-
-
Notifications
You must be signed in to change notification settings - Fork 608
/
Copy pathrecurrent.jl
432 lines (333 loc) · 12.8 KB
/
recurrent.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
gate(h, n) = (1:h) .+ h*(n-1)
gate(x::AbstractVector, h, n) = @view x[gate(h,n)]
gate(x::AbstractMatrix, h, n) = x[gate(h,n),:]
# Stateful recurrence
"""
Recur(cell)
`Recur` takes a recurrent cell and makes it stateful, managing the hidden state
in the background. `cell` should be a model of the form:
h, y = cell(h, x...)
For example, here's a recurrent network that keeps a running total of its inputs:
```julia
accum(h, x) = (h + x, x)
rnn = Flux.Recur(accum, 0)
rnn(2) # 2
rnn(3) # 3
rnn.state # 5
rnn.(1:10) # apply to a sequence
rnn.state # 60
```
Folding over a 3d Array of dimensions `(features, batch, time)` is also supported:
```julia
accum(h, x) = (h .+ x, x)
rnn = Flux.Recur(accum, zeros(Int, 1, 1))
rnn([2]) # 2
rnn([3]) # 3
rnn.state # 5
rnn(reshape(1:10, 1, 1, :)) # apply to a sequence of (features, batch, time)
rnn.state # 60
```
"""
mutable struct Recur{T,S}
cell::T
state::S
end
function (m::Recur)(x)
m.state, y = m.cell(m.state, x)
return y
end
@functor Recur
trainable(a::Recur) = (a.cell,)
Base.show(io::IO, m::Recur) = print(io, "Recur(", m.cell, ")")
"""
reset!(rnn)
Reset the hidden state of a recurrent layer back to its original value.
Assuming you have a `Recur` layer `rnn`, this is roughly equivalent to:
```julia
rnn.state = hidden(rnn.cell)
```
"""
reset!(m::Recur) = (m.state = m.cell.state0)
reset!(m) = foreach(reset!, functor(m)[1])
# TODO remove in v0.13
function Base.getproperty(m::Recur, sym::Symbol)
if sym === :init
Zygote.ignore() do
@warn "Recur field :init has been deprecated. To access initial state weights, use m::Recur.cell.state0 instead."
end
return getfield(m.cell, :state0)
else
return getfield(m, sym)
end
end
flip(f, xs) = reverse(f.(reverse(xs)))
function (m::Recur)(x::AbstractArray{T, 3}) where T
h = [m(view(x, :, :, i)) for i in 1:size(x, 3)]
sze = size(h[1])
reshape(reduce(hcat, h), sze[1], sze[2], length(h))
end
# Vanilla RNN
struct RNNCell{F,A,V,S}
σ::F
Wi::A
Wh::A
b::V
state0::S
end
RNNCell(in::Integer, out::Integer, σ=tanh; init=Flux.glorot_uniform, initb=zeros32, init_state=zeros32) =
RNNCell(σ, init(out, in), init(out, out), initb(out), init_state(out,1))
function (m::RNNCell{F,A,V,<:AbstractMatrix{T}})(h, x::Union{AbstractVecOrMat{T},OneHotArray}) where {F,A,V,T}
σ, Wi, Wh, b = m.σ, m.Wi, m.Wh, m.b
h = σ.(Wi*x .+ Wh*h .+ b)
sz = size(x)
return h, reshape(h, :, sz[2:end]...)
end
@functor RNNCell
function Base.show(io::IO, l::RNNCell)
print(io, "RNNCell(", size(l.Wi, 2), ", ", size(l.Wi, 1))
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
end
"""
RNN(in::Integer, out::Integer, σ = tanh)
The most basic recurrent layer; essentially acts as a `Dense` layer, but with the
output fed back into the input each time step.
The parameters `in` and `out` describe the size of the feature vectors passed as input and as output. That is, it accepts a vector of length `in` or a batch of vectors represented as a `in x B` matrix and outputs a vector of length `out` or a batch of vectors of size `out x B`.
This constructor is syntactic sugar for `Recur(RNNCell(a...))`, and so RNNs are stateful. Note that the state shape can change depending on the inputs, and so it is good to `reset!` the model between inference calls if the batch size changes. See the examples below.
# Examples
```jldoctest
julia> r = RNN(3, 5)
Recur(
RNNCell(3, 5, tanh), # 50 parameters
) # Total: 4 trainable arrays, 50 parameters,
# plus 1 non-trainable, 5 parameters, summarysize 432 bytes.
julia> r(rand(Float32, 3)) |> size
(5,)
julia> Flux.reset!(r);
julia> r(rand(Float32, 3, 10)) |> size # batch size of 10
(5, 10)
```
!!! warning "Batch size changes"
Failing to call `reset!` when the input batch size changes can lead to unexpected behavior. See the following example:
```julia
julia> r = RNN(3, 5)
Recur(
RNNCell(3, 5, tanh), # 50 parameters
) # Total: 4 trainable arrays, 50 parameters,
# plus 1 non-trainable, 5 parameters, summarysize 432 bytes.
julia> r.state |> size
(5, 1)
julia> r(rand(Float32, 3)) |> size
(5,)
julia> r.state |> size
(5, 1)
julia> r(rand(Float32, 3, 10)) |> size # batch size of 10
(5, 10)
julia> r.state |> size # state shape has changed
(5, 10)
julia> r(rand(Float32, 3)) |> size # erroneously outputs a length 5*10 = 50 vector.
