-
Notifications
You must be signed in to change notification settings - Fork 12
/
ffs_ipwkbz_get_funcgrid.m
652 lines (532 loc) · 25.5 KB
/
ffs_ipwkbz_get_funcgrid.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
%% Generate States/Choices/Shocks Grids, get Functions (Interpolated + Percentage + Risky + Safe Asset + Save + Borrow)
% *back to <https://fanwangecon.github.io Fan>'s
% <https://fanwangecon.github.io/CodeDynaAsset/ Dynamic Assets Repository>
% Table of Content.*
%%
function [armt_map, func_map] = ffs_ipwkbz_get_funcgrid(varargin)
%% FFS_IPWKBZ_GET_FUNCGRID get funcs, params, states choices shocks grids
% centralized gateway for retrieving parameters, and solution grids and
% functions. Similar to
% <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_get_funcgrid.html
% ffs_akz_get_funcgrid> function. This code deals with problems with
% savings and borrowing.
%
% The graphs below show the difference between percentage choice grid and
% level choice grid. See comments by graphs below for explanations of
% differences between the choice grids here and choice grids in the
% ffs_akz_get_funcgrid function.
%
% Note that for borrowing, we can not start at the min(coh(k,w-k,z))
% reacheable given the w and k choice grids. That would be:
% min(coh(k,w-k,z)) < min(w). At min(coh), there is a single point, and
% also for all values between min(coh) and min(w), all percentage w_perc
% choices are below min(w), requiring extrapolation. It is in some sense
% safer to extrapolate by starting solution at min(coh) = min(w). Now, for
% the lowest levels of coh(k, w-k, z), which are < min(w), we now require
% extrapolation. But this extrapolation is straight forward, when coh <
% min(w), households have to default, the utility from default is the same
% regardless of the level of coh at the time of default. So nearest
% extrapolation is fully correct.
%
% Note that the first stage w grid is based on cash-on-hand level reached
% by the coh(k,w-k,z) possible choice and shock combinations. This
% coh(k,w-k,z) > max(w), which also means that at max(coh) grid, the w_perc
% choices at higher points require extrapolation. Extrapolation is based on
% nearest extrapolation.
%
% Note that even when w = 0, as long as interest rate is low, only the
% lowest level of borrowing is invalid.
%
% @param param_map container parameter container
%
% @param support_map container support container
%
% @param bl_input_override boolean if true varargin contained param_map and
% support_map fully overrides local default. Local default is not invoked.
% This could be important for speed if this function is getting invoked
% within certain loops. Default is 0.
%
% @return armt_map container container with states, choices and shocks
% grids that are inputs for grid based solution algorithm
%
% @return func_map container container with function handles for
% consumption cash-on-hand etc.
%
% @example
%
% it_param_set = 2;
% bl_input_override = true;
% [param_map, support_map] = ffs_ipwkbz_set_default_param(it_param_set);
% [armt_map, func_map] = ffs_ipwkbz_get_funcgrid(param_map, support_map, bl_input_override);
%
% @include
%
% * <https://github.com/FanWangEcon/CodeDynaAsset/blob/master/m_ipwkbz/paramfunc/ffs_ipwkbz_set_functions.m ffs_ipwkbz_set_functions>
% * <https://github.com/FanWangEcon/CodeDynaAsset/blob/master/tools/ffto_gen_tauchen_jhl.m ffto_gen_tauchen_jhl>
% * <https://github.com/FanWangEcon/CodeDynaAsset/blob/master/tools/fft_gen_grid_loglin.m fft_gen_grid_loglin>
%
%% Default
if (~isempty(varargin))
% override when called from outside
[param_map, support_map] = varargin{:};
else
% default internal run
[param_map, support_map] = ffs_ipwkbz_set_default_param();
support_map('bl_graph_funcgrids') = true;
support_map('bl_graph_funcgrids_detail') = true;
support_map('bl_display_funcgrids') = true;
% to be able to visually see choice grid points
param_map('fl_b_bd') = -20; % borrow bound, = 0 if save only
param_map('fl_default_aprime') = 0;
param_map('bl_default') = 0; % if borrowing is default allowed
param_map('fl_w_min') = param_map('fl_b_bd');
param_map('it_w_perc_n') = 25;
param_map('it_ak_perc_n') = 45;
param_map('fl_w_interp_grid_gap') = 2;
param_map('fl_coh_interp_grid_gap') = 2;
default_maps = {param_map, support_map};
% numvarargs is the number of varagin inputted
[default_maps{1:length(varargin)}] = varargin{:};
param_map = [param_map; default_maps{1}];
support_map = [support_map; default_maps{2}];
end
%% Parse Parameters
params_group = values(param_map, {'it_z_n', 'fl_z_mu', 'fl_z_rho', 'fl_z_sig'});
[it_z_n, fl_z_mu, fl_z_rho, fl_z_sig] = params_group{:};
params_group = values(param_map, {'bl_default', 'fl_b_bd', 'fl_w_min', 'fl_w_max', ...
