-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnets.py
663 lines (489 loc) · 26.2 KB
/
nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
"""
Neural Network architectures used in the thesis. only the most important are shown here for clarity.
a file with all used architectures can be found in the experimental subfolder
@author: Felix Schürmann, Masters thesis on deep learning methods for speech enhancement
"""
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
import datetime as dt
import os
import librosa
import numpy as np
import joblib
import sklearn
from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
from spnn import *
from keras.models import model_from_json
from nets import *
from scipy import signal
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Input, Concatenate, Lambda, Permute, Conv2D,MaxPooling2D, Dropout
from tensorflow.keras.layers import Flatten, MaxPool2D,MaxPool1D,AvgPool1D, AvgPool2D, GlobalAvgPool2D, UpSampling2D, BatchNormalization
from spnn import *
import keras.backend as K
def log10(x):
numerator = tf.log(x)
denominator = tf.log(tf.constant(10, dtype=numerator.dtype))
return numerator / denominator
def res_net_block(input_data, filters, conv_size):
x = layers.Conv2D(filters, conv_size, activation='relu', padding='same')(input_data)
x = layers.BatchNormalization()(x)
x = layers.Conv2D(filters, conv_size, activation=None, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Add()([x, input_data])
x = layers.Activation('relu')(x)
return x
class neural_net:
"""
This class returns a neural network architecture, you can specify the optimizer, loss,
contextwindow length, number of output bins and saved metrics
"""
net_type = None
WIN_LEN = None
optimizer= None
loss=None
metrics= None
BINS=None
scaler=None
def __init__(self, net_type,BINS,WIN_LEN,optimizer,loss,metrics):
self.net_type=net_type
self.WIN_LEN=WIN_LEN
self.optimizer=optimizer
self.loss=loss
self.metrics=metrics
self.BINS=BINS
def get_optimizer(self,optimizer):
if optimizer=="RMSprop":
return keras.optimizers.RMSprop(learning_rate=0.005, rho=0.9)
if optimizer=="adam":
return keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False)
if optimizer=="SGD":
return keras.optimizers.SGD(learning_rate=0.01, momentum=0.0, nesterov=False)
if optimizer=="adamax":
return keras.optimizers.Adamax(learning_rate=0.002, beta_1=0.9, beta_2=0.999)
else:
print("Optimizer not found, falling back to default RMSprop.....")
return keras.optimizers.RMSprop(learning_rate=0.005, rho=0.9)
"""NETWORK ARCHITECTURES"""
def densenet(self,BINS,WIN_LEN, f=32):
repetitions = 6, 12, 24, 16
def bn_rl_conv(x, f, k=1, s=1, p='same'):
x = layers.BatchNormalization()(x)
x= keras.activations.relu(x)
x = layers.Conv2D(f, k, strides=s, padding=p)(x)
return x
def dense_block(tensor, r):
for _ in range(r):
x = bn_rl_conv(tensor, 4*f)
x = bn_rl_conv(x, f, 3)
tensor = Concatenate()([tensor, x])
return tensor
def transition_block(x):
x = bn_rl_conv(x, K.int_shape(x)[-1] // 2)
x = AvgPool2D(2, strides=2, padding='same')(x)
return x
noise_fft = keras.Input((BINS,WIN_LEN,1))
x = layers.Conv2D(64, 7, strides=2, padding='same')(noise_fft)
x = MaxPool2D(3, strides=2, padding='same')(x)
for r in repetitions:
d = dense_block(x, r)
x = transition_block(d)
x = GlobalAvgPool2D()(d)
output = Dense(257, activation='sigmoid')(x)
