-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcollaborate_train.py
414 lines (365 loc) · 16.2 KB
/
collaborate_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
from data_utils import Femnist, FemnistValTest, Mydata, pre_handle_femnist_mat, generate_bal_private_data
from option import args_parser
from model_utils import NLLLoss, average_weights, mkdirs
from models import DomainIdentifier
import numpy as np
import mindspore
from mindspore.dataset import transforms, vision
import mindspore.dataset as ds
from mindspore import nn, Tensor, DatasetHelper, save_checkpoint, ops, Parameter, context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import copy
import pdb
from mindspore import dtype as mstype
from tqdm import tqdm
def MNIST_random(dataset, epochs, num_item=5000):
"""
Divide MNIST
"""
dict_epoch, all_idxs = {}, [i for i in range(48000)]
for i in range(epochs):
dict_epoch[i] = set(np.random.choice(all_idxs, num_item, replace=False))
all_idxs = list(set(all_idxs) - dict_epoch[i])
return dict_epoch
def list_add(a, b):
"""
Add operation
"""
c = []
for i in range(len(a)):
d = []
for j in range(len(a[i])):
d.append(a[i][j] + b[i][j])
c.append(d)
return c
def get_avg_result(temp_sum_result, num_client):
"""
Calculate average result
"""
for itemx in range(len(temp_sum_result)):
for itemy in range(len(temp_sum_result[itemx])):
temp_sum_result[itemx][itemy] /= num_client
return temp_sum_result
class DatasetSplit:
"""
An abstract Dataset class wrapped around Mindspore Dataset class
"""
def __init__(self, dataset, idxs):
self.dataset = dataset
self.idxs = [int(i) for i in idxs]
def __len__(self):
return len(self.idxs)
def __getitem__(self, item):
index = self.idxs[item]
image, label = self.dataset[index]
image = Tensor(image)
label = Tensor(label)
return image, label
class DomainDataset:
"""
An abstract Dataset class wrapped around Mindspore Dataset class
"""
def __init__(self,publicadataset,privatedataset,localindex,step1=True):
imgs = []
if step1:
for index in range(len(publicadataset)):
imgs.append((publicadataset[index][0],10))
for index in range(len(privatedataset)):
imgs.append((privatedataset[index][0],localindex))
else:
for index in range(len(publicadataset)):
imgs.append((publicadataset[index][0],localindex))
for index in range(len(privatedataset)):
imgs.append((privatedataset[index][0],10))
self.imgs = imgs
def __getitem__(self, index):
image, domain_label = self.imgs[index]
return image, domain_label
def __len__(self):
return len(self.imgs)
def train_models_collaborate_gan(device, models_list, train, user_number, collaborative_epoch,
output_classes):
mkdirs('./Model/final_model')
epoch_groups = MNIST_random(dataset=train, epochs=collaborative_epoch)
train_loss = []
test_accuracy = []
for i in range(user_number):
train_loss.append([])
for i in range(user_number):
test_accuracy.append([])
for epoch in range(collaborative_epoch):
train_batch_loss = []
for i in range(user_number):
train_batch_loss.append([])
"""
Create dataset
"""
train_dataset = [data for data in train]
train_split = DatasetSplit(train_dataset, list(epoch_groups[epoch]))
trainloader = ds.GeneratorDataset(train_split, ["data", "label"], shuffle=True)
trainloader = trainloader.batch(batch_size=256)
trainloader = DatasetHelper(trainloader, dataset_sink_mode=False)
"""
Start training
"""
for batch_idx, (image, label) in enumerate(tqdm(trainloader)):
label = Tensor(label, dtype=mindspore.int32)
image = Tensor(image, dtype=mindspore.float32)
temp_sum_result = [ [] for _ in range(len(label))]
for item in range(len(temp_sum_result)):
for i in range(output_classes):
temp_sum_result[item].append(0)
# Make output together
for n, model in enumerate(models_list):
model.set_train(mode=False)
outputs = model(image)
pred_labels = outputs.asnumpy().tolist() # 转成list
temp_sum_result = list_add(pred_labels,temp_sum_result) # 把每次的结果都给加到一起
temp_sum_result = get_avg_result(temp_sum_result,user_number) # 根据参与训练的时候用户把结果除以对应的数量
labels = Tensor(temp_sum_result, dtype=mindspore.int32)
lr = 0.001
optimizer = 'adam'
for n,model in enumerate (models_list):
train_models_collaborate_bug_gan(model,device,optimizer,lr,image,labels,batch_idx,n,epoch,trainloader)
def train_models_collaborate_bug_gan(model, device, optimizer, lr, images, labels, batch_idx, n, epoch,
trainloader):
modelurl = './Model/final_model'
model.set_train(mode=True)
"""
Define loss function and optimizer
"""