'it_w_perc_n', 'fl_w_interp_grid_gap', 'fl_coh_interp_grid_gap'});
[bl_default, fl_b_bd, fl_w_min, fl_w_max, ...
it_w_perc_n, fl_w_interp_grid_gap, fl_coh_interp_grid_gap] = params_group{:};
params_group = values(param_map, {'fl_k_min', 'fl_k_max', 'it_ak_perc_n'});
[fl_k_min, fl_k_max, it_ak_perc_n] = params_group{:};
params_group = values(param_map, {'fl_crra', 'fl_c_min', 'it_c_interp_grid_gap'});
[fl_crra, fl_c_min, it_c_interp_grid_gap] = params_group{:};
params_group = values(param_map, {'fl_Amean', 'fl_alpha', 'fl_delta'});
[fl_Amean, fl_alpha, fl_delta] = params_group{:};
params_group = values(param_map, {'fl_r_save', 'fl_r_borr', 'fl_w'});
[fl_r_save, fl_r_borr, fl_w] = params_group{:};
params_group = values(support_map, {'bl_graph_funcgrids', 'bl_graph_funcgrids_detail', 'bl_display_funcgrids'});
[bl_graph_funcgrids, bl_graph_funcgrids_detail, bl_display_funcgrids] = params_group{:};
params_group = values(support_map, {'it_display_summmat_rowmax', 'it_display_summmat_colmax'});
[it_display_summmat_rowmax, it_display_summmat_colmax] = params_group{:};
%% Generate Asset and Choice Grid for 2nd stage Problem
% This generate triangular choice structure. Household choose total
% aggregate savings, and within that how much to put into risky capital and
% how much to put into safe assets, in percentages. See
% <https://fanwangecon.github.io/CodeDynaAsset/m_ipwkbz/paramfunc/html/ffs_ipwkbz_set_default_param.html
% ffs_ipwkbz_set_default_param> for details.
if (~bl_default)
fl_w_min_use = max(fl_w_min, -(fl_w)/fl_r_borr);
fl_b_bd = fl_w_min_use;
else
fl_w_min_use = fl_w_min;
end
% percentage grid for 1st stage choice problem, level grid for 2nd stage
% solving optimal k given w and z.
ar_w_perc = linspace(0, 1, it_w_perc_n);
it_w_interp_n = (fl_w_max-fl_w_min_use)/(fl_w_interp_grid_gap);
ar_w_level_full = fft_array_add_zero(linspace(fl_w_min_use, fl_w_max, it_w_interp_n), true);
ar_w_level = ar_w_level_full;
it_w_interp_n = length(ar_w_level_full);
% max k given w, need to consider the possibility of borrowing.
ar_k_max = ar_w_level_full - fl_b_bd;
% k percentage choice grid
ar_ak_perc = linspace(0, 1, it_ak_perc_n);
% 2nd stage percentage choice matrixes
% (ar_k_max') is it_w_interp_n by 1, and (ar_ak_perc) is 1 by it_ak_perc_n
% mt_k is a it_w_interp_n by it_ak_perc_n matrix of choice points of k'
% conditional on w, each column is a different w, each row for each col a
% different k' value.