(50,)
```
"""
RNN(a...; ka...) = Recur(RNNCell(a...; ka...))
Recur(m::RNNCell) = Recur(m, m.state0)
# TODO remove in v0.13
function Base.getproperty(m::RNNCell, sym::Symbol)
if sym === :h
Zygote.ignore() do
@warn "RNNCell field :h has been deprecated. Use m::RNNCell.state0 instead."
end
return getfield(m, :state0)
else
return getfield(m, sym)
end
end
# LSTM
struct LSTMCell{A,V,S}
Wi::A
Wh::A
b::V
state0::S
end
function LSTMCell(in::Integer, out::Integer;
init = glorot_uniform,
initb = zeros32,
init_state = zeros32)
cell = LSTMCell(init(out * 4, in), init(out * 4, out), initb(out * 4), (init_state(out,1), init_state(out,1)))
cell.b[gate(out, 2)] .= 1
return cell
end
function (m::LSTMCell{A,V,<:NTuple{2,AbstractMatrix{T}}})((h, c), x::Union{AbstractVecOrMat{T},OneHotArray}) where {A,V,T}
b, o = m.b, size(h, 1)
g = m.Wi*x .+ m.Wh*h .+ b
input = σ.(gate(g, o, 1))
forget = σ.(gate(g, o, 2))
cell = tanh.(gate(g, o, 3))
output = σ.(gate(g, o, 4))
c = forget .* c .+ input .* cell
h′ = output .* tanh.(c)
sz = size(x)
return (h′, c), reshape(h′, :, sz[2:end]...)
end
@functor LSTMCell
Base.show(io::IO, l::LSTMCell) =
print(io, "LSTMCell(", size(l.Wi, 2), ", ", size(l.Wi, 1)÷4, ")")
"""
LSTM(in::Integer, out::Integer)
[Long Short Term Memory](https://www.researchgate.net/publication/13853244_Long_Short-term_Memory)
recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.
The parameters `in` and `out` describe the size of the feature vectors passed as input and as output. That is, it accepts a vector of length `in` or a batch of vectors represented as a `in x B` matrix and outputs a vector of length `out` or a batch of vectors of size `out x B`.
This constructor is syntactic sugar for `Recur(LSTMCell(a...))`, and so LSTMs are stateful. Note that the state shape can change depending on the inputs, and so it is good to `reset!` the model between inference calls if the batch size changes. See the examples below.
See [this article](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
for a good overview of the internals.
# Examples
```jldoctest
julia> l = LSTM(3, 5)
Recur(
LSTMCell(3, 5), # 190 parameters
) # Total: 5 trainable arrays, 190 parameters,
# plus 2 non-trainable, 10 parameters, summarysize 1.062 KiB.
julia> l(rand(Float32, 3)) |> size
(5,)
julia> Flux.reset!(l);
julia> l(rand(Float32, 3, 10)) |> size # batch size of 10
(5, 10)
```
!!! warning "Batch size changes"
Failing to call `reset!` when the input batch size changes can lead to unexpected behavior. See the example in [`RNN`](@ref).
"""
LSTM(a...; ka...) = Recur(LSTMCell(a...; ka...))
Recur(m::LSTMCell) = Recur(m, m.state0)
# TODO remove in v0.13
function Base.getproperty(m::LSTMCell, sym::Symbol)
if sym === :h
Zygote.ignore() do
@warn "LSTMCell field :h has been deprecated. Use m::LSTMCell.state0[1] instead."
end
return getfield(m, :state0)[1]
elseif sym === :c
Zygote.ignore() do
@warn "LSTMCell field :c has been deprecated. Use m::LSTMCell.state0[2] instead."
end
return getfield(m, :state0)[2]
else
return getfield(m, sym)
end
end
# GRU
function _gru_output(Wi, Wh, b, x, h)
o = size(h, 1)
gx, gh = Wi*x, Wh*h
r = σ.(gate(gx, o, 1) .+ gate(gh, o, 1) .+ gate(b, o, 1))
z = σ.(gate(gx, o, 2) .+ gate(gh, o, 2) .+ gate(b, o, 2))
return gx, gh, r, z
end
struct GRUCell{A,V,S}
Wi::A
Wh::A
b::V
state0::S
end
GRUCell(in, out; init = glorot_uniform, initb = zeros32, init_state = zeros32) =
GRUCell(init(out * 3, in), init(out * 3, out), initb(out * 3), init_state(out,1))
function (m::GRUCell{A,V,<:AbstractMatrix{T}})(h, x::Union{AbstractVecOrMat{T},OneHotArray}) where {A,V,T}
b, o = m.b, size(h, 1)
gx, gh, r, z = _gru_output(m.Wi, m.Wh, b, x, h)
h̃ = tanh.(gate(gx, o, 3) .+ r .* gate(gh, o, 3) .+ gate(b, o, 3))
h′ = (1 .- z) .* h̃ .+ z .* h
sz = size(x)
return h′, reshape(h′, :, sz[2:end]...)
end
@functor GRUCell
Base.show(io::IO, l::GRUCell) =
print(io, "GRUCell(", size(l.Wi, 2), ", ", size(l.Wi, 1)÷3, ")")
"""
GRU(in::Integer, out::Integer)
[Gated Recurrent Unit](https://arxiv.org/abs/1406.1078v1) layer. Behaves like an
RNN but generally exhibits a longer memory span over sequences. This implements
the variant proposed in v1 of the referenced paper.