model = Model(noise_fft, output)
return model
def dense_resnet(self,BINS,WIN_LEN, f=32):
def res_net_block(input_data, filters, conv_size):
x = layers.Conv2D(filters, conv_size, activation='relu', padding='same')(input_data)
x = layers.BatchNormalization()(x)
x = layers.Conv2D(filters, conv_size, activation=None, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Add()([x, input_data])
x = layers.Activation('relu')(x)
return x
repetitions = 6, 12, 24, 16
def bn_rl_conv(x, f, k=1, s=1, p='same'):
x = layers.BatchNormalization()(x)
x= keras.activations.relu(x)
x = layers.Conv2D(f, 1, strides=s, padding=p)(x)
x= res_net_block(x,f,k)
return x
def dense_block(tensor, r):
for _ in range(r):
x = bn_rl_conv(tensor, 4*f)
x = bn_rl_conv(x, f, 3)
tensor = Concatenate()([tensor, x])
return tensor
def transition_block(x):
x = bn_rl_conv(x, K.int_shape(x)[-1] // 2)
x = AvgPool2D(2, strides=2, padding='same')(x)
return x
noise_fft = keras.Input((BINS,WIN_LEN,1))
x = layers.Conv2D(64, 7, strides=2, padding='same')(noise_fft)
x = MaxPool2D(3, strides=2, padding='same')(x)
for r in repetitions:
d = dense_block(x, r)
x = transition_block(d)
x = GlobalAvgPool2D()(d)
output = Dense(257, activation='sigmoid')(x)
model = Model(noise_fft, output)
return model
def fully_connected(self,BINS,WIN_LEN):
inputs = keras.Input(shape=(BINS, WIN_LEN))
x = layers.BatchNormalization()(inputs)
x = tf.keras.layers.Flatten()(x)
#x = tf.keras.layers.Dense(257*8)(x)
x = tf.keras.layers.Dense(257*4)(x)
#x = tf.keras.layers.Dense(257)(x)
x = tf.keras.layers.Dense(257*4)(x)
#x = tf.keras.layers.Dense(257*8)(x)
#x = layers.Dropout(0.01)(x)
outputs = layers.Dense(257, activation='sigmoid')(x)
model = tf.keras.Model(inputs, outputs)
return model
def resnet_baseline(self,BINS,WIN_LEN):
inputs = keras.Input(shape=(BINS, WIN_LEN,1))
#inputs=tf.expand_dims(inputs,2)
x = layers.Conv2D(64, 3, activation='relu')(inputs)
x = layers.BatchNormalization()(x)
x = layers.Conv2D(32, 3, activation='relu')(x)
x = layers.BatchNormalization()(x)
num_res_net_blocks = 40
for i in range(num_res_net_blocks):
x = res_net_block(x, 32, 3)
x = layers.Conv2D(32, 3, activation='relu')(x)
x = layers.BatchNormalization()(x)
x = layers.Conv2D(257, 3, activation='relu')(x)
x = layers.BatchNormalization()(x)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(257, activation='relu')(x)
x = layers.BatchNormalization()(x)
x = layers.Dropout(0.2)(x)
outputs = layers.Dense(BINS, activation='sigmoid')(x)
model = tf.keras.Model(inputs, outputs)
return model
def resnet_baseline64(self,BINS,WIN_LEN):
inputs = keras.Input(shape=(BINS, WIN_LEN,1))
#inputs=tf.expand_dims(inputs,2)
x = layers.Conv2D(32, 3, activation='relu')(inputs)
x = layers.BatchNormalization()(x)
x = layers.Conv2D(64, 3, activation='relu')(x)
x = layers.BatchNormalization()(x)
x = layers.MaxPooling2D(3)(x)
res_net_quantity = 40
for i in range(res_net_quantity):
x = res_net_block(x, 64, 3)
x = layers.Conv2D(64, 3, activation='relu')(x)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(257, activation='relu')(x)
x = layers.BatchNormalization()(x)
x = layers.Dropout(0.2)(x)
outputs = layers.Dense(BINS, activation='sigmoid')(x)
model = tf.keras.Model(inputs, outputs)
return model
def bidi_symmetric(self,BINS,WIN_LEN):
inputs = keras.Input(shape=(257, WIN_LEN))