mt_k = (ar_k_max'*ar_ak_perc)';
mt_a = (ar_w_level_full - mt_k);
% can not have choice that are beyond feasible bound given the percentage
% structure here.
mt_bl_constrained = (mt_a < fl_b_bd);
if (sum(mt_bl_constrained) > 0 )
error('at %s second stage choice points, percentage choice exceed bounds, can not happen',...
num2str(sum(mt_bl_constrained)));
end
ar_a_meshk_full = mt_a(:);
ar_k_mesha_full = mt_k(:);
ar_a_meshk = ar_a_meshk_full;
ar_k_mesha = ar_k_mesha_full;
%% Get Shock Grids
[~, mt_z_trans, ar_stationary, ar_z] = ffto_gen_tauchen_jhl(fl_z_mu,fl_z_rho,fl_z_sig,it_z_n);
%% Get Equations
[f_util_log, f_util_crra, f_util_standin, f_prod, f_inc, f_coh, f_cons] = ...
ffs_ipwkbz_set_functions(fl_crra, fl_c_min, fl_b_bd, fl_Amean, fl_alpha, fl_delta, fl_r_save, fl_r_borr, fl_w);
%% Generate Cash-on-Hand/State Matrix
% The endogenous state variable is cash-on-hand, it has it_z_n*it_a_n
% number of points, covering all reachable points when ar_a is the choice
% vector and ar_z is the shock vector. requires inputs from get Asset and
% choice grids, get shock grids, and get equations above.
mt_coh_wkb_full = f_coh(ar_z, ar_a_meshk_full, ar_k_mesha_full);
if (bl_display_funcgrids)
% Generate Aggregate Variables
ar_aplusk_mesh = ar_a_meshk_full + ar_k_mesha_full;
% Genereate Table
tab_ak_choices = array2table([ar_aplusk_mesh, ar_k_mesha_full, ar_a_meshk_full]);
cl_col_names = {'ar_aplusk_mesh', 'ar_k_mesha_full', 'ar_a_meshk_full'};
tab_ak_choices.Properties.VariableNames = cl_col_names;
% Label Table Variables
tab_ak_choices.Properties.VariableDescriptions{'ar_aplusk_mesh'} = ...
'*ar_aplusk_mesha*: ar_aplusk_mesha = ar_a_meshk_full + ar_k_mesha_full;';
tab_ak_choices.Properties.VariableDescriptions{'ar_a_meshk_full'} = ...
'*ar_a_meshk_full*:';
tab_ak_choices.Properties.VariableDescriptions{'ar_k_mesha_full'} = ...
'*ar_k_mesha_full*:';
cl_var_desc = tab_ak_choices.Properties.VariableDescriptions;
for it_var_name = 1:length(cl_var_desc)
disp(cl_var_desc{it_var_name});
end
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('tab_ak_choices');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
it_rows_toshow = length(ar_w_level)*2;
disp(size(tab_ak_choices));
disp(head(array2table(tab_ak_choices), it_rows_toshow));
disp(tail(array2table(tab_ak_choices), it_rows_toshow));
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('mt_coh_wkb_full');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp(size(mt_coh_wkb_full));
disp(head(array2table(mt_coh_wkb_full), it_rows_toshow));
disp(tail(array2table(mt_coh_wkb_full), it_rows_toshow));
end
%% Check if COH is within Borrowing Bounds
% some coh levels are below borrowing bound, can not borrow enough to pay
% debt
mt_bl_coh_wkb_invalid = (mt_coh_wkb_full < fl_b_bd);
% (k,a) invalid if coh(k,a,z) < bd for any z
ar_bl_wkb_invalid = max(mt_bl_coh_wkb_invalid,[], 2);
mt_bl_wkb_invalid = reshape(ar_bl_wkb_invalid, size(mt_a));
% find the first w_level choice where some k(w) percent choices are valid?