criterion = nn.L1Loss(reduction='mean')
if optimizer == 'sgd':
optimizer = nn.SGD(params=model.trainable_params(), learning_rate=lr, momentum=0.5)
elif optimizer == 'adam':
optimizer = nn.Adam(params=model.trainable_params(), learning_rate=lr, weight_decay=1e-4)
"""
Start training
"""
outputs = model(images)
loss = criterion(outputs, labels)
weights = mindspore.ParameterTuple(optimizer.parameters)
grad = ops.GradOperation(get_by_list=True)
grads = grad(model, weights)(images)
loss = ops.Depend()(loss, optimizer(grads))
if batch_idx % 10 == 0:
print('Collaborative traing : Local Model {} Train Epoch: {} Loss: {}'.format(n, epoch + 1, loss))
"""
Save model
"""
save_checkpoint(model, modelurl + '/LocalModel{}.ckpt'.format(n))
def train_models_bal_femnist_collaborate(device, models_list, modelurl):
class train_params:
lr = 0.001
optimizer = 'adam'
epochs = 1
args = args_parser()
"""
Create dataset
"""
X_train, y_train, writer_ids_train, X_test, y_test, writer_ids_train, writer_ids_test = pre_handle_femnist_mat()
y_train += len(args.public_classes)
y_test += len(args.public_classes)
private_bal_femnist_data, total_private_bal_femnist_data = \
generate_bal_private_data(X=X_train, y=y_train, N_parties=args.N_parties,
classes_in_use=args.private_classes,
N_samples_per_class=args.N_samples_per_class, data_overlap=False)
for n, model in enumerate(models_list):
train_models_bal_femnist_bug(device, n, model, train_params.optimizer, train_params.lr,
private_bal_femnist_data, train_params.epochs, modelurl)
def train_models_bal_femnist_bug(device, n, model, optimizer, lr, train, epochs, modelurl):
print('train Local Model {} on Private Dataset'.format(n))
"""
Define loss function and optimizer
"""
criterion = NLLLoss()
if optimizer == 'sgd':
optimizer = nn.SGD(params=model.trainable_params(), learning_rate=lr, momentum=0.5)
elif optimizer == 'adam':
optimizer = nn.Adam(params=model.trainable_params(), learning_rate=lr, weight_decay=1e-4)
"""
Generate trainloader
"""
apply_transform = transforms.py_transforms.Compose([vision.py_transforms.ToTensor(),
vision.py_transforms.Normalize((0.1307,), (0.3081,))])
femnist_bal_data_train = Mydata(train[n], apply_transform)
trainloader = ds.GeneratorDataset(femnist_bal_data_train, ["data", "label"], shuffle=True)
trainloader = trainloader.batch(batch_size=5)
trainloader = DatasetHelper(trainloader, dataset_sink_mode=False)
"""
Start training
"""
train_epoch_losses = []
print('Begin Training on Femnist')
for epoch in range(epochs):
model.set_train(mode=True)
train_batch_losses = []
for batch_idx, (images, labels) in enumerate(tqdm(trainloader)):
labels = Tensor(labels, dtype=mindspore.int32)
images = Tensor(images, dtype=mindspore.float32)
outputs = model(images)
loss = criterion(outputs, labels)
weights = mindspore.ParameterTuple(optimizer.parameters)
grad = ops.GradOperation(get_by_list=True)
grads = grad(model, weights)(images)
loss = ops.Depend()(loss, optimizer(grads))
if batch_idx % 5 == 0:
print('Local Model {} Train Epoch: {} Loss: {}'.format(n, epoch + 1, loss))
train_batch_losses.append(loss)
loss_avg = sum(train_batch_losses) / len(train_batch_losses)
train_epoch_losses.append(loss_avg)
"""
Save model
"""
save_checkpoint(model, modelurl + '/LocalModel{}.ckpt'.format(n))
def feature_domain_alignment(device, train, models_list, modelurl, domain_identifier_epochs,
gan_local_epochs):
"""
Generate the sample indices for each round
"""
url = 'mnist'
epoch_groups = MNIST_random(dataset=train, epochs=domain_identifier_epochs, num_item=40)
args = args_parser()
"""
Generate femnist
"""
X_train, y_train, writer_ids_train, X_test, y_test, writer_ids_train, writer_ids_test = pre_handle_femnist_mat()
y_train += len(args.public_classes)
y_test += len(args.public_classes)
private_bal_femnist_data, total_private_bal_femnist_data = \
generate_bal_private_data(X=X_train, y=y_train, N_parties=args.N_parties,
classes_in_use=args.private_classes,
N_samples_per_class=args.N_samples_per_class, data_overlap=False)
apply_transform = transforms.py_transforms.Compose([vision.py_transforms.ToTensor(),
vision.py_transforms.Normalize((0.1307,), (0.3081,))])
"""
GanStep1
"""
epoch_loss = []
for epoch in range(domain_identifier_epochs):
local_weights,local_losses = [],[]
for n, model in enumerate(models_list):
"""
Load GanModel0
"""
GANmodel = DomainIdentifier()
param_dict = load_checkpoint("./GanModel0.ckpt")
load_param_into_net(GANmodel, param_dict)
