-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathSolution210.java
78 lines (66 loc) · 2.3 KB
/
Solution210.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
package leetcode.graph;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.HashSet;
public class Solution210 {
public static void main(String[] args) {
System.out.println(Arrays.toString(new Solution210().findOrder(2, new int[][]{new int[]{0, 1}, new int[]{1, 0}})));
}
public int[] findOrder(int numCourses, int[][] prerequisites) {
// 创建有向图
Digraph digraph = new Digraph(numCourses, prerequisites);
// 拓扑排序求解
return digraph.topological();
}
static class Digraph {
// 顶点数
private final int V;
// 邻接表
private final HashSet<Integer>[] adj;
// 入度
private final int[] inDegree;
public Digraph(int numCourses, int[][] prerequisites) {
this.V = numCourses;
inDegree = new int[V];
adj = new HashSet[V];
for (int i = 0; i < adj.length; i++) {
adj[i] = new HashSet<>();
}
// 初始化邻接表并统计每个顶点的入度
for (int[] prerequisite : prerequisites) {
adj[prerequisite[1]].add(prerequisite[0]);
inDegree[prerequisite[0]]++;
}
}
/**
* 拓扑排序:找到图中入度为 0 的顶点,以及由入度为 0 顶点所指向的顶点
*/
public int[] topological() {
// 将所有入度为 0 的顶点入队
ArrayDeque<Integer> deque = new ArrayDeque<>();
for (int i = 0; i < inDegree.length; i++) {
if (inDegree[i] == 0) {
deque.offer(i);
}
}
// 将队列执行出队操作,出队的顺序就是拓扑序
int index = 0;
int[] res = new int[V];
while (!deque.isEmpty()) {
Integer v = deque.poll();
for (Integer w : adj[v]) {
inDegree[w]--;
// 入度为 0 入队
if (inDegree[w] == 0) {
deque.offer(w);
}
}
res[index++] = v;
}
if (index == res.length) {
return res;
}
return new int[0];
}
}
}