ar_bl_w_level_invalid = min(mt_bl_wkb_invalid, [], 1);
% w choices can not be lower than fl_w_level_min_valid. If w choices are
% lower, given the current borrowing interest rate as well as the minimum
% income level in the future, and the maximum borrowing level available
% next period, and given the shock distribution, there exists some state in
% the future when the household when making this choice will be unable to
% borrow sufficiently to maintain positive consumption.
fl_w_level_min_valid = min(ar_w_level_full(~ar_bl_w_level_invalid));
%% Update Valid 2nd stage choice matrix
% ar_w_level = linspace(fl_w_level_min_valid, fl_w_max, it_w_interp_n);
% ar_k_max = ar_w_level - fl_b_bd;
% mt_k = (ar_k_max'*ar_ak_perc)';
% mt_a = (ar_w_level - mt_k);
% ar_a_meshk = mt_a(:);
% ar_k_mesha = mt_k(:);
%% Select only Valid (k(w), a) choices
% mt_coh_wkb = mt_coh_wkb_full(~ar_bl_wkb_invalid, :);
mt_coh_wkb = mt_coh_wkb_full;
mt_z_mesh_coh_wkb = repmat(ar_z, [size(mt_coh_wkb,1),1]);
%% Generate 1st Stage States: Interpolation Cash-on-hand Interpolation Grid
% For the iwkz problems, we solve the problem along a grid of cash-on-hand
% values, the interpolate to find v(k',b',z) at (k',b') choices. Crucially,
% we have to coh matrxies
fl_max_mt_coh = max(max(mt_coh_wkb));
% This is savings only condition
% fl_min_mt_coh = min(min(mt_coh_wkb));
% This could be condition if no defaults are allowed
% fl_min_mt_coh = fl_w_level_min_valid;
% This is borrowing with default or not condition
fl_min_mt_coh = fl_b_bd;
it_coh_interp_n = (fl_max_mt_coh-fl_min_mt_coh)/(fl_coh_interp_grid_gap);
ar_interp_coh_grid = fft_array_add_zero(linspace(fl_min_mt_coh, fl_max_mt_coh, it_coh_interp_n), true);
[mt_interp_coh_grid_mesh_z, mt_z_mesh_coh_interp_grid] = ndgrid(ar_interp_coh_grid, ar_z);
mt_interp_coh_grid_mesh_w_perc = repmat(ar_interp_coh_grid, [it_w_perc_n, 1]);
%% Generate 1st Stage Choices: Interpolation Cash-on-hand Interpolation Grid
% previously, our ar_w was the first stage choice grid, the grid was the
% same for all coh levels. Now, for each coh level, there is a different
% ar_w. ar_interp_coh_grid is (1 by ar_interp_coh_grid) and ar_w_perc is (
% 1 by it_w_perc_n). Conditional on z, each choice matrix is (it_w_perc_n
% by ar_interp_coh_grid). Here we are pre-computing the choice matrix. This
% could be a large matrix if the choice grid is large. This is the matrix
% of aggregate savings choices
%
if (fl_min_mt_coh < 0)
% borrowing bound is below zero
mt_w_by_interp_coh_interp_grid = ((ar_interp_coh_grid-fl_min_mt_coh)'*ar_w_perc)' + fl_min_mt_coh;
else
% savings only
mt_w_by_interp_coh_interp_grid = ((ar_interp_coh_grid)'*ar_w_perc)';
end
%% Generate Interpolation Consumption Grid
% We also interpolate over consumption to speed the program up. We only
% solve for u(c) at this grid for the iwkz problmes, and then interpolate
% other c values.
