + AGzugEdD/fAEMO63Y8Bo7b7rW7VuEDOQF/YGfokWY1IcWfTW0au9YfzhORSI+UwKceijQfUfHsxn + iWDVxkNG2PKcoF9+8KrId/mLr3nyGv8Duuopi6WHgtx8BH2cxeWKFl9VCwDusmBNbmNtws/zCLyl + FUHp7dqo/6RaDIP9NIhZamW0HKcNB71z68a1dEXnZ2k44EI8BdI1oxqNuDqEyzf+kpVPZN/EFEw5 + 2z45rH6CV0d9UHR5m1cj2R+XPprpjSxoxU+BVCU7ra9u1wtsgX5XvPdGy/V7U+FbZzy2ntESjdXX + VNHNJtEornoSj4ODBGB9yXpeuTb0FOtAootLgvsjXEs2WQh+NzvYeBs4+vHr9aLUMWA26jNb2KC8 + AAliBSc7OFGR4GqCH//M7rdnNaeBIyHw6YkEK54Qqq+pyEU7ZeTHT+mXC46QKt4OH2KvrfodexTQ + nLwuI3qgr7uqOg4aEM7Hzehn3SL28oSeoTKPAiu9u3m4MzawbLmMrFvG7jxL2QZMUycjLxoSnc7b + zwWYKYnXi9ezn16zIHFzMIg3NUFFLlU6QiRaybhczi2iWjWNsMYD7GU4iGZGOZqArP0W6/aDuM0b + 3Sf0UY96QJv3HrUzd3jDav/YfhdLN7GbUJDj/prhVX/LBuaDGmkPbRZszEDsRs2zPBlGLRynW9JV + y9b9xmjFSyTg8VubtucB4CXUN6IMxVebbukxkX/7Z7+pHc2b+8dBdIcrYvAHxRVfYhxD0EcK1rzU + 7/jVXuCR9h0+r+c9//gOc4UF/+In72z2HJQ+GUaqd3U1hTst/MvnOldSl/QPXvnlq3/8S1xvZVuK + 0iXHbGBdos7gSXf72oxXKvHRtGWtEpLqOQbyOcG070jWgAZPheCT42ZTMbYMNKxFgsfj0VFq7FgH + /fi/98pltCDOeYO/CY/48H211TTwzQJBK3+xsnNIRh458wa9LAnWtHRHf/lSRvvlM5KT02Uj89gm + MB3f7V98pKXUpiC1nEawcdY6USu6I3B7J8G43MYRYTfyiPwosInfp2k2H+eh//kv2Z9eTTd/b8Ly + xw+8S36M6GkqSiRx/Y1YV5XQ+R6qIUis5GPdRElFjXpzgVOlbMZZvizRwpyLQgpO6E7s72FEvaMd + GvkwRxneIbzruNqxC7DdTUsu9v6FeiudYrlLCplgfdholNXCBvYxW2HDzbxKvFxYDm6O0mKTGVTK + VUehBKXebLA5X3aduOovAE54I/dt+o56dKM6XKOCIT7fAZ2i+mzK7NU9/PScil4diMHqGZO4kmVE + gh0EbwhL+iJ2A1utu5V6i74v4o3PS192kyWug6y+nzs2Dd2is13NAUh6/iShM1kdv1dYgGzj38bm + ewjQqMouoCQT+fEhX5ZsErVTIq/6b7At86pbuOfaArQMPlFd6ZzRFzwmuXfu3XholyBaFi0WUBkb + GLtK4UQ/PVq63eYbuRdTVRG5Hkx0zAczWLbcvluqMcrRY9vhEZX6lg6rHgv1/lyPvPRUO/HLPBzo + QZHH55p/aOPVPUzHusXWcK80mi43CcbXaQ5qrqQaLSf8BGK8eqxDPdM+kBgTlWV9xhl9le4PryJT + pxey+4YxFW+pGMBtaiziZ53RtcJNesNPD/NXvWlxrl/7D0+dSDKjgWucFgTieSQU9V02O/VGQt6w + UYn67XuNF9UmR29+AqxRO6D9uaskKJU4x0dWltwZ3gjg8Ml2xJjAiWZLdBwwKwJ4PT93SdB4BDHy + ENl92MWlHBWPIA5WHEhyN7qT2aBV710i4r8U66d36UgpqmSNN3vtx3cQG64dbMXNou12kAuJfbXX + gDNR0k1cCip6huo8dij+avMpxSrQzIBRXPezal6ujsLThyN2kUZocZs6hp8+v2vQXRu44aJDL3oj + Pp/zc9RkRaMjqwfzT88lqrhrYSf0Brnln2M1LP3lAudbp44bCb3QFI0zgIyUgKinOqgEWfM5cGT7 + MLb62UZC5Itv9NNTVC0qo3lTczW0/kX/4dVuERfN+51fcD3ehK5CxZkB23lFOFjxw0xKmYPysi0w + vt53GlUmeMJQ7nq8ix9KxFW3Q4rW+glxokD708MAM6ZP7DU/UV9YWmSYmxDnAVYRRcWdgV33jIml + PG6oHcACACXVsfa2tUiYrOf7x78ILqY1+Rw/z81qHzitj4G2XOAFf/aEmZ2c1ZEVplB1/Zm4q17c + 4156AwkShezquHH7tO9qUAQP4zzDY7TE86aE7ROFwdgOJSL88cnJZ7veELXgD+4kzetoeuF0Izfh + 1ET0UqU9NLqcYdUZou5Xr5HKrPRwmAbX6qenw8Wi55GmsFTTct8t8DwkNtZz5hn1+2xSIJerJ7ZA + Pml/+k6l71a97Om5XKv2DSDL3QZj+tIiYcVT8H0NHvGKsxJxl2kbozjZSb/z7Yaf3rvyvwD5BY+m + 1lp02RKEMhgNKkXTSXNakD2ZI8FaLxgoyuqf/kSscy5mNH5Eya+eQPaN61XjbrSXnz6PM5923fJl + E1Ve/Z8E4eleTen12P7iezBRIBn56ZGHW/kZ5Ud1z+j+bBXAvJwKB/DdZrPGqwto1++ZaGs+7Tf8 + YYFj6LN/eFX47jcM8J/oivUwvGjzNQ9S1J6PBbbqeYO+RRV54M2NQOJkZLLhYRITNan2wiocQ028 + rS28xPZSHJtIqGj/UXO55VA3covad4srfASI3G9LIkYU0bgwOEYqL9XEnlst68HIe4nQ1gz4Cdps + iSJfRfYzXFtDlaUax1EvkK0qB+wcescVszq9/PjaKPWJR8cLvBhY+dMv3lb0pxd6fmv99NC1AyEN + 0WYzoT/7nsSM9ig933riKkWbEf9qckgpHsm4zcatNgdkjLdzZZbEK/k3mt6uYks/+zar0ck4Sbjm + gEp7LWnvumhpOiOV78EjwGe+2lHxvIdWWvcncFLZ62bzUjRbwcQyDsrbzZ2v2yWQPRM7WA2bB5pX + /eOnL4yPtf7FN+hZww//pev6VjxlowOV9uNWbQM0tyell9PLrBFtau2Ky4rSlI2004hTfypEZfUC + 8KtH7fjvN6J9TmpY+Tj+PU+I580TbOcTYY+ogjtLWmn/6iuBfJjO1Z+9TsL5NjKrfjXHBpNC1+IJ + W5udHa32lQOrGxYOTDvUhA9TxPDaiymxk4R3yc8/tZQZx+llcN38+VwBHNk5YKdKHi5NpDmFKAgv + f/WXP72aNpsMR2u8oZvgpsMxxOwPL2uT6+MLVG6ej6yfqdmKFye04oc/vDzm+SGAVW/F0apPLnL7 + uaBwx+9wwFpst8gtuYCTSwkxpzHRuHzojqAl9p386hmTZjQKfJCxI5nERhGtnVcMN75IsMlcBm0R + nEe7LcmR/bOXRREETs4n+4CLQ1yiyZ/tBJbi6QYP23bppPY7SQ7lsB/nh/CoSm8rXOQtm56xczVv + 0TI2ogLphWrYcKdn1CWfJkfbm2gQfycTurD7FMDu7VcgXaeGfuXgVIMgUhyIfOC5QllcakmqMhM7 + NnNHNHC1GMbdmwk4K+yzEXkPVcbCNyTJNAoutcnAwcqHR+nMS9XE3qUc9JkzSazYabfqoY4MR7Ek + OFG32di+xRaR9Ctg25tytNhBUAPLPpfxe7noaLqddAkOcHcJZna3aPrSR7r9f1oKxP/dUvDIqi0J + vJGLFqm6SNI54cSxuH321ZxvxgDu0csmxuUwaPTrG0f5xkdLwAgBXy2egQVgwlAj/tcoslmPpQa+ + rDITq0nMSqBWEqPzvXTwyb2cK+4hXHOUhc+IWDk9ZMsjn3T5PdotdqLeRdNH8UrQ8sQPULqv3Ekf + NyWEn32C05HduMuJvR0hwbZFTg9bdUVdq3U5CtId2Y1FmPWeeRFAhz7EUWGx2fD4Ngu0d2cZzzk9 + RFQqqCrvIlvAVmLNWnMp5gCuSyCPwG7f0WLQHSOfFIaOZb8ZsyUo1RC6euHJ1U33VT9jSYUT4jjs + qtozGwdnekL78MuRi0vBnXhXnGB7uR5x5D+jjnuLcyvTZDZIqtzKqC+/+hF4w8vx7qDiitpiAcDW + 3R0HZfRF5JumBeCa+5Cs31ZoAuPlyUK+dUmezwjRduOHKJy3ZxwcX2y1vA+aKR9psyNZ61fdcCUo + QdpjDMbHyGYdd5NrR1YdUo+M3nPudOMPCai7xMVWLx6o6MvbEpjrN8fOQe3d4V4HMcrLTYJ1yzxl + XDWzDnxzQcOG7ffVIojTJE/bPMKZ8/YRfzkqTzmOVX2852pZ9QHWRpldekrS7/fiCptNyMntdVkC + GpO7y4dDpsr3RMrGrXX5ZvRSeD0YT+9I1OhmZpxSVh5Ee3WHd0IZVnzb702QJ1vF5yYxO1EXCg5u + 3XQmRTzF1eQYmwmUoeWIfuBOaP3ylIGx3SCMr2qCev6d2tA8GJWczwDu8D41jMS6jk6M22fQJiMW + PJljuYxk362kLbq9B0ii6Ik9dmtm4jBJb+RtMCK+9gLUS4Zvgy4mIVGmq5ZxSE4T2UTsiLWS3ivx + UN9DMHLuQHKd1Ss+l8ta1na1H0yv8zWa/bp0AILrGd/O7McVBmfzBJONdkTnQOmEKepSGJxyQzL4 + Smi2u3SCh6rcsX32PnQa19lbbP29k6M3m9FE6i0DPppDbCv2jc7L12Qg3j4NbOV0zuZZ2yXyUw0f + o47lNpruk6jA+bKtx+nZXd25jJVJbj+cicNNplXcNOiL3N/qPQmd1yXiOK1nIG8PBDsFErv+chU4 + eO40FPCGsnMXVYpboO+tSQ4PM9Rm6oIHUlJ/iNFxqit2U1pK58CtsFfAVE0viw3hxcqn8ZVNj463 + C+MN+b0aid4GirYIbVUDn3/3OETvoON0PaxhP0CKs+pRZROaDAfsI1ywDf03on5zfcL5DRviuZ1e + za+F9nJ/ZJyR8OutBpqbCLLInlDwFULXFU20DaVyt9yIpQ9TtRxmzMAx364tAkZUzdgZBDCAOWL3 + ym+ruQ6DEi7b6EPssrYzbglTE2ZqEaxyyKoEg+4BUCJ81/Nnu3lmTAmqXJMJvjzcTrgqtwLaZ2Fi + q1SATkojKMCGT4P4h8jSho1ieVDpr3Cs6VGgg7NVVPl2pxM2xYig+QtmK/MwOzgvMiNbpK7q0RcN + BdlJu1cnPM7yCMWGt4jH6odK4L3NAlPEHINpuq6UotzUIPLME6fWvozezgEYSHYejy9n74Pm07u8 + QEHvFlGac+XyZrv0strrLjkI5dRR46qbslfOAVbeXuAuoyHY8GR9jA97hUT08L22UqI/beyw2qXj + H5KZoqJXrlh3Pk42omoD0JQkJ97svt3pzs8XeeLMiFiv9p3RMzoX8jfBtwAdjqO7TOXmDa+mbMjv + fXmirl366tsiypNVu/kCZSH5Afcgx8PxUPFBL8HmPp5scszuZkc5S+JgS3gW73d+XHHzK1V/7xuw + /aeP5j0dalj/PhCr+5xR7qSochQWJFj24SHi3aA0f/kCK3x2Rat/lj97JL980r5umwBCHRp8Hi43 + 7bd/Mlk+Hd4DuNHMmI8FvsK5IH7aWRmP1UxFM6Iqdh1DrShnLYIsCX1Dkg8mGVWl2YGd29vkdHr1 + lJRDaoOhmoeAPfBdRO3D9gKz/xmI73xMNDuc38A2SV5BzcQl7bJEUmD4nN/EPCiSS5/DEsizkKmB + lGzPmThu/QswjqSOUpF6kahIVx0ewkEi2iXk3CnshRIp7PAgrloP3fTytg3E11T/y0eLXbQ6xIK3 + EEX3d0gYy/ApP5dnhRV5rjq6sSUA7qVnOH3LZzofkRLK+fBRscJaWsepQncEqzETvD9+Thpl5RcA + WmdRhEI4VstW6XqZCY/aKJzdgPJjE3BwCjYGSQ5K6lLr2juQhscD8bcM7SbjOtVykbRXHGaFXwmv + 28aDLlU4fPmETbQcZgtAMPKCFOqDdaeNx25AhzHEybLUnfjb32BgGXKWp487J2BfZC1qJJyHwRQ1 + pr5p0C/+Jruw0sRvesxBYK1tIB6NEIl5f1ShOXs7Yv3sx03rIyhJYBG1erxRs2ieBCyb3cneP5y0 + GSX4CC1iS2xF2YRo0Us6JBnDBxCcdcTzrKWAVt4afJ4uJuLr0Cxlrbw35Jdv59mNbVmKopgEfrXX + vucrOsLP3hRnu0PcFfr1It3IxPZ107iLHsaTrJ8DTDI9u2qzeLIcebUn4laPKppjVMZyf3vvx03o + MRF1YL7IhJeYgASxEJG0qBfpF2/ieqNoy4G52ZBgxxrr/aHNaHK6cmhPkwwHxqOh48FtU7h+csCO + tS+zeWYCCQxWZQN+OvuIO6pMC+ddIY6Uqb50mLV9DFyeWQFSrhv0Fp6XCcac/xAziK9oIne2hkaw + cox786F93EkPZdVlHIy5r9fxe/qqIYomFbvZvdKW9n65gHui7sg+R6Wj6eH+RgsJkqDXWb0jitox + 6JFP9/V5O01429MR8BvFxIZ+H81bP0/l1b6Cq384uevvITSaNAYTrcdoXkrOlkvlIZLoEsbu3O0e + tjzYhTuyH+yiyZumSfZq/YFd6/qMBv3mF1I+vFRsbK6B1ura2pQ6xWMAD+vVTcNZ72G+1jFOwvtI + p4dwKORjs1FwNLp3tDyW0JTfl6UNZuk5ISKrSgKCwxXjEtN3NzudJIClf1WS2Lexmpzp0sNpmMs/ + fN63VLzArnkKxHg7l2qiL8lEvpCFo7jzsm6Klq0C87Y/4fu6H3/5l+lUjSjDUGlfet2lMgePtQS8 + y1xKsqUFJ9Azcr88uoqKSunIebd+RRgGYUad4yFHlsWcgg2b7LXlQzchBIPMkPuc71z+8w7eKD+K + arAcLTPrHyZrA+RFt8Z/MxMj9tDLGuQB2b3zyaWOoR+lu6jmI3XPRTexzDEHqNA1uBeXBA27eUjg + dllbMlb/7r+2eAFafeh4+Movd8U3KhqjIsA7g1ZoDiTF+cPX7tFSES9NuxpS/dAShc+2tF94tl1b + BG0cVuVA6cP1FXgodEv2m0xxKas2KRif+hhwvVRmyy2Ra2jy9w4779yrhuOA9J8/kv3TcSJhNBgb + BH4siRWGBuVuzpzC7T5PxMf24o7KFmppvpzHsV1LzJR1kAeT0rDk7jaCS5f1Il53LAqirvhOzPtU + AUY2p/Hc9kAH5EOBFqyfyOmgP7pZ+a4XO7eP+Q8/0bw/KlAkzXVkTq99Jjr+Xf/xMRx99/uIvjzD + AWc6OPiw8iXKXuwLVI1S//GJOdaoh/SgRKSgTz6a8807AGzSaJSXG1MtCo7bH/7FRmFvslm1/Ava + bVoRG44q/uyTA+YzTtiouU1HTN2zwR38zZrfA215DqcRvJIGRN0Fs0vjeLv88FVAV77Uompi5N0g + CWRdLyKPy9GD5gEqOcpsES33PFRl1QVnZCVuF81ykJfwceQLPhPV7MSnlh7RkL9eBH8m0R2+FHFw + +FwvJG4DxaUIBg4+V7XHnnmqq+nHb6p6OJDzis8W58Ax8soXsDF0Q0XdtD+C7uKG7LQmoPPHRhzi + GV4cZfMgu9O7rXMw6pDF2S4YqmEfKApKp/SIDXGjdqKt9wEkoAsBm/Zl1p1srwU0HhLiiMLgLmF0 + s9FJD83gYdylqBcOxwCedyMg9tmzEH9nml7yA+Hx48sRnbZDAZle9WTHbkI6JfbWgT1/tX94taM/ + /viwLnfsk5nJpvg2mxIrJ8tqT+9oWfEL6uW1Ba4WRm1+xqXwh7ewXD6qiZbiiMZGCIgNFxaNxA3f + YMNtwUEv8Fkrn10Odo/ACShRuG5KNGGCfRSkgfCZpG6pXk+A28O+EEvObx3tN68EKkuq1vi+pfX7 + eWjlg+G1JGcqM6OX9/kJuus3RK/rpJuazaGX4kSfsTGdB9pzKDXlKYJjwCuuFwnvIgzhI+oKVm7f + ZzcPTqyuAyHe2MXg0/WmOEb2H1o4zm6LXe73foxVE3y+HN9a/xa3LczXd4zd836bTeJD5OCHV1T6 + sqK+7/UGDtbhTPQh67r5NtEC8garxJTKLJtCye2lL6vO2N72bEXTbstAf2+EH553J+16KdF9PNvE + X+ZGG4qo7FEP9zr4TPotm9tPMG7X/IOVqhzQvPXji9xT0w3413eIJqVhVIisOQs+2W3Wxt4JC+mU + xHTkXtcuG6UiKeH4+abYZkUuG4rgHSMd3VqseJOf/fGrFT9gSzuHUff1/SNoohkQLxpqOsvZd0Tm + h4vJgdVydynxU5L3dn7F59Gf0RTsmBL2TZ0SzxEwpTo6BIAfVYwNv+qrpt8eOFj1kWASwqBb9gSP + 4Bx9AVvSdMuWle+j3/8fWA20mVx2R2BUj4zsN11nM6942eG/DgkMn43oGd1zGDcMxj7LF5Q6hncE + 75qUI7ry167fr7cmMp9+wkfhYFVCYU6KvOI7fGN5hk7R7aDCun5ioHq7+veLk70u80chV2ttHmRz + gR//dFtfq+aKLTn04/urf3fD73fHuvHEPVpPNH7oFMqtGhvE8MYzovTl1+ANd2nNb193joUXQNHO + lNiKvFQj702TXL1nBlunt4H4Z45asFpXI/5VOFa/+IYK/sFhb0rmaPR5J0CrvWC9N7pqcT85g247 + 9YwtPwSta41jCXlin/CPPy+b58TJnM6kODi99tG3WrIWfRP/hgPdbdAk6IYCtinPBK98d9pXWikz + zkYl+vXUouE+ZyXkvDYRQ3g+K5rta04uFI0GH3406UTqmZGP0VMhVmIdtHlPX+8fXyQWczhmnCCI + 0y+/4uB0YNHERGmOOKhs7H33L7qUkir88CGOsozVJvpadLi5TYKVMRijOXoYADwjiqO46i+9JLKb + P/1KqUofibIT2fJDmbfEYk1Lm1GV59BuNxTvV72Nnu2+B+ueqVhH8Vmb+es3B1tHOlGifIiG5Rsw + 8P289aBL2zFaHi9VAu2qStjYBk80icRXf/EdZ7WoVX/8kjkm05jsaVAt18ppgfjWF++7p1P9+IPs + ivIW66+rm32YQUkgujoq1ulbycR5XnrwBDcgOuw9V5Q5akJN1Q/eD9fEneLb1kSloG0Canu0+rxF + 34ZA8xmidljuFk689EAflTmu0xKjVlGtHA759xzw/DDQGb9sD2QjVLBlbVA1pBvTBuW44YhR5DvK + oyrOYeucGGI0p6GjZ+WwkfVtKv/8PeOjsExkhbeexCchddvLRq1//Ib4+2XRZoybAG6bl4HzVS9Y + 9R0AZwM3fIxuZiSm3QxQ5wc2gOT6cv/41vZksas+oLmTP4ccnPFlTwq9j7UpTwVGrlrjgO+HWNFm + zRpy2HRFRZxAPGvTiR5Mua1LSu588cimwhAV1LOTSIJMvqMpxN3yb/+jfE/JkB3f4B9ZIEr3DFwu + 3c+hLNduNqKc1yJaj8cQFY80HenD2ruC0FZv2XrcprEbUqKNVNi0KBPUmKi3ZHEXLq5Kudye3UCM + 54M7iv5FgAbd82Bz2EXrYKmjDfInH0mGYaB9EXnBj28Gy4itaMw7vkQj38I4bq7taj/TW/rhOfOL + cDfnkd3+xVc7LD/0e2OUFk7dSLF9eTYajeN5gXmEeOR6SYkEi7Yq5G4aj0LQaNkLv+wA4gXdsf0F + u5scY1qAUO5Awu4ZaHyZR29QJsbGZtBU0RQjV4BxOX2xdTQm1FfetYbmHKz6N5tVvfl0U/h+ap3c + a71E9Fm+lB8fGO972mmCaCc5HF5JR2yTu9HZx4oDL/6U4JgeBbT8fj9OyThuVj1xOK2z7R/B4OKd + eHplvXRME6iW6TUurf9x6e2cmnDSjybGYuRl3E8fve2UXwmUqaYXW6fotF0ssubranp5c4Pel6nF + Nyy/Uf+12RQNznMTSCexpLM07d/IRPJIlJwb6NJx661px6bG6mQeKTEexeYf/nX7nTuFVgg//kv2 + tHYovaupjZbLZ8KOcU/ohOQ0RuZSn/7ly+68d9CaBojrGM9uwvNm86d/WfoQdtP2k4bQ1Cr58VEq + bGmRg6LzJTaXRe/Eu3wf0Zs+u3FSxV01ZYSRJEPVDyQNkg7RN3sHtO7XyP/irVQgBRXKjhJjszb1 + KXzRww+vOAYto2nFe3J37O0Vj+oVdzgL9c8eRnGtj0z9rh4hdpMpECf9FtF5XkYknOo7PnztKaPG + 2JvgUuFO7NArsskmmwZiW7thExxD431sOwhttTPRv5JQESoNbyh2xyv2892n+um/UFyIGcCKh2nn + D7HkjWNJlG73pIO3LU1ZCIM7cbuq6uYfnpbAbLDzMPtqWfmyfDhql2Da401EPk/fA9E1y5FmGesO + z7gR4N5pPFnxVrSIfshB/1LEUYiVCk2zw7ZIaY4cNhW4VnRjLwwMUeARfE3KaBKvg/qrB/3bD/Et + Begp2098sO+1Rq/J9U9/+p0/4h+sMqGIhwnjNR5x/Dt1YOWDxKtmI/rFE8gXVhuF8B6goVqidtvK + gYnN+rXGom0I8qqvYvxNFcoxpnEE7jHbIx3v+2jGL8WD83ioyV4IO3d4fMsF2venDIQPJlFfeYca + OadqjwNHjbWpjutUvrXVPDLifwAAAP//pH1Lz4LAlu38/IrOmZoTAZEqesb7bRUCKiY3N4CIgIi8 + Cqjk/vcb/E560OlZD7/4BZGqvfZaaxd7q04474xTALnP1yM/f3E5vwsfSs6pwM6uHNMlD9sJauDZ + /cX3uENMAwM9Gwhe80NVhp6Swzivmq3+pKTM53SeROU6uQSXU1HNC14VeHxpDT5lZQBokA0FkGXD + JnaaO+46OnMBc2glG5/6VD//E9pPYGBp28+cpOAM6mgV0QRqtp+368M51gdy1p9CujJRX0B21vK/ + +Jxul0sMY1gLxJw1MV3NJuPAvg/0zT89giG2zwjuO/WJ+M1vXqt3B+Ft37roOPAOWPIUlPBN/e8k + npk1rf/qcdkEiOO/CrrQu50A/djtN/0cuOOW/47iDqRoeYGaLuAEs+Omb1C01TdW4sbNr34z7dWG + BWPVSQy8Qw5i7XXr3VV7vKCY8wdz4s4s+tPnYsbKM978QpUW7W2F8+nWI3Gr99QbPsErNLhtsPLF + pWo8KHCLB4xfsdSzjzTMoK/tWrzhXZ/J8ZxBuq/vJOvpu6LjLNRgq18QZ9nLYAafNRKRbJ8nUCuI + stdzkYubXzTtD8yhJzfpzkPtsv8iv5cVSsVbEYnh3VKwX3NIZVy0vUKsXEPsPq5Tv46t68NAz4c/ + fbco2ZjALmWf6Me3x26QDZELQg/L2NVUepQtD4yr+cHe8bS9wrnVT6W+NsnjK4TqfM5mKBby/CAo + zZh+LXDHw/3cGfjEPqz0IDJAE9KLEGJLeEXhODxDCDe/CtuJtXXxC6tY3PBuOprHqJ8vjcrDXPbv + m579gKF9HCLw+pTFT5+G7c7Q/T8/PTjTjA4HcpLA5mdjA/ZzuvpFF0Eh/kbk5x8f+KvlwMc1vpHz + E2sVo+9zC4jdLP9bz+6M7wrQ1nVHGngULuyLCaAmc5gYRlO5/d6hnviIHxrOHs1ckZN4LOGq5dep + ubkTXe6fohTjJPH+8H/z5zJRthJ2OoTpTOf4PEhwvTNXfB/vV5VGD68GhvEcf/XL8GDBcwR9U75g + 69s+3SU+NJrw80e8l6n3rGq+M+HnB+vseAKbXs9gVZMzVt1bXi0bHolLfJlI6CMKprgT4796mqKR + Rp1T0dNgptFpOnRDRjvXUdCPz//F38BxhxVGlvwg0i5AgPlKdf2rhxNF3OfpYlrvBhovPBHjm9Th + DJK3878afMD/z0cKAPrMRHHaji6vSIKif5jP2BBIqC5JpO6gfPLHaUociR7Gh1qKnsxI+Ip1l1K7 + NRKx2zkmQYlTABLpERQnxhixyphKyAzmvYCc9a0wujCZyrhBGENXZjJiBsRymdgDA4iucYDd1Gvd + JVlyCJKqmycOCrU7TfQUAMaROJztCtLTHSM2sNkXiJyGy2drHrKPYNMcTCLhaAzpuJ+ReDbuE7by + +ytdGvRWxFkzTtvsjpiyLowb8XWvT8THEUpH5SlfRe51/WDpYt+qujYvipglOx4J9lgBtowkD+rC + C5DLqZGr7qS2HeRe1wrLebuji8+xDnzZzR1dwnSbVXTjIxhySYkV5lG7zB7mBuzeD4mEg2mk89Pj + J/jJ7Q8SiAfU76c/FOCzs2/YapFZUdy6Aizb05VE72btab/nobikyYOkHSekM/s0I8BbLSFK3sqU + 4/zLVURS9v27Psvb6hUSzfhOA3N5AqY1w0CMw34miv+I3HFny4YI3+C4rU8ZLqJtR/AzuU+sfZtz + f3BbvYNKVO+wBy8AzLy8NjARxIwYN90CZBWyAr73RYcdfWwAfWyzOx+rLxKvKw7VOlxAAK/Z5UBu + RY1StlzCTIy42MBX25cByzXPBmJz0bH9Gjkw758KA32i2+T3+Zx5CxQTQSywwQuNyiVpNEHhCSt8 + v/GnnvXv3xboKV+S8BpU6npNrxmE+cdD9A5BujrqS4Cjtw6TQMqC1qLMR/DlHw3y2N6aXc73VwwX + QeaI7OxO1aI+bU2cstUimdffKnJuXQf89vfl4t/AIdfjASadWCPqm0taD/KBgUNGtWl/ymG6WDAx + xCHSWWwjta4O5R5C2O6sPQmdoFXpXU8GWMVoh72op9U81YMEIHpH+OoJd/eQ634G62cVEGe5eeqc + e0smzn28kAvrO3RZelCCyhccIpe7sp9OaivAo9VicpNqmK5OwTpQBcDA6LP/gAHISwOepX/GueM0 + YEZkdCDGOjvxPgoqenKOMbhn12p68Y+nOo2XtRC9+XHGNx7BammXeBLV/hiQ6AyrkGnMKIDhYyyx + GZDWJaj1EjBFhjgdcqK6zGT6pVjHqCR6n776+dm5O7BDdUGcg3dw12jn8oKq1RNOP16lUsuhvNiy + T2b6xHWQciU/IMg/9zeinaESrvTCK6C7PCwcXaCcHpiH5EOjqyps01KgBDtzB4dh5SdxvmiU7VCl + iOFpnLBOdR4QaawYURJ9FjE2fKdTuNM6sW5RTux9eQFMSEoBdGzGE9f0fHesUaOIr2Ot4xtEQrV0 + /S742//hEXohddttls+I78RVvdA9hPolB3L9uWLjqeuUtWCgQf+zXrAh+xrgytTfwbvaF8R53ai7 + ugUjAPdo8URuWmF7C2InwN9+cSvv7c7bekHe6rbZjIsYkrJ87cTv5PRYXaCfrjyVFVEgMMUZ39fV + tFJ1hu78HInUR2V6OLeqIz7XQN/iL66YLV7FyziVaHdhoLoWaeLB5lnm+O6oZn+Q/biBrCAZOFDa + E6D0Rgw4uSlLPKE499xK3QKeTCoSmX/s3TVJo1x8P0sOuw2XpusjTT0B5m8PP4/bqT9vhzsYXxSM + 9be/AHpqvQ7aQukS6RY56eLe+61R6Uee6DVQXU5ukhpWvoCId+W2t+o6N4dTmo7Ys3q+X1o0BPBV + CDtyki53yupPy4BUmXJ8QsWnn60gSmD/zmrirtw1ZLinwYDXt7bJ1dQxmPb+2YDgCVVUeo/tVKO3 + ItFSkYqxmFvhunP2/O95T1yod2AJ70UiZuv5jg5anYTsth9gsNdO+JE4W5eXhyQd12BYyS2rcTo7 + QdoCXagAlkRbr6g89jUkfXrCVoT8PsPBuYMPYWdNs/1UUmYnz5pYWrjEtqFaFT1us66UR3Aizvu2 + qH/3OwwzJPfTmNM577Qc2l2J0RZfKltEtgcP5ysmGtsM/QJtuYasoChEvUAxHZce+CC8xis5HfYi + WPJI3on0dTkgfkZaz2TeEcL28oRof/ueVJb2a/GLPyRmFwS263HwJQEHvTZ8mbPulAsH6+sicmYU + l+0W3xOTTmyJtNst/Qzh8wrbK3dD+33Ipt1jJ1ni/i18sWfLRTjK8BFBBYBm6nuvcJmkQwjiwzzi + eFLDarlyQgwS9avh644s6qLeP7Hozo8RAb7fV3PiCRAaIToQ5Ro8XcremgauaSJP88sO+vkg0yv4 + 4NLBkQ7NkDk+TzU8WL2LT9blAKYtXmAPqU+Q4ViAbZYzFB/dLsLXp/4GzKeTcujf1hfJGq5IGZt8 + LHHjN9h/2FFPfYdP4Ae5PVEkKlPutlN4UbrAM7ZihPuFs7UrzIRdi2DC6SmbRQ6EyhjYE7NPL1U/ + PVQf7C7HE3HEm6XO707Oxfe+nPCGb+nhpD8hPM35suULvd+eh3N8lsEZ53h/Bqx7HywxfJCSaOky + hMsXVbN4KrIj0U+N3LdvMythmuwjbH/4T7+YMKmBST2Mz1u8TqeC8uKzOK7knO+0flaCmyNaGzM7 + FRePruHOi2HEygTtWAa5KxgnDTq23SKifq/qhr8BSKqWweeCItoqt5kR7bsLp3HbL6P2tBi48SNs + evUhXJSnHAFT9Z44/vGtMwcT2OxciiX7WaVz5h13cJc3EbGCux6O1NYbIf++H8QrOTldonvrgEUZ + E6Lfti4opgMt+L08a+zePEedjlQqROfrxtO82wU9pxX7FmpRYxBHvz1VCpldDSMjybFZ1FM6S7dj + 88ObrYuCEVL6kFZwfO72RG7pQOfJjFe49PGFhLX5TQeXNI5oC4WLYNGjnnl6/AA3foj1vb7SLV+1 + 4uUtpyRRSwaMW/zAdA2P0+62J2DhbTWCb459kh9fWc1iFwPaqQrWj74F6Cw8CjB5a4Tx5/t258aM + fOH3t9ndD+GyayIDJLQdcCTDLqVB6yRw9LauH3lR9DNXF6VY2A2LxLyQe3a2TQOSSHuTB9gDOlMZ + MkKu+Cx5lM6dLvjexTDk4pKEGx+iYSsLkETGiyjx4+wemrL1fn9jxyxXSueHo0CfmCeCPvsW0Fz3 + cxHcAn6Lv7077J8OB03hpZITKqxtlmF1FVdHnbCx8fNe9uMawpufkbvJXypCHsosstZ3T5LzKAMm + 7kwEp0iXEZBvurrxM178rf9trs30j19v+EDwmJN01lmn+cU30Y6N06+/fCFOzYBVsBzD77HJr/B5 + /+jYqHQVrF7BWPDHJ9Ym4N31QOUCJt2+xrbL035N+Q/64T22HdXo2dO9d8DveUm2Dft3xFEL7nWe + xeEC/XBd/GcE28k1t/iXwIETkhWw55uJXls8TXH6yOCx7dSJXXyXLrsm29avG4jKmHI4r7IYQbsr + 8MSmqV0xocfC49EMedSpJQXkVXbej+9MBwblPQXMXgM9m2Ukg33ZU/Y2NfCwFz/ESHVj0ys+B9Cc + 3zHWmY866WqdQBHVkNy8+hp+kvKN4Bb/JFIXLqTlntmBtZw64m37+QAF3xev4+DgS5q21RB43AQ5 + +UqwUjxGdZzQt4B6tQ2+x9G0xbNdAx3wiNy2/bl+Lmxw/F6eBfnFI/fihwnyRMQ4m3urPzR7ikBa + dRFWk0B2D4JwlkRTRRU+XYt3P1isHUFZ9B/4ec/5lPrOnEDIHrchh8XQr0V63kGdnlSif/2JLqRn + FLGbHJdcd2R2O0PtefjTLxbgk2odKApgyWM0TYevoI735ZlBfi+aOKlKA7CHfp5hd3loRBWhm7IH + 29PgVGtHEkAThFO8UywxVwIWe1PBVuszTfKNrwOS6jdV5cr0jETCGGfEQUFTx2pJEfzqj2ESzmNB + 54h08ZbfSiTuHA+sh/HDAFIb941/xoC2j9MM9BCHqN9xS7oeqVSKpzlbiLIGgTsm3JyIrsxlP/xy + V4Yqs9gh54aEj/dU5yv5JsB+sdoEhWLpl0fk5GCozZGgN3NR1/4CSvgQoEWcTd/MO5hfhfBpyJul + z6erV0AHJlU7YxtsXTq6eizAwfqaRLm2782iKhm48ddph/cBXW21S8C5SUvi5tw+HHZP9SqQkuwI + uu0Rnc0g46FwCLUfvoZzbt5muPEN7GX93K/ksswiMM/SRN+Q3fhh6IkxjCiRzGhJ6aPsd9CsUEh0 + u6n6UX4qhoiK/EE82Cs9s4N5JGx8c/p49TX98X/4nI8dthI1qzq3gJ14ulveNAs7WhFz/Bqgbr18 + 47eZu+nlVgDTu8A3Bu0qKvt+89P/6DVQB7CMrUd/93s/lEdKfnxX1t7llu+Zfn6aNx9W+1eJLePe + pZQR0gJGF3mP2JMPwCQ3QSP++MjGv6pNv0N4eIqHDT8Dyv34+RKQAEHmsgdf2Dw0GD41mYSeScMN + TzPg2da8+Qtc3746ZweEPQyxsRLOJUfh7IubfkPvo9/S2SKfbtMTd4JJmKXL0IsFTGnrY2UXjOrg + spIBkbk80KG738K2MK+zMGZrOwm991DnQd4z8Pc88CVPwm1/NOD6GBD65KR0v7ONNQHvzQfB5jdy + F65fAhH7mY3jQN31i3//8tA+ugOxatRVa5pmCJ6+jobxPmRC6jlHHi6dusNqbVp/eg1eL7KJ2Lfv + 02+2XBGsJD4gWdGTfjxzTAJf38bGCmot2vV8m0FLKD+I7XVAN/0ai4NmitgLODucqtQfBCUF68QH + 9yadVVa9gu36OGIbt+KuBW/BH549v/kSLg53SITLOJTEOd0e7moWXCyeiTESM6txSPXxy0FmuYXT + Wj8GddO3EH6ehUIwDZP0+4qk4bgGEzexti/S2vf2HpgYbSSWc/+mM62/M2z2JcIOe3NcSoVMAvvx + dCfO/XZQF+0+/fREj927HKVsys2OeGWlA7Eov6uINbYN3Pg4dkfZS8d6SaajUSGKlSR4qKtdiJ2A + pHzElnO3U4L0WyYo2tsgZn7PtldaQAyxlJ8nFugsoDuG5cBP76KRWdxBYxUG5mXwneYwcje+JXji + DOKRZGsR9fPLzP1jaeGcuEf5E865d/Qgu0QHrFf6k85r3QVQHv0XsUN+rjq9ORuwH2hMnLS0AfM1 + UwkOjPnGsrKbe7oKUXC8noYEn1vag3bj4/CDSwMHWz5Znku2gz//ZPML1O35M9A9cxEqqkhP/+Jn + 4/vY3PwLumfECHpfpyBe1vvVwD9PzLbeKjY2fbBmfLOV4G8HrEoPSWW4ugjghs9Eeze0Gs+RuYPB + 03igXbW36eGzFyB0vxbEl60r5vJZzkiMHqOBIxu+Q5roQS4ObKZt/EqqDvdy3MG1HCash+lYrTv/ + XIu/fIrwfqWrv9MFKO6aGgm4JH/8CHzfz4woZSC4i2Ar2+xq44IlNQrTvi6/6Bc/+Kc/lkekZOLk + rf7El+qhnwOPy39+KrGPY0cXtj8WkBGU3/qY4YETggKuwcDhTc/RUX9KkdjpDw97OaeFHFKLGD5X + X//jx7MZXCyx3Qb1qCMM0sNBCAKRbXtCrFWde9o+9EKstoI0+XwNlWOosoLIiBN8VnZ+xe39syYe + 97DHni7LIZfuLB4SRrsQrH5Zdw5J2Yp2UoQk7T1JXe/pAwlTbRynX7zPL/NaisM7s3AQPVaXPsvK + g7IY3Dc9+qBrc2FX+H0/MiJxu0tFi7Kb4KZv0P6Xr2y1TKBReXR7fjQc5adjQHxbj0hsLxZg/MDn + xW5nqeQh9VJFJ+HqC/IpWNDKPN6/eE9+v3cKoJmGS8LxMbxnUUXUjd/Tc6vwon20B8RFwkUdNn8X + rOvQTIWwY6puviwFsBY2JuHmv1wL/o1gVoYvFEdorqZrmnuwxq+EbH7njy/7YPOXiCvL+/CLOTEB + P71lpLoJ1v1Y12DLZ2jq9/rmD0MBdmy+zVv43tXlvtwy8OdHjDkKN/9jO0KXBNhLOD2k0lhx0JM5 + iSCR6dW14qsJqim4IhEVZtXt/fsVpt3eQofNX11W29BgYxxuW37y+tG8vwV4fSuAaO5Cwx9eQVxk + Mrkl5K2yXH+U4Bc5B3IKCqMaY27poCc939gRb6bLsrbHwFQQJaL1yztdy/SOwDYvCONjboer3sQc + yO3Pd1JRYLizGTwsoZT4CbuhN7jL3IMZzpp2+vk9Knu0VQPC6WMRdTbV8OefCPgzL/h+VeX+pz9A + VQgKdi63ozra3P7PHyPmXH/CNd45yTYITEJrF1zdxYRBDfcXYSEnziFgLCPLg9vznJbNX5vCndfC + wxKp+LE6Kxg3fx1CM6jxySnsnnT7JYenDx2JeobPcCWX4wx1ICCiSmaczpjUMTi8riaRWNuqGCjP + jGgmLxcxNE17rufbHAj7Hd7W/xkOTP3yQfMsEhL16aOn9lgYcPND0TFQy2ra8B02kwsmMXCeYGbr + YoZp1cb4xtTvcGX8qwY1Fyhonc1nuEbF3P7yzbS2j87d+OQKi2P9mFgzPVeb3uOELT6wJjZWzyG1 + TX6/f9NLXdVC+ahB8XJ8o53jGJQ1YXAFqdrViGuFwe0f+30GNn6GpdEe+mnTY0I0EmXa+OfWhS0J + IJqzC/HfNqlo0CqdSPr7aeITFfajYDsMnIZZwo+8eFWrtzNbcXGTFwJfeQqpIPgzZBJlIkZOduqy + 9usKtJQXyOY/VlzN9x4s7s2InfNYgA1f+WO3c1QkCs5ElyAyc8jz7Y2cZ9rSTU8nkJEvH2KWdyEc + lacdQcPlHZyVBaiWFtUSlMazPH3q2ksZKjPcHz/fiUynbn5VJGx+9LRk1KcLsBUDCmYYEx3oDFif + aZAJKsUAuxf5kM4oOPMi0ynNBPNCrLZ62A7OCvnVC8Zqnf0bI2zxgArWtnsuT4PpWNyb7yReC61v + bx6DoH+bHziUHpK7Sk1oiGO21pt/86rWk1q04NWe1s3v6Pv201nZ0X1xHpoX29lelfw6UHrvbGxd + 73VKnvtd/vN3CD7mXThDedGgrH1K7H7lU8rVqZ+LP77o6vIjpN/99orh17LwrahP6Sr6gQZtp0wJ + OuwlOnN1Wwjyw//ih1M4Ff3th714Ok/Dxr8OR+FciOMwZ1g/NWVPH/tDDp/HZhv08bVccrwN9c+f + JNKGnxO9zBKsrJNBlOKB3EW5fwQosVDGp/ji09Vo/Aa+G/YzjZ3DAqo4nPXzyxC4y5dwCoslgfch + Sqf5a6Nq9shbgMMl8zY9SCiV/JgBa6eWW31vSgc9ePCgvTIp3vCuIoJwl4StfoOeG9+lUPAViIrs + QdTMHMJl04PiIf6qWz75gtliZU1sJ1dFXVralNPVIYHH23nGyXhDKpss+U6o95WD/u4nJm0Hmdft + iZW8fYHBZiVO3PILvoTp2M/CU2N++h/Lsl33XVTwAvzhwa0hhbpyVJ7hQY5CYlno0o/3SPPEV4vX + Tb9J9E9Pb/iM9u+chutyOUqbONDRns37tDVZuYFYyk74l3+ZUxAkIu1kBV8tQXBXvTlrYqEEMpEe + dliNNZoUiPam+MufP72agMNzf8DWgJqKWg5oIQ2mK5Zb6lEWNhdNfLeeQm7T/ZquViHyUGWaK+J8 + 4eDO5yBuf/oNWzOq++XGLTz8XJkDRq/feLrW5CF+miOWqkgLD798e+bSnNiXMaHzbMYSFPN6RmJx + ccF63akWPCxXFdv38U5HxLE84NpviB9JofbzOfBbceOLE2BlO2Ub9JZEKXoLxGxrN+Rm/8lBJpFW + ctvwYNmpxAJsolzJL5+yq42M4+venDG6Oi9Kb3o6gClbPWL5aK02P3EWiXu/4ytH2I0/qwZkXpcn + lk7PIpy/9aRA06luBL9yJm02PBZlMXhMy67F4Odfwctp4P781+Fl5gW4w+hGnmM+hTP29gPc/G3E + zYLtrulOErb692fiC9T3c9qdIJzdVMaYfBX3j99OtcYS7bk4If3Vc+DHj0kIliTtm7Lw4GG//6D3 + Lx62+h3s9IdPpDSy0i3/BKJAdum077+1u2ZpuIPRiaBpqy+7NNAvA2yuh3AS3rfA3fj3TtDqWiHR + 2JCepPs9/F8NPjj+z0cK+FEJiGuX73BJIjYWq+lJsJF4PZ2/rbTCjIsgljtuDcd18Qu4g8tjqtLt + FBi01EYslUQn1kUfwzEowusRlOgwAU8JQu6G9zVsLOmCQ10500OlX6AY97KG9eT06jm5CSVI2xCi + 4xd47lqGDwPiQR3Qiu1XNVdrnED2mB3x7TU4LrdX6Az22ZOf2qT4uEt4kFcgppJLQn3t09X98iVM + BiSjI+336dIclwTKTaziE3w64SExVE7EuvQk9rvb9fOabiXy15nHuFgqsEiu1Im9JCtEuddsuvJv + y4HtjTsQ1Tzp7tJFZLc14nvii2I01VyLUiYKD+eO4F43XCbVQg3eu7uALRqUKfOMBwHepbs5tTDI + 0kVyrRa4/shOcQ0ESgfHnmFbIQOfojMTVrNsZWBP7CN5zOHVpUoc8qKcSgy5cmjs5wNpInBmqmz6 + 3vZ1SM+nayJ6K7oR++mcq1Z5mFvXCOOLTTyXKUPiZw79Mn8TOxVclwaPwhHZZ65jyXEMlfLGPoBX + gReJ6lXbrNkJKdD1CYs9dyjBKvpSLpqcjaaXaEn0YNXrAPuHnGLnQtN0vvQiB4fbUqC7jRyVZp/u + Cg6Bj0i+PmhPoc1EEEq+iQ3mLrsMB+pJ3NvLYTq4uuIeqlaZoaJqPDlPRkyXbyNJoi7tOqxV6Kwe + DtapgRPocqyZHk4PCnEi6D61Lwn3PQjny/vuwMvKCNjQL7eUSfxzDgVnO3dJp6KadpqiQbwjIzo6 + 34oOkbq2IheVFTHxrITsh7kNomiIhMiR4ADucZ6uUPHNALs1M/YzJsUsNheJYHV4f3rqSIcabs+P + eMduCJd51B3xJbcMftpJGXLYkVZ4XzfzK/BJOMTCEkDr5fHY69C5X2J+LmD9Oir48bYswLqiocCz + cFJJKugRmMf7OB/TJXiS22vo1LUZpQamp+qD9rodARrXo88zd/VEjGyIwfI8xhBu8YCtPW+HjJgL + irAvigtWjUMejne16ERrOp2nmW2Vii7uXALmYDywHAkdHb/DMMAq2Rq3tqMUslv8ij88yL3LjR6y + XTxDL30csS4Iak+7M1yFx1W+YU/Q9u6YhcSA5CW9SL6/y+Fa3doc/p6vBT4ATGzpGlC8f2f8+5y5 + nbIY7lQDY/QZ7i7bHI8JRMfen+javyoaUSuA17l+4+CmWSmjrZ8deD0UBWe3cg5nfs9r4Jxsb1Wd + CaDTLplLcZ89eHI6frl+jqeVF69vfMXmkeoum6KtkfMqSeRyhpHLfpjnAL3mYE0wVx7hytxSBXwd + HGI3Rk3VwT3XwURgG3xV2C5cdUayxLBSYqIw7iNl3L2xQj65nic2Ob2qZriutZjfsy82elVKmVut + cPDEH/fkZj4jsFxYkMPtfrG9Uz4qy+ldAqNiVrGtVTZd6XenQd8xIDHOYBcSn/vwAsOTFjFiaqRc + TjVOrLsGIxrlQz/u/JUXJ/H8JUqYpy6z4bN4+jR3gm8sS6nNmTm8F3qJvUqtw/nsvjt4V+MR34f0 + 7rKvV4ZgBqUKX5fqFB5CvUrEggvfaCnmOKVd23swUgZK5HW5u92z+K7ilO5UdDTia7ps6w32rhXg + J/Fu6XyeglyUQHTHl5yXweFg6bWonO4+uUq+li7+69sBZx+j6X182pQiFbZ/eOxlp5l+6T1d4a07 + U3zf8J9dlfcVfuJcJs/nnFUs5Sb+eMb2nVgHUamYYekK+NjFe+yiTxwetv0I74+0IKo9Bi49XZ8T + JMfYxpIZBSH7qHhOtI51QaQHEFKafcpIJJMkYKto5JRTg28LgIVU4rq3M50FzNUQBtDCd0nMeo5+ + OUMshmDBWvTg6BioEhKrk2XjaKgXOg4xjX7xM3Fm4fS09pECd2zWI5idZjCTx2KJy5XB+PyV36DX + /FaAs6c5JC7TEzjkTaYAp7+sRH4VZ0CDR2uB4unfsOTug+oALsIAi9fuTlx/XHs6g2aA7YwKYsG2 + UodDRSB0zMglz33s9ocZTBN8weGBs0fr9Kz9GXn4Me8udpwWqWxp3zLRBByLtf64pLN95GPwOaf7 + 6VtKesqdIZTgvmNGdLSR43I7zTGEfWkXxNVMt2di4RiA54ItjIosoKSnoQ/tewCwfVyO1ZpfjhPA + t6Eg92y/S9f7khvwiZgen7XpWrEzFpTj0RtGHFghcpfU2kvwWXsTfl6TTF3ym5D98IF4n6muxpbv + DVguM8D2L58Hdi1AppE/OPLLWV2YWuXgPTQtrDOa7w7QcmtI3reR4CJ9uKyVsYzIZBLFIZ+yLqNd + Mg525m5Hft/P3bslFje8nQTw0sIxCz+GKC2KTK5V6aWLHmYaVBbH2tb/ClgsuQ482PybaMwz7mfM + nTLYFdGH+LOohAc/mDXR27kC4pkbWy3V/Yugc472+NTGOF2bz8SDsrkP02pPHzCzZmWJznH4YLfD + nx/fsMTPO08JIqJRMY+DEYl23TrY1tsMUN44BGKZxTx2wyDuuWBmO+jo+xlrabgd8XmslsjunYKk + vG+lFFyESQwOcNr29wLouhc0yEdthw3w/YTNU2R48RbDE9YtT6KMWcc+UF0L4Hj3wBWzjPsaxrnS + YcOZF5cajazA05lfsVp3BZ2nE0nAeeXP+PYxKzBfZxtB+AgKbJnMG8wvwU3A+VEiYjzPOzDgeI3E + vWUNRGu0mq4ODBsIIO4Q9GTYL+3enKE8DuwfP1yQJxdiZrcmMXB6TpcN/+DrISkkYXqfLl/7wEP/ + krvY3q1Sz92XqwFtoxGIt9cNdQmKMILivZ+nUjxo1bfVXqX4LWtInto9DelXahURva8alq2oAtz2 + Gpa4xQvZFLe6eF0HoRP3CzH9VKGr3KQSnB4fRMylPPSUtUMevsigYnTp43QWLn4gWnL5mHa774cu + x/faCEqfFUSVbueK7jlHACE73bHylXyV4uVeAnfQVXyHn1PIuraXQ4Q+zVQUC3Ln334dCz5BYly+ + wHK+VIGw4S+5Va9rxQ7ku4KAvHVsPM85oMZl70M6itWWT/J0zanGwOJ7dtHl4iU9Z9ntFYzl641P + Z3mkS5fYHZyNuCLWSZBc7nDoPSAOl4WY8dXuV6O1V/i9NOUk7BaHMhovd2IyeDJO1EexPY9Q+stf + 2+/rR7WPGUBln5DL/ZDQNS7sK4ysOEHxxocpCfsC/viLwnNiT2dZysRX3p9QtfavftZWsoMWwP0E + k5UDa3aTJDEbrhY+bXxpiWnOwUc67TCu5S6lBYAWtDP/N8tcSekVnxxwpbWLA5579BS/Q0fc+Ds6 + bvg2szPTAb+1PHLvLjs6BeZgAdLeQmwF+1BdE0urYeryGbnvD2E/W+yoCIUKbOwWRwOsgVk7Arrv + WCQ+11Zdt/wInP62DY1d8/R3vzD2RAbr446ls+WlBYAPv8BSBKSee/V3BjiLnBClf3PuL3/C+tB8 + iU3PXn8gYVUcBd+RsMnEbshZdhFBhX1GSDDGT7jxIx/Od60m0Smw+5nEtwyK4+RN4rtMq1kyyQCr + tfQmGsRrOLYXzv/lBxzOxRROyH/nAg13Mz7FMKoYLj/XIiTwhZ+Hw6FaPaAHYH9xDaxu/7/WgTGD + bf3INgGKzvqgBuLzyF+wYranfvYlsQY82itY6V01ZclRLUR++j6Q0Oo2mDLpXsOekGwSpve1X/wW + Rb/rT0dJhP244fmP3xHPfpF+unfHBJL3ZSSXPrfoUBg2BzY98sNzdd4LHCfGItGxhcn2lpSTzoBH + ooKvideDte0FH370VcKny4Bclo31TAxF1SUOeNXpGPN8ATup84jqn/YqXVhHgQleIPFWmw8Xtfc5 + uMUnEm+vzTscDw1YtqmUe+0O0jU1OP/f+qgMHXCwkOZD/FQDbDPXJyVV66zwt1/kEvT9Yr9kD978 + szQx9ddVV/1xn2B74tQ/PF4PSWzAU4Ydgs7zuSJv+3WFEIGeODWrppxiHhsYWUlCnK9wDVeJ32kA + JIJGnKJm6TyFtgHj8nLAOr3jarl8We1o1NoNp+jDp7/1F/MswyRoikqdjdOLgXM/v3HMlRY9DMWM + YLCeTSS2MQln4154QnPtBeIee8WdDQ5E4B7qFnaPF5D2C6tI4FgaM2IcpXJnIIaZ+MuP+v0ggFl1 + hhk65tVF8Jxx6bp7PRAESpER8wpItRz8rYvCLUrJI7+hlCaGykBVZWxyrvq3OgdHp4Sh0xEEyqio + 5thDhuhe04y480WuqKrzHPzxB/Oo9tUwLF0Jm+tXwBnHxBXDIpMR5hO5YBVbPVhXFmbwY6YuVnwU + gTnlsxb8+MTtvlTpmjGhA3Pi+NgNeB1QYr4duHrojD2jT+mE/DGHaH89ELSqEu14dB5++Iz1fnuL + OHcZQ4x6I8VecPDdUTcvA9j4+5/+pO+GycDoljesQWmoFlZYfQFV+y/WpX4AdOwLX7x3qTDtk/5b + zWsalWJ6brRpUsncE4HJHLCn6Iq4b7CnM4tMDhY+qND+nWnu8iy78rcf0Pf2Fav5dooScGg+ybRK + 8SecsGOtYKgsQizraYQLO1EeVvvijU+hJ7vzXf8mogbOyhb/t37p62UQg6AeNnz5VjOwz4K4V546 + lhW0NW5O51icHm+EZbd23FXCQwOAzSJi1a9WHf/0VtMtEzPUZ0q126kRaBqWU/d8lv0iU5WB2/WR + eDvI4Q9vRbUqahxfhTudrrpZwtyeEbkG/QHMO0MMoM9aDc5hHlU0pe0Ab2N4R43ka+Hhkrql8MPz + R3FIw7/7p9b7RUycpH2nAuDAH97h6E2qZVXGrXHvIyIuBFa1Apc1fnoY7Wz9HNKhmD1xnvWVSPdG + Aod6FRi4cGWHqL66KeWWpwY3Pka0tevpgh+5L/zw/eeHMKUGSsCEt4a4zb6g9KaiFdpnaCOeyAxd + PxeV42vdO+Fbv9bqlO9VBN/5h8Nyxp6rdZfMhRiKskuMpRrTob3tlaPn0hwbUndzmVmHMeST6Iz1 + 4agAlkKrgfnR1pAwFmrF9GLLiw5qRRKIrwcdz7xviG/2GhE1r5uqO7WdBz4DPWGrflkqbb9LCTa/ + jzgbn5qBmObA+zITicEnBUt72fkwHKMZ+xrxwvW669Y/vncHXpgOxja73f3qD7zx5ZB7wab5XR+J + ZXBx58l0pq2T+jgtJXD7OUpeGnjfQg3jw6MGi3zhB/htg4qY8l0Aw7qzI/hEXI/2462ja89mEjzu + dRvjB5jVORw1B1TpMk3ic7Xc5bjwO3gstXnyw6KpOPWOoj/+eL5e6mo67eMOdJyEsGQzz3C9Oi8k + iodRmkiRiiplLkEA5XBSsBS5pvuNrGst5gsXTAdp37pTleuOeJGyHJ809t4f1scpAIPweBG0xef6 + aLMVWpQ/YhQ173D86f129gqsB8NYtZ+KjeFnzVhsN/37x29X+H0K2+xspFRrWO990IXRiVyZu6we + fvurb+Nu85OUcA5HzwKMNshoz5e8Ov/8hw1fpsXb1+708x/g2lV/+MX6r1cnZlULyHmGQ790RROJ + KbcziP6KJ7p4XQnBkCwG1lghCLkv10XQgo2BPfLtwzXfb43pP6yJeOt4dOci431wMalPNCe7APoy + hgCcR/RFD+86VuurP3Oi+kUuVg5Ll7ZL1jEgb54qcZa0C+fgqBRgLISEoBvX999e0QT4PJcjthcu + oOsh8Q1x0RyEPX+AoNeOayKuzoGb4KjpKXdPPi2UHqE9cbXYhNQPeAM8tSL8w1vOx08HFurRJpvf + lY4/vfY8Che87fee9lfJErd8hHXTvVcz7OZYrM7P6zQ+V0udH7CVhBw6HVGDeE2XWzvN4K19VGyc + /J06hifeh7/8aW58m06NUcPNDyTn+qr3lBUvOQT2ARHkdrd0tZeqBAqfCZvfY7orhwtFLLz6io0i + MNRDa3oDCOIgnE6vk+KuSQ4UIT29PhiXzZwuV6lvoPyWW8SeziFllP3WU2HTz9I7Qym58HkH1109 + YlWBh37dK3SFiqHl2FzFJRzlbZDhCaOZGAyldO6Ol1LY9jc5qXMTcruE3/yTZE8ci7766R45ENBi + 76CxUqZ+Td7PAd6l1CTaN3JTqrkmEvrJOCPY3t/qLH8RgqvDcmiWj3E/bH4AfKXfD3aNYenX6VL7 + P300iWv+DakP7QZs/JIYMPrQXu52O8FLn0fsjXmsrmfIKLA6Mjt07C45XeuW9eD7uTsjWu2LcFGK + dobKznlN7LZ+a5gHNXw7foel0NmDNf322hEIzRObNfT7Vh9UX1S/nosz5GG67U8GSuZWgoWg7VeP + KRqY6I/6z0/a9GkM5yU/EaQ7Xb/Fx9Y1ZnKxLJa0ou5ZjsTlW/oTX/hJz9jSxYHcAdUTRyepYg9+ + koEEU0ik7mC5K9Tj+OfvEw1KXj/wwjUBT04gGJuR5bIVx1xhBpUKwWS90sMJAwn2wahOYPMf6T23 + ashpnIW1b9Sn8ymRWng71TuiM9qstr4kNqA0xjPauX7dr/duSeDyLXxywwmoBvdFO1AGRkEQ5ceQ + iqIoQBJ8B4KLRaXDyz8KsNjtVmw6F6unZOZaaJlIm+Y0HcOSmewMNva3IP62vpuf4IjiW9pj710t + KdFfYgt+/v/m16nrha6DeEWeNW18b/NnZw1Ejvom+GuIaf8WOwEgM2CIi07vnsRmYIlwgABj4h3S + 6XuKGRjHF3XqNn47jzBpoHOTGnJ2605dDscegk+cyUSaTFQtmNEGeC6Qj+UrOYR/encvvCzU//Zf + /3108Me3VPP0Vulz8TTYlKo9Zex9R//qQZEyUaLpNwXQ7sysEDLhhOVU0sB8qxVG7N+pNnGSX/+u + H0AyKQJa8z1W53UnR7AWfZ/ICvr2Mxt+C6hNQYuW+vruf3pOiNxEmrigv1GiSk8HWtYBE1Qrkkr5 + QOyAURs3NMecGdKdNUkw8IBG3JvIg3X1uh1MRtbDyjWa6FKfSg7KqcIQFL8Gd7hyIw9OYSXin15n + m8rZwfoFlInLhpiuE3/WhPMqnLH6JSGlwfk7//kXmgktOuj2NQP18yThKFY19eBzH0FoWcFEUG5a + SjGqB1EC1ztBQiyE7eLXufiSO4b8+QU/fmcOTkKM+vOsptKbk63rczAdHrJN1zm6QJikrov1/Vvd + 7uduQOHgntBxlo2UVRe2ACbnoolXKz5cLt53B2V/yLAsWluXEvhVoBETi2gTeau/9QaRG0vEqkEC + 5ngSBCh0DsU//3NxLg4jGNwck+SUy5QtxqCBU7t7IFHEKl3vy1WD5zObYsef2nR9KVIEXS9psVF/ + 9tV8+MqdeOPbFj+umVlxt8s5gBteoYV/FNUAuzkR09rXcXLKX3RhYz0Xc2h1+LlmD7CY7leDyfxC + WM/5F104vUzgiQd7glM9CwcdzQ68dSFFvGq/K8J/a03EhwQQ3Tu83NVj2gbK+Psm9unYhX9+V/D2 + R6JWuAFLskM8vPFdi+04ylVOHNMG6vcowKldvlNytdoMPqfKILoJqLo88qcDP4nuEaN/UHUsFWGF + U+hz+PQ6lerqzhcPxq2cY0nKd3TRrEECF1CYZONP/Rp9lVb83k4jNkoz6GdVszSIDzHAm57pR8o1 + AsyK7wUr86t2qXf0CogfsYmz+01UV+cpZaLUdjFB+TWulgEUltj6hY5PqWmC6XY5+xDPhj0dVYvQ + 9cfPc6Qn+Lrtp748Z9GvnjRVWz6fJVmVREKHkpy9fa3+6tHitn+IIpwP4WwR6ypseEICezIpG5eO + AblbaWMlS77qHJSZBrW0+RD3ER77CX9CXtTDtsfnSOjAatnF9Q9v8DWB6uZPlfBuaxHJFCntiXQv + PXF5PxnEu5qXkpcx+H9+IzLedUps0s0gSW13eiA3UZceqT68T9mVnGS3SLeffwWbfkWkHZyeze7S + /MMrrEhrotJqd/T+6n+KeKj7lRTZFb7g9CDyp3HpetLZGP78SaM014oKTGbB9xOeifkxVbqamZv8 + 6gMT3PwIdvObgeh9rxiNyh0sfX9N4Jvuj+i75ddNLxbQ0aI38asr447HZYbw30cK/vEf//F/tgMC + /2zaR/7eDgaM+TL+67+OCvzr8K+hSd7v38GCf05DUuT//M9/H0H457dvm+/4f8e2zj/DdtZAFHj2 + 77jBP8d2TN7/7aN/bF/4//7x/wEAAP//AwDl6H0pugUCAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da948d9a56809-SJC + - 984402c06f3fd8a7-SJC Connection: - keep-alive Content-Encoding: @@ -2958,19 +2958,19 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:58 GMT + - Wed, 24 Sep 2025 17:30:37 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=Q5mkOAry1vCow8ao47_2WjZ72QJLAMO6di80cI3.SCM-1758668458-1.0.1.1-I12HTgj6upbDRd9Uh7G1HxVpMjPvBAZ5GCwvQJPD_IZi65L4i0ak5H_bwP156Pd8.4HxtfBEL34F891vGpvPrHM7N_Cyjbpn6AmyAbI.AFI; - path=/; expires=Tue, 23-Sep-25 23:30:58 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=G0EWJmfghOBG5FgQmlJfGHPMWz2R8P7Q5oUVdAfrnbo-1758735037-1.0.1.1-GP3kakCBbygkGItbFpkZoCoLyDTen.QrdavndeMnFwNipFwjIpcU5IYiBM.X6Cz3QCSoPvdFGoFMPxh6yi_oPKMizkjeR.6nMyCcHFwp5ag; + path=/; expires=Wed, 24-Sep-25 18:00:37 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=QHUlsttJKSkMwhy.nz6n477lVtIrR_nWlAvhiulzxqY-1758668458868-0.0.1.1-604800000; + - _cfuvid=d4Zrb6uK7bTF4v4CbcQBEMIUYbBXHBWilj5ascK4A7U-1758735037821-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-55b6d8ff76-7mcwv + - envoy-router-5ddb44fcc-t6gd4 X-Content-Type-Options: - nosniff alt-svc: @@ -2982,7 +2982,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "418" + - "213" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -2990,7 +2990,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "437" + - "254" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3000,13 +3000,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199979816" + - "199979820" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_60cd081360e443359c7a66c6d1fd44ad + - req_79492fd43ed744119ec243bea28f575b status: code: 200 message: OK @@ -3056,122 +3056,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWQ+qTLumz79fsfKe2jsyKFV8Z8wylwKidjodQURQZKyCqp393zu4Oj2cmIgE - 4alnuO+L+s9//fnzT5vVRT798+8//3yqcfrnv63HHvfp/s+///z3f/358+fPf/4+/78ziyYrHo/q - W/5O//1YfR/F8s+//3D/58j/Penff/5xlehBXJl7scWNrbf8ntRHCOVeqeec5rlEa6ojbSs0bM5p - UsDhs9xIZMyHWlBkW5J3R1EiTjpWoAfHIIf65uIgdAicWDiBiYPNLmREj4cj40eFjfKiUYOkZ/cN - GIbPQipFGuJNHCae+MS0kvWavsizcB4D6XaXEqKKDci4ZsdM7HbPEpaqi8L51toDPypghPuw+RKU - mXI9TYMVQvzwMUnO1PJ4GquWXHOvAgXPrxuLl/GC5WXIR5JuGiMTXOuzgcCBDYoF2MSztOFcSHpx - SxzUaoALkWvAa55CohnnE5itV2XL3yPIkXZ1ARvyuFVkHGQX4sSuBoTs27Yw6rUL8mLlNQhVOmH4 - MkKRGBtG2HLT2U72nmxCNtsH8VgZ3Q6euf035DaMgGXaZy388K5HfCcYMv5jhglgNkjC7dh1+ii+ - kxCM5vVAjtE3YpRu7bvsAd4gBa4YIG/2UeC1UGJy207+wPVUpfLp/FSRLdviQDxF8f/GE11vTszH - WybJ4stWSLJhCHSMhC78yk6GT5d7HrP359lAgsMJ0ykFA2PvewIty1nQ7auJHv1sMwP077sdVqAA - MS1gMILL5S2T5CkfPQFcpkKyyfGB8tLZDtQ82pL8oLeKmMOCstnsNFtG3lYjxjwcde4gEx84nPYg - a/zqpS9UF87xeYuKR8p57BjbLvy0O4/ERJNYZ4a5Bd/V0Ue38jZ5zGVPAfLaF+Ll3eQxtqnCyUVR - 7ML9ba7AMqSdK1mX9okcpRdrdqX3t6zSrUeCUOHY8Lv+21J8FO8/x4GcDNsFUfNQsBC+DTYut4aT - 985lj0EHeTDtWWhBdzfn6Nm5cSzu4+cdatnAkDXd3/VSoEyAxnVySAi/3bAIjarB7T6s0SNpODAv - XwfD1955kmf36fTllGYQDnv7QC7v8u3hzpt6cFb7lDhRconHIuNyiAfXxEx7njzO6OAI7h8OoOja - Zqzf6cpVXusT3aBd1bPDJz38Rg0jbnLVYt69cZqoqQcvZAOYayrcyitUcMYhBW3sYfFuaiG7nopJ - Ud4TXVyfHyafe4qc2znw8FRMDeTntEd2haaBymGZyhv7FpBHR9xM2E+RJM9caxDD4u71EmpdDo9I - 7dFFcGu2XG+vFNySPg5pCJaBZndzhl+iZ+v9VTH1xY8ENW2uUNKbR0+Mbxcq7TbsiKwZvuuZPl+j - 3E2zTQ5phmMKUyrJ1ZUGa/7MHlOyz1XmL62K/Eh+1svViyVZd+4v4gtNWc/+p7fgmQNfZKItqdln - iAo5LuCWaGEJAIWPMoWVXwXI+8beMDtQM2T6knS8sT+ux718R4KfT8Khxyhw9VgJyRVuXgcBGSOW - sr/Xr/ezT07t5svW6+eShpCLRTsOa74r2AisCtkkmEZFF6VbFMGK1wJy2TGsL/s9K+UYzymK6fY4 - 8Kc03si5xUnE46+vbPnqLx8s+/dIHn3gZn/re3P13+gwvGsm9uK4gd2TW5B7MdL1/8AI6SYZiLL2 - S+HwnjaQC0SI/MvZ00U9ao9wXe8QVDsekH0pHSF7fWSimzaIl/KgRvLan4kZWzfwvvDOBkTtWQl3 - HdZjvqqtFEqkaQiSUuZN597K5fJxDcn1pAdszaccdmBno+MQtTFhqbGDxv1eYvlw59iCGquCt2qO - 0fMQOJmAIlOCyyMZSTpaN108F60Bsfe6YHZprXrBfdzK0gRQuBmUmIkXZroSE3qNqPqBZostqjnk - hDMM9/1rZEJGlF4O9gedhLbLZctox1jyrF2ONJR+49krYAvdvs3x+Cj5mO6naCcLDexQgU5FJgi3 - 9i4rmsdjAVTvGMupncLpPRKUXaPUW+JDvJH2d+6LOTeVBsy/lCuMNaKETR6+AQmTzxHeD+CNDg/J - 8MTbO7ChcrjW5LGLSm9ZTOzDIHNGoqH0EFNpLFMQ5KKO9Ld4ZOI8XdZ6t01y69+it9hzroATPHXk - 8jZxhvegTGRx2J+I1Wk3j4XJJ5LFU9KhkxPBgbUJzSHvVCq6HlJ9mECODaiYxEfmvTIzccOkcH8J - tISE1IiBWHPPNxQl9fRbr0w0yEWC4XK9k7OTfgZ6CVgEJmu5YnoQTzVV21CDmSpFSNtmi76QxTGk - TtEzog32wePWeQVRNt9QXqUKWPzTK5el/rJDBqN3bzY6boTh66Ojp7mXAeV9swS3rRYRS+pwPQYI - 9nBO8RTSagYD2999DuYvX0Kxfm0YM/n7DIk0pEjVK9vjGMAzdJIbCafn18148A4NcHKUK1rzEXCn - RdPktT7I7bkRPSZWl6usnKs6VFShZbg+M1eem9IgWcN7tXAXyhbUd68IucUygdCIwII26gjxzcHL - 1n5/hUVpH8kx7GWdknebwzX+ocTGFxO6KLMgKQ2MDtE+zLizQCzJ1oMDMd/9Z82v8ipzmqQhj5PU - jC8PzvHXP9GZ36OY9w2rkdzvCWMQuqm36IXVy4CYIrrDjZDRbX7ZwPbmU7wIwwJIcL5wEKWvgTxO - RgL4lnu5sicTg3jXyQMkaRQLXJv9B3nysmXMxJ9EjqPqgoxDJNW40Jgvo7upoQd37uMFjQzKnX51 - kGlF5sDumfSW1vpCyqo/xPU75GtJRear+WRs1VcQBf0NOcO9Gtq6xBtYiM5rnfckowktR8ifZxUV - 6zzE53ccASE8KugavAKw6G9owdQYN+gWUjEm28szgRqIXsibFB7MQVoZcgoSmaRzYQy8LTo5rIN9 - gdknaga8Xe4C2JXDiTj8YQTsKD5nKMfFh3igOdetFDg9rOpUIEEzuHG/0+27XAqGSKxPefNETrnk - f/Uqasc4XjLQHeEvn11CRq+lLubgEfdXFKaTA8S4NEN4uE8HzO+Fj76cxS6BmT5HeBLF3mP7u8FJ - +ubsIOU7t/HSXcMIkhc1cWVHh3qWv683BJG4Q8b0/rDl4lsFPB0ualh9vVMmbA5KKj+CfB/W7xzo - /Z6jEjgqk0ZOoxnpvJl3FexIa5OIu5wyqjXl7hffdf05QEmaKTC5RCnyh+CZkevjieH6vHg+4YdO - kwFEMLcEiXhKmcZzJhEFHvqyIGfMk4yZUAnB8y0hoiiVHM+aklNYjO8dCdf+yAxPOe7VN+8Rv+BK - NvMjppC1pUaebI51huElhwWOEDLz+Qboayjf8gPZR3J+IzLMzyTPoR5v3ZCKEGSj8uhD+HE3HDnc - r2+PdVsDyoN4PBBdeM316BWwh2XXhugS07dOlI5yUGiFjhxK+1pTLgsq+Msn/bu5sxHMGMMHZ+zD - nQUCIGJ4KWBeSSfibcuXvrivXIHclPfoTpI0Fk08pZI8XgSia0YWsyZ9NgAkLxSy3SiB5ala972g - uCqWeCnN8DpPAX/pVSyv6z0iRbPg19Zcoo+pVYvJM+qh77UZcqb24jHuHCXyN7VddLrw1FtQ0VQ/ - vUHM9IMGdg+fWFKkgQv3plbr7LKX3jDr3xJyvOMl6y1VkaD5PNskl+yypnz8qeAy2TqxDibSydmZ - fJB4WoqsSgzBMiLVhmJ+kEKpPabDSK8Ohvkpq9Ehb661KN3uR2h8HPrrP/FiBa9S/unXX77OkpX7 - kMddRJ6+LDMaS/YIf/pOMZ6xt3Cw02Cx118o5GtnWPDCWjkWhzb8UPrRmWFE3P493/1wEtXNQNZ8 - kZW4r5EpX00dp7mC5dx0ahIORQym/AME2O3qO3HhRohnY+5doLoPj9j6bQIsCz6uzFNNxXXmWrUw - jUwD6zxF0Wl7qmkjMkPedplPFMzZmfjSny084vZKXC0VGPN3rQ3k1/uDsjrlGXMPZQgvfJmgYigY - W6gBWkiPtzNm1JIYnliZQ3YdB+Ra8TiM+4Dz5fnaTMgXGmUQs2Cyf/mO7NrWY5qXSi8f8msRtk9v - GpatDArwGsET7396PFRgCw4sm4lDFW0Qf/XhlANBHqi9bG7ccANPZtcT9GlZPM2BFcL+atukiOZE - n4n8GqHKtRVxTE3X+YxjAqyfdx+z+Ah0HMjtDM+74xlLm0gFbas6AkxqvMXkKLGBjfdnJbn8DSPt - +jkN9EDZXX6ejV04cAbPlkeRcdAVTZMoXvPQJ33oKuCdlRyLQLrqi73pir/1HMZdB5iD6Cwl52ZL - VGei2SJcsQ2TSm2RCY39wFx2EcAQGDNSKYY6A/rIgdU/E827nQYWT60Ft8GZJwUaOX1CI9jAEDoD - QcJNjtnLDSx59aMhWIRXTLc7JYKychBDse53MbGPn3Tf6EcPPa52wgTpaebQCO0SPazX05t5SW1l - 1X166LD6qekWqSn0zlqODibCA12stgBbXuRxdvMGMLmtU/zVK8dukzOu6FVJPp1Aj5DGy4D9+ANP - FfXHC7JxiULhN/9Rtgiv7G994O9yIbZV7la/nofgNtVvZCn5R1/S9pVCrFALWYpKslnvv0d5l2Qn - 5AGbr+mO/xR7xysf6BdPvN22R2g/HxbyDu/UmzlHxbLBTAczK28Y0TbPHTBPSkmcGvhM4DKzhPox - Y0j103yYr40KYQGvCIXaw9W5R04U2KeRTcJfvJOtk8o85gH68Rjan8pSNvKoDDfao/dGaWdhyAMT - IAP5jU4P+5L7+S+kLI9ooJuDncCuv92RSenHIz+92plHJ1z0qvWoqEsbuL8L37WfgnjuKJfAaYYE - w4IrAZ2KzxtOaUPQz88x7dUeYcLKlDjDXRtEovtQ6iR/QTelv9Siepc46N48jJlQNDFVS6zAibbW - uj4PMG+8cIQP5B4x9PbbmnQmLaBzmR8IHVWZzd3+NcPgeM3CzwJvNUOxNIJuNBZ0Nm8ILDyvKvKj - q47Ees7GQLm2vUKrCmykpfdvRl+FOcJsLCQsK7is2W1pld+8R+jTxhmfj10Enm6FiFKzqOZWvwoj - 7qOES3X9MnZ2PiE8319fdLvNFaOx2lJwk1OAzEeH6qWBYASJp6TIJDGJyUu/9FA/ty90SQXD4wKV - +HBg+1vIydJd72XpuZFWPYfBzfNYB/rVP5b9hagn39bFHaERrDvIEzXoW30ZEMBSv4EzulemH7P4 - 9qTwXYAHCaHPwHxzvgbU6/lF0lP7BotwCu0fb0LRIc/YnPJcCWffNdBxV7TZ2D9CCVpUeaJncGX1 - og+vCrKPlyAz/ZCazrbZSCWXlciW6ymb4QtjUAs+j/L3y9Mp7YPy5/9Dfp+RGEsfKoFRH2dkbRoj - 5p7VayfnaXvCgqcZTCgZs2EthDyWjkKVUfJQCpnGmxFvN3HLiPe+cLAB1EUOhtowT/6LQvN5sfHi - p7Be/Uchd/rdIcaJn+MF9vYGxqreIVdgvte+fHUnZ6JeY+E6vgF7+LYmu6zGxH+UfDYz3eLgoZEP - yMenbTaXG7yBorFTUAy7Y02a9PKGrXPLiP6JrGF+9FwOvdPTRE6/Hdly7jIJilPThq1cTzHx9ne8 - /+nvAx6wzrLts5f+6u1VT7KjeJmhmhIPuVWp6byicTYcsnAmrhX79fp8sywBoQllySyGRbw4Gvjx - HvvZ6JlgPwK4M4ePjX7zghMezQwPd3JA7uvrxyt/zaU13kSLHktN3azkYGxcL8jklf0w1/yLg7xT - qiSMOwfM2xN04aq/Q6qGhxr7pi1AUfc7ZP/0+/PABPi0uR1RX1Ue40iLE+hYMSErbxlmd+JaOHTp - HDK+vYN+1MoKUlMY8WefoXjeurkLvdjNMX0oh4zTd64LzQ4sxDjCe82dDU0B70l/hOs8HZZRskKZ - P1OV2Ey5DGwzRr6sn/sXCvJSiVtv0gx4Wsrrr5/Gy7kPc9iA2UUmeu/ZOJlcAl+D+iSGPksDyX36 - BrjYmSRASZkxwbqnAPKvkFyTQwCmxc9amMT7Fu/BnALm70obku3OIPmaD6QQ7pWk+m4V7s8s0NlP - bz/j24sYWPsw+riWvZzc3BRp8z0bZsUmKfjN31+/Zds3DeWKuUF4+2oXnQ+5GEIu4CHSHso3o8nA - IiAT/EZuJmmewL2kDUStciPpoXyDcZ+8esgRWyXHu2UP2LRbCe6Mr0Qc25liwbiUEjzC+UqM7nv0 - WFBRDEp0DMMSc3Y84d3LgMkm/pIg+Gz13/wEv/7rv1+eJ/z6+cNr9nhbveOY8i/7Dp3P7kEOiMfZ - LFmJD/1GyUh0ht+YzZy/kyynfJLD4xnGlL9HG/Dae0/kPbkzaLGpUjjG1QGplhdlk6JBGxKYTnih - ONdXPSKAPLYkYl+Nup6yBl9hupES5L8tPlvmpAnB9vbl136DVp53z/dH43hDh5uM46l9Nke4qZYA - eXV6BizoWhuu64ssq7/FWBrL5K9edDN1zCh8tAlceWtIdQkwFla2DVe+s/rFPps5LY/g+NwQnEzO - UV9WngejYL6QxOKkmgYCSODqPzEByGYjMF8t1Cb7RbyoUgcccSYH74EbYapLGaPzuc1hSCYNqfcC - xrPwwDPcbZYjOUx0l5GLem/BqzyG5Kptdh6RuZHCZd+MyMCaCcSVxwPoXURijdZen8odmH/8Dvmv - x+B9tmZWAVnvQhJ8KFeTH8+/bZUI6Y9r5i2gByVUzMkPZWmTxNPKf2Hz4BhxxVAFi0SzClSNFBD/ - tjnHdJymt8SWLFn1bh2PM+5GQGM4rvxRB9PHAxQQqUtJXJyO4Kf/4WyzlBjz8R4vnte85WPBq5iC - /aL3g2uXQHBBhHShsGLue3QESHQBE3/H8Tpd/cH+fE834fw90xqHr2AHW9F11nkT18u5i3eQHO4m - 3o4hy9Z+OsImd3JkJPs560Kg3vc//2B9AGZUTu0EHi7OTJDiOAPNb1kIcJZi5NPOBczUy6Osw4GG - 88orJ7trGijvPgIyOl+KR0S/NuTkSMXbldfTUiobGLUXJfw+VJwtkdKU0JSjJ1rjPSzuDWpwv4j7 - cL83qoEodXAFOVgq5Dr8OExypkDZlq8P8vAu7sAbb6cEWd7VJJDMTT3lT+v69/79y6yAmV65Izz3 - 9hklKz9bdOZU0PCfTrj3jmK2KNDqgYz1ACk0bWN6tbIINKGeY67OTdAEckuBqNYRMry+0ZedZrly - rUbByjeNmIPC6y0LW17Cgvsl3sIE7MJzaG1CovEyW0LgXCETWo08p0PnjYH6DeHnq3jkvolejN4J - 8H/vL1BSq8e/vHK/vt9BKBGdmPTds4SK1HE/XsXmJbIE8NMfrraMw/jjB9txU6PAOCo1//HYLG/3 - fr3ymb2Hd/xUgIMLZmQV0s1jp/YyA0nGDVHULNbp8VlSCLtTSJSwl72/fH6dZyTI+mTgrtevBbfi - y//pefa+TK+NjAT7hqzsuvdafmxm+H0fXVzlh6VmFzXqZYdTHiiGoQTGfCAaTA28CXm0RfXKu0ZQ - MTtYncjExuWrYjgW8TXMV/15+eZR8eO/GMZs0H/9Cax6IhREd8cY5C8JPHa3HsvRtYxn7aD5sikf - n+QUIBrPQ54kcH2/h9T1fZzw82urHkLpRbj9+vcIMadfiHO+XuKVd1F4HpVz2N3Ogc6m8n6HflBl - WJLO/hqvJwULd9mE9SdqatrDTwPSpDoTb/U/3S/eqz4K8fdVeLxDunx39woQNlV+81jc0B6+Meaw - XGpKJv6dj3vrE0rZc8zIj8/yidXjjxWZNe28qYUfv/dWv//xxn0AQ7DqA+Q/zG09h8i1ILx8RFSQ - rKsxuEw5nCqBrPz46zE+oInc08oOd6ufokd3kiBkvEjcj+PHQuTYFDqHrUXWeo8nVVPfoP0mlJye - yYHRCgUYAJo3SDPOC1sCV83laGdfUPFYHLDy1TdYeffKszbx3/tZ+QMG8rIFJPpOPsS34RIuVtPq - 2HDiAo7YIkj9SAcgxo3Uw++Go8j3ifd7X3KUP1/NQ8jcP/7q57/zpFFy02OHJqIwPNt3dGbHj06y - TFHgqb5fUdC3pT6uelUOvtmI7ENa1/RLygry5StG2rSc4rHbdzNo+YISo37OOhM2UgSv4e2DrNBB - nvDjFRQOCdLGHRiW17YLpVKwRHII4W5gtSqV0JZ0QrzhqGb0s5ta+M9vV8B//evPn//x22HQtI/i - s24MmIpl+o//s1XgP8T/GJv75/N3GwIe72Xxz7//9w6Ef7qhbbrpf07tu/iO//z7D9j93Wvwz9RO - 98//e/xf61/917/+FwAAAP//AwBe8oQ14CAAAA== + H4sIAAAAAAAAA1R6WQ+zurbk+/kVW/uVPgpTsNlvBAhhdhjC0Gq1gBACCUkYbMBX97+3ku/qdvcL + EmAx2GtV1arl//jXX3/9/S67upr//uevv5/tNP/9P77XrsVc/P3PX//zX3/99ddf//E7/n8j676s + r9f21fyG/262r2u9/v3PX+x/X/m/g/756+9zbtREsYJW2ya7f8iv8pr6Ow0p3fp0KlaitqEhV+16 + uvL8o4CpxuXkoginTmh3mSTTLZUIWkA/jkUkZ5BPiY0UtFkRL+28BfYdZol/MQKNY7buLY/PRCcX + 0XqMS2feJEkIMMKw82OHz/KtlSVRasgFwsaZHPJqYCA6IzLY67lkLw1pYNPVgb9PXHNk5dhZ4KDw + b3I69nKHby3vw9stwyR6xYbDn4zAkH3mc0OGsdoRb24pltejOZOEJ3rJJ/TJQ8hOPar5S98trcDa + 8OClDDEYXgWCmdk6zBMVEFOtg3G7dKopy/uoRCazydHnhkxFHk4kJYZy1hzeV94TLKQ2Rdr7dAcC + vM4Ygq4QiW+NpKOvKBLlzrsR5Bi1H803IWfhAx4+Pgj2BGxRPL5hnQ4OcYNwLAX7ihsQgDT3t6z5 + RJN903gQFqxB6uYedot0EGtZNAKd3IaWAvxpnjrU6kdEborsjrymrrwcyacDUm1FdLDMLC507t2E + EIusjmfriJFDcFZIKcoIjO6ttuFSXxKcXlGl0W689VAotwnLJgUjpaGUwYjKKyoVUSjpySldcJz7 + kz/5Hui2dy1XAKiQIUkDziWfcddaykt4RcHzuhsXBE1e3tfXOzmeMh9sRdmacoh3B2Jl81njunWn + AGQzNTkZ8j1ahWo1INTXHbraIevQhYo2vFqNQ6oklrT3a6lsmGyii4poN4H1UN54+I1HDD98oU35 + rLDynuUZXwizFqwg+tSSep1uSC+wQNf7VDzk5XByiBl4vPaOdm8DBlLmovi0i8opT1MJ4Mu0w/LD + M+iEqLHI2v7FYAakXIlFubbhfIUlSt4oirg1JwVcspJF+nB4dEu3HzfIWU+bKGj7lNs3HmEG2g7F + PWQBRWGOYdLlN3Lp2DelbQFEqN+qEykuz4dD1mnGgOvsCzlxj7Sbe0+vIHQZFctFEziC9J4gSPYL + QNHRbqLPxC+xfOHmHJWEbaNNclgMSdJT4j0VNeJUVu7FcndyfWocl269eucMcg1g0cmqTbAp7qGW + 6eWIyXVNYo31T6YN1/d2QWYtOeMc1tcepi7zQVoYzeN2kZZQDqHnkWTm7JIPbq0krwBq5BSwRbfe + 91YF82o/oBKgjtLYXjH45rsvYLiOtNWOC1RXoST+q2+15frqVdj3YovyCZ0dngd9K/UzDZBJwUPb + pCWY5Plu2sRiE9yt4lFlZKfbPOLxFhnpueUyWY3eKjoy+5tG24JKslgNDXEE0FCaHgYDaujUI0UV + SUSNJKzlz9XdEdOMoLPyryWBptB6SM8V19lusWrKfKxaGGwXC3BGtZfg8pgoqnWR1bDyemTwXgMO + 2VYvlRvL2waMzMYlIWu96IKF8C2d5pOPRX/yO4E7UROkJ+1EtGxSIg6arQ/t4+CRm1DNlB6t7iHX + rJii0LmdR55BESNj3twT47a/lxurrgoQymUi6U62Hb66Bpv8my/XXzvK5gBKMFbOC1LDU9JxrjxO + MFIfA7G+eMl9BE/64Rvy7drR+Isknv/gDxsVLJiWvX2GnvSUyWG/AY0O+B7KIuF9goaoGV+fu1QA + sHx0f41CLRJuu76G3I3pifFGtCT03lfyXoY+CZnV67YuvWcQTI2Jcs4atPmwY1l4x0WLBcdlu23V + jB565BGiwM6sUtCX4wbZXTORfPhklHNmU4EKf7jghbRGtPmV9pY36ZX4jC7GmuDeElvi+kQjyHlu + 5cqXhwqGIFR84D8nyq+uMsjKHmkEaTUFW/9hsfQY9QrpOX111OaqN7zocYjvpsFF2wm3onxh2A+6 + vj51ye6krJAzeFswJeWjw7YlJj9+QZdrmZQ0OSe2pFv6iEVQS+XcHpcMMo2x+fd6foBpiZ9nWHPC + A1nFTnf4QzWb8KaaHQntR1Nu2K1dKM7PmRx311NEuelsA+1y09CByueOZemrgmkUG+TKDoKzJU6l + gO96kcIRcTl/81dmP9aZmLtnBhbOO4Zy6sIPCuwXHNeKbg9o+OoBlfqijlPb+ApMWeIh1xiOJReq + 0iCC/RYTBY4REHLp9oBDZgWolKp3yX7xD6qMmZM0n55g9XdRAobTnOItkUJteWVYhWnTh8i/GKu2 + oD4VJTt5FcSeypPDVrvYhobY5KgUgPLF33slm3opIuQbOaCKHk/QsT0VhW+bcdaoObrAI31I3LeJ + I8xFFYY6v60+iF5gXJ0FsvBNmj3KV+6lUajaC2RNkiAf+6bDHlWfhUrLvfy+iOySXS2sALsVc3Te + NA8IS6WqshzAjRRGKJRr/35lct5Fp/mpCK+OjAm15YlWOsm2yulY93huwH3ral9UliMQAlja8MrK + C3E02ym5/k0yuAAdkWq1ZW1J+KyC33jw15Nwp2xUOgY8TOyI3Lj3S+FwJ6F0Efcn4mXbs+RezDmW + 92esoRM+HEqBOX/O8pC6OgoCBUV8BLla4po9i7lFTsp1f+kHGX0sAWViwDu0Wk8M3IvKhOlypeNc + JG8F3rr7QC73Ngbc8bXa8sxFR/LNd2faSecCML18R35h7iiVb5dYbjQ1/eFXhMU7dWXtctVQ9joM + 2jbMEZQXL7OQdzwfy/XdD6501Y8Q2dgKKbfbFQ3Ud9IBeVP8LFfmkG5QcvwCHS9i4wzMwEgwGPY3 + Yg8cASvbKxN04/cBJcY6lAR7XQuC2VRQHWy+s9oAGpCdYgbFmitQfAQkhl89iGzuygF631pFVl+L + /NWP+siZ9aeBWSDnWOzml4NHyeYBDruAoPg2jetwuy3Q9cMH8bWwoqOQ5APM+Zoj3pWNtU97FAsZ + ro1IjE3IHfbAvBrIg2QjR9mJIvrkrfMffkKdNIP3L748ZGfIPQoWYL/5BotG9jAzSE9tE/afGFJD + vOBXvB/KpWZjUZLh1ULuvXlHm4KYEN4uSYDv4e1El6a4P+AvH06z/6Q09vsW3iqk+J+HGYz8bVxC + GZsV9bvzYd99ZLmVgNdfVRJ374ByXmq1P3wlV4MJnEUJGxEavnIgiTCw46qkowLfnJQg93KvR9wf + bxgSQZkx852P7TiBED44WyJag5JundudAmOtqslZFUm5WuM3XvjaJ9aTl6OVZeEGG2mRiGV7NVje + m7bswdmziVvvGrrkD3+D0IUq+emhtRJeGaRpgpD6lvORHrHykO/rIyDnDyTlWlVuBeOBnnx4J2Cc + 55vtw8YzWGJW+aOkJn0q8k8PHapyoSTuqwHCwvVRUM8PilVeFX96hHhTl3Vrmsg99NrlgFx1K7TZ + zX0M30jf+Tuh8oAgeGkPC5cPiOMKd20LQqhAF8ABxVuaRKxRTr0UHkuBWEVZ0uXSkBYkhhX5W8MD + h5pKxOyLs6pgtsApmK4vrALtvqmY8towYpZXDfhgQpsomWJ0nJqHA/zDNzWXlMuotLE86qKNbrfT + Vi4DSgr40y/KB6JyOWlMLbk3tPps3XfagoXiDYuHCZAyXRMwhpeFgbpmWeT8kJpu++ID/OIFUaUB + adjXrw2ghnRBehUjZwH8av70sC8GXuJgackxxCht0W++uA7bLlR9b0N2GBy09b4/VPJPD9qAf0eL + 9oAuTB9BRJKilbv19Hkv8IeP9ukYgq185ypkL7sWHa6SVa57SXvLxyCyfvxHv/+X7WcFn31ScUyJ + qbec5XQuOmT1xbGbmVTBcsdcOqLtxBiQV1RK0JhQQY7Xko+2W2zb4LkcXeIxZ+xshXA05G/9h3FL + jY6duE4Fd5y1KJP1oKOSEplyeyQucXrJLHnpdXtD/3rOiHLMebp+8RFoZfZEafLitbVIGhUyiRKj + W6pQummj84ZNaoWYZ0Kp++JlBn1bH9DBm6ZyqnaxKU/uMCOkIWXkL8ysw8OxUZH9OenaFu2VQf6u + t9+m8zzSz8VpAdPv7lha/bZbnnhqwLf+I86Xj4W5Sh+Q7RBG7oN1yo3dMxIs99ZAjsmJRliUExsq + T90kVefHf/QvbGHTkmPuahpXvjQMg5wJ8Z7XpWhWV3OBr9eS4E29HsCHNHse3qZBwo/TjpYUWbdB + +vIXcqwtKJeB0kI+uNnqD9yVo3RygAi54aATf7uW0RyiTwtu7eOKWXxO6ZqaVgv3MuMjdwIfsByk + bZKErGfIQdm2chPl2oR8sL6Rdj7sx62KUwzCzVzQ8aHBaC2KigVb4VTkQPjQWX71RZ/mHDkHL0qx + W1QqhKk8EyTWkG6MOhvySboUPk/Le0Qb++zD1AO8vwBR1Ijjb/W+mM8OShozphz34RrILdkd3Squ + LmnHBm/5uZxcpCe3x0jI6xDCZsFXZO4XPK6gyRKg8NoFXzE3jXOlfFpoGu8c3cS6opxzCST50nYj + OtJaHheWkuoPf10B6UfS8jUPe0k/o+Srz6nCvR+QKF5KrG0Rosm7QB/ErPBEfpo9ta2+HQp4/TBH + dHi0pKQN+3LlL18h5O+56Mef+2aZrsh5kw3gY5DF8J4djD/4QXMtwPL3HO/r6KXNj1OjQLY934kd + 7VzKz+mlgvpw25B2olW51NkK4ePKnpHFWbbG5cpOh1JdmAQNLaX4fbYK+fHmAAqt9QGoXDaNbGTG + zWet5zDODTAGeGsuEKkXt48WBBVWZszFRL67C8dNycQYHrq5RAYaH+XUBK8G5rvH0Yec+i7XTzkw + cKyZF0GzBiI62PoZsjd9w7KhNWB711wFm7nFX32EI3oiogvfnJgQqzPUke0mKEqnSFlRtthpx0vd + wEKTiya8/b4nI74Ca1E/IvVt185aqniCFz0J8d72GEoen7CAxaBfkSaFMqV2vk6/+fEDnObdyvnF + A3z1IMqz+exsgRAo8n3tA3JwHB0sOynLoLHLTWQku1dJr/ZzgVMu7TGrLY22XmpTgUlYhciI56gU + BvwJwbj1Z+Ltr2HHL7tggtRbdX/zji+6eNYxgcJu//rq8bajn/27BefOhshmUkQ3vnEe4Ok0Cfr5 + RTjsUvxbX1R8TrojsAlxYd4cc5/rL+do/OXzs7p2WBB4pxtjqjXy1IQJUaL9iQqFGBawZiBL0Jt9 + a6tiQ1sKHsqCKstx6VcfbfBR0ytxAoMt12Mt6HD2mjs5N6ensyrUg8BK4QmFFam6hdweDXxJjI4u + IHkDvN9qCbp4qtEZjpSuZn1voRdFMfrW493arYIqnV16Q8fuMJdLXeENVOHEoctttqNNj64NnIPx + 6u8ntGjzT98kU0OQwRM9+uafKPvyFOK1nnUq7ESqw6E2KAaEbculeZ1r+UTrEYNeekez46bszz9D + 5qNRwWaCYIN+7Jh4tV+w+9aHtbx4hUXU22HpqHfNGDid6QeZZW+On7O3ivK+vt0xLfePcb0hU5WF + 220mh9ubc5b8YSzQKj8m0o/zrtxUfafC5PlWUMJez9FsXl4VlPdBSXz+YozL5ag/IFsCHZnDZdY2 + BpUMdMt28Z98N0cktGxj35IwQX6wYe33POmL98hnqqe2Drd0gesN2cg/62rE5c9Yh9p7WL/61u22 + +2Vd5Gk2Xr6UXWrw+x/Azf5GDlGolYL5WKD41WfIGGOVsorVszCqxhPy59LttvxKYukdnjE5rstK + F1FRWOisSo5UeNuP6z5YWUhtXSPeeLfGX/zAisiKTyXe0OYkMjeYlfoHqYrjgYV22gbnt7L/+imV + Nvu7KIazf8PE+fqbSyk/GnipC+Lvn/y1HOnQtPC18izG1oi6P89vYdtiUUAnh3v3gw+/eogYqV90 + LBxX8ccfPtCXdtzQPvHlU2UfiKb3mbPON9X9+T1IhzsYvSpJVaAVLznynmDrloBlsp9/+K0/9xS/ + x0cMzfehIephvx/nUN3eIBZ0gyhi1YxLldoJCPDRI+GIvBF/8xNCMX9h2qBkXF73Rof9xOokXwMG + zOO16KXv9/vSF4+3Kr5hqAb5nfz0/TZFzSD/1ts+3EpA5+rWA89yeV+UusFZa671ZSvecr+KlFQT + wjUS4eV2gch0nVdJkdS14HTcnr94KDnxaDM/viKxKj9GLC0B/ukRkn+wOU5K+JYg/ggSOWXeHHFP + 2GAI8rggtrYisGRRZ4A4ebt+w8gnilVv1aFUOS9yZPY7bdvjVge5uRCknEYb8Cc8SNCeGB7zuzXS + 1okXExhycU3M3sfjEvqxC7e+Kkkqfl7RxgazLgUvtybubvC1hX3QAlSSViPPpOX4YeyAh4GLDWSd + +2Ccpjc04SOVMKYnWkWLHDsbaDNJIj8/dXJhnUFpHGL0y8dN5ngb/Pw3fyGoW9t7Ge8vm5Ihq2Fx + R9xbYkITeD6yussF0BFk5o+fkEaGlM5ZvGTy1UMuUWkyOd//ieGxKHJ/P8uA/hm/t+OenA7pUFKi + TiE8GDeEs/Vz1hb7prEwq88pSVJf6tZIADGUbukFN6Vn0+kZHR7wq0+JslxUZ5bzowi//IKZr776 + +vcV/NZzSMMCjJbu4i+QNJ+AmG9t78xqXrwBw1c+CVooOvOgQR5uUTij46IaDuvNQww8FwjEtfdi + RwBXsjAFT4icrz//slWnBz9/9vT128iXL+DwqM4I5feypDF1GjiIT8dn3F3Y4RgfCpi9Y47okXMY + aT6OLTh9Co8cqH3RNsuRG0lvygv61mcRQWE+ga/f8T3Xy7m5jRjsD15Cotk6j9TyVBZO3S4lFq8X + 0Xa9Gw95WeEO78eKjcYjNh/g/oxC9KdeYvOchz1rY6L3kKVr+XKwaMGT6oPDuNEZk1mEVNgsFHJC + 1C0K1ljIs7WGd4xOAfn5QWKzVsg4hisYv/6I+PI9h+jmRrQ1i8UMZvC6EH//scYNL8AHRSIRpL6A + PVJVOLvyuKTEZ/afTzezV2OA9fbh0aHg9t3crYICze3IYPbpf7SN15sB7uNS93GwYYfmJ6OBR4u5 + odN2ZsdVXqAK623k//Qf8Hf+wBdvkKkFs4OJHShyQqYrCc+5Dfij/qlAlT8f5Ks3O/yJeHcP8cUi + Xv5UAGUm3f35C6iw+qJcBufTw+zinHyxegvjGgQ9Bh4l/p/6bbUMUIDPK7ri3a5zy0f9fPOgpWWI + 0DXvO7oMvCGDqTUxK3d6xx5O97fsuXsBr6JOShqkjA07NjL87quftvfZyuBOiFXy8wenlyPYsKGi + Q86//iH9lC40LfaEUkE7Oxs32uz+u37ILyZTmw4MaWCV5DxmBXulVJn6FtB3VBFFsqdyent4g2W6 + deiAGCXiEtxNctQpD6IAUXTmXSG3IKK7FZ1ykP/6QSYgVvIi5r2MtDWJlA0m/dMjtsDIDp4fegzz + KUvJqcbxyCEkGL/7SMtMUXvoTMDIxyLL0emKoDPyWcLC7KC4eGjxGq2hug1yKrNXlLmFNM7d+uX7 + PD34i1yjaP3yPThPZ5cgRZ46PBrrBr9+qh9KA9FqawlbGNi3J5a7YtRWyZAeQMXj5Iu7p0jp4f46 + Q/3q9XgRq6Zbodm6spHpNxLE8RZRFuguXIL78afnI7ZRaf3zT9DF8/JykZvtDYmCUuIoYhr96X99 + 9bPfyanXfft1BWx9vsLsoXadlT3fNvD1Z3z5PPZ0ETVuADNTXIg1q+P4OR21Rf7Wk35zkmqHfT9j + Ufz2L/32sM/H7/sGKHF4wzSblJL7+jVAK4unDxc0gfnbL4bVU+rwa/aPdPkU1zfMDqqLfn4nMZgp + BF+/DSnRZdfRSrJVmHp7HpU1/VAcQflPPUBOwfNVLmndxvKQ+rq/XVtRW+Xck+A3Polqhm7EYmTy + cCWjTqyjs2jkeA8mIHHTRm6X0NS2hM48YFS2R+anXbvNlg+ZfO2XFJXffo6gdYkIHod7SHxuZSJ6 + 3wYVnmeUY3q0lXIZK+8MX+Ut9Xdf/Tw9QVTAWAkXpHrHE2DlRhrgUOsUmU7mdItmBWf56/8g/Z5c + AS1NxoS7hx37A9sex8UZNwx32lSg+C71GlkiBAEaiwxZDLlrmBNWLCtqOSOfHrruW4+1sJ/X4Fev + R6QfbQV855+Y9nPRfvrkv+pt30UOx7+WGFpvECOXC8BIy0D0pTDA/Lc/IAJqJEUFv/0MovfzYVwM + X57g379dAf/5r7/++l+/HQb9+1o/vxsD5nqd//3fWwX+Lfx76ovn8882BDwVTf33P/+1A+Hvz/ju + P/P/nt+P+jX9/c9fQPyz1+Dv+T0Xz//3+r++r/rPf/0fAAAA//8DADS3AQXgIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da94c2ed16809-SJC + - 984402c2983dd8a7-SJC Connection: - keep-alive Content-Encoding: @@ -3179,13 +3179,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:59 GMT + - Wed, 24 Sep 2025 17:30:38 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-9696d5879-jz6cj + - envoy-router-5ddb44fcc-9c56p X-Content-Type-Options: - nosniff alt-svc: @@ -3197,7 +3197,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "93" + - "186" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3205,7 +3205,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "127" + - "218" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3215,13 +3215,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999933" + - "199999930" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_b8054c6ef28741cfa067c1842c0b268c + - req_af18ff6f9c2a429e9aaefc94ef1ea849 status: code: 200 message: OK @@ -3267,122 +3267,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6WROyurrm/f4Vq9YtfUoGJWHdMckMQVDErq4uBgVRRIYEyKnz37vw23W6+8Yq - IRpCkud9hvznv/766+8ub+7F9Pc/f/39fo7T3/9ju1ZmU/b3P3/9z3/99ddff/3n7/P/a3lv83tZ - Pj/Vr/nv5vNT3pe///mL/e8r/7fRP3/9TYSSJWejzeNZOhp32J/0AF2F/QRW3C2RlPeLh6zec5vV - s7oU8nAMiSIzT21hHW6Fo8m2xDAeNRg71ubFR5lmJL+0QjNm8SJKLpPo+P1Kbg0dRlzAAzN5yLtY - Vk50u4qkt/BIMK2rkHKr6WYAy6QIFuMl0PHgiBDO0e6L/BmtYHWyryH18KUiy3HIsK77HQsbpq2Q - XavzgA9RZUm6treIc2xjOkvt8pSkzKyQhgLkYnJgRcnx5RLptao0/ORyHUzap0a8dv9sqLPTI8lP - swWDS3ttpv09qiSiRmcMHl8yjNv7kV5l+iW2uT81C6xNHtJ2xuS0C4Z8Jte3B/TUVlHIAxsIpmyn - MFHfJbEk7tAsctoEEN3GFGWEeTeY8WgHOdo66ME3Z40/PA4Z9B5hT+x5uDfCNVkLSeeWMwosoY+x - /RETWHUdg44F5Nzvcw91gPF1wn31UvLVXG6B9NiLiJjMPLiCu1BVamJjRFonXmLhOCcMcFbE4CcT - H+j6aZ48sHLMB7tCtTWhkesEHrtKI6fBAu46igsjdW8/RaG5ftwxecqehHKWQzHXKu7a5oospfPl - gTSxRwPbFCKGTnPjSKhWD8Ab57IVljrwieIdLcCF97SXCuZeE9SKhjb7+tRCBzkichTdG2gSy7p0 - 0dU33rlm3ND1G+vwN9+haOiAO37SJ/Tfekmi3VvRuDvTvSC64ZRYhziKhUyo7lKifkqE+k+Xr0ft - BuGn7SpyEncKnXsBBnDpD3uitrkasxMvWOLciohcgKjGnLqtmUMAS3QtryqdLSfSoeG+DeTYnBS/ - CW1f8PYOBgyJOWpjFyUrVOeAIifNCkqTvBZhkjMsOU6Xxl3qOOmgyX0pcQjzHtZSahPAN+dDIKgA - NsvnzZxh5bs2CWZdyflDlwfw0esGuqq3S84zl0sBT03NkjNoxmH1nz4PryGrkJKJHDpD1lkh78dc - cNiFJeXet6cF78L1ipeS01xBkPsIpqP+wk/D6Bqqc0EGX+2skCReD2D+KLElKe5LQIWZTnRix4qX - vu0cksyFdsOlzoWVyMkokbrINZjj/f4Mr8v8IXEwmpRIsQKll+ESpH2JGFM1ryBUueGFbIG/5fxu - PRmwV6MjQq4ZD0J+4TIYi+Ideegj5PSdGSt0ddkkUXCJNM593zNYdvMDXaJDAfplTmTpBA8uSndf - yxWUKs3g9v5Q7DhyMx/TKpPUo8gRhRl1d8npu4dVLkWBuPIqnb9H/wmgfsKBpBFtYIPeVeG4Oi9i - fftXvJDLCUNlrEssevfFXbp00uG93O2IrFY7QG3v8pLouT8R88ovYMbFuYOGff9iaUYrJfm6qLBm - 7jOmbz9219v5/oRV4/kku+wUymdMk0mB5VbIqiXVXYG/H6XXXrwT/XnzwfIWdjKEhD4xw1mI0m8V - hVKlfgCWbths3sfj+y7ts+OJIG1CGt8aH0+6vwOR+Pc1cblSSw247S8UOR0CsxHvGSgE/BTsX6nk - UtZRLPjsVhxE0p0F+NDlHjQOKCXyvn4AqlRpKrF9oRFFuxXgAYqOlZKuq0ievRVNWONKBZJ/Y5Fc - fbt4LpxYloSy40k5HSDFTlbr0lzTFTk1mBo6ZdMKT113QlrWxQ0P2U8GxqQj6AILm/LDGlqwmzob - JbLtuXwFUhl6cvFEVlk9ACV96kDeFHTyMLSjxqnFpZWiJGqQN8BFo29ctZLUUo9Yj+MLTLpz3sOE - O3sk4lthmBLGfkm9Gh6JdaPlgCdereB422nEOqkjXXZNBSU/J0ekPdW9u3otF8F99NSIOwpPSvuD - gGF23mVE7hJnYNtc6qCVpk8ib/g3e1DDcMPPgF/AM14N00tgyd1dpBjq3NA66tXffsaf8f4dRrkz - GZh9TIG4J33O8RIpjtT79odEyLm68xJJswjs3Uyc/C0065zML8li6AE52iRr05TZFjz7KiC+WxyB - oB04VtqbDIv0Qtu7bcF5z0OFTUJUA/jDsjucVRjvZ4UoJde4a3o7Qji6lojO71cHViVz9N9+Qxt+ - ABYMFSPFKmaCwxHdNSqLqwgLI1aIFd1uLt+Yr0iq38cbuhn1Mcblh0bSoqb6Nt5w4F6s3kNy0kuU - Hy4Xyt7JXEDaAZdY8O7nrNZ/dehhnZJL9RVyYq17XZIfThGwhn7WRl9/v+D78Ka4B+IpFpDcpXA+ - yCPx0liLhVmTOtge1AA9FD0f5llZHcmU7zFmhEWLv1bYZZBPvj6y/IvTkO66LyR4cERy/HYVXYzA - jADxbZ4ozkl0p3OoniXq3xKSt7UH1vJDQ+n4cIY/+D0LpvyShgA/kCHbnsZ3n4sHdUN+o1swYzCF - 7VpIeVJFSGajJBeyxuhhnu80ctFCDCY1Bhsf4luCZp/Ju3x6JPBClzN5+LOZc83w5KHfNwGRLWUG - 67D7prCOIEQ+vzfi1feiWUJJqqPL4RTQdYkUaz8eRxvvjR07LBNhA2iVQoy0MJL+/XvpyLbE0ZHZ - jJdM6MGeexskOR2MeHkGn+A3n1i87rl4DHaMDseOekSu71OMfW1mpFh+1SiubH3g03C04OnGW3i9 - +CSeP0MlS+9+6bf2fkzXXWDB0C7NP/WTKrx7h9EH2SjYuR8wM09Vh8rBt4n29qlG5anuoJFYF/w9 - gS+d0mjXA03wCryWRQrms83KkluSFen7dKHzW+pG+GCuMtKT3TdehMs8/upTAMO21uh9oYxk0PlD - EljVYPGlZwvSbg7JneuvGvd1c15Msa8gP/R58MTdIYTiaw2JxUtFTFmOhBD2yULMz2NH8YNFd3h1 - SUPMSZ7Byn/TEDCrMhOHJfwwyg9sQXZVIuKoeUrpFLkQBnIbIXcBp5zePrwOU4wUZONQawS1Wz34 - vDHvjQV1YPaFcwRNbqABX3Kri1uDBCKqzJmg/lhrs/5eeqnRo4a4TbLQ9TUpo2Sk0Ypse6ziZTjE - hrSNJ8BfT9fWE+OlsF9VlriKZDcrla0ChEwSE/vB1HSR1dmCbxN/AmEb3/xK3RAU8KyTTF8w/RQn - H0LNfjkk2/CFxUb9+o0Plb2XDeuzfCQwKzM36BbdArMYTMmP/wTMw3YBOYuAh6CjBwxKudA44/k1 - oNHfEFG+C6aLzn5n+Gy7EzEqt3OXWhoqCAMeEhfPSUwkp7Pgy408ZOq+rq0zdywOFlIc9MDnfqBc - d5ehLe5lkowmpfQhljMUaXsjDyk/xe2S9RAO82dEfpnbYLLrUQZb/cFwZYN83oHPEzpw8YjtmXm+ - OP2RhaMIvsHuVH6H7f9WmHcdQUYt+y7Z254Ov/MDEnVsdsOokLCCIXd4IuV5ODXzcXc14Cln3sRk - gobSeI1kCGaZRY+Nz8wb3knKRx+Je0ZuzNJBgYA7qIBo7PlAaSs4KQQQP9ARFl8wOvtTIu3oq8Pv - RL+CeXv/ktzkV4Jq4zr0nW0lcLntImKdCdJWvU0i2JG1DQ4PRgEcJ413CFPvTFy32eWU6xIVNsK1 - RYbJY3d09rdElLrDFznvDoHPVs/Bth6RG+WwoZnQFdAY6xHP8mfM+b17bUFUcgtxypsR84KY74Gc - kAED/4q1xQqrTLIt+4Sso1G7y+1zKiRO5vKAGY7C0J1tKENM726w7rM2pimHEuCODUDu44uGuUF1 - ARnB8smJc+OYGPrMQ5EbeWQv0hv8nh8c4SyhjZ9QoqkPDLf+8EjM0V2T58iKgrxzce2JPp25etBh - kkOWlLuvoNHxUXowecQWMurnOcaplongI2lCwH7KIh8H6q0wOlxact29Q23eUR/Dmx4e0fWOkYut - R/iEE5k5oiTSm5LqQSPp3uglcTb+trYzq0ubXiP5Wu6b+UuyFBySZiSa/EVg+emPDW8DXrZHbbwH - fgpHjKSASlw/LK6pVJIgqAHymslsfvwOim66J+bFv8cvMHTw8MP7EI9y/Ie/bc+LDDx/8kU7nAJg - imuItKkomjlEXQU93/LJpS3fYC4lZYSqpUQBf31Ad8meTxneS2mH9IubUZyGowMc4ZwjpQrv7jqU - zBls48ESsjv3w807HiglOQei/DzGwp6GDGTUk4IsAI+Abw+lCJPTrUXFJ/vSZbzvX6A2TiHmvPvT - xRfCGAD1HYN0eDxrpI9tVbTPvESCnAkBdz/HI9j2B9LJR6bL6NxXeDzFNh6U/Jkv9WdfiC839EiU - vPKB0mD/AtMbffDStzGgNt/fpUfwOqFbNooNXbzrHUhqFZEArzfKy1KQQn5W30imM6ZL2K53ONUg - Rg76DnS+1a4Dl8IkJBA9Jh57gfWg8hAWcjzQxF333KuQhj44E3k3ZgO1bi0Ps6BVSRn6CWWFAvQw - 2+9llN/iG8AfRZglEZcAuf6Bi4nEByHU56QhunButDnoXRl6s39CyA5klz3urrrYzu+SKFXIuLS5 - 8x6cZc5DQSKq+YiKwwydnG1R1o/3eMOTu5TVX2Nbj0cgNHc++O1vYg7w6S4fsy4kM3OZYNXmaFii - p6uCNa8corfG7K76zZeBW/c3FHjqMeeqNDAOpev4xHhNKOa/ZKfCMD2FRJ6ygzs1Q8/DTU8gR0gd - bT6mXQqMuncC4cov9HtOXxYoSJciz0x9ujIe6AB4GD6yCmY/vDrY9FLpR/2f+8Ju/GTw60Y50UTL - ilfxkPBwL5AGbfqfcsEeOOBCqhuxBiUcKHg73R88dfHMx9PQVKrULCJH5NviavRXLySsGsRbWRxP - FE0B2GUoJKjxG0qFu+DAjswtUdcrdgn2iwrel31LrJ1ZUcrvrQzeyWwFO8770PmRkAA2etgg5cQU - +Xo51Z7EjRdE9FqtGxqC/R4uftwim7NkQI3hU0mNcGmRttgMWNl258Drx08D4MkKXVg1Z6AWn3ii - iT1p8DLfVXiIUYrjQamHda9KK/itn8y7n7TVOzme+PPXisxL6CL2GIP8xrdIV54eGI3vS4Uih3lk - fmM8LMfju4BMjD7BvK8fdLFvjgcsKl6Dnx+1KqcuhFKd5ER/vzpKyXpgxFv/LYidUlNjT9XLgY+g - PaEgfI0N3Y2fVHqeapb4Ed/H1LSGABbvo0NcUKiaAERp0zc+Qzb94eJRXCBsSccjWf54ubC3dUPq - QuaO2XlAA7/nxgJyduihhE2keOEbBcJbKc3I10jTLPNN1+HPTzjtE5zP0q2LfviNzqVgNLykn1gJ - vMs3OX7Y1e34Xt/Dunw66Pp5PED3sEsIzUeUI0Me4pzPlsyCq4cVor7OibaaKWLgbdlfySn8zC4n - v9kC8Kur/qk/X3EnVz9+hyy3zsGqlbCAvPCmpFSMWfvVK7ga+RT88Ij78c0PV3zRud3uI7nLpF1q - UBJw/eamobcHc98SA+Z2kXJqY7mXtucL6s0PnVvDecHqxnPIvnSeRmyvfMFKfYOg7jJ1YC9H7wV/ - eBb1/UDHH79Q3FZARzX/UlqAjAevR20Qf5S/8cR0YSodyEHDIjh6OX3mGg+5VL9s8zHmM3Pes2B3 - ZBIU+LelIQePKWDV0xwLQLMo2/dPKDl9R4jaW69m1Sh5AuXFICSHoRiPK1ky+DbHDyoBZMEiuecZ - TgfHR+7O1uOV8Wgv8dPe3PCS1zALQkaqa3pEilLZOXc9ZA50bqONzhtfnznhbsGTUGQkZs83Stvv - 4oBdqlOiTQUctvUbQNXSImK8Ed8sD9Mp4BnSHnkqbzSs1B6eMJsfCPnxQPKVXsATHIWzR7JJuMXs - D19P60UKaCdy8XpzWSwZEauQyADTMJ5ZWYSvzLhg3vF0l6MH0QDa09whOwg+zbjhOfiok0hMp2Po - iGORB8LBGZDyvDrxwu8lWSwiZiJ2NorD8jgsFmT6e02CPRdp/H3Pi3C7HzB4PVByizQVbnwdfz9p - G9PIY1/AT9MFZfLzmC/iTn5KH5O/EmW5n7QlZZ8Yfg2XweIk3P7Mp/Tju7JovAD5VlkILbKbkfdC - SFvFw52FalObKDQk1d3qWwHO9vghRePKMY+7JQSZPFY/va6t30xj4K3czZu+eYCF5Zwe2vJLQ8eh - ZmNeyRwDXsbgiBRxpwD686/AyRuQsfkZM3ezI6hH+ITBzn7lMzmEkfTTAwx8svmswHqGbNKUSLn3 - nbZ0YuoAuTpqyDr7G2EvFBZc6k7AhAn5nCgu30Kne0b4Vbwf8fdGQARujREgeajf+ZrefOaPP4pS - IdB4nFeytNUvcmuGl0tDMItwKrsUKfnDd8eiMnRpzZ8OKav2BeYUF+kPrzEljQXobiQZRNVxRr5a - whi7l0Mvbv0jv/eyZu2f0wo2/x/zzVceuNJdRHg579xg3b1rd8pL8QUL+3MJDsOxa9Yol3VwNl8O - yjZ/ffzDv7peJeYeFsPKCNZT/K2/cpS/OeGPNwzrYFSQ7D6+MbVumIXfR33BtCjUmJ+TuYXj48Yi - tc2f8Zpc8tdv/5HrxWfiUY6KvQhMIcarkMOBfkS4gqGmDdG6NND4664qpBL7IVLPQ6dt+B/BGbg2 - QqddCFp+p52hBgf/Dx8izvcUAJG+bsjZ/Fw2Dpo7TPRJJPo54QDe+A+k2VHF4KTP8RB99x68LeIV - L0r1jUePfkX42u/vyCnMnTbXQhnALd/B7MY3loMgMFCIzQ5/9YkH5IC/T6gxtEdmccyb4fy2Zthe - jt2vvrhzZNgdHHT7RM7P20S/Pz/j0N8jsunpeDEHR4RvbDLB5xHym16sLGmrt8gmH0KX+znGf/AR - Va857uy8xDAwFI0or6mKp7afZnA2Wwdplf0aRiOeoVRyhUseW74xLxE3g27qbeLYMe+uR97q4B8+ - s+achhsxgvDcPWcsCHuf/vgonAOMkTJ/PXfxHCCKIQeexFyeqTb1m4OnnjGDpXhAOdsA9AIGXT94 - 1s+4WYTLHoOfX5SYZwPwMju2UGeCIzG27w32iyfc/Lc//sLsDrIhuXTlMTCVVFsPjyX7+YtEv4/D - QF+nkRE3vR/sakNoVmFZDemdPGfMrSAFs/EdVbh9D/YYr2Dzp2W4G68TFoldNWRdoAhC5hyTTR/S - LS8pxH6VWWKcdCUXTnq2gq88+Uj/nlxNEJJLAp+PWxIcgsAchJetOfBVZl/kPswuXqw2LsCv/7He - 8sOfPrtGzD2Qjt01pmtcydKPj9vSYWnoeepbIMMZk2DKp2bZ8iC4c28mOd4WUVv4OQ4AeD/egRCf - nWYeytv4h89FvD7H49mGqliktzvS9kqh/fAX7KJeDcSktl1cfkAEgma4bPmX63ImfWGIumeNNv8q - Z28870lNzi1Ik7+ETh/zW4BOdS5Io2uUz0N5GuEEi5pc84bd8GBtxSLN7wG3qO98VDJ+hDc9OgZc - 0u7cOcohBpwdecF6WKKBXcmSgi0PI6GlzHT64f2WJyDTr6BL/YeYwM0/JSdVuAy4nC8GtPpqR+TF - BDHZg3WWQsOhRIVwakgBIlbaHWGyrddE+5PnfIS3gbzung7UZ5AH2Wm9BuKmd/AnubWHebzIm98c - 5vT8lme4rBZFli+c6JrsryKs09uExXDKmrmue0fc0bbb8tNwGN4eV0Hq5wkxN728aC8hgydsqoFg - n9aBpo8ihHuZiHj+sI1GmSXh4fVtAGK4TZgL7OQXcNNzwbzxxSl1LjyMkrAJ+M3PWdsZGmDz4wIR - mXozu3apinxH+z/5yfK631pA5Wn48XtApNhmYNX1DB68p60JPzx4PCoBaUf3qq0Wp7VSx7QkEJq1 - HPDdT1e46U+kj8wULxc320MZrpgcL1t+LM6SCi7uhwZ7Y3ce5jKCPPyOSMGTNGsDx8yrBzS7dZCr - 5GrMaS8hhQUFcdBseRd7yYROSh/ZnqCBYYchXiNV+vGpox1/tvxp6sTz2ytQKb86sDz3rA4H8j1u - +ebYjN6J4aFzilPiA8jSVQ+HAMz1siI/abzmT77hVMeaFCfJz4WdYocgqwcDbXqazvz5xErb+0Sa - nkQaLyyrDn5+oY7eOhCEpEyknDvnyNy9Z5cOwe0Fr0wRkcRVvv/2Sw6rVpM//O6Hf3//TgX817/+ - +ut//U4YtF15f28HA6b7Mv3Hfx8V+A/hP8Y2e7//HEPAY1bd//7n3ycQ/v4OXfud/vfUve6f8e9/ - /uK4P2cN/p66KXv/v9f/tXX1X//6PwAAAP//AwDgwOyj4CAAAA== + H4sIAAAAAAAAA1R6Ww+ySrPm/fcrVtat80VO0sW64wwC0giKOJlMABUFFTl0A72z//tE3509Mzdc + NJ3QoavqOVT9x7/++uvvtqiv5fj3P3/9/XwM49//47t2ycf873/++p//+uuvv/76j9/z/9t5fRXX + y+Xxrn7bfy8f78t1/vufv7j/Xvm/m/75628mWRw9BLioZ0t85TDfyh3eqyrxF2/Zx0rmHANsnBK/ + nvaem4HluxENpfphTOrFWuDwOLyo/awf/vhUPoLcilxOLwkRa1rt9rKyedsaeSr3czLzNCzB+RwD + rB1Htx9FQ42VDVqnRDq6ERP2ZxSjfutcQvAHkQ08J0sgrt8tNppsQWx72NqKdpAMvNvEtJ9eiHKA + otUdh14/FfRQTK4i6uaWejlJ2GxM+4fiLf0d20GCezob3EqRjMMVa2ar1byUPhvYL7JBndXqUU/t + 5hArgUcWMmncyRjflV4p/SDEBPiIIqo66VUxN9KHqsl9X08v9BaAfAJCj1raF0siHkt0TD86vp20 + LRL7+zmD4Li90OB13dTsGSchqKGZ4atrPtk4U6OBh7Hy8DkeDsZ3fw7heuioLQrXRFxFj1I5yecE + 79pVl9DbuUvhsDfXWLteedSuDVBRd8M9uXcfrVjKZRMq+TbGdCefep+LGdOVj/EYsLo1jglX6aKO + zC1GpL+WG8a6Ml4heIRCyJjnMs7W9ylULmfQS79H/mJw95Vi3PkMpxvxXRC1jgKFBBGP46XXfJYf + 7qqSesoVa48F98JIcgJRo/E0g/6GRIxqXeLXr4AGje8iUXu3nZIF8p2qxt02pvVKeYBz6WTsDEHQ + z31QmYo3PBoC5pzU0zapTTh4oOOL3JuIr6T2AYNVXmhed5rBBarbwizZGd2eUZzwy0a9KujtXLAm + krZYjvxWAuWjVvQ0PjU2yRsI4ba+S3TrqHoidpoTyN07xjSaVL3m9CObFHfOrjgVQGfzwukqrC3F + weoxVFl3sdMGvv+TSFw4JOO1eS3Qh92Cvaop2Vxe9jIk0pWjoSbX/nJ42Q24wp7R0DWfaNLXrxxt + n4McIvsJ9XzLrgeI771HvbrTfO7aFSHoXmnjhDyOhfCNJziaW44mej/003wYBQgugUpzYeOx6aTI + C4wY8SEn5VdDePQPE/hCPJGVJhu+KMt5CMhUW9KgoP3mN8nBs1yN3hy0QTMyDFc5EFXEWbgixrgl + qqAITzeimWtsGc+CJ6cM1vWCfd66I5Yt7gGqKnjT8+bo1CQ4zKDkAqNYu5/lZBLHSgLlgRusReq5 + F1U22yAdXhZ2iijp+ceaz4FH8RXb3SwWUzm8FqCHg0PT9BIbYuyscojfwQ0nr/Wl6JflpSqoOPv4 + 5Eeuz/t3KYdrzW3w2cNqzfB+ypWVHPNU45jps7P1JFBL+0O4qpHO5mh9uSJhtIYQYd7ohbRGOkD6 + aKh7nppkyddaB+htXQizXrM/Obligkr6NVX9bo0WOXw2is7sPfWN1Yxm7XVowdzIH7JeSUs97sy9 + DWwlT2Q+HJJi6tLVAw51s/sTb3wj1blyaWmFPV/X/VnA2aCcnPRKd9dqh5jvYRN47vYg0mfCbB46 + PVIkP5EJTJAazen9vCpR8NlT53DEidBunUBpz51MgxClPs8Nkg7f/MJRPmE0t093BenlOoSb7KH4 + kx/sTXhyvR4Wocv1w7UrAogdllE3725o9u9SpkwvzqBqu51QGaUZp/zy5ZvfhngoJg/VucVh+4nb + ZLmZhqp8wBXo6WJDTexSMxWQTgv2FGOsF2u3W+B2hT028JTUvB45KZLfJsW3jb5loo8qFwxV9fAZ + osAXKbQqvGLugf+cJ+olD0quMGkke5bBCdfnS9kfSI3t3pqNZT+pL6V9ngJqs7Hph6DhODgbQ0BP + wSIWZFh/GkUIKouGp/LSk7u4VHALbgb1dp+Bze1TBcUi2MJO7ks+25+tGKaXYFBjf3mweQtvAudn + nVO1vXi92Nu7FlRhqCl2xXcx74hBwEnFVaiE1SNZmm2QApwWH2uDP9WLEuQ64MZwyNN9fnpid+8V + iBYVqZGHk083/t1TCmNs6WlhJ58ZRKlkS+onqhVYrFnpRo0CRbHBXrxXE7rxPy7sjStQKzEsxHfD + kVM47srh3UzF/l2fx3CTEUqpToxdPwl1o0O/dzWqb4vaX9z6CNCeWxlHu75FrKk7E1Q9c/B1dfaQ + WHPTSsnmcBVK983VYFAuMsgL02goPM4+z/ZNrFytzxkfrc4yhuDDYmUXTya2jl3Ui8KOI3BZVyU+ + z9cjE5R9VEKwvflUjV67QlTZxgSnaxjNl71YDDcuMxV8fpWhwOOEDesVX8EdbV7k+Tb2ifirLy9U + DtRyN0YistelAerkIb5YUVHMFXvYSiYsCVlyzmCfXz348RPvWXnGiM5Zqby0F6LBdqzYLO7fHmrX + s0ANXG4QeWnLQfFyLaWHlbPzmTfXkeI6jwEbx1dZT1e1apTo5t3wFqLAEPPNMQBRyJ54L+akp/wU + lwp4XIyde54WnH0UOqDdzaBJwNOCbvhiAZbGL2pSTfHbDV2n8FKPB1poJ6fgHT4W4DIaITXZZ+qn + ZnPO4D6XgMPzxa7nR6pPypAOJj5EIjZmtm8iaZO7LlmQy/VM0poYjo/TAYenUunZQ9uWYAfZk7o4 + dhi1gtOCDubWpges2cY0bE7e7z7Jot54NpZ66MLrkgR0t3NGgzAlkhUUwR0nAzZ7rtDBBVXPHbLW + DjRZhGZSlcd86aijPHfJ7Gkk+OEhDdqbXk+R6j/g+aZb7OL4jdhoLCYI1ril3vbIDHZI5wHCCWLS + usaHjesVfqDnJboSzrYyNK0NTlWK4bRg86bN9dSL7gBlKKp4p7w+ycSdokF5N6YYMnms2KIhtlKI + 4L7pwbXvaO6FmKDjx43oYXs4GUJZ9rJ8IqOGtS8fennLOQInCSPqGk6ZzP50iyDqhJkan4NqsESg + V6BBUlNz105okZEboDT9TFSjotDT037lwjV+xhSvmoyx3cEHuF1Xe7wl9b5gnzj9U1+xPwtGLaqP + RwBxHr8I6F6LpvncxPCWMQuVe7EU4+LQXHZVOlFb9u8Gu4hap0xuV1MjXc+M+cJ9UBSOLFi/x1Uy + qSyxFS88muE9XkyD6WpQwos8GFULc1sz8eOWyHWXhPqJeWdLYaouHB7pK5z8bs2m4IMiVLSDSZNT + 0tdP7I8AqggeTZxENTg50hqous8eF5TP++kXr5ysb8Nq17uIuZISw1RpTghrEvjkCUiAVX3bkM3o + lQbnB2cbPt0G091WImzZCNsJ7m91TzHsW3+WcdHAuE6BGmc5TUhhui6kqAuw9+EMNuXYbDbh/u7j + ww66fplkosL4+fIboIzNMCgThI1+pqetGLNmOHQA5xkPOOCbbU8+SWAi3ntPRG6LsJ/XK+cBor8P + 6PY2Fz57gsWBodSfEPjm0y+rRlmg25oUG3of9LT3AxMixwHqmeO6J4+pquCZXh7YfX35/Woj2mAH + +ZPqOVczJjS6CmJQMZzyOEHzslFLJXtWA926gp9wKdYGZFkvRI35smHMlOQMKsW7YVOtP2gQNnP6 + 0w+kyccTYuJpbpSMrlPqWPXZ71q5jaH06pha2SZkbGxfMUR6+A5Fv9EQx1O4gtG2B2rX4bqYif6y + QRfXL+xPF1JQTvvk8qG4f/C2bwP0bEJpQu8sf2L/yzenSXMrOO6tkXADGQrhdTx16MKdF4ovNzsR + Eigk1Dr+QKRpTYw//OowzBHGO//us3M1l0qsHItQDiKx7xV/UKEp9W0oTtUrYbaK05++wAEfYbRU + W60E02p29LJwiUFPq2iBnRoJ2OLNJ1reeWqjjRIo+Jg9eWM4W5gAi8Y9Ge908CcGgSSH+9onn422 + Y4tZFybsq4yniRWLyXK/jwFIF+Zi1+sOCSlGeUGG0UshQ++yIGc+WCB5Ki9a+LvImH3+QkA6NBZO + AEc+fbbVA+ARCNSVHi9jxHcWK188++aTxpZq4UwlAjOj5+Nbqlm6yQ9IevoD3RV73C/7yW3gJe+s + kI/pYIx9tcug65ASTnbZ9Uvo3itlh/IQ766cUy9f/IE15aQ/8fSspLba/Or99TyrCRuO7gqW8+aF + w5fwLpYkvsfo5XjRf+HT7/40pdrR4+//bVf3AQbpHodK/AF/lg+xCvfus8aOfsjZeJXBRo9bW+Ad + zi9oifAqQ/fczMg6j1r/2TIqoFD2jyEErZUId5hWcBZmDf/4hnhAowzcXXnhwr9/GEtat0Gyu8FE + 9Js7GrhupaOfHrXG3cGgPJ/JMlixQh3mRIhDYz0ha10O2CkDzZjf5moBs6Bbck+1R8HucXaQU9QG + 9PYYi346VlmDZKdviQK7g78sUn5VvviBy70g15NBTg+k9uqeOimcGaevSQaf6vrEbnmiBltFjytI + QpHg0Jl6Ni8P5MEnoJQ6a2lljDBzAVTBbaaqdEl9xsSmVOLwdaB4f8jR5A22AMtK1umlSVMmNte+ + g5UTqDi7rs794JjvSal3W4Rtf83XYyuRCJJheVCLyLUxxQyp8PTmCH/xxRfk7duV6WdXUlPKV/4s + b+wA8tvZx+purfdEvZ4n0IbohW+2cE2Y+FGvCq9ubbp7ffmedk/DX35T23g8fPbQtFJpY3EVIjGL + ++/3dHSpOZ/6Yzj5rK0HQLTSz1jNtlYhCOwqb0zrtaNGwONEiJebDnw7R9SozI1PDcuT4asnsDbd + vIThvZShhHzzmUpL3X0S00Rho57xV6+wiYp+gzTlscPeVtsU72KVdIp6Xjps+dWOCfXayWFRuoLq + Z+omS1jaAqzlpMZf/c8EPkceKjdwpj/+OGlvrwWOKzns2xshoVI56cpNSHmqa5JvzOfAdSGqcofq + 65Iko+kqKTJDFtEQJzVb5s/Jg0gP3lS9rIlP3rey+vE16vdDxWZda69wFMxtyGPuXU/1GYewPww1 + dp9uWUxVrQWKOPER1cz2Xi9MySRQKXphQx5V9MWTSvnWD6zpyQpN/Jl6cH7e83BSX9qPD6zgxy/1 + jqPJSHRiw+PJMlIW9r2fNpyyoF/8pL21N9jazFW5mssQX/RjyljOXRekDfELh8gLesr1Bx08KRSw + XSHSL+XpWf7OE0rQ39jMe3mEtmGahhs8036ZcykCq14KGuhey+aKdbasrLclVSPZMbjk0XhwseX4 + 668M9fx5nzLFJjtGtfDaJdPUIQ904+N940s3eP24W8AK5xXV1nu1IAZ3B3ArV8TmQIKCG42DrZxv + +YUsJsP9F49KeJ/bAEdapSSzV84ARvWcsWMea7Z84wdejhvR4otPs2i4MRheyeF8p9g1x9sap5wE + 6/n1b5biI3CmBDcke3hvPS5+f0Cj9IsnrH31NR8yz4Wst7Vf/hqTn69XcDpEJ3q6k8kXNjeuRPZE + dezZedj3z7aq/sSf9exKfxbfUMK52bPffoOJIk2hfhtj+LzcHwUv4GhQhFr64N/7+aC7uSIGD0bN + 7UH056mzXHAurRxOWqUU85pWnVK8r5ewG42HMR9vXQNfPwLv7jQwiByODXDKRwyH9qb3XI6D5o8+ + jue4Z0Tevj1g95WE8Un7sMlScgF9+Ra1g/cnGdzPlCkhuRiENUPQL+RiCLDOyiMOLuNQzFvicqjL + 0/QPfx5X+FpC9ExK8sfPa7gYlC/foVgfm3oWLusX+vpdOLzLsjG+5n0O18x943Nl8T5rdocJ2Pux + w8EzMpO5DVmnBGrkUstQeDa8RnWlZIfE+vLzbSFudTkEKzO3+CzYn4SFM3Hh5/9+62XNtgfNRqla + cdS52NAz9dGFMEh1TO1zJtQLyroSduzUY22l2LVgtecH9Msa4/CW0GKOJf+K3OcQ0L2gnRMxK5AK + Tsqvwmlr8An76k8lZ65GzxttRJTnIxm06nUkm/ti+mJTdzaqF7r+4u+7HmVcvJA3n2X6zWf2q38o + eHc9Dirw6l/9lL/+CXW9VO7Z29cCaDv5/vV/9kwYE3sF2i0dQznNZYPcTEOH7dIxQtbXV/Ljs2gW + uBl//Qt/rqTqoQhZePrhIZu59EEgD5BCZkE7F2w6GoLy8/O00n/6hD68CJalnvFWz0K2WGjFQaVr + Dr6mD91fPpleIaU033S/3qsJbzaaidazWVGP6meDmYyt4BC+J+pMXOVPaCV3wNugY4w+XMJ/EtkG + IXhY2BmfGprT5q7DxWp7vPv6GezofWJQe31PwMBNsbRyFSuesvihNPRcwZbdzEFw9C8Y51FrLIXp + ekivnga2MOfUs23fJ/TVa+T5XPGIXOz0BZISYjLi/MJ6b+5jNN+uO+x372cx7ZJxBVK2YzSQbqEh + SuWkKjddP9OLs298NhzVFfzwJzxuA0TeeWoq3/pAr+XQoNmZygzuCP30lovYU8Q5iPFnwniyoR47 + 59PJQSvH2NSFvP7xfyQX2YVwJVGR+O1PgFLf/FCuu7tPslPXwL3Cx3BiQ1svTROZaH8ED5+LViuG + H/86eCud+vaz7OdPJj3kn98SFeanH1K8JeAopoa12v588S/k4HNRUjJLup4IX/8KVFvjsXW5P5KF + vf0Gfnr29OMn60MpybWUHMjXH+6Xx7Fc0Hw41VRT1dDgf3ojPox77Hz2rcFYLMXAlH6L7bNZopc0 + Gwe4K/4O28uBJvTo3WNEK/WM8c9/q9zkCmfnKFNdvfGIfvkPfO+PKPpnqj+i4UZwHtKUKF/9TXGw + WQGPoitWy3htTOU8hrB5cjlhXz9r0uX3CrwnbcknEwQ0bLPPAyK/6DD+wJl1l1c7QYY+LdUkXS+m + Fn9a+J6f7g/taHxg5kIoQiGmO8HYJ7M0yPIf/vxan4VkPAeqqzyec4Zdh1I2+YJBkBZaNtUeC637 + szUSuAUXg/pwqAxKyguH9seVh/1L2PR0OKqg7CzOpye5cxmLnscBLfeV96tnaJGcbIBfPLqZwSek + bWKAOpLnr/4JjR8fBfIJCba4KfDnNkSdfJBuD2qn2ywhv/5Y+vFWRD4xXPCjQhvEk/T51aOknkfq + EjRyUowjAdmI2xN4wVF92NTVNm+/GvDwAPHprahpWxn7xputFGkoEGR0mbHM23sOO0vwqd8lfT9d + n+UiG213CGclEuvl0T9sxRxWE0HMzNAk1IMOp0SfQpmmC6J7bq/Cce+MZEK4qkeBC2RkTcOBul+/ + WWxX0yD//Dk96LRCfNnego7rfYC9SPINcTMdUwBTS0N+5p2e2/iG9/O/f/2VZC6ypER7JR3J87Av + vn5FYcIPD5kVnxL2y2d/qGNsafpcT6Ujv1DBXEptvh7r2TpJHVw2ikPtCcnG4m7qGOWh34TrKvfY + El83A/Dk8KRH1E8JGT9lLIu2csW66pfGSIPHCqWJroeL5WyLIfigGKkNPtItEX2f29gmge1rdceB + Ze0Kcf2xA2WtnheswkzZ+JrPGfriBdZsFBfTjswDZIF0p8dxx/mkGJdFtob1NUTfekV7ThjA94gZ + omVa+/NyAYLe5y4IOfsc9/xhmkvEh5srLeT3xCh9xeTXT/jyD/DZr3/39U9plJapT3c6b8McwJoG + NUbJcFKWScmyF6NO0YzJ6PAxpxRcllL3U6aGOOdeDM1ja+MtarOCZSqNwBbiU/jV8wkRk4+3GQZe + pfZliIrl8qomyKuWYYyvezYdkCPDc20NBEQxTya8z3O5VO32x+9Rpwl8BV5upNQxxsiY3vSUw7zU + Rgjn89Izei8jSNeJTHh3UyfMZYIAP7/DQn1UcKf3WMKKcl64yXHgjzDwC7yz7BnKXz9naurARl8/ + LpTRzqzZ/ryLZbI+dWSWj4k/ydH2hWbn3FHPYTUiwWGzgv4dK4Ra7dbgf/WA3UHC5tfvm2dqvJT3 + rE+h8Lpc+rEJpQUClipYjV5jMq2OnvTLX4ozcUGL3o02OpWYhavd64DmsAQBToRq5N2lRi/Kchwg + fJG9b33WE6G/nTJYk/c+bL/+Kvd4nlplPssSdb2OKz4Lp+uKX6cYYyK9/W//Y5I1oy1xxIa2n9+F + af65L//YDzUJy1AA4y5mdNc/uT/6FO2F+/zzo+o5lNSXUlSfO00Ea1dwJ30TIV71bezL74gt03Hm + lMlta/yHj0S97qIxJQu2+m9/9KuPFKueCuwY4+TP4G4b6AcupumXT863zxjAtx9OVW8yEyavsxb+ + /k0F/Oe//vrrf/0mDF7t5fr8DgaM13n893+PCvxb/Pfwyp/PP2MIZMir69///NcEwt+fvn19xv89 + ts31Pfz9z188/2fW4O+xHfPn/7v+r++n/vNf/wcAAP//AwD0q0Au4CAAAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da94d78e16809-SJC + - 984402c48ff0d8a7-SJC Connection: - keep-alive Content-Encoding: @@ -3390,13 +3390,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:59 GMT + - Wed, 24 Sep 2025 17:30:38 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-7d88dddb5d-rf6h8 + - envoy-router-canary-7cccfb5df4-npvkg X-Content-Type-Options: - nosniff alt-svc: @@ -3408,7 +3408,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "61" + - "327" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3416,7 +3416,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "99" + - "413" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3424,7 +3424,7 @@ interactions: x-ratelimit-limit-tokens: - "200000000" x-ratelimit-remaining-requests: - - "199999" + - "199998" x-ratelimit-remaining-tokens: - "199999990" x-ratelimit-reset-requests: @@ -3432,24 +3432,27 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_13d78cdec5224dc7b187cfa14f5fb7ee + - req_a2ac3afdf1674125a9e34a68e84aa753 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 12-14: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 12-14: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnterfactual approach, contrastive approach employ a dual\\n\\noptimization method, which