-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuralnet.go
142 lines (123 loc) · 3.32 KB
/
neuralnet.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
package main
import (
"math/rand"
"math"
)
type Neuron struct {
numInputs int
weights []float64
}
func NewNeuron(inputs int) Neuron {
neur := Neuron{inputs, make([]float64, inputs)}
for i := range neur.weights {
neur.weights[i] = rand.Float64()
}
return neur
}
type NeuronLayer struct {
numNeurons int
neurons []Neuron
}
func NewNeuronLayer(numNeurons int, numInputsPerNeuron int) NeuronLayer {
layer := NeuronLayer{numNeurons, make([]Neuron, numNeurons)}
for i := range layer.neurons {
layer.neurons[i] = NewNeuron(numInputsPerNeuron)
}
return layer
}
type NeuralNet struct {
numInputs int
numOutputs int
numHiddenLayers int
numNeuronsPerLayer int
layers []NeuronLayer
weights []float64
}
func NewNeuralNet(numInputs int, numOutputs int, numHiddenLayers int, numNeuronsPerLayer int) NeuralNet {
net := NeuralNet{numInputs,numOutputs,numHiddenLayers,numNeuronsPerLayer, make([]NeuronLayer, numHiddenLayers + 2), make([]float64, 0)}
for i := range net.layers {
if i < numHiddenLayers + 1 {
if i > 0 {
// hidden layer
net.layers[i] = NewNeuronLayer(numNeuronsPerLayer, net.layers[i-1].numNeurons + 1) // + 1 is bias
} else {
// input layer
net.layers[i] = NewNeuronLayer(numInputs, 0)
}
} else {
// output layer
net.layers[i] = NewNeuronLayer(numOutputs, net.layers[i-1].numNeurons + 1) // bias again
}
}
net.weights = make([]float64, net.GetNumberOfWeights())
return net
}
func (nn NeuralNet) GetWeights() []float64 {
/*length := nn.numInputs + nn.numOutputs + (nn.numHiddenLayers * nn.numNeuronsPerLayer)
ret := make([]float64, length)
i := 0
for j := range nn.layers {
for k := range nn.layers[j].neurons {
for l := range nn.layers[j].neurons[k].weights {
ret[i] = nn.layers[j].neurons[k].weights[l]
i++
}
}
}
return ret*/
return nn.weights
}
func (nn NeuralNet) GetNumberOfWeights() int {
i := 0
for j := range nn.layers {
for k := range nn.layers[j].neurons {
for range nn.layers[j].neurons[k].weights {
i++
}
}
}
return i
}
func (nn *NeuralNet) PutWeights(weights []float64) {
/*i := 0
for j := range nn.layers {
for k := range nn.layers[j].neurons {
for l := range nn.layers[j].neurons[k].weights {
nn.layers[j].neurons[k].weights[l] = weights[i]
i++
}
}
}*/
copy(nn.weights, weights)
//nn.weights = weights
}
func (nn NeuralNet) Update(inputs []float64) []float64 {
var cWeight int
outputs := make([]float64, 0)
for i := 1; i < nn.numHiddenLayers + 2; i++ {
if i > 1 {
inputs = outputs
}
outputs = make([]float64, nn.layers[i].numNeurons)
cWeight = 0
for j := range nn.layers[i].neurons {
netInput := 0.0
for k := 0; k < nn.layers[i].neurons[j].numInputs-1; k++ {
index := ((nn.numHiddenLayers + 2) * i) + (nn.numNeuronsPerLayer * j) + k
netInput += nn.weights[index] * inputs[cWeight]
cWeight++
}
// bias
if nn.layers[i].neurons[j].numInputs > 0 {
index := ((nn.numHiddenLayers + 2) * i) + (nn.numNeuronsPerLayer * j) + (nn.numInputs-1)
netInput += nn.weights[index] * NeuronBias
}
outputs[j] = Sigmoid(netInput)
cWeight = 0
}
}
return outputs
}
func Sigmoid(input float64) float64 {
return 1 / (1 + math.Pow(math.E, -input))
}