GANmodel.set_train(mode=True)
"""
Create dataset
"""
femnist_bal_data_train = Mydata(private_bal_femnist_data[n], apply_transform)
trainlist = [data for data in train]
public_dataset = DatasetSplit(trainlist, list(epoch_groups[epoch]))
pubilcdataset_list = [data for data in public_dataset]
privatedataset_list = [data for data in femnist_bal_data_train]
traindataset = DomainDataset(publicadataset=pubilcdataset_list, privatedataset=privatedataset_list,
localindex=n, step1=True)
trainloader = ds.GeneratorDataset(traindataset, ["data", "label"], shuffle=True)
trainloader = trainloader.batch(batch_size=30)
trainloader = DatasetHelper(trainloader, dataset_sink_mode=False)
"""
Define loss function and optimizer
"""
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
optimizer = nn.Adam(params=GANmodel.trainable_params(), learning_rate=0.001, weight_decay=1e-4)
"""
Start training
"""
batch_loss = []
for batch_idx,(images,domain_labels) in enumerate(tqdm(trainloader)):
domain_labels = Tensor(domain_labels, dtype=mindspore.int32)
images = Tensor(images, dtype=mindspore.float32)
temp_outputs = model(images,True)
domain_outputs = GANmodel(temp_outputs,n)
loss = criterion(domain_outputs,domain_labels)
weights = mindspore.ParameterTuple(optimizer.parameters)
grad = ops.GradOperation(get_by_list=True)
grads = grad(GANmodel, weights)(temp_outputs,n)
loss = ops.Depend()(loss, optimizer(grads))
print('Gan Step1 on Model {} Train Epoch: {} Loss: {}'.format(n, epoch + 1, loss))
batch_loss.append(loss)
w = GANmodel.parameters_dict()
local_weights.append(copy.deepcopy(w))
local_losses.append(sum(batch_loss)/len(batch_loss))
"""
Calculate and save the average model weight
"""
epoch_loss.append(sum(local_losses)/len(local_losses))
global_weights = average_weights(local_weights)
global_weights_param = {}
for i in global_weights.keys():
global_weights_param[i] = Parameter(global_weights[i])
GANmodel = DomainIdentifier()
load_param_into_net(GANmodel, global_weights_param)
save_checkpoint(GANmodel, "./GanModel0.ckpt")
dirpath = 'Figures/'+url+'/collaborate_gan'
mkdirs(dirpath)
file = open(dirpath+'/GanStep1.txt', 'a+')
file.write(str(epoch_loss)[1:-1])
file.write('\n')
file.close()
"""
GanStep2
"""
epoch_loss = []
mkdirs(modelurl + '/collaborate_gan')
for epoch in range(gan_local_epochs):
local_losses = []
for n, model in enumerate(models_list):
"""
Load GanModel0
"""
GANmodel = DomainIdentifier()
param_dict = load_checkpoint("./GanModel0.ckpt")
load_param_into_net(GANmodel, param_dict)
"""
Create dataset
"""
femnist_bal_data_train = Mydata(private_bal_femnist_data[n], apply_transform)
trainlist = [data for data in train]
public_dataset = DatasetSplit(trainlist, list(epoch_groups[epoch]))
pubilcdataset_list = [data for data in public_dataset]
privatedataset_list = [data for data in femnist_bal_data_train]
traindataset = DomainDataset(publicadataset=pubilcdataset_list, privatedataset=privatedataset_list,
localindex=n, step1=False)
trainloader = ds.GeneratorDataset(traindataset, ["data", "label"], shuffle=True)
trainloader = trainloader.batch(batch_size=30)
trainloader = DatasetHelper(trainloader, dataset_sink_mode=False)
"""
Define loss function and optimizer
"""
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
optimizer = nn.Adam(params=model.trainable_params(), learning_rate=0.0001, weight_decay=1e-4)
"""
Start training
"""
batch_loss = []
model.set_train(mode=True)
for batch_idx, (images, domain_labels) in enumerate(tqdm(trainloader)):
domain_labels = Tensor(domain_labels, dtype=mindspore.int32)
images = Tensor(images, dtype=mindspore.float32)
temp_outputs = model(images,True)
domain_outputs = GANmodel(temp_outputs,n)
loss = criterion(domain_outputs,domain_labels)
weights = mindspore.ParameterTuple(optimizer.parameters)
grad = ops.GradOperation(get_by_list=True)
grads = grad(model, weights)(images,True)
loss = ops.Depend()(loss, optimizer(grads))
print('Gan Step2 on Model {} Train Epoch: {} Loss: {}'.format(n, epoch + 1, loss))
batch_loss.append(loss)
"""
Save model
"""
# local_param_list = get_param_list(model)
save_checkpoint(model, modelurl + '/collaborate_gan/LocalModel{}.ckpt'.format(n))
local_losses.append(sum(batch_loss)/len(batch_loss))
epoch_loss.append(sum(local_losses)/len(local_losses))
dirpath = 'Figures/'+url+'/collaborate_gan'
mkdirs(dirpath)
file = open(dirpath+'/GanStep2.txt', 'a+')
file.write(str(epoch_loss)[1:-1])
file.write('\n')
file.close()