fl_c_max = max(max(mt_coh_wkb_full)) - fl_b_bd;
it_interp_c_grid_n = (fl_c_max-fl_c_min)/(it_c_interp_grid_gap);
ar_interp_c_grid = linspace(fl_c_min, fl_c_max, it_interp_c_grid_n);
%% Initialize armt_map to store, state, choice, shock matrixes
armt_map = containers.Map('KeyType','char', 'ValueType','any');
armtdesc_map = containers.Map('KeyType','char', 'ValueType','any');
%% Store armt_map (1): 2nd Stage Problem Arrays and Matrixes
armt_map('ar_ak_perc') = ar_ak_perc;
armt_map('mt_k') = mt_k;
armt_map('ar_a_meshk') = ar_a_meshk;
armt_map('ar_k_mesha') = ar_k_mesha;
armt_map('it_ameshk_n') = length(ar_a_meshk);
armt_map('mt_coh_wkb') = mt_coh_wkb_full;
armt_map('mt_z_mesh_coh_wkb') = mt_z_mesh_coh_wkb;
%% Store armt_map (2): First Stage Aggregate Savings
% w = k' + b', w is aggregate Savings%
%
% # *ar_w_perc* 1st stage, percentage w choice given coh, at each coh
% level the number of choice points is the same for this problem with
% percentage grid points.
% # *ar_w_level* 2nd stage, level of w over which we solve the optimal
% percentage k' choices. Need to generate interpolant based on this so that
% we know optimal k* given ar_w_perc(coh) in the 1st stage
% # *mt_w_by_interp_coh_interp_grid* 1st stage, generate w(coh, percent),
% meaning the level of w given coh and the percentage grid of ar_w_perc.
% Mesh this with the coh grid, Rows here correspond to percentage of w
% choices, columns correspond to cash-on-hand. The columns of cash-on-hand
% is determined by ar_interp_coh_grid, because we solve the 1st stage
% problem at that coh grid.
%
armt_map('ar_w_perc') = ar_w_perc;
armt_map('ar_w_level') = ar_w_level;
armt_map('mt_w_by_interp_coh_interp_grid') = mt_w_by_interp_coh_interp_grid;
armt_map('mt_interp_coh_grid_mesh_w_perc') = mt_interp_coh_grid_mesh_w_perc;
%% Store armt_map (3): First Stage Consumption and Cash-on-Hand Grids
armt_map('ar_interp_c_grid') = ar_interp_c_grid;
armt_map('ar_interp_coh_grid') = ar_interp_coh_grid;
armt_map('mt_interp_coh_grid_mesh_z') = mt_interp_coh_grid_mesh_z;
armt_map('mt_z_mesh_coh_interp_grid') = mt_z_mesh_coh_interp_grid;
%% Store armt_map (4): Shock Grids
armt_map('mt_z_trans') = mt_z_trans;
armt_map('ar_stationary') = ar_stationary;
armt_map('ar_z') = ar_z;
%% Store Function Map
func_map = containers.Map('KeyType','char', 'ValueType','any');
func_map('f_util_log') = f_util_log;
func_map('f_util_crra') = f_util_crra;
func_map('f_util_standin') = f_util_standin;
func_map('f_prod') = f_prod;
func_map('f_inc') = f_inc;
func_map('f_coh') = f_coh;
func_map('f_cons') = f_cons;
%% Graph
if (bl_graph_funcgrids)
%% Graph 1: a and k choice grid graphs
% compare the figure here to the same figure in
% <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_get_funcgrid.html
% ffs_akz_get_funcgrid>. there the grid points are on an even grid,
% half of the grid points have NA. for the grid here, the grid points
% get denser as we get closer to low w = k'+b' levels. This is what is
% different visually about percentage points based choice grid for the
% 2nd stage problem.
figure('PaperPosition', [0 0 7 4]);
hold on;
chart = plot(mt_a, mt_k, 'blue');
clr = jet(numel(chart));
for m = 1:numel(chart)
set(chart(m),'Color',clr(m,:))
end
% if (length(ar_w_level_full) <= 100)
scatter(ar_a_meshk, ar_k_mesha, 3, 'filled', ...
'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b');
% end
if (length(ar_w_level_full) <= 100)
gf_invalid_scatter = scatter(ar_a_meshk_full(ar_bl_wkb_invalid),...
ar_k_mesha_full(ar_bl_wkb_invalid),...