x=tf.keras.layers.Permute((2,1))(inputs)
x=tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(512,return_sequences=True))(x)
x=tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(512,return_sequences=True))(x)
x=tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(512))(x)
outputs=tf.keras.layers.Dense(60, activation=tf.nn.sigmoid)(x)
model = tf.keras.Model(inputs, outputs)
return model
def cnn_oned(self,BINS,WIN_LEN):
"""
Subband-D-DNN-LSTM Net with 23 Bands
"""
print("Attention: The current TF Version requirs weights to be saved seperatly in sparsly connected Nets")
ceil_bins=joblib.load("ceil_bins.pkl")
ceil_bins=list(ceil_bins)
noise_fft = keras.Input((BINS,WIN_LEN))
"""Split up Subbands from STFT"""
group=[1]*23
sum_of_bins=0
ceil_bins[22]=56
for k in range(0,len(ceil_bins)):
print(k)
## FFT Bins getting split for processing with specific neurons
sum_of_bins=sum_of_bins+ceil_bins[k]
if k==0:
group[k]= Lambda(lambda x: x[:,0:2], output_shape=((2,WIN_LEN)))(noise_fft)
print(group[k])
if k==22:
print("K=22")
print( Lambda(lambda x: x[:,201:], output_shape=((56,WIN_LEN)))(noise_fft))
group[k]= Lambda(lambda x: x[:,201:], output_shape=((56,WIN_LEN)))(noise_fft)
else:
print(int(sum_of_bins+ceil_bins[k]))
group[k]=Lambda(lambda x: x[:,int(sum_of_bins):int(sum_of_bins+ceil_bins[k])], output_shape=((int(ceil_bins[k]),WIN_LEN)))(noise_fft)
print(group[k])
for e in range(0,len(ceil_bins)):
group[e]=tf.keras.layers.Conv1D(64, 4, strides=1, padding='same',dilation_rate=1, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
group[e]=tf.keras.layers.Conv1D(64, 8, strides=1, padding='same',dilation_rate=2, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
group[e]=tf.keras.layers.Conv1D(64, 16, strides=1, padding='same',dilation_rate=4, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
for j in range(0,len(ceil_bins)):
group[j]=tf.keras.layers.GlobalAveragePooling1D()(group[j])
for b in range(0,len(ceil_bins)):
group[b]=tf.expand_dims(group[b],1)
for i in range(0,len(ceil_bins)):
group[i]=tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32))(group[i])
x_Tensor = Concatenate(axis=1)([group[0],group[1],group[2],group[3],group[4],group[5],group[6],group[7],group[8], \
group[9],group[10],group[11],group[12],group[13],group[14],group[15],group[16],group[17],\
group[18],group[19],group[20],group[21],group[22]])
x_Tensor = Dense(23*64, activation='relu')(x_Tensor)
x = tf.keras.layers.Dropout(0.05)(x_Tensor)
outputs = tf.keras.layers.Dense(257, activation='sigmoid')(x)
model = tf.keras.Model(noise_fft, outputs)
return model
def cnn_oned_60(self,BINS,WIN_LEN):
"""
Subband-D-DNN-LSTM Net with 60 Bands
"""
print("Attention: The current TF Version requirs weights to be saved seperatly in sparsly connected Nets")
ceil_bins=joblib.load("ceil_bins3.pkl")
ceil_bins=list(ceil_bins)
#when using customLoss squeeze axis 3:
noise_in = keras.Input((BINS,WIN_LEN,1))
noise_fft=tf.squeeze(noise_in,3)
"""Split up Subbands from STFT"""
group=[1]*60
sum_of_bins=0
ceil_bins[59]=9
for k in range(0,len(ceil_bins)):
print(k)
## FFT Bins getting split for processing with specific neurons
sum_of_bins=sum_of_bins+ceil_bins[k]
if k==0:
group[k]= Lambda(lambda x: x[:,0:2,:], output_shape=((2,WIN_LEN)))(noise_fft)
print(group[k])
if k==59:
print( Lambda(lambda x: x[248:,:], output_shape=((9,16)))(noise_fft))
group[k]= Lambda(lambda x: x[:,248:,:], output_shape=((9,16)))(noise_fft)
else:
print(int(sum_of_bins+ceil_bins[k]))
group[k]=Lambda(lambda x: x[:,int(sum_of_bins):int(sum_of_bins+ceil_bins[k]),:], output_shape=((int(ceil_bins[k]),WIN_LEN)))(noise_fft)
print(group[k])
for e in range(0,len(ceil_bins)):
group[e]=tf.keras.layers.Conv1D(64, 4, strides=1, padding='same',dilation_rate=1, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
group[e]=tf.keras.layers.Conv1D(64, 8, strides=1, padding='same',dilation_rate=2, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
group[e]=tf.keras.layers.Conv1D(64, 16, strides=1, padding='same',dilation_rate=4, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
for j in range(0,len(ceil_bins)):
group[j]=tf.keras.layers.GlobalAveragePooling1D()(group[j])
for b in range(0,len(ceil_bins)):
group[b]=tf.expand_dims(group[b],1)
for i in range(0,len(ceil_bins)):
group[i]=tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32))(group[i])
"""
Concatenate Feature Vectors, init x_Tensor as first element
"""
x_Tensor = group[0]
for g in range(1,60):
x_Tensor = Concatenate(axis=1)([x_Tensor,group[g]])
x_Tensor = Dense(60*64, activation='relu')(x_Tensor)
x = tf.keras.layers.Dropout(0.05)(x_Tensor)
outputs = tf.keras.layers.Dense(257, activation='sigmoid')(x)
model = tf.keras.Model(noise_in, outputs)
return model
def cnn_oned_60_pesqloss(self,BINS,WIN_LEN):
print("Attention: The current TF Version requirs weights to be saved seperatly in sparsly connected Nets")
ceil_bins=joblib.load("ceil_bins3.pkl")
ceil_bins=list(ceil_bins)
noise_in = keras.Input((BINS,WIN_LEN,1))
noise_fft=tf.squeeze(noise_in,3)
passthrough_noisefft= noise_fft
noise_fft=tf.keras.layers.BatchNormalization()(noise_fft)
group=[1]*60
sum_of_bins=0
ceil_bins[59]=9
for k in range(0,len(ceil_bins)):
print(k)
## FFT Bins getting split for processing with specific neurons
sum_of_bins=sum_of_bins+ceil_bins[k]
if k==0:
group[k]= Lambda(lambda x: x[:,0:2,:], output_shape=((2,WIN_LEN)))(noise_fft)
print(group[k])
if k==59:
print( Lambda(lambda x: x[248:,:], output_shape=((9,16)))(noise_fft))
group[k]= Lambda(lambda x: x[:,248:,:], output_shape=((9,16)))(noise_fft)
else:
print(int(sum_of_bins+ceil_bins[k]))
group[k]=Lambda(lambda x: x[:,int(sum_of_bins):int(sum_of_bins+ceil_bins[k]),:], output_shape=((int(ceil_bins[k]),WIN_LEN)))(noise_fft)
print(group[k])
for e in range(0,len(ceil_bins)):
group[e]=tf.keras.layers.Conv1D(64, 4, strides=1, padding='same',dilation_rate=1, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
group[e]=tf.keras.layers.Conv1D(64, 8, strides=1, padding='same',dilation_rate=2, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
group[e]=tf.keras.layers.Conv1D(64, 16, strides=1, padding='same',dilation_rate=4, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
for j in range(0,len(ceil_bins)):
group[j]=tf.keras.layers.GlobalAveragePooling1D()(group[j])
for b in range(0,len(ceil_bins)):
group[b]=tf.expand_dims(group[b],1)
for i in range(0,len(ceil_bins)):
group[i]=tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32))(group[i])
x_Tensor = group[0]
for g in range(1,60):
x_Tensor = Concatenate(axis=1)([x_Tensor,group[g]])
x_Tensor = Dense(60*64, activation='relu')(x_Tensor)
x = tf.keras.layers.Dropout(0.05)(x_Tensor)