works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. @@ -3514,7 +3517,7 @@ interactions: al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness via exposure to adversarial examples. While there are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + Are counterfactuals actionable? [yes/no]\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3523,7 +3526,7 @@ interactions: connection: - keep-alive content-length: - - "6342" + - "6515" content-type: - application/json host: @@ -3555,24 +3558,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUwW4bOQy9+ysInXYBO7Dd1El8C9pmkaKHPfRQoC7GtMSZYasRB6LkjRHk3wvN - JLbbzQJ7McZ65CP5+KTHCYBhZ9ZgbIvJdr2fvfu4ur9737SXfynx7VI/fL67R/5bVm/8JzTTkiG7 - 72TTS9aFla73lFjCCNtImKiwLq7eXq9W15dvbwagE0e+pDV9ml3KbDlfXs4Wi9ly/pzYCltSs4av - EwCAx+G3tBgcPZg1zKcvJx2pYkNmfQwCMFF8OTGoypowJDM9gVZCojB0vd1uv6uETXjcBICN0dx1 - GA8bs4aNeSc5JIo12pTRAz30HgOW6RQwEqAt37jzBKiQWjpAH2XPjsCLRT8FDqW4pZmnPfnyl5s2 - KWBwoLlpSBP807JtoSZMOZKCxQA7AvSJIjlIArbF0FDhB8nJSkcXcCcR6AGL2qUK2JY61hQP0zGc - QwMI7cFF6VvZsYU6h7FdD02U3BfmYwR7tiCBhuocytqUQMXnHXtOhwv43LIeBx7OoMMfpd9fRFJA - yEp19pBEysSjbDzKdHsPf3y5vf8TaomQg6NY9HGl2z6SY/ssbnCQg5U9xQJpnyNLVojkR/lb7rVw - p4gcSojDhBcbMx23GMnTvuheqZVI4zYX8yOelVzFHTakBavRK23C0yZst9tzo0Sqs2LxacjenwEY - gqSxlWLRb8/I09GUXpo+yk5/SzU1B9a2KvpKKAbUJL0Z0KcJwLfB/PkXP5s+StenKskPGsotllfL - kdCc7tsZPL95RpMk9GfAm+vF9BXKylFC9np2g4xF25I75Z6uG2bHcgZMzgb/dz+vcY/Dc2j+D/0J - sJb6RK46GeW1sEjlQfqvsKPQQ8NGKe7ZUpWYYlmGoxqzH98KowdN1FU1h4ZiH3l8MOq+ulrc7Nyu - Rrcyk6fJTwAAAP//AwBmntQXOQUAAA== + H4sIAAAAAAAAA4xUTY8TORC951eUfFqkZJTMBxlyY5GAGQmQEBKrIahTbVd3G9wuy2WHCaP57yt3 + hyTLzkp78aFefbx6VeWHCYCyRq1A6Q6T7oObvbp9r5+/ufmzvp3fhbfdu/vbz3c/6w/mI/7oLtW0 + RHD9jXT6FXWmuQ+OkmU/wjoSJipZF8ur6+XF1fziegB6NuRKWBvS7JJn5/Pzy9liMTuf7wM7tppE + reDLBADgYXgLRW/oXq1gPv1l6UkEW1KrgxOAiuyKRaGIlYQ+qekR1OwT+YH1ZrP5JuzX/mHtAdZK + ct9j3K3VCtbqFWefKDaoU0YngJEAdekOa0eAAqmjHYTIW2sIHGt0U7C+FNQ0c7QlB3QfHHosUcUf + E0huW5IEPzqrO2gIU44koNFDTYAuUSQDiUF36FsqRYBz0tzTGbzmCHSPReZSCnRHvZUUd9PR3foW + ELqdiRw6rq2GJvuRs4M2cg4l88HDOquBPQ3VrS/zEgJhl2vrbNqdwafOyqHrwQY9fi98f1cHslCT + HSRmV6gNndtRq5c38MdfL2+eQcMRste8pVioSsjRchaI5EaNOhsE0Ju9rMXJ+pRtsluC7A3FIu9g + 5wZCJGMHcnK2VtNxiJEcbcsIKtEcqQxzMd9jWchUtseWpNgbdEJr/7j2m83mdEciNVmwrKjPzp0A + 6D2nkWrZzq975PGwj47bELmW30JVY72VrioKsy+7J4mDGtDHCcDXYe/zP1ZZhch9SFXi7zSUW1zM + r8eE6nhqJ/D8xR5NnNCdAJeL5fSJlJWhhNbJyfEojbojc4w9XhpmY/kEmJw0/m8+T+Uem7e+/T/p + j4DWFBKZ6jjtp9wilb/ov9wOQg+ElVDcWk1VshTLMAw1mN34TSjZSaK+aqxvKYZox7+iCdXV80V9 + frVcmlpNHid/AwAA//8DAOq1v5k0BQAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da94e9b6c9338-SJC + - 984402c77819227e-SJC Connection: - keep-alive Content-Encoding: @@ -3580,7 +3583,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:01 GMT + - Wed, 24 Sep 2025 17:30:40 GMT Server: - cloudflare Strict-Transport-Security: @@ -3596,13 +3599,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2067" + - "1290" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2120" + - "1315" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3612,30 +3615,33 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998481" + - "29998443" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_83accb0def03440183c152de6faf23c8 + - req_95c5d1ea782345bbae73bbe0a82af857 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 20-22: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 20-22: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnal molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the @@ -3702,7 +3708,7 @@ interactions: should seek to explain molecular property prediction models because users are more\\n\\nlikely to trust explained predictions, and explanations can help assess if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: Are counterfactuals - actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + actionable? [yes/no]\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3711,7 +3717,7 @@ interactions: connection: - keep-alive content-length: - - "6376" + - "6549" content-type: - application/json host: @@ -3743,24 +3749,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNj9s2EL37Vwx4tgN76/VmfWyAAkmvRS91IIzIkTQxv8ChtnYW+98D - UvZaSTZFLwasN/P43hsOnxcAio3ag9IDZu2iXX34tPv4x/rLp/Ekj3/Tw5/xgX7vdzsTuvjxqJal - I7RfSOdr1zsdXLSUOfgJ1okwU2HdPNy/3+3eb+8fK+CCIVva+phX27C6W99tV5vN6m59aRwCaxK1 - h38WAADP9bdI9IZOag/r5fWLIxHsSe1fiwBUCrZ8USjCktFntbyBOvhMvqp+PniAg5LROUzng9rD - QX0Io8+UOtR5RCuAicCQ6MQtGUAB1MUhtpaAPeSBoDKeMoQOXLCkR4sJYgqRUj5DTGS49kD1Le/g - r4HOlThRTCTk80StB3Ks0YLkNOo8JpIl/DuwHmp1h44tY4IcwASH7IFO5RBZAnpTayRiElqCwyP7 - vshzEFPRXHi7kGAUqgqgah64Hyz3QxbIA2bQ39kv/BY9FvVSLD2xIXDs2aEFU8PVBF0KDhBaFLom - QEW3nbJJKLmIYX9zeImHi8O51lGoGy9CvaFUTjAFLQZdMNydy795ztd4a7B8GxBbzmdgAXJxQOGv - l/nBsaRvntBn7KlM7b9MTyFbZF/ObS3q46oNp+ssD2o5XaJElp5KGo3okGi6TJv1Kz4KmYYd9iQF - 69AKHfzL/GYm6kbBshh+tHYGoPchT3rKTny+IC+vW2BDH1No5YdW1bFnGZpEKMGXGy85RFXRlwXA - 57pt43cLpGIKLuYmhyPV4za/bXcTobot+Aze3F/QHDLaGbDdbZZvUDaGMrKV2coqjXogc+u97TeO - hsMMWMyM/6znLe7JPPv+/9DfAK0pZjLN7X69VZaovIC/KnsNugpWQumJNTWZKZVhGOpwtNPjpOQs - mVzTse8pxcTTC9XF5mHz2Jq2Q7NTi5fFNwAAAP//AwCVDwBWqgUAAA== + H4sIAAAAAAAAAwAAAP//jFRNbyJJDL3zK6w6QwQkLBmu0Y60c1jlMKOstIzAXeUGT+pLdnUGFOW/ + r6qbBDIf0l764OeP51d+/TwCMOzMCozdY7Eh+8ndp7/t8vbh4eG+u7/7lG+8+7Jvrv86HP9ZxI9m + XCtS841sea26silkT4VTHGArhIVq19lycbu8XkyvP/RASI58LdvlMrlJk/l0fjOZzSbz6alwn9iS + mhX8OwIAeO6/lWJ0dDArmI5fI4FUcUdm9ZYEYCT5GjGoylowFjM+gzbFQrFnvd1uv2mK6/i8jgBr + o10IKMe1WcHa3KUuFpIWbenQK6AQoK3bYeMJUKHs6diHhbKQUizkatzuKbBFD1qks6UTUmgxsGcU + KAlcCsgR6JBJio77FppRlMaA0UGW9MTu3TSOyrt90Sv4/DrUUctxGBiSJ9t5UvjOZQ+BIwf04Prl + LUErKQBCg0pvudB0ZUivgghq4bg7U8+SKjumYSR8xsghlQTKgT0KlyOkFv68+3h/Ay3HHUkWjkWB + FTodeOGZQqAibIFjVQ3ogPVU9HVVdwXv5a7ieIxYBRikzyiFbedR/LEOaDsPbRLgWpWFevqNR/s4 + adIB+hPTOu+0MApkIce9plBQH6vy7GoZR+iiI6lc+0B9hZAct8ffibI24+FmhDw91RU3apNQvZ3Z + 9IRVHTYccEda4y16pXV8Wcftdnt5kkJtp1gdETvvLwCMMZVBhGqGryfk5e38fdplSY3+UGpajqz7 + jRBqivXUtaRsevRlBPC1t1n3zjkmSwq5bEp6pH7c7Pp2PjQ0Z2dfwLPbE1pSQX8BLKYnf75vuXFU + kL1eeNVYtHty59qzsbFznC6A0cXiP/P5Ve9heY67/9P+DFhLuZDbnK/lV2lC9df3u7Q3oXvCRkme + 2NKmMEl9DEctdn74Kxk9aqGwufBQTWnzZvHHrJkvlkvXmNHL6D8AAAD//wMAcp9vXKMFAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da94ec894ffb8-SJC + - 984402c79d9dc487-SJC Connection: - keep-alive Content-Encoding: @@ -3768,7 +3774,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:01 GMT + - Wed, 24 Sep 2025 17:30:41 GMT Server: - cloudflare Strict-Transport-Security: @@ -3784,13 +3790,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2578" + - "2376" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2609" + - "2695" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3800,30 +3806,33 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998471" + - "29998434" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_298857fca5e543f4b81242d3184d8d36 + - req_a4a09f2df79d43579481055d2515b258 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 9-12: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 9-12: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nthat gives subgraph importance for small molecule activity prediction. On the\\n\\nother hand, similarity maps compare model predictions for two or more molecules based @@ -3891,7 +3900,7 @@ interactions: works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. Contrastive explanations can interpret the model by identifying contribution of\\n\\npresence \\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? - [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + [yes/no]\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3900,7 +3909,7 @@ interactions: connection: - keep-alive content-length: - - "6353" + - "6526" content-type: - application/json host: @@ -3932,25 +3941,25 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNbxtHDL3rVxBzlgxJsWRbV6dp40tRIOilCgRqhrvLZj62Q65swfB/ - L2a19m4aF8hlDvP4HsnH4TzPAAw7swNjG1QbWr+4f9h+/vSbXUuF/tf458f7h1/+eLj/tFmefr+9 - NfPCSMe/yeor68qm0HpSTvEC20yoVFRXN5vb7fb2enPXAyE58oVWt7q4Tov1cn29WK0W6+VAbBJb - ErODv2YAAM/9WUqMjp7MDpbz15tAIliT2b0FAZicfLkxKMKiGNXMR9CmqBT7qp/3EWBvpAsB83lv - drA396mLSrlCqx16oKfWY8TSlABmAkdiMx/JAQrQE5aWBR5ZGwgcOaAHRyfuGVDlFEAbgpS55oge - OJaCLMGx0wsLoVSUUZRjDalTmwJdwZeGzoAcQBNglEfKvdA/HUkvnSp4bFBBAnpPomAbjDWBTZ13 - gF4HwiBY4jGO6VMFXPok0Sv4HPvQ3pknLVhInmznMUObybHtU/Zjk3lJMbFIoBMCBMeDdCDNbOcg - nW2KSUX6C0YOSdMYdSR9JIqTTBXHmnKbOarMS9uOlHLgSCAc2GNmPffGCP04F+xrxKOnIecZ2pxO - 7AikJcsV28GigqIORnlC11sMjquKMkV9tWwOAb+VmWhDoTRZdR6qlKGLjnJpwxUUo4M2lSfF6P25 - uMTVuSCjdXK1N/PLY8vk6VQcOIhNmcqjuxugTsgdOGBNUq4r9EL7+DJ9vJmqTrDsTuy8nwAYY9KL - HWVtvg7Iy9ui+FS3OR3lP1RTcWRpDplQUixLIZpa06MvM4Cv/UJ23+2YaXMKrR40faM+3erDcnsR - NOMfMIHXHwZUk6KfANfru/k7kgdHiuxlstXGom3IjdzxC8DOcZoAs0njP9bznvaleY71z8iPgLXU - KrnDOOf3wjKVT/L/wt6M7gs2QvnElg7KlMswHFXY+cv/ZeQsSuEw2ZMSUrWHzXZ1XG9ubtzRzF5m - /wIAAP//AwDalYl5zQUAAA== + H4sIAAAAAAAAAwAAAP//jFTBbhs5DL37KwhdehkHtuPErS8LbIBF20Mv7e5lXYxpDWdGjUacipQT + I8i/LzQTx06TAnsxLD3y8ZHDp4cJgHGVWYOxLartej+9+fzFXrO//WfmE/01//zxUx/+/vh1vrq8 + /vOnKXIG736Q1WPWheWu96SOwwjbSKiUWeerq/ery6vZ5fsB6Lgin9OaXqdLni5mi+V0Pp8uZk+J + LTtLYtbw7wQA4GH4zRJDRfdmDbPieNORCDZk1s9BACayzzcGRZwoBjXFCbQclMKgervd/hAOm/Cw + CQAbI6nrMB42Zg0bc8MpKMUarSb0QPe9x4C5OwGMBGjzf9x5AhTQlg7gKgrq6kM+gXToPYmCbTE0 + BIGoogqUAb1SHGI4qeWOgGvAAC5ksZYu4FtmwyB3T3E/E0muVsC7u9bZ9hW55eSr18R/vINPATr2 + ZJPHCEPv9yoFaOsEXNiz35NAEhca6EijswLe3RJ8w+A6VobKjaqy8o5QUiQQ1zmP0ekBdqR3RM9F + SAb1Qq8HlmRsPwP8coBjF1nQmdg+ck9RHQlwPlHlhgy5gBsOGlHU7V/WKSCSzzuX69gXH1AKqFPU + liJEql2gcQS7AzQUKKLmCexY22NzgKHKzR+PdI95vSVTu0zcR1IYVnmYa3S7NMrbmGLcp0ie9nl2 + pViOlPfqwxOUh1G6DhuSfF2jF9qEx03Ybrfn2xqpToLZLCF5fwZgCKxj19kn35+Qx2dneG76yDv5 + JdXULjhpy0goHLILRLk3A/o4Afg+ODC9MJXpI3e9lsq3NJSbXy4XI6E5mf4MXhxRZUV/Biyvl8Ub + lGVFis7LmY2NRdtSdco9eR5T5fgMmJw1/lrPW9xj8y40/4f+BFhLvVJVnnbxrbBI+VX8XdjzoAfB + RijunaVSHcX8MSqqMfnxwTJyEKWurF1o8rq58dWq+/Lqer5bXK1W1c5MHif/AQAA//8DAFn+0By+ + BQAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da94ecc02cf15-SJC + - 984402c7ad7f1679-SJC Connection: - keep-alive Content-Encoding: @@ -3958,7 +3967,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:02 GMT + - Wed, 24 Sep 2025 17:30:42 GMT Server: - cloudflare Strict-Transport-Security: @@ -3974,13 +3983,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2724" + - "3504" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2752" + - "3533" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3990,27 +3999,30 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998478" + - "29998440" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_7b8b850d99be40dfbfe82193125bbaaa + - req_4f3d3926fab9404aaf2d19af81422ada status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from wellawatteUnknownyearaperspectiveon pages 16-20: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, @@ -4080,7 +4092,7 @@ interactions: \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal - is also\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + is also\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4089,7 +4101,7 @@ interactions: connection: - keep-alive content-length: - - "188629" + - "188802" content-type: - application/json host: @@ -4121,24 +4133,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUTY8bNwy9+1cQOtuu7djexLc0RYD2mqKH1sGYlugZbjTSQKR211jsfy8047Un - 27ToRQc9Purx4+l5AmDYmR0Y26DatvOzT79tf/3858/t+mMOj5v7+Adu1+8e8Rdcfmy/mGlhxOM9 - WX1lzW1sO0/KMQywTYRKJevybvN+u32/3nzogTY68oVWdzpbx9lqsVrPlsvZanEhNpEtidnBXxMA - gOf+LBKDoyezg8X09aYlEazJ7K5BACZFX24MirAoBjXTG2hjUAq96sPhcC8x7MPzPgDsjeS2xXTe - mx3szaeYg1I6odWMXgATAdpSHR49AQpoQ2foUnxgRyAdWT6xBdGUreaEHtroyhUWkoBGaKMnmz0V - LipYDOAJXYEcCSdyYBsMNQlwKKk7SsokU5Bsm/KmRJ+P7FnPEBOIpaBz+BwT0BOW7k8LcRTUJXLc - q56CfVNRw3XjuW70jVDP3wjQOQ41oGXH9qcjCluoU8ydlIcbUkoRNbZ9XRzKrIVGL8/hC7fsMfnz - oKlI/U85kuuaRMcNfG2GRkCvlK5Z4ok9yRx+b0gIOEgpQwA91wEeWRugp44StxQUPWAojaWWLXrg - oJkHCY7aGEQTaqlVG+IEXSpTLoFZhx5ygDpz347LADH186rDfG+mw+4k8vSAwVIlNiYqO7RcXLAs - 5CpusSYp95oy7cPLPhwOh/FmJjplwWKMkL0fARhC1GE4xRNfL8jL1QU+1l2KR3lDNScOLE1VZhND - 2XjR2JkefZkAfO3dlr8zkOlSbDutNH6j/rnVanGxm7kZ/AYvV+sLqlHRj3jvrsh3KStHiuxlZFlj - 0TbkbtybvzE7jiNgMir8n3p+lHsonkP9f9LfAGupU3LVbWN/FJao/ID/FnZtdC/YCKUHtlQpUyrD - cHTC7IfPychZlNrqxKGm1CUefqhTV222y+Nqc3fnjmbyMvkbAAD//wMAAGvR96oFAAA= + H4sIAAAAAAAAA4xUS5PbNgy++1dgeLY9fqzXGx+bmb4OuXRPrTMyTEISEorUEOA27s7+9w6lja0m + 204vPODDB3x48XkGYNiZAxjbotqu94v3v36w+x8eNueePj/88vjT+v73D3/l/PNuS493Zl4Y8fyJ + rH5lLW3sek/KMYywTYRKJep6v3vYb3er7bsB6KIjX2hNr4u7uNisNneL9XqxWb0S28iWxBzgjxkA + wPPwFonB0RdzgNX8q6UjEWzIHK5OACZFXywGRVgUg5r5DbQxKIVB9el0+iQxHMPzMQAcjeSuw3Q5 + mgMczfuYg1Kq0WpGL4CJAG2pDs+eAAW0pQv0KT6xI5CeLNdsQTRlqzmhhy66YsJCEtAIXfRks6fC + RQUOtc8ULMHQEegTOR5SyBJ+jAnoC5aWzoEDSPT5zJ71MvGbg/1GZstN67lpFWyLoaEhL4lSgibF + 3AtgcNCSUoqosbtKKdMSmqSZA3puAocG/mRtwbbUsUUPHDRzyb6E37hjj8lfRomWgv6nOnYUlOvL + tEtXnUUH+qJ0DGR9GeC1gUt4bEkIOEipT8BigCaX5l+lORJuApwvILlpSLSon0ztu4mgbZmeaCAm + cmWcPSVlkuXRzMe1SOTpCYOlSmxMVNZjvXrFspCruMOGpNg1ZTqGl2M4nU7TpUtUZ8Gy8yF7PwEw + hKijnLLuH1+Rl+uC+9j0KZ7lG6qpObC0VRlaDGWZRWNvBvRlBvBxOKT8j9swfYpdr5XGzzSk22y2 + 92NAc7vdG7xeb15RjYp+wtvePczfCFk5UmQvk2s0Fm1L7sa9nS5mx3ECzCaFf6/nrdhj8Rya/xP+ + BlhLvZKrbov6llui8rn9m9u10YNgI5Se2FKlTKkMw1GN2Y//jpGLKHVVzaGh1CceP5+6r3b36/Nm + t9+7s5m9zP4GAAD//wMAKJhrA4UFAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da94ecd806cd4-SJC + - 984402c7aa307ad0-SJC Connection: - keep-alive Content-Encoding: @@ -4146,7 +4158,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:04 GMT + - Wed, 24 Sep 2025 17:30:43 GMT Server: - cloudflare Strict-Transport-Security: @@ -4162,13 +4174,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5239" + - "4859" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5261" + - "4897" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-input-images: @@ -4182,7 +4194,7 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29996944" + - "29996906" x-ratelimit-reset-input-images: - 0s x-ratelimit-reset-requests: @@ -4190,21 +4202,217 @@ interactions: x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_fd309b07788d4475ac139a4178686c5a + - req_dfe6c17fc8454f699ad5c54ce155bab6 + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 33-35: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n13,\\n\\n + \ 1\u201320.\\n\\n\\n(78) Mastropietro, A.; Pasculli, G.; Feldmann, C.; Rodr\xB4\u0131guez-P\xB4erez, + R.; Bajorath, J. Edge-\\n\\n SHAPer: Bond-Centric Shapley Value-Based Explanation + Method for Graph Neural\\n\\n Networks. iScience 2022, 25, 105043.\\n\\n\\n(79) + White, A. D. Deep learning for molecules and materials. Living Journal of Computa-\\n\\n + \ tional Molecular Science 2022, 3.\\n\\n(80) \u02D8Strumbelj, E.; Kononenko, + I. Explaining prediction models and individual predictions\\n\\n with feature + contributions. Knowledge and Information Systems 2014, 41, 647\u2013665.\\n\\n\\n(81) + Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing Higher-Layer Features + of\\n\\n a Deep Network. Technical Report, Univerist\xB4e de Montr\xB4eal + 2009,\\n\\n\\n(82) Weber, J. K.; Morrone, J. A.; Bagchi, S.; Pabon, J. D.; gu + Kang, S.; Zhang, L.;\\n\\n Cornell, W. D. Simplified, interpretable graph + convolutional neural networks for small\\n\\n molecule activity prediction. + Journal of Computer-Aided Molecular Design 2022, 36,\\n\\n 391\u2013404.\\n\\n\\n(83) + Riniker, S.; Landrum, G. A. Similarity maps - A visualization strategy for molecular\\n\\n + \ fingerprints and machine-learning methods. Journal of Cheminformatics 2013, + 5, 1\u20137.\\n\\n\\n(84) Humer, C.; Heberle, H.; Montanari, F.; Wolf, T.; Huber, + F.; Henderson, R.; Hein-\\n\\n rich, J.; Streit, M. ChemInformatics Model + Explorer (CIME): exploratory analysis of\\n\\n chemical model explanations. + Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n(85) McGrath, T.; Kapishnikov, + A.; Toma\u02C7sev, N.; Pearce, A.; Wattenberg, M.; Hass-\\n\\n abis, D.; + Kim, B.; Paquet, U.; Kramnik, V. Acquisition of chess knowledge in Al-\\n\\n + \ phaZero. Proceedings of the National Academy of Sciences 2022, 119, e2206625119.\\n\\n\\n\\n\\n + \ 33(86) Bajusz, D.; R\xB4acz, A.; H\xB4eberger, + K. Why is Tanimoto index an appropriate choice for\\n\\n fingerprint-based + similarity calculations? Journal of Cheminformatics 2015, 7, 1\u201313.\\n\\n\\n(87) + Huang, Q.; Yamada, M.; Tian, Y.; Singh, D.; Yin, D.; Chang, Y. GraphLIME:\\n\\n + \ Local Interpretable Model Explanations for Graph Neural Networks. CoRR + 2020,\\n\\n abs/2001.06216.\\n\\n\\n(88) Sokol, K.; Flach, P. A. LIMEtree: + Interactively Customisable Explanations Based on\\n\\n Local Surrogate Multi-output + Regression Trees. CoRR 2020, abs/2005.01427.\\n\\n\\n(89) Whitmore, L. S.; George, + A.; Hudson, C. M. Mapping chemical performance on molec-\\n\\n ular structures + using locally interpretable explanations. 2016; https://arxiv.org/\\n\\n abs/1611.07443.\\n\\n\\n(90) + Mehdi, S.; Tiwary, P. Thermodynamics of Interpretation. 