20, 'O', 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'black');
end
xline(0);
yline(0);
title('Risky K Percentage Grids Given w=k+a (2nd Stage)')
ylabel('Capital Choice (mt\_k)')
xlabel({'Borrowing (<0) or Saving (>0) (mt\_a)'...
'Each Diagonal Line a Different w=k+a level'...
'Percentage for Risky K along Each Diagonal'})
legend2plot = fliplr([1 round(numel(chart)/3) round((2*numel(chart))/4) numel(chart)]);
legendCell = cellstr(num2str(ar_w_level', 'k+a=%3.2f'));
if (length(ar_w_level_full) <= 100)
chart(length(chart)+1) = gf_invalid_scatter;
legendCell{length(legendCell) + 1} = 'Invalid: COH(a,b,z)<bar(b) some z';
legend(chart([legend2plot length(legendCell)]), legendCell([legend2plot length(legendCell)]), 'Location', 'northeast');
else
legend(chart([legend2plot]), legendCell([legend2plot]), 'Location', 'northeast');
end
grid on;
%% Graph 2: coh by shock
% compare the figure here to the same figure in
% <https://fanwangecon.github.io/CodeDynaAsset/m_akz/paramfunc/html/ffs_akz_get_funcgrid.html
% ffs_akz_get_funcgrid>. there the grid points are on an even grid.
% Visually, one could see that the blue/red line segments here are
% always the same length, but in the ffs_akz_get_funcgrid figure, they
% are increasingly longer as we move towards the right. They are even
% because the number of percentage points available is constant
% regardless of w = k' + b' levels. But previously, the number of grid
% points available is increasing as w increases since choice grid is
% based on levels.
%
figure('PaperPosition', [0 0 7 4]);
chart = plot(0:1:(size(mt_coh_wkb_full,1)-1), mt_coh_wkb_full);
clr = jet(numel(chart));
for m = 1:numel(chart)
set(chart(m),'Color',clr(m,:))
end
% zero lines
xline(0);
yline(0);
% invalid points separating lines
yline_borrbound = yline(fl_b_bd);
yline_borrbound.HandleVisibility = 'on';
yline_borrbound.LineStyle = '--';
yline_borrbound.Color = 'blue';
yline_borrbound.LineWidth = 2.5;
title('Cash-on-Hand given w(k+b),k,z');
ylabel('Cash-on-Hand (mt\_coh\_wkb\_full)');
xlabel({'Index of Cash-on-Hand Discrete Point (0:1:(size(mt\_coh\_wkb\_full,1)-1))'...
'Each Segment is a w=k+b; within segment increasing k'...
'For each w and z, coh maximizing k is different'});
legend2plot = fliplr([1 round(numel(chart)/3) round((2*numel(chart))/4) numel(chart)]);
legendCell = cellstr(num2str(ar_z', 'shock=%3.2f'));
legendCell{length(legendCell) + 1} = 'borrow-constraint';
chart(length(chart)+1) = yline_borrbound;
legend(chart([legend2plot length(legendCell)]), legendCell([legend2plot length(legendCell)]), 'Location', 'southeast');
grid on;
%% Graph 3: 1st State Aggregate Savings Choices by COH interpolation grids
figure('PaperPosition', [0 0 7 4]);
hold on;
chart = plot(ar_interp_coh_grid, mt_w_by_interp_coh_interp_grid');
clr = jet(numel(chart));
for m = 1:numel(chart)
set(chart(m),'Color',clr(m,:))
end
if (length(ar_interp_coh_grid) <= 100)
[~, mt_interp_coh_grid_mesh_w_perc] = ndgrid(ar_w_perc, ar_interp_coh_grid);
scatter(mt_interp_coh_grid_mesh_w_perc(:), mt_w_by_interp_coh_interp_grid(:), 3, 'filled', ...