outputs = tf.keras.layers.Dense(257, activation='sigmoid')(x)
## last frame of context window:
curframe = passthrough_noisefft[:,:,-1]
# reverse db to power spektrum
stftoutput = tf.math.multiply(tf.pow(10.0,(tf.math.divide(curframe,10.0))),outputs)
model = tf.keras.Model(noise_in, [outputs,stftoutput])
return model
def cnn_oned_60_customloss(self,BINS,WIN_LEN):
print("Attention: The current TF Version requirs weights to be saved seperatly in sparsly connected Nets")
ceil_bins=joblib.load("ceil_bins3.pkl")
ceil_bins=list(ceil_bins)
noise_in = keras.Input((BINS,WIN_LEN,1))
pre_in= keras.Input((BINS,WIN_LEN,1))
noise_fft=tf.squeeze(noise_in,3)
pre_fft=tf.squeeze(pre_in,3)
group=[1]*60
sum_of_bins=0
ceil_bins[59]=9
group2=[1]*60
sum_of_bins2=0
for k in range(0,len(ceil_bins)):
print(k)
## FFT Bins getting split for processing with specific neurons
sum_of_bins2=sum_of_bins2+ceil_bins[k]
if k==0:
group2[k]= Lambda(lambda x: x[:,0:2,:], output_shape=((2,WIN_LEN)))(pre_fft)
print(group[k])
if k==59:
print( Lambda(lambda x: x[248:,:], output_shape=((9,32)))(pre_fft))
group2[k]= Lambda(lambda x: x[:,248:,:], output_shape=((9,32)))(pre_fft)
else:
print(int(sum_of_bins+ceil_bins[k]))
group2[k]=Lambda(lambda x: x[:,int(sum_of_bins):int(sum_of_bins+ceil_bins[k]),:], output_shape=((int(ceil_bins[k]),WIN_LEN)))(pre_fft)
print(group2[k])
for e in range(0,len(ceil_bins)):
group2[e]=tf.keras.layers.Conv1D(64, 4, strides=1, padding='same',dilation_rate=1, activation='relu')(group2[e])
group2[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group2[e])
group2[e]=tf.keras.layers.Conv1D(64, 8, strides=1, padding='same',dilation_rate=2, activation='relu')(group2[e])
group2[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group2[e])
group2[e]=tf.keras.layers.Conv1D(64, 16, strides=1, padding='same',dilation_rate=4, activation='relu')(group2[e])
group2[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group2[e])
for j in range(0,len(ceil_bins)):
group2[j]=tf.keras.layers.GlobalAveragePooling1D()(group2[j])
for b in range(0,len(ceil_bins)):
group2[b]=tf.expand_dims(group2[b],1)
print("50 % net")
for k in range(0,len(ceil_bins)):
print(k)
## FFT Bins getting split for processing with specific neurons
sum_of_bins=sum_of_bins+ceil_bins[k]
if k==0:
group[k]= Lambda(lambda x: x[:,0:2,:], output_shape=((2,WIN_LEN)))(noise_fft)
print(group[k])
if k==59:
print( Lambda(lambda x: x[248:,:], output_shape=((9,16)))(noise_fft))
group[k]= Lambda(lambda x: x[:,248:,:], output_shape=((9,16)))(noise_fft)
else:
print(int(sum_of_bins+ceil_bins[k]))
group[k]=Lambda(lambda x: x[:,int(sum_of_bins):int(sum_of_bins+ceil_bins[k]),:], output_shape=((int(ceil_bins[k]),WIN_LEN)))(noise_fft)
print(group[k])
for e in range(0,len(ceil_bins)):
group[e]=tf.keras.layers.Conv1D(64, 4, strides=1, padding='same',dilation_rate=1, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
group[e]=tf.keras.layers.Conv1D(64, 8, strides=1, padding='same',dilation_rate=2, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
group[e]=tf.keras.layers.Conv1D(64, 16, strides=1, padding='same',dilation_rate=4, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
for j in range(0,len(ceil_bins)):
group[j]=tf.keras.layers.GlobalAveragePooling1D()(group[j])
for b in range(0,len(ceil_bins)):
group[b]=tf.expand_dims(group[b],1)