2022,\\n\\n\\n(91) H\xA8ofler, + M. Causal inference based on counterfactuals. BMC Medical Research Method-\\n\\n + \ ology 2005, 5, 1\u201312.\\n\\n\\n(92) Woodward, J.; Hitchcock, C. Explanatory + Generalizations, Part I: A Counterfactual\\n\\n Account. No\u02C6us 2003, + 37, 1\u201324.\\n\\n\\n(93) Frisch, M. F. Theories, models, and explanation; + University of California, Berkeley,\\n\\n 1998.\\n\\n\\n(94) Reutlinger, + A. Is There A Monist Theory of Causal and Non-Causal Explanations?\\n\\n The + Counterfactual Theory of Scientific Explanation. Philosophy of Science 2016, + 83,\\n\\n 733\u2013745.\\n\\n\\n(95) Lewis, D. Causation. The journal of + philosophy 1974, 70, 556\u2013567.\\n\\n\\n(96) Tanimoto, T. T. Elementary mathematical + theory of classification and prediction.\\n\\n Internal IBM Technical Report + 1958,\\n\\n\\n 34 (97) Rogers, D.; Hahn, + M. Extended-Connectivity Fingerprints. Journal of Chemical In-\\n\\n formation + and Modeling 2010, 50, 742\u2013754, PMID: 20426451.\\n\\n\\n (98) Mohapatra, + S.; An, J.; G\xB4omez-Bombarelli, R. Chemistry-informed macromolecule\\n\\n + \ graph representation for similarity computation, unsupervised and supervised + learn-\\n\\n ing. Machine Learning: Science and Technology 2022, 3, 015028.\\n\\n\\n + (99) Doshi-Velez, F.; Kortz, M.; Budish, R.; Bavitz, C.; Gershman, S.; O\u2019Brien, + D.;\\n\\n Scott, K.; Schieber, S.; Waldo, J.; Weinberger, D.; Weller, + A.; Wood, A. Account-\\n\\n ability of AI Under the Law: The Role of Explanation. + SSRN Electronic Journal\\n\\n 2017,\\n\\n\\n(100) Wachter, S.; Mittelstadt, + B.; Russell, C. Counterfactual explanations without opening\\n\\n the black + box: Automated decisions and the GDPR. Harv. JL & Tech. 2017, 31, 841.\\n\\n\\n(101) + Jim\xB4enez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable + artificial\\n\\n intelligence. Nature Machine Intelligence 2020 2:10 2020, + 2, 573\u2013584.\\n\\n\\n(102) Fu, T.; Gao, W.; Xiao, C.; Yasonik, J.; Coley, + C. W.; Sun, J. Differentiable Scaffold-\\n\\n ing Tree for Molecule Optimization. + International Conference on Learning Represen-\\n\\n tations. 2022.\\n\\n\\n(103) + Shen, C.; Krenn, M.; Eppel, S.; Aspuru-Guzik, A. Deep molecular dreaming: inverse\\n\\n + \ machine learning for de-novo molecular design and interpretability with + surjective\\n\\n representations. Machine Learning: Science and Technology + 2021, 2, 03LT02.\\n\\n\\n(104) Lucic, A.; ter Hoeve, M.; Tolomei, G.; + \ Rijke, M.; Silvestri, F. CF-\\n\\n GNNExplainer: Counterfactual + Explanations for Graph Neural Networks. arXiv\\n\\n------------\\n\\nQuestion: + Are counterfactuals actionable? [yes/no]\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6563" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 1.109.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 1.109.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.5 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAAwAAAP//jFRNb9tGEL3rVwz2ZAOUISlSFOlmJEHSNC3SIEAPVUCtlkNy7OUuszMr + 2zX8t/oH+seCJSWLjlsgFx72zcd7M/N4PwJQVKg1KFNrMU1rx68//G5W7uby8uOvf3z88Fv4W5pV + 820+f7c379+qLGX43RUaOWZdGN+0FoW862ETUAumqtPl4tXyxWIyn3ZA4wu0Ka1qZTz349lkNh9P + p+PZ5JBYezLIag1/jQAA7rtvougKvFVrmGTHlwaZdYVq/RgEoIK36UVpZmLRTlR2Ao13gq5jvd1u + r9i7jbvfOICN4tg0Otxt1Bo26kuNgLcGQysQsMSAziBDE61QaxFufLhmKIhNZCZXgfHRCYZSG4na + At62VjudxsEZkDM2FilMaqQAiSKQAzaETqgkM0yAs88YxZKrMGQwm0xfnmdgdGRtgdyBC5y9//ef + 0vYRk8V5BtoVoKP4Jo0dCjTE5N240depcXQFBnj35tNnOPtTm1owAApoe9G1WJ5fwJcaGYF9DEkq + x6pClh+EMeiAEBkLEA9t8HsqkhTB0AYUvSNLctdzMV3q8YkcXP4CfMeCDWfQ6iBkotXBdlinn1yi + eqTOcENS+5g2sEdtD/PruzltuyWQqxh8Cd1VcRJBDNS0lpCfcTfawQ5BmzRmveuX0J3ErTAE/BYp + DBnAVeRuPf1efOjbPNN7sVFZf0QBLe61M5iz8QHTMa0OUBpaTo2ukNNzqS3jxj1s3Ha7HZ5owDKt + Wq3BRWsHgHbOS39SyRxfD8jDox2sr9rgd/xDqirJEdd5QM3epdNn8a3q0IcRwNfOdvGJk1QbfNNK + Lv4au3bT5WreF1Qnpw/gFwdXKvGi7QBYzY55T0rmBYomywPvKqNNjcUp92R0HQvyA2A0EP6cz3/V + 7sWTq36m/AkwBlvBIm8DFmSeaj6FBUy/wv8Lexx0R1gxhj0ZzIUwpGUUWOpo+7+U6v2Rl53520D9 + r6ps88XL6W62WC6LnRo9jL4DAAD//wMA0QdIzbMFAAA= + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 984402d93fecc487-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Wed, 24 Sep 2025 17:30:44 GMT + Server: + - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "2486" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "2536" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "10000" + x-ratelimit-limit-tokens: + - "30000000" + x-ratelimit-remaining-requests: + - "9999" + x-ratelimit-remaining-tokens: + - "29998440" + x-ratelimit-reset-requests: + - 6ms + x-ratelimit-reset-tokens: + - 3ms + x-request-id: + - req_f0c73d625d374293bb2d08ddc8e6f0f8 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from wellawatteUnknownyearaperspectiveon pages 14-16: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, @@ -4273,7 +4481,7 @@ interactions: is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + Are counterfactuals actionable? [yes/no]\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4282,7 +4490,7 @@ interactions: connection: - keep-alive content-length: - - "51101" + - "51274" content-type: - application/json host: @@ -4314,24 +4522,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xU0W4bNxB811cs+NQCkmGptmzoUUWKtkDaBihgtFVw2iNXd+vyuAyX50gw/O8B - dbJ1SRwgLzqIw1nODmf5OAEw7MwKjG0x2y762c+/L3/7lePd4e3dm3cfxH3468/7d3/8e7d4+6b1 - ZloYUt+Tzc+sCytd9JRZwgDbRJipVJ3fXN8ul7dXy/kR6MSRL7Qm5tmVzBaXi6vZfD5bXJ6IrbAl - NSv4bwIA8Hj8LRKDo71ZweX0eaUjVWzIrF42AZgkvqwYVGXNGLKZnkErIVM4qt5ut/cqYRMeNwFg - Y7TvOkyHjVnBxvxDOgUrfciUdmhzj14BEwHa0iLWni7g75Yg0z4D7aNHDgq5xfwFbQADFpqC9k1D - mkEjWd6xhU5c+Z7gLNCJJ9t7Ov5B2zI9EDhSTuQgJomUMhd12tsWUIGKGg4N4Au3UCOlrtwA5Jag - 9iJuVifkADWmxJTgh/V6/eMF/CIJaI/l8qZfqylki6mW/cGzBbTsoEnSR+AwPvAjJQJt5WMoLAot - BkuwXq+fdbAEqA/AoeRCi9z24JLEVmq2wMWwwVoFDA60L/5RsRyL0azgqJOgOWGmV43W4s4Du/Ed - AQflps0KO0mAPlMqR59kYxoZerEx0yEIiTw9FP2VWklUAjG/PGG9kqu4w4a0rOfU0yY8bcJ2ux3H - LNGuVywpD733IwBDkDzYWwL+/oQ8vUTaSxOT1PoF1ew4sLZVMU9Cia9mieaIPk0A3h9Hp/9sGkxM - 0sVcZfmfjsfNb366HQqa87SO4PnyhGbJ6EfA7fXV9JWSlaOM7HU0f8aibcmduedhxd6xjIDJqPGv - 9bxWe2ieQ/M95c+AtRQzuSomcmw/7/m8LVF5zr617cXoo2CjlB7YUpWZUrkMRzvs/fDSGD1opq7a - cWgoxcTDc7OL1fVyXi+ub25cbSZPk08AAAD//wMA+myAJHcFAAA= + H4sIAAAAAAAAA4xUTW/jNhC9+1cMeGoBO7Bdu059dNCiKdAPoL0U9UIek2NpthRJDEdZB0H++4KS + N1ayKdCLKMybN3zzxacJgGFntmBsg2rb5Gd3v/xmb+8Xqz9+//PX+3z++dPy7x9+vG/Psr7DjZkW + Rjx+JKtfWDc2tsmTcgwDbIVQqURdbNa3m+/W89W8B9royBdanXS2irPlfLmaLRaz5fxCbCJbymYL + /0wAAJ76b5EYHJ3NFvowvaWlnLEms31xAjASfbEYzJmzYlAzvYI2BqXQqz4cDh9zDPvwtA8Ae5O7 + tkV53Jst7M1d7IKSnNBqhz4DCgHakh0ePQFm0IYeIXd1TVkhJ7J8YgttdOXE4plBI7TRk+08CmSV + zmon1NvRNkwPBI4yCzlIEhOJMuUb+CkK0BlLPafAAY4+Rjc7CpZ/FGES+Ga3230LiaSl/jJIQo57 + hVOwr9QDnZPHcNHEjoLyicl9LVYbAotyjOdHzxbQsoNaYpdAG1SgPnkH+CUrKqSLBurZu93uBv5q + KNOb6Oi5DvCJtSlySLiloOjhxMFxqPMUHLUxZBVUDvVwoX3TBYsB6o7dq17YBkM9FJXbJPGBRkUf + lXVvpkOjhTw9YLBUZRuFSsMX8wvWZXIVt1hTLnaVjvbheR8Oh8N4jIROXcYyxaHzfgRgCFGHlMsA + f7ggzy8j62OdJB7zG6o5ceDcVEKYYyjjmTUm06PPE4AP/Wp0r6bdJIlt0krjv9Rft9hsVkNAc93G + ETzfXFCNin4E3N4upu+ErBwpss+j/TIWbUPuyr0uI3aO4wiYjBL/Ws97sYfkOdT/J/wVsJaSkquu + G/Cem1B5rv7L7aXQvWCTSR7YUqVMUprh6ISdH14Skx+zUludONQkSXh4Tk6pWn+/OC7Xm407msnz + 5DMAAAD//wMA/6tDI1cFAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da95c8a7a9338-SJC + - 984402d05cb6227e-SJC Connection: - keep-alive Content-Encoding: @@ -4339,7 +4547,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:06 GMT + - Wed, 24 Sep 2025 17:30:45 GMT Server: - cloudflare Strict-Transport-Security: @@ -4355,13 +4563,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5287" + - "4977" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5319" + - "5008" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-input-images: @@ -4375,7 +4583,7 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29997718" + - "29997681" x-ratelimit-reset-input-images: - 0s x-ratelimit-reset-requests: @@ -4383,92 +4591,94 @@ interactions: x-ratelimit-reset-tokens: - 4ms x-request-id: - - req_bdc636fe78df4433a151bfac4c2da7ee + - req_d65f6f467f304d58bfc026cf5143d458 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 33-35: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n13,\\n\\n - \ 1\u201320.\\n\\n\\n(78) Mastropietro, A.; Pasculli, G.; Feldmann, C.; Rodr\xB4\u0131guez-P\xB4erez, - R.; Bajorath, J. Edge-\\n\\n SHAPer: Bond-Centric Shapley Value-Based Explanation - Method for Graph Neural\\n\\n Networks. iScience 2022, 25, 105043.\\n\\n\\n(79) - White, A. D. Deep learning for molecules and materials. Living Journal of Computa-\\n\\n - \ tional Molecular Science 2022, 3.\\n\\n(80) \u02D8Strumbelj, E.; Kononenko, - I. Explaining prediction models and individual predictions\\n\\n with feature - contributions. Knowledge and Information Systems 2014, 41, 647\u2013665.\\n\\n\\n(81) - Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing Higher-Layer Features - of\\n\\n a Deep Network. Technical Report, Univerist\xB4e de Montr\xB4eal - 2009,\\n\\n\\n(82) Weber, J. K.; Morrone, J. A.; Bagchi, S.; Pabon, J. D.; gu - Kang, S.; Zhang, L.;\\n\\n Cornell, W. D. Simplified, interpretable graph - convolutional neural networks for small\\n\\n molecule activity prediction. - Journal of Computer-Aided Molecular Design 2022, 36,\\n\\n 391\u2013404.\\n\\n\\n(83) - Riniker, S.; Landrum, G. A. Similarity maps - A visualization strategy for molecular\\n\\n - \ fingerprints and machine-learning methods. Journal of Cheminformatics 2013, - 5, 1\u20137.\\n\\n\\n(84) Humer, C.; Heberle, H.; Montanari, F.; Wolf, T.; Huber, - F.; Henderson, R.; Hein-\\n\\n rich, J.; Streit, M. ChemInformatics Model - Explorer (CIME): exploratory analysis of\\n\\n chemical model explanations. - Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n(85) McGrath, T.; Kapishnikov, - A.; Toma\u02C7sev, N.; Pearce, A.; Wattenberg, M.; Hass-\\n\\n abis, D.; - Kim, B.; Paquet, U.; Kramnik, V. Acquisition of chess knowledge in Al-\\n\\n - \ phaZero. Proceedings of the National Academy of Sciences 2022, 119, e2206625119.\\n\\n\\n\\n\\n - \ 33(86) Bajusz, D.; R\xB4acz, A.; H\xB4eberger, - K. Why is Tanimoto index an appropriate choice for\\n\\n fingerprint-based - similarity calculations? Journal of Cheminformatics 2015, 7, 1\u201313.\\n\\n\\n(87) - Huang, Q.; Yamada, M.; Tian, Y.; Singh, D.; Yin, D.; Chang, Y. GraphLIME:\\n\\n - \ Local Interpretable Model Explanations for Graph Neural Networks. CoRR - 2020,\\n\\n abs/2001.06216.\\n\\n\\n(88) Sokol, K.; Flach, P. A. LIMEtree: - Interactively Customisable Explanations Based on\\n\\n Local Surrogate Multi-output - Regression Trees. CoRR 2020, abs/2005.01427.\\n\\n\\n(89) Whitmore, L. S.; George, - A.; Hudson, C. M. Mapping chemical performance on molec-\\n\\n ular structures - using locally interpretable explanations. 2016; https://arxiv.org/\\n\\n abs/1611.07443.\\n\\n\\n(90) - Mehdi, S.; Tiwary, P. Thermodynamics of Interpretation. 2022,\\n\\n\\n(91) H\xA8ofler, - M. Causal inference based on counterfactuals. BMC Medical Research Method-\\n\\n - \ ology 2005, 5, 1\u201312.\\n\\n\\n(92) Woodward, J.; Hitchcock, C. Explanatory - Generalizations, Part I: A Counterfactual\\n\\n Account. No\u02C6us 2003, - 37, 1\u201324.\\n\\n\\n(93) Frisch, M. F. Theories, models, and explanation; - University of California, Berkeley,\\n\\n 1998.\\n\\n\\n(94) Reutlinger, - A. Is There A Monist Theory of Causal and Non-Causal Explanations?\\n\\n The - Counterfactual Theory of Scientific Explanation. Philosophy of Science 2016, - 83,\\n\\n 733\u2013745.\\n\\n\\n(95) Lewis, D. Causation. The journal of - philosophy 1974, 70, 556\u2013567.\\n\\n\\n(96) Tanimoto, T. T. Elementary mathematical - theory of classification and prediction.\\n\\n Internal IBM Technical Report - 1958,\\n\\n\\n 34 (97) Rogers, D.; Hahn, - M. Extended-Connectivity Fingerprints. Journal of Chemical In-\\n\\n formation - and Modeling 2010, 50, 742\u2013754, PMID: 20426451.\\n\\n\\n (98) Mohapatra, - S.; An, J.; G\xB4omez-Bombarelli, R. Chemistry-informed macromolecule\\n\\n - \ graph representation for similarity computation, unsupervised and supervised - learn-\\n\\n ing. Machine Learning: Science and Technology 2022, 3, 015028.\\n\\n\\n - (99) Doshi-Velez, F.; Kortz, M.; Budish, R.; Bavitz, C.; Gershman, S.; O\u2019Brien, - D.;\\n\\n Scott, K.; Schieber, S.; Waldo, J.; Weinberger, D.; Weller, - A.; Wood, A. Account-\\n\\n ability of AI Under the Law: The Role of Explanation. - SSRN Electronic Journal\\n\\n 2017,\\n\\n\\n(100) Wachter, S.; Mittelstadt, - B.; Russell, C. Counterfactual explanations without opening\\n\\n the black - box: Automated decisions and the GDPR. Harv. JL & Tech. 2017, 31, 841.\\n\\n\\n(101) - Jim\xB4enez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable - artificial\\n\\n intelligence. Nature Machine Intelligence 2020 2:10 2020, - 2, 573\u2013584.\\n\\n\\n(102) Fu, T.; Gao, W.; Xiao, C.; Yasonik, J.; Coley, - C. W.; Sun, J. Differentiable Scaffold-\\n\\n ing Tree for Molecule Optimization. - International Conference on Learning Represen-\\n\\n tations. 2022.\\n\\n\\n(103) - Shen, C.; Krenn, M.; Eppel, S.; Aspuru-Guzik, A. Deep molecular dreaming: inverse\\n\\n - \ machine learning for de-novo molecular design and interpretability with - surjective\\n\\n representations. Machine Learning: Science and Technology - 2021, 2, 03LT02.\\n\\n\\n(104) Lucic, A.; ter Hoeve, M.; Tolomei, G.; - \ Rijke, M.; Silvestri, F. CF-\\n\\n GNNExplainer: Counterfactual - Explanations for Graph Neural Networks. arXiv\\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 3-5: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n + a passive characteristic of a model, whereas explainability\\n\\nis an active + characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, + an explanation is extra information that gives the context and a cause for one + or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n + \ Accuracy and interpretability are two attractive characteristics of DL models. + However,\\n\\nDL models are often highly accurate and less interpretable.28,30 + XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. + XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate + but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. + Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe + explanations should give insight into the underlying mechanism.\\n\\n In the + remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin + various systems these methods yield explanations that are consistent with known + and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn + this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding + our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. + According to their classification, interpretations can be categorized as global + or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. + For example, counterfactuals are\\n\\nlocal interpretations, as these can explain + only a given instance. The second classification is\\n\\nbased on the relation + between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) + or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand + is self-explanatory32 These are also referred to as white-box models to contrast + them\\n\\nwith non-interpretable black box models.28 An extrinsic method is + one that can be applied\\n\\npost-training to any model.33 Post-hoc methods + found in the literature focus on interpreting\\n\\nmodels through 1) training + data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 + or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation + and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 + Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused + the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe + may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof + physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan + be evaluated by considering its agreement with physical observations, which + they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests + that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence + strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. + In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases + and subjectivity can be used to measure the correctness.40 Other similar metrics + of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be + found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced + CIME an interactive web-based tool that allows the\\n\\nusers to inspect model + explanations. The aim of this study is to bridge the gap between\\n\\nanalysis + of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n + \ 4evaluation metric is necessary in XAI. + We suggest the following attributes can be used to\\n\\nevaluate explanations. + However, the relative importance of each attribute may depend on\\n\\nthe application + - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability + of a static physics based model. Therefore, one can select relative importance\\n\\nof + each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it + clear how we could change the input features to modify the output?