The parameters `in` and `out` describe the size of the feature vectors passed as input and as output. That is, it accepts a vector of length `in` or a batch of vectors represented as a `in x B` matrix and outputs a vector of length `out` or a batch of vectors of size `out x B`.
This constructor is syntactic sugar for `Recur(GRUCell(a...))`, and so GRUs are stateful. Note that the state shape can change depending on the inputs, and so it is good to `reset!` the model between inference calls if the batch size changes. See the examples below.
See [this article](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
for a good overview of the internals.
# Examples
```jldoctest
julia> g = GRU(3, 5)
Recur(
GRUCell(3, 5), # 140 parameters
) # Total: 4 trainable arrays, 140 parameters,
# plus 1 non-trainable, 5 parameters, summarysize 792 bytes.
julia> g(rand(Float32, 3)) |> size
(5,)
julia> Flux.reset!(g);
julia> g(rand(Float32, 3, 10)) |> size # batch size of 10
(5, 10)
```
!!! warning "Batch size changes"
Failing to call `reset!` when the input batch size changes can lead to unexpected behavior. See the example in [`RNN`](@ref).
"""
GRU(a...; ka...) = Recur(GRUCell(a...; ka...))
Recur(m::GRUCell) = Recur(m, m.state0)
# TODO remove in v0.13
function Base.getproperty(m::GRUCell, sym::Symbol)
if sym === :h
Zygote.ignore() do
@warn "GRUCell field :h has been deprecated. Use m::GRUCell.state0 instead."
end
return getfield(m, :state0)
else
return getfield(m, sym)
end
end
# GRU v3
struct GRUv3Cell{A,V,S}
Wi::A
Wh::A
b::V
Wh_h̃::A
state0::S
end
GRUv3Cell(in, out; init = glorot_uniform, initb = zeros32, init_state = zeros32) =
GRUv3Cell(init(out * 3, in), init(out * 2, out), initb(out * 3),
init(out, out), init_state(out,1))
function (m::GRUv3Cell{A,V,<:AbstractMatrix{T}})(h, x::Union{AbstractVecOrMat{T},OneHotArray}) where {A,V,T}
b, o = m.b, size(h, 1)
gx, gh, r, z = _gru_output(m.Wi, m.Wh, b, x, h)
h̃ = tanh.(gate(gx, o, 3) .+ (m.Wh_h̃ * (r .* h)) .+ gate(b, o, 3))
h′ = (1 .- z) .* h̃ .+ z .* h
sz = size(x)
return h′, reshape(h′, :, sz[2:end]...)
end
@functor GRUv3Cell
Base.show(io::IO, l::GRUv3Cell) =
print(io, "GRUv3Cell(", size(l.Wi, 2), ", ", size(l.Wi, 1)÷3, ")")
"""
GRUv3(in::Integer, out::Integer)
[Gated Recurrent Unit](https://arxiv.org/abs/1406.1078v3) layer. Behaves like an
RNN but generally exhibits a longer memory span over sequences. This implements
the variant proposed in v3 of the referenced paper.
The parameters `in` and `out` describe the size of the feature vectors passed as input and as output. That is, it accepts a vector of length `in` or a batch of vectors represented as a `in x B` matrix and outputs a vector of length `out` or a batch of vectors of size `out x B`.
This constructor is syntactic sugar for `Recur(GRUv3Cell(a...))`, and so GRUv3s are stateful. Note that the state shape can change depending on the inputs, and so it is good to `reset!` the model between inference calls if the batch size changes. See the examples below.
See [this article](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
for a good overview of the internals.
# Examples
```jldoctest
julia> g = GRUv3(3, 5)
Recur(
GRUv3Cell(3, 5), # 140 parameters
) # Total: 5 trainable arrays, 140 parameters,
# plus 1 non-trainable, 5 parameters, summarysize 848 bytes.
julia> g(rand(Float32, 3)) |> size
(5,)
julia> Flux.reset!(g);
julia> g(rand(Float32, 3, 10)) |> size # batch size of 10
(5, 10)
```
!!! warning "Batch size changes"
Failing to call `reset!` when the input batch size changes can lead to unexpected behavior. See the example in [`RNN`](@ref).
"""
GRUv3(a...; ka...) = Recur(GRUv3Cell(a...; ka...))
Recur(m::GRUv3Cell) = Recur(m, m.state0)
@adjoint function Broadcast.broadcasted(f::Recur, args...)
Zygote.∇map(__context__, f, args...)
end