for g in range(1,60):
group[g] = Concatenate(axis=1)([group[g],group2[g]])
for i in range(0,len(ceil_bins)):
group[i]=tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32))(group[i])
x_Tensor = group[0]
for g in range(1,60):
x_Tensor = Concatenate(axis=1)([x_Tensor,group[g]])
x_Tensor = Dense(60*64, activation='relu')(x_Tensor)
x = tf.keras.layers.Dropout(0.05)(x_Tensor)
outputs = tf.keras.layers.Dense(257, activation='sigmoid')(x)
model = tf.keras.Model([noise_in,pre_in], outputs)
return model
def cnn_60_freqax(self,BINS,WIN_LEN):
print("Attention: The current TF Version requirs weights to be saved seperatly in sparsly connected Nets")
ceil_bins=joblib.load("ceil_bins3.pkl")
ceil_bins=list(ceil_bins)
noise_fft = keras.Input((BINS,WIN_LEN))
infeat=tf.keras.layers.Permute((2,1))(noise_fft)
ceil_bins=list(np.full(15,2))
group=[1]*15
sum_of_bins=0
ceil_bins[14]=2
for k in range(0,len(ceil_bins)):
print(k)
## FFT Bins getting split for processing with specific neurons
sum_of_bins=sum_of_bins+ceil_bins[k]
if k==0:
group[k]= Lambda(lambda x: x[:,0:2,:], output_shape=((257,2)))(infeat)
print(group[k])
if k==15:
group[k]= Lambda(lambda x: x[:,34:,:], output_shape=((257,2)))(infeat)
else:
print(int(sum_of_bins+ceil_bins[k]))
group[k]=Lambda(lambda x: x[:,int(sum_of_bins):int(sum_of_bins+ceil_bins[k]),:], output_shape=((257,2)))(infeat)
print(group[k])
for k in range(0,len(ceil_bins)):
group[k]=tf.keras.layers.Permute((2,1))(group[k])
print(group[k])
for e in range(0,len(ceil_bins)):
group[e]=tf.keras.layers.Conv1D(64, 2, strides=1, padding='same',dilation_rate=1, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
group[e]=tf.keras.layers.Conv1D(64, 4, strides=1, padding='same',dilation_rate=2, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
group[e]=tf.keras.layers.Conv1D(64, 8, strides=1, padding='same',dilation_rate=4, activation='relu')(group[e])
group[e]=tf.keras.layers.MaxPooling1D(pool_size=2, strides=None, padding='same', data_format=None)(group[e])
for j in range(0,len(ceil_bins)):
group[j]=tf.keras.layers.GlobalAveragePooling1D()(group[j])
for b in range(0,len(ceil_bins)):
group[b]=tf.expand_dims(group[b],1)
for i in range(0,len(ceil_bins)):
group[i]=tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32))(group[i])
x_Tensor = group[0]
for g in range(1,len(ceil_bins)):
x_Tensor = Concatenate(axis=1)([x_Tensor,group[g]])
outputs = tf.keras.layers.Dense(257, activation='sigmoid')(x_Tensor)
model = tf.keras.Model(noise_fft, outputs)
return model
def return_model(self):
if self.net_type=="resnet_baseline":
model=self.resnet_baseline(self.BINS,self.WIN_LEN)
if self.net_type=="1d_cnn":
model=self.cnn_oned(self.BINS, self.WIN_LEN)
if self.net_type=="cnn_oned_large":
model=self.cnn_oned_large(self.BINS, self.WIN_LEN)
if self.net_type=="bidi_symmetric":
model=self.bidi_symmetric(self.BINS, self.WIN_LEN)
if self.net_type=="fully_connected":
model=self.fully_connected(self.BINS, self.WIN_LEN)
if self.net_type=="densenet":
model=self.densenet(self.BINS, self.WIN_LEN)
if self.net_type=="resnet_baseline64":
model=self.resnet_baseline64(self.BINS, self.WIN_LEN)
if self.net_type=="cnn_oned_60":
model=self.cnn_oned_60(self.BINS, self.WIN_LEN)
model.compile(self.get_optimizer(self.optimizer),loss=self.loss,metrics=self.metrics)
return model