\\n\\n\\n + \ \u2022 Complete. Does the explanation completely account for the prediction? + Did features\\n\\n not included in the explanation really contribute zero + effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation + agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n + \ \u2022 Domain Applicable. Does the explanation use language and concepts + of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the + explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the + explanation change significantly with small changes to the model or\\n\\n instance + being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n + \ We present an example evaluation of the SHAP explanation method based on the + above\\n\\nattributes.44 Shapley values were proposed as a local explanation + method based on feature\\n\\nattribution, as they offer a complete explanation + - each feature i\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? + [yes/no]\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4477,7 +4687,7 @@ interactions: connection: - keep-alive content-length: - - "6390" + - "6530" content-type: - application/json host: @@ -4509,25 +4719,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNbxs3EL3rVwx4CFpgJUiqK8e6Nf1AXAQokAZIgSiQRuTs7kRckuCQ - tlTD/73grmVJTlr0wsO8eY/z/TACUGzUEpRuMeku2PHPvy9ub9//Yn999wfH7W83h/xu/9e1fv/m - jb1dqKow/PYL6XRkTbTvgqXE3g2wjoSJiurs+sfXi8Xrq8W8BzpvyBZaE9L4yo/n0/nVeDYbz6dP - xNazJlFL+DQCAHjo3xKiM7RXS5hWR0tHItiQWj47AajobbEoFGFJ6JKqTqD2LpHro95sNl/Eu5V7 - WDmAlZLcdRgPK7WElfrQEtBeUwwJItUUyWkS6LJNHCzBvY87gUi25AjJg/bZJYo16pTRAu2DRYel - HALoDKSWOAKGYFkP5grYaZsNuwY0ZkEL7J5+6ikvJFH3BgF2IJrJJa5ZX/w0gT8D6WJGaw8VcIKu - +JUghogt7wje5o4iUAK0E/huPp3PvwfvQLfUFSb0HboQruAj6jZdsGbXA+s/EmcHmJPv+iIZ0iyD - WMnuo/fmHqOBV/CWk26117siO/2hlz3q+HiAhhxFtPz3k2yWvmYXH8sEPrQkBJKyYRKQ3DQkCVKL - 6aUvYCTIMnQuRH/Hhr5uGTvhpk1SQcCYWGeL0R5KUj/d9g5nXejnal9871vWLXAXbIliaHvwZei4 - b2LRxy1bTr3UsSrjDnclq6KbnaFYRneYjX6x9iAHSdTJZKWqYWAjWbpDp2kt2kcaBvfmGS75rbnD - hqRANVqhlXtcuc1mc74SkeoyfGoJLlt7BqBzPg31KMv4+Ql5fF4/65sQ/VZeUFXNjqVdR0Lxrqya - JB9Ujz6OAD73a54vNleF6LuQ1snvqP+uHI1BUJ0uyxl8dUSTT2jPgJvpovqG5NpQQrZydiuURt2S - OXFPhwWzYX8GjM4S/zqeb2kPybNr/o/8CdCaQiKzDpEM68ucT26Ryun9N7fnQvcBK6F4x5rWiSmW - ZhiqMdvhKqphqNY1u4ZiiDycxjqsr2c3W7Ot0SzU6HH0DwAAAP//AwCpoQVOIwYAAA== + H4sIAAAAAAAAA4xUwY4bNwy9+ysInVrAXtheb9z6tk2LYgO06CFBi9TBmJY4M0w1kiByNnYW+++F + ZhzbabdALwOMHh/5HkXqaQJg2JkNGNui2i752es3v9r7Nyw/vP/Rvsr3n/279fvFLw8/v82rw29m + Whhx/5GsfmHd2NglT8oxjLDNhEol62J999369m6+Wg5AFx35QmuSzlZxtpwvV7PFYracn4htZEti + NvDnBADgafgWicHRwWxgPv1y0pEINmQ25yAAk6MvJwZFWBSDmukFtDEohUH1brf7KDFsw9M2AGyN + 9F2H+bg1G9ia17EPSrlGqz16AcwEFpWamPkzOUABHy164BKWMikW6wIc4KdD8sgB957g/gG++eP+ + 4VvYk8VeCLSlI9AYAZLIcs0WOBSlluQG3rYESgeFlpvWc9OqgLaogLZUGLIO/HCqaD1mro/Qxk/A + IfUKNaH2mQQsBtgTdNFxzeRAI9gWQzPIgNhr6vUGfm/ZE9gXHIeoQy22rP4IHvfkR/NXYjgM2ehg + KSedlh/OkPqcohCg5yYIfGJtzyT2rEcQDvbUj5TjI7uSSkbDHDQOhka5Q1tHbzb23oEnHNw4rmvK + FLSYsbEjudma6XifmTw9lqZWYmOm8V6/P8O9kKu4w4akQDV6oW143obdbnc9MZnqXrAMbOi9vwIw + hHi69TKrH07I83k6fWxSjnv5B9XUHFjaKhNKDGUSRWMyA/o8AfgwbEH/1WCblGOXtNL4Fw3lFrfz + 2zGhuSzeFTxfnVCNiv4KWM3X0xdSVo4U2cvVKhmLtiV34V72DnvH8QqYXBn/t56Xco/mOTT/J/0F + sJaSkqtSJsf2a8+XsEzlZfqvsHOjB8FGKD+ypUqZcrkMRzX2fnw0jBxFqatqDk3Zch5fjjpVd68W + ++Xdeu32ZvI8+RsAAP//AwAPH6HiQgUAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da9602934ffb8-SJC + - 984402de7a1d1679-SJC Connection: - keep-alive Content-Encoding: @@ -4535,7 +4744,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:07 GMT + - Wed, 24 Sep 2025 17:30:45 GMT Server: - cloudflare Strict-Transport-Security: @@ -4551,13 +4760,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5266" + - "3288" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5289" + - "3380" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4567,30 +4776,33 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998478" + - "29998441" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_af2f77b8110e4bd682dc001b21a3dabf + - req_2759b373b42b9de4bc96e890416d1e20 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 5-8: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 5-8: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnct?\\n\\n\\n \ We present an example evaluation of the SHAP explanation method based on the above\\n\\nattributes.44 Shapley values were proposed as a local explanation @@ -4657,7 +4869,7 @@ interactions: \ 2.\\n\\n \u2206\u02C6f(\u20D7x) \u2248\u2202\u02C6f(\u20D7x) \ (2)\\n \u2206xi \ \u2202xi\\n\\n\\n\\n 7 \\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + Are counterfactuals actionable? [yes/no]\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4666,7 +4878,7 @@ interactions: connection: - keep-alive content-length: - - "6361" + - "6534" content-type: - application/json host: @@ -4698,23 +4910,23 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTBThsxEL3nK0a+cEkQgZBAbohDBa0qVeXUBq1m7dldF6/tesYhEeLf - q92FJBQq9eLDvHkz8+w3fhoBKGvUEpRuUHQb3eT6dn7z9azGq+u7K/s5fZndLr7NwjRvPl39+K3G - HSOUv0jLK+tYhzY6Ehv8AOtEKNRVnS7OL+bzi9l80QNtMOQ6Wh1lMguT05PT2WQ6nZyevBCbYDWx - WsLPEQDAU392I3pDG7WEk/FrpCVmrEktd0kAKgXXRRQyWxb0osZ7UAcv5Pupn1YeYKU4ty2m7Uot - YaXuGgLaaEpRwFjWmZkYdMheKFWoJaNjQAYE2UaCUAFtokOPnXCwHtrgSGeHCWIiY3Uf7yXzMdwI - sKAQgzQo7+smAh08W0OJDByVJELp6LAFQ0kaMxNIQ9ueUQZpAPtGWDoC9AY4YmI6hqt9+E2RmMLa - GgIEJulUVISS024w9KAb9HXfBkIWHVoaQ4sP1tddrIXMVGUHVUhgSFu2wU8G/BjuGtvdmpeELAyP - Vhr43mB0tIU1ukw8hsfG6uZFcu8cgjIL+CCHYkJ61bJS4+HBEjlao9dUsA6JhoebnuzwzGQK22JN - 3GEVOqaVfz50QaIqM3Ym9Nm5AwC9DzLcUee/+xfkeec4F+qYQsl/UVVlveWmSIQcfOculhBVjz6P - AO57Z+c3ZlUxhTZKIeGB+nbT08X5UFDtl2kPX16+gBIE3QHtbDEbf1CxMCRoHR9sh9KoGzJ77n6V - MBsbDoDRge7343xUe9Buff0/5feA1hSFTLFfl4/SEnWfzb/SdvfcD6yY0tpqKsRS6t7CUIXZDf+A - 4i0LtUVlfU0pJjt8BlUsFtPL0pQVmrkaPY/+AAAA//8DALlkQmYVBQAA + H4sIAAAAAAAAAwAAAP//jJRNT9wwEIbv+ytGvnDZRbuwy8feED3Rlh6oKlVdFE3sSWJw7MgzBraI + /145AbIUKvWSwzx+x/NmZvw4AVDWqDUo3aDotnOz84tLfe6Pblff5j/Pbj7ffL34dPXjiO4Pv1yy + U9OsCOUNaXlR7evQdo7EBj9gHQmFctbF8erk+HA1Xy570AZDLsvqTmbLMDuYHyxni8XsYP4sbILV + xGoNvyYAAI/9N5foDT2oNcynL5GWmLEmtX49BKBicDmikNmyoBc1HaEOXsj3VT9uPMBGcWpbjNuN + WsNGnYfkhWKFWhI6BowEhlhHW5IBZNgrSYTiHtBD59Bj9stQksbEBNLQtteUQRpAnSmWjgC9Ae4w + Mu3D2Rh+k6SL4c4aAgQmgVBBRSgpEoM0KKDRg27Q1/01EJLo0NIUWry1vs6xFhJTlRxUIYIhbdkG + Pxv4PnxvLEO2H5GF4d5KA1cNdo62cIcuEU/hvrG66Q344Ge79fOzN2Zb+57+phgARaIt02BAAqBz + Y9n5ipAErCEvttrmMhG4I20rq9+7zHKhuGtvf6OmQ5siObpDr6lgHSIN7VrMX3liMoVtsSbOrELH + tPFPu72PVCXGPHo+ObcD0PsgQxfy1F0/k6fXOXOh7mIo+S+pqqy33BSRkIPPM8USOtXTpwnAdT/P + 6c2Iqi6GtpNCwi311y0OF4shoRpXaMSnJ89QgqDbkS3np9MPMhaGBK3jnZ1QGnVDZtSOC4TJ2LAD + Jju+35fzUe7Bu/X1/6QfgdbUCZmii2Ssfmt5PBYpPzH/Ovb6n/uCFVO8s5oKsRRzLwxVmNyw/Yq3 + LNQWlfU1xS7a4QmoumJ1tCgPVsfHplSTp8kfAAAA//8DAO+Fs2YLBQAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da97e8f3f9338-SJC + - 984402e9c829c487-SJC Connection: - keep-alive Content-Encoding: @@ -4722,7 +4934,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:09 GMT + - Wed, 24 Sep 2025 17:30:46 GMT Server: - cloudflare Strict-Transport-Security: @@ -4738,13 +4950,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2901" + - "2486" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2921" + - "2503" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4754,30 +4966,33 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998477" + - "29998439" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_ca6673767c6c4969ad2d0874f6b0f11f + - req_19f823bf024c4b2b9046e4c9d3ff0b59 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 25-28: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 25-28: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n2021, 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation of counter-\\n\\n factual explanations for @@ -4846,7 +5061,7 @@ interactions: Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international\\n\\n\\n 27 conference on knowledge discovery and data \\n\\n------------\\n\\nQuestion: Are counterfactuals - actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + actionable? [yes/no]\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4855,7 +5070,7 @@ interactions: connection: - keep-alive content-length: - - "6398" + - "6571" content-type: - application/json host: @@ -4887,26 +5102,25 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNb+M2EL37Vwx42V1ANmzXcRLf0qBA3aJA0Sy6QdcLYUyOxGkoUiBH - dowg/72glNjubrroRQe9eY8zbz6eRgCKjVqB0hZFN60b3/6yXP9qm3kI1U9/3c7/vPOXy+kfM/z9 - x85ZVWRG2P5NWl5ZEx2a1pFw8AOsI6FQVp1dXlwtl1eL5aIHmmDIZVrdyngRxvPpfDGezcbz6QvR - BtaU1Ao+jwAAnvpvTtEbelQrmBavfxpKCWtSq2MQgIrB5T8KU+Ik6EUVJ1AHL+T7rJ82HmCjUtc0 - GA8btYKN+mgJ6FFTbAUiVRTJa0rQdE64dQT7EB8SRHK5NJAA9Ng6ZI9bR4BRuGLN6IC9kHNcZzq8 - v79ZfwD0BnTovFCsUEuHbiB7zJ6lAthr1xn2NSCklnTWgiSdOcD2AJ/IOdyjCBVwR8miiVz0op8s - C0Hw8O637Cxg7UMS1lCTp9irQ6i+9zZUIUITHOnOUXoH728tNazRwZ3mvoT5dD7/MIHb72hgJEB4 - oAPo4DW1Auzh/mZdQKiEPHRpcKyNYceGAHXm9caxT1xbSbnOZMM+e2DDHrRFX1PKLPZtJ7DDyJmR - QKMHdEIR2kiGe600gY+WE6Dj2ifYs1gQS7CNAQ1FqAO67MT9zTpLNvhAcLMGQ5pTX0LuWmwjydBO - b86SnMDPYU87ikWv+TokJlACH6T3gjWLO0ASFIK9JbEUv/L9xaejbAGOcJcLzqqGhGLDg6VgqCVv - yEtubob74X2UXINY4gjY5kf76MlGFcNAR3K0Q6+pTDpEGgb76gjnPpTcYE0pQxW6RBv/fL4kkaou - Yd5R3zl3BqD3QYZ+5/X88oI8HxfShbqNYZu+oqqKPSdbRsIUfF6+JKFVPfo8AvjSL373r11WbQxN - K6WEB+qfm13+cD0IqtOtOYMvLl5QCYLuDLi6XhRvSJaGBNmls+uhNGpL5sQ9nRrsDIczYHRW+Lf5 - vKU9FM++/j/yJ0DnXSJTnub8rbBI+Rj/V9jR6D5hlSjuWFMpTDE3w1CFnRvupEqHJNSUFfs6LwMP - x7Jqy8vZ9dZsKzRLNXoe/QMAAP//AwDmGySLNQYAAA== + H4sIAAAAAAAAA4xUTW8bNxC961cMeEoASZAUK3J0a90UTRD0ZKAFqkAYkbO7U3M5C86sbMHwfy+4 + ki25dYBeFli+eY9vvvg4AnAc3Bqcb9B828XJzdff/Y3/XH/b3958/fDts5ksfv3S/PyL+Vlw48KQ + 3d/k7Zk19dJ2kYwlHWGfCY2K6ny1vF59WM6urgaglUCx0OrOJlcyWcwWV5P5fLKYnYiNsCd1a/hr + BADwOHyLxRTowa1hNn4+aUkVa3LrlyAAlyWWE4eqrIbJ3PgMeklGaXD9uEkAG6d922I+bNwaNu62 + IaAHT7kzyFRRpuRJoe2jcRcJ7iXfKUgCeugicsJdJMBsXLFnjMDJKEauCw3e/fnTl/dj4ORjHzjV + 4KVPRrlCbz3Go0bCUjKFSjK0Esn3ETN0mQL7gsBQLoV3f1CMeI9mBGSAcTqGxWyxeD+Fm1eyCpgJ + Gq6byHVjFAAV8CgzwTqJGntoyRoJYAJdlj0Heu1md4CaEmW04hujUS7QnkA9JcwsCtaglZRigEg4 + aAWuhpoZSG9eWtIp3DasoH1dk1ohEWfopDShFAyHJHHHke0AnKBPgXJp21AxTKE45+pQ/s5V0Sn8 + Jve0pzwukmD0YBCEFJLYkAp7tngAL6ni3J7ufX3brjfgtotMCmxgTZa+bk6hvVKxUxqau0z2TCqO + AnlWljRp8e7Y11QM6HTjxsehyhRpj8nTVr1kKsN1fYJ6pbDlFmvSclxhVNqkp8shzVT1imVHUh/j + BYApiR1bVNbj+wl5elmIKHWXZaf/orqKE2uzzYQqqQy/mnRuQJ9GAN+Hxetf7ZLrsrSdbU3uaLhu + vlotj4LuvOsX8GJ+Qk0M4wVw/enj+A3JbSBDjnqxvc6jbyicuedVxz6wXACji8T/6+ct7WPynOr/ + I38GvKfOKGzPw/dWWKbyGP4o7KXQg2GnlPfsaWtMuTQjUIV9PL5TTg9q1G4rTnWZPD4+VlW3XX6c + 7xbL1Srs3Ohp9A8AAAD//wMAJFcct7UFAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da970dc146cd4-SJC + - 984402e81e327ad0-SJC Connection: - keep-alive Content-Encoding: @@ -4914,7 +5128,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:10 GMT + - Wed, 24 Sep 2025 17:30:46 GMT Server: - cloudflare Strict-Transport-Security: @@ -4930,13 +5144,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5193" + - "2395" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5209" + - "2410" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4946,30 +5160,33 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998475" + - "29998437" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_09ade27862014e248fb354445e5c8d29 + - req_88dd051c7562421981b94a464e92b092 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 1-3: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n + \ \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from + the text - about 100 words words. `relevance_score` is an integer 1-10 for the + relevance of `summary` to the question. `used_images` is a boolean flag indicating + if any images present in a multimodal message were used, and if no images were + present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 1-3: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n @@ -5038,7 +5255,7 @@ interactions: characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, an explanation is extra information that gives the context and a cause for one or\\n\\nmore \\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? - [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + [yes/no]\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -5047,7 +5264,7 @@ interactions: connection: - keep-alive content-length: - - "6382" + - "6555" content-type: - application/json host: @@ -5079,26 +5296,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTBbiM3DL37KwiddgE7iGPXzuYWbFJs2qCnPRStF4YscWbYaCSB5MQZ - BPn3hWa8sbNNgV4GGD3x6ZF85PMEwJA3V2BcY9W1Ocw+/7a6++N6+WWxtn3XrKoFfsn977fu18X8 - r1szLRFp9w86/RF15lKbAyqlOMKO0SoW1vn6l8vV6nK5Wg9AmzyGElZnnS3T7OL8Yjmbz2cX54fA - JpFDMVfw9wQA4Hn4FonR45O5gvPpj5MWRWyN5ur1EoDhFMqJsSIkaqOa6RF0KSrGQfXzJgJsjHRt - a7nfmCvYmK8NAj455KzgSVwnggLaIHSCkCq4fcrBUrS7gHDNShU5sgHuomIIVGN0CB/+vL77CBTB - NdiSKPdTyJaVXBcsh75AFBU5MyrFGjxihoCWY/n7cHP/EYYiyRncKTRUN4HqRgVa1CZ5gUAPOLI7 - G8ClrrBV1mlng4CNHjyKY8qaGLBIjrZ0Rqawb8g1kDk9kkegKCMzRU0gyp3TjnGWOWVk7YExjJEN - 5ZEZxwrAzT1kRk9ugM/g888qGMsFwajowQpY2NseNEEXPXLpjH9DeMI2hVRVyKUadjgZ6v1WbJP2 - 4BobaywH0KaAQ32PWUipTPBgqwqdwiEnwkP9JIVuR4G0h8SQkVu04/8ZfG1IwAaqo8CetBksUCcb - igda+1CU3dwfugRtYjx2dNBaElPuRPeJtemhSlwsxDIFlIzFNKMRKsLgD48w1l2wmrgHanMgN5b+ - bGOmo1cZAz7a6HArLjGOnv30CneCfkutrVEKVNkguIkvp/5nrDqxZfxiF8IJYGNMOr5XJu/bAXl5 - nbWQ6sxpJz+FmooiSbNltJJimSvRlM2AvkwAvg0z3b0ZU5M5tVm3mh5weG5+cbkcCc1xjZzAi8UB - 1aQ2nADL+Xr6DuXWo1oKcrIYjLOuQX+MPW4R23lKJ8DkJPF/63mPe0yeYv1/6I+Ac5gV/fbo/Peu - MZY9+1/XXgs9CDaC/EgOt0rIpRkeK9uFcQUa6UWx3VYU62JVGvdglbfr+aed31XWr8zkZfIdAAD/ - /wMAMJriKhAGAAA= + H4sIAAAAAAAAAwAAAP//jFRRbxs3DH73ryD01AJ2ELtxsvktaFasW7GXFUOGuTB0Eu+Oi04SSF5m + N8h/H3TnxJe0A/ZywOkjP338KPJhBmDImw0Y11p1XQ6L97/85m5uk9R/7NPBf/j9+vbP1T7//MFf + /lqzmZeMVP2NTp+yzlzqckClFEfYMVrFwrq8Wv9w9W59frEegC55DCWtybq4SIvV+episVwuVufH + xDaRQzEb+GsGAPAwfIvE6HFvNnA+fzrpUMQ2aDbPQQCGUygnxoqQqI1q5ifQpagYB9UP2wiwNdJ3 + neXD1mxgaz63CLh3yFnBk7heBAV+2udgKdoqIFyzUk2ObICPUTEEajA6hDe31x/fAkVwLXYkyoc5 + 1Mn1QrGBFKFDbZMXCHSHY4yzAVzqoyLX1mlvg4CNHjyKY8qaGLBcHG0xVUATUAnOjAoeMUNAy7Hw + v7n59BYGXyEzenJDxhm8f03PCC01baCmVfRgC2sKAzeORU4JoDpA5nRPvlxigyIXMfcI4jBapiRz + SHWNXHCKUmilqEwgyr3TnnGROWVkPQBjGEtpKcsZfG5JwAZqosA/pC1oi9AkGyDV0Nm7wnnzaSxL + oEuMp/qHVhSz7KC0/M4hW1ZyfbAcDqUTNudA7uje4Luk0FcUSA+TMgeeKqTkFxUXByrLTMiQkTu0 + Y3yRi6C4V8Aut1boKwpoa3Ui4UW/5iC9a4vFr5o8B2cjND15hPaQk7ZYHllRQV2xG0G5Fy0lfNvT + rZmP75Yx4L2NDnfiEuP4fn98hntBv6PONigFqm0Q3MbH6Sww1r3YMoqxD2EC2BiTjlWUKfxyRB6f + 5y6kJnOq5FWqqSmStDtGKymWGRNN2Qzo4wzgyzDf/YuRNZlTl3Wn6Q6H65bvVscBN6eVMoUvj6gm + tWECXKyfkBeUO49qKchkSRhnXYv+lHvaKLb3lCbAbFL4t3q+xz0WT7H5P/QnwDnMin536vX3whjL + zv2vsGejB8FGkO/J4U4JuTTDY237MK5DIwdR7HY1xaaMFI07sc679eWyWq2vrnxlZo+zfwEAAP// + AwCbsRRtHAYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da981ed0dffb8-SJC + - 984402f0b926227e-SJC Connection: - keep-alive Content-Encoding: @@ -5106,7 +5323,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:11 GMT + - Wed, 24 Sep 2025 17:30:48 GMT Server: - cloudflare Strict-Transport-Security: @@ -5122,13 +5339,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3674" + - "2688" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3696" + - "2715" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -5138,202 +5355,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998472" + - "29998435" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_0d95f18a570d4110adc0cc77218112de - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 3-5: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n - a passive characteristic of a model, whereas explainability\\n\\nis an active - characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, - an explanation is extra information that gives the context and a cause for one - or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n - \ Accuracy and interpretability are two attractive characteristics of DL models. - However,\\n\\nDL models are often highly accurate and less interpretable.28,30 - XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. - XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate - but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. - Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe - explanations should give insight into the underlying mechanism.\\n\\n In the - remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction - while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin - various systems these methods yield explanations that are consistent with known - and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn - this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding - our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. - According to their classification, interpretations can be categorized as global - or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. - For example, counterfactuals are\\n\\nlocal interpretations, as these can explain - only a given instance. The second classification is\\n\\nbased on the relation - between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) - or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand - is self-explanatory32 These are also referred to as white-box models to contrast - them\\n\\nwith non-interpretable black box models.28 An extrinsic method is - one that can be applied\\n\\npost-training to any model.33 Post-hoc methods - found in the literature focus on interpreting\\n\\nmodels through 1) training - data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 - or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation - and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 - Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused - the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe - may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof - physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan - be evaluated by considering its agreement with physical observations, which - they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests - that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence - strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. - In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases - and subjectivity can be used to measure the correctness.40 Other similar metrics - of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be - found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced - CIME an interactive web-based tool that allows the\\n\\nusers to inspect model - explanations. The aim of this study is to bridge the gap between\\n\\nanalysis - of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n - \ 4evaluation metric is necessary in XAI. - We suggest the following attributes can be used to\\n\\nevaluate explanations. - However, the relative importance of each attribute may depend on\\n\\nthe application - - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability - of a static physics based model. Therefore, one can select relative importance\\n\\nof - each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it - clear how we could change the input features to modify the output?\\n\\n\\n - \ \u2022 Complete. Does the explanation completely account for the prediction? - Did features\\n\\n not included in the explanation really contribute zero - effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation - agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n - \ \u2022 Domain Applicable. Does the explanation use language and concepts - of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the - explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the - explanation change significantly with small changes to the model or\\n\\n instance - being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n - \ We present an example evaluation of the SHAP explanation method based on the - above\\n\\nattributes.44 Shapley values were proposed as a local explanation - method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature i\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? - [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6357" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTfaxtHEH7XXzHsS1qQjaU6sqK3NJTiQgOFlJREQRrtzt2Nu7e77Mxa - Vo3/97J3iqW0LvTl4Oabmf2++fU4ATDszAqM7VBtn/zFu18Wt7c/ev+7uP2vH3/+7cMivV9+eo+z - e9nfmWmNiLs7svo16tLGPnlSjmGEbSZUqllnN6+Xi8XyejEfgD468jWsTXpxHS/mV/Pri9nsYn51 - DOwiWxKzgs8TAIDH4VspBkcPZgVX06+WnkSwJbN6dgIwOfpqMSjCohjUTE+gjUEpDKy32+2dxLAO - j+sAsDZS+h7zYW1WsDbvYglKuUGrBb0AZgKLSm3M/Bc5QAEfLXrg6pYyKVbpAhzgp4fkkQPuPMHb - W/juj7e338OOLBYh0I4OQKMHSCLLDVvgUJlakkv40BEoPSg4FltESABVM++KkkATM9A9+oLKoR0T - hfHpKXCwvrhqf4W22iqF6SvYd2w7yNRQFtAI+460owyswALWE2bo4h44pKLQEGrJJGAxwI7Adhha - cjWwj46bQ9UAsWgqegkfO/YE9oVyhagDP7as/gAed+THyp3I1XLVbPRgKSed1h/OkEpOUQjQcxsE - 9qzd4HYW+FwTEA72WNeU4z27mlW47bR2Q+MgbRQxtGdUaWPxDjzhIMxx01CmoFWXjT3J5dpMx7nI - 5Om+NmcjNmYa5+PNM1yE3IZ7bEkq1KAXWoenddhut+eTl6kpgnXwQ/H+DMAQ4nF66sx/OSJPz1Pu - Y5ty3Mk/Qk3DgaXbZEKJoU60aExmQJ8mAF+GbSrfLIhJOfZJNxr/pOG52XxxMyY0pwU+g2fLI6pR - 0Z8BPyxfT19IuXGkyF7OVtJYtB25U+xpf7E4jmfA5Ez4v/m8lHsUz6H9P+lPgLWUlNwmZXJsv9V8 - cstUL9x/uT0XeiBshPI9W9ooU67NcNRg8ePxMXIQpX7TcGjrteDxAjVpczN7s3O7Bt3CTJ4mfwMA - AP//AwB9/dLpigUAAA== - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 983da960ac4bcf15-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Tue, 23 Sep 2025 23:01:12 GMT - Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "10232" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "10253" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998479" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_f00f70e70cd845c79750a1e053fcc2ce + - req_68b9ae39d901426292f696e5f7ce2b5c status: code: 200 message: OK @@ -5342,56 +5370,55 @@ interactions: '{"messages":[{"role":"system","content":"Answer in a direct and concise tone. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them."},{"role":"user","content":"Answer the - question below with the context.\n\nContext:\n\npqac-d3115756: Counterfactual - explanations are actionable as they provide local, instance-level insights and - suggest which features can be altered to change the outcome. For example, in - chemistry, changing a hydrophobic functional group to a hydrophilic one can - increase solubility. This actionability makes counterfactuals a useful tool - in explainable AI (XAI) for understanding predictions and uncovering spurious - relationships in training data.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi + question below with the context.\n\nContext:\n\npqac-f53990d7: Counterfactuals + are actionable as they provide local, instance-level explanations that suggest + which features can be altered to change the outcome. For example, in chemistry, + changing a hydrophobic functional group to a hydrophilic one can increase solubility. + This actionability makes counterfactuals a useful tool in explainable AI (XAI) + for uncovering spurious relationships and providing intuitive understanding + of predictions.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and + Andrew D. White. A perspective on explanations of molecular prediction models. + ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\n\npqac-09ee0253: Counterfactuals are actionable + as they suggest specific modifications to molecular structures to achieve desired + properties. For example, in blood-brain barrier (BBB) permeation prediction, + counterfactual explanations identified modifications to the carboxylic acid + group that enabled a molecule to permeate the BBB. These modifications align + with experimental findings, demonstrating that counterfactuals can guide actionable + changes to improve molecular properties.\nFrom Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-58259b22: + Counterfactuals are actionable as they provide specific structural modifications + to molecules that influence model predictions. For example, in solubility prediction, + counterfactuals highlight changes to ester groups and heteroatoms that increase + solubility, aligning with chemical intuition. Similarly, in scent prediction, + counterfactuals identify structural changes that alter scent classifications. + These insights can guide chemical design by suggesting actionable modifications + to achieve desired properties.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-953bc29f: - Yes, counterfactuals are actionable. The text explains that counterfactual explanations - suggest specific modifications to molecules to achieve desired properties, such - as enabling a molecule to permeate the blood-brain barrier (BBB). For example, - modifications to the carboxylic acid group in a molecule were shown to enhance - BBB permeation by increasing hydrophobic interactions and surface area. This - demonstrates that counterfactuals provide actionable insights for altering molecular - properties.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. ChemRxiv, - Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\n\npqac-202803e5: Counterfactuals are actionable - as they provide specific structural modifications to molecules that can lead - to desired changes in properties, such as solubility or scent. For example, - in solubility prediction, counterfactuals highlight modifications like adding - acidic/basic groups or heteroatoms to increase solubility. Similarly, in scent - prediction, counterfactuals suggest structural changes to alter scent profiles. - These insights align with experimental and chemical intuition, demonstrating - their practical utility in guiding molecular design.\nFrom Geemi P. Wellawatte, - Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-b7aa79c4: - Counterfactuals are described as actionable in the context of molecular property - prediction models. They are represented as chemical structures, which are familiar - to domain experts, and are sparse, making them practical for use. The text highlights - that counterfactual explanations provide minimal distance from a base molecule - while contrasting in chemical properties, making them useful for understanding - and modifying molecular predictions. This actionability is emphasized as a key - advantage of counterfactual explanations in explaining black-box models.\nFrom - Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A - perspective on explanations of molecular prediction models. ChemRxiv, Unknown - year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\n\npqac-c566bbf3: The excerpt discusses counterfactuals - as a type of explanation in molecular prediction models. It states that counterfactuals - are considered ''better'' explanations because they are both actionable and - sparse. Actionable explanations provide a set of features that can change the - outcome, making them useful for decision-making. This contrasts with Shapley - values, which are complete but not actionable or sparse.\nFrom Geemi P. Wellawatte, - Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-9327780a: + Counterfactuals are actionable as they are represented as chemical structures + familiar to domain experts, are sparse, and provide actionable insights. They + are defined as molecules with minimal distance from a base molecule but with + contrasting chemical properties. The Tanimoto similarity of ECFP4 fingerprints + is used as a distance metric in the examples provided. Counterfactual explanations + are particularly useful for interpreting black-box models in molecular prediction + tasks, aiding in understanding and modifying chemical properties.\nFrom Geemi + P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective + on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: + https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\n\npqac-4fa75675: Counterfactuals are described + as ''better'' explanations because they are both actionable and sparse. Actionable + explanations provide a set of features that can change the outcome, making them + useful for decision-making. This contrasts with Shapley values, which are non-actionable + as they assign non-zero attributions to all features without identifying a specific + set of features to alter the outcome.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, + Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular + prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\nValid Keys: - pqac-d3115756, pqac-953bc29f, pqac-202803e5, pqac-b7aa79c4, pqac-c566bbf3\n\n------------\n\nQuestion: + pqac-f53990d7, pqac-09ee0253, pqac-58259b22, pqac-9327780a, pqac-4fa75675\n\n------------\n\nQuestion: Are counterfactuals actionable? [yes/no]\n\nWrite an answer based on the context. If the context provides insufficient information reply \"I cannot answer.\" For each part of your answer, indicate which sources most support it via citation @@ -5413,7 +5440,7 @@ interactions: connection: - keep-alive content-length: - - "5411" + - "5314" content-type: - application/json host: @@ -5445,31 +5472,31 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xWTW8bRwy9+1cQe4oBSbVkS4p9axIEcC8Fml7aJhC4M9xdxjPDzXw4FoL894K7 - a6+cj6IXAxZnhu89PpL75QygYlvdQGU6zMb3bvn6t93tu3L7N/b5zSeq22BK/uPNZ38drj7+Xi30 - htQfyeTHWysjvneUWcIYNpEwk7663m9f7nYvr/abIeDFktNrbZ+XV7LcXGyuluv1cnMxXeyEDaXq - Bv45AwD4MvxViMHSQ3UDF4vHXzylhC1VN0+HAKooTn+pMCVOGUOuFnPQSMgUBtR/UVqAkRIyxQZN - LugSYCRAoyywdrSC18/iQA+9w4AaT9BHuWdLkHoy3LBZAAdNaGjp6J6c/sttlxPUR0ilbSllDi14 - sXp8eiULNIS5REqQO8xgMIDpMLQEuSOQko14AmkAoY9keYC3grcSgR5QVdfM4MWRKQ6jAusp5uPJ - 8e+Zahq2FDI3R0g5FpNLRDelTgtIxXSACSL1Do0CR+iONkrfSc0GmhJGoRy0UUoPnzl38xl2bEAC - KUEO6oZEkMSVmh3nI7zoP6FZ2sv1ervf7s5X8I49O4zuuFDexwHgpNr3klHoVGionYhd1hE5QI0x - MkV48erVq3PoKXrCMdlMBl2mOHIxGGt5OCpMNGwnEqdoT9myijc6IwEGC6molqSOwYnM9fayNpvr - 5nwF78P78Ppbb7kk0Ba1zFwrS4nboA7RqklSbP9VDbR2gG/YsvmlxsRmRJ5AInSUKQpm8YNK7NWj - z2SXOGswo3jMSMO1Qe0jJEMhK6yGHaUV/NlRIohkxHsKdioGOsU/1J4eeorsKWR0g0amI88GtRNy - 4dGHlryElCMOvZA7YjWsKqsHSz51x+Zi8/LikrbnK3hbYu4oeon0466N1EdKFDJZ1ekp9Qm1Bj07 - xqgcrXj1zAA5jxXVV1KPMdECGjFlqIUE8BzYz7WAQEbnTjzqO2g6pvuxVbWWkexjy6pinMDj3dDa - 5E94NhKhBEtRB8ZY0WAn4Z+XZu7hNKlS7xH31+ZqstltAJ1qEVNWQKIynQ4q8JQ7sQkc3xG867B3 - dIR7dOVnA7AWbeSnKTjafRJmHHoK0TjCOPh56ERlZMlwYglLj3ePnJ6Z4h4dj8aZuJjtblfXzeW5 - ilV+NpAHtAOULKJuGvnxCO/X2yH5CeCnwfvNWHxUEoYdlFanmyFSUxLqYgrFuZMAhiB5NLvupA9T - 5OvTFnLS9lHq9M3VquHAqTvoLJGgGydl6ash+vUM4MOw7cqzBVb1UXyfD1nuaEi3vtxM666aF+wc - 3lxfTdEsGd3Jvd36MfLsyYOljOzSycqsDJqO7Hx33q9YLMtJ4OyE+Pd4fvT2SJ5D+3+enwPGUJ/J - HuaS/ehYJP0C+dmxJ6EHwFWieM+GDpkpajEsNVjc+HFQpWPK5A8Nh5ZiH3n8Qmj6w3a3rjfb/d7W - 1dnXs38BAAD//wMA16PH/SoJAAA= + H4sIAAAAAAAAAwAAAP//jFbBbhs5DL3nK4g5NYAdOE5c1zkm2yzaw26B9rLYFgYtcWa41YhTUcrG + KPrvhTS2ZzZJgb3YhihS75GPpL+fAVRsqxuoTIvRdL2b373/w7z7/duda+Tu/p39Fu5/8x8u/3xv + 3r57v69m2UN2/5CJR68LI13vKLL4wWwCYaQc9XK9erO+Wi1Wi2LoxJLLbk0f59cyXy6W1/PLy/ly + cXBshQ1pdQN/nwEAfC+fGaK39FjdQAlTTjpSxYaqm9MlgCqIyycVqrJG9LGajUYjPpIvqP8inYGR + 5COFGk1M6BQwEKDJLHDn6AI+tbSHPsgDWwInBt0M2OewhuaOHsgBPfYOPWYfhdhiBE1NQxpBezJc + s4FObP4+3hGoCWMKpCABOnFkksMAGkMyw3kUQNMyPRBYUg5kQVI00pFewL0EoEfM+c5owLTUscaw + f87HoAe25CPXezAt+oYUNJkWUCFQ79CwbwCh3dsgfSs7NlAnP6TAQRMk9fAvx3a8w44NiKcMkn2u + sxKouLRjx3EPr/pvaOb16mqzWdj1+QV85I4dBrcvaHdOxM53AfNvDIEpwKvb29tz6Cl0VJIEfSDL + BcRzTi0+0JEUk32eXYNhJ4/7DBMN24HEoTZUCntM+pDpw7sEsSW4vb2dATpufE5MYU6PPQXuyEd0 + ULO37Bs90FxsiBbL1dX5BXz2n/3dUz05FWhSVs8oq1Mh2E/zNnKG3R5ablrHTRszjGcUSSOFIzH0 + FlqKFASjdDorBzm2IR+fhD2KIUc96g3dCVHJEbocfPA2LvfR+PbAevVmudrslsvzQ4fktgnUB1Ly + kWwWVxGlQTdVdY0dO8aQGVjpsgJKbmPGHAi0x6A04D823SRt7DUnRDOPQ4+V5LDnbvLQUzqBNLlY + GkV8DDh4nfD1QTIEzp31qSX4hJ47iQI6yDaXRmp4e3f/4TpXv6HQB/ZRgRWkjuQh6cAZwfIwG6Cj + GNgUolSzL9pSOmE9AhzSublartdvFngQ0X0KsaXQSaCXJ5QRr2wpTwVNWZtSUirZazqPMopWrM5O + Lf+xxd7RHh7QpTz/dmQwaUE3amMcXKc5ledRVsUMOvya0xdb6qa1ySVLSnVyUEsAS4aVxc8P1wee + 1zWuV6/XqyKb9KvxW8CVoFFkCJc76HkfsJ8MzzwmG3+QzknxEfWrXkw3QKA6KeYF5JNzEwN6L3GI + nHfPl4Plx2nbOGn6IDt94lrV7FnbbZ6D4vNm0Sh9Vaw/zgC+lK2W/rOoqj5I18dtlK9UnrtcbtZD + wGpcpKN5uXl9sEaJ6CZ+q83V7IWQW0sR2elkNVYGTUt29B33KCbLMjGcTYg/x/NS7IE8++b/hB8N + xlAfyW7Hir10LVD+p/Gra6dEF8CVUnhgQ9vIFHIxLNWY3PAnoNK9Ruq2ky7OV+p+u3p9uVuu1mu7 + q85+nP0EAAD//wMA18W3SRIJAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da9a1abdc9338-SJC + - 98440302696a1679-SJC Connection: - keep-alive Content-Encoding: @@ -5477,7 +5504,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:24 GMT + - Wed, 24 Sep 2025 17:30:54 GMT Server: - cloudflare Strict-Transport-Security: @@ -5493,13 +5520,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "12305" + - "4452" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "12320" + - "6393" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -5509,13 +5536,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998685" + - "29998709" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_47de4456ffbd45dd8aebc49fedc1760b + - req_6093ccf596a44c6cb34e29d0362b17a5 status: code: 200 message: OK diff --git a/tests/test_paperqa.py b/tests/test_paperqa.py index 5d0c5d6d4..b8767af61 100644 --- a/tests/test_paperqa.py +++ b/tests/test_paperqa.py @@ -528,7 +528,8 @@ async def acompletion_that_breaks_first_context(*args, **kwargs): async def test_json_evidence(docs_fixture: Docs) -> None: settings = Settings.from_name("fast") settings.prompts.use_json = True - settings.prompts.summary_json_system = ( + assert isinstance(settings.prompts.summary_json, list) + settings.prompts.summary_json[0] = ( "Provide a summary of the excerpt that could help answer the question based on" " the excerpt. The excerpt may be irrelevant. Do not directly answer the" " question - only summarize relevant information. Respond with the following"