'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b');
end
% invalid points separating lines
yline_borrbound = yline(fl_w_level_min_valid);
yline_borrbound.HandleVisibility = 'on';
yline_borrbound.LineStyle = '--';
yline_borrbound.Color = 'red';
yline_borrbound.LineWidth = 2.5;
xline0 = xline(0);
xline0.HandleVisibility = 'off';
yline0 = yline(0);
yline0.HandleVisibility = 'off';
title({'Aggregate Savings Percentage Grids (1st Stage)' ...
'y=mt\_w\_by\_interp\_coh\_interp\_grid, and, y=ar\_interp\_coh\_grid'});
ylabel('1st Stage Aggregate Savings Choices');
xlabel({'Cash-on-Hand Levels (Interpolation Points)'...
'w(coh)>min-agg-save, coh(k(w),w-k)>=bar(b)'});
legend2plot = fliplr([1 round(numel(chart)/3) round((2*numel(chart))/4) numel(chart)]);
legendCell = cellstr(num2str(ar_w_perc', 'ar w perc=%3.2f'));
legendCell{length(legendCell) + 1} = 'min-agg-save';
chart(length(chart)+1) = yline_borrbound;
legend(chart([legend2plot length(legendCell)]), legendCell([legend2plot length(legendCell)]), 'Location', 'northwest');
grid on;
end
%% Graph Details, Generally do Not Run
if (bl_graph_funcgrids_detail)
%% Graph 1: 2nd stage coh reached by k' b' choices by index
figure('PaperPosition', [0 0 7 4]);
ar_coh_kpzgrid_unique = unique(sort(mt_coh_wkb_full(:)));
scatter(1:length(ar_coh_kpzgrid_unique), ar_coh_kpzgrid_unique);
xline(0);
yline(0);
title('Cash-on-Hand given w(k+b),k,z');
ylabel('Cash-on-Hand (y=ar\_coh\_kpzgrid\_unique)');
xlabel({'Index of Cash-on-Hand Discrete Point' 'x = 1:length(ar\_coh\_kpzgrid\_unique)'});
grid on;
%% Graph 2: 2nd stage coh reached by k' b' choices by coh
figure('PaperPosition', [0 0 7 4]);
ar_coh_kpzgrid_unique = unique(sort(mt_coh_wkb_full(:)));
scatter(ar_coh_kpzgrid_unique, ar_coh_kpzgrid_unique, '.');
xline(0);
yline(0);
title('Cash-on-Hand given w(k+b),k,z; See Clearly Sparsity Density of Grid across Z');
ylabel('Cash-on-Hand (y = ar\_coh\_kpzgrid\_unique)');
xlabel({'Cash-on-Hand' 'x = ar\_coh\_kpzgrid\_unique'});
grid on;
end
%% Display
if (bl_display_funcgrids)
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('ar_z');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp(size(ar_z));
disp(ar_z);
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('ar_w_level_full');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp(size(ar_w_level_full));
disp(ar_w_level_full);
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('mt_w_by_interp_coh_interp_grid');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp(size(mt_w_by_interp_coh_interp_grid));
disp(head(array2table(mt_w_by_interp_coh_interp_grid), 10));
disp(tail(array2table(mt_w_by_interp_coh_interp_grid), 10));
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('mt_z_trans');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp(size(mt_z_trans));
disp(head(array2table(mt_z_trans), 10));
disp(tail(array2table(mt_z_trans), 10));
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('ar_interp_coh_grid');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
summary(array2table(ar_interp_coh_grid'));
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('ar_interp_c_grid');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
summary(array2table(ar_interp_c_grid'));
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('mt_interp_coh_grid_mesh_z');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp(size(mt_interp_coh_grid_mesh_z));
disp(head(array2table(mt_interp_coh_grid_mesh_z), 10));
disp(tail(array2table(mt_interp_coh_grid_mesh_z), 10));
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('mt_a');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp(size(mt_a));
disp(head(array2table(mt_a), 10));
disp(tail(array2table(mt_a), 10));
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('ar_a_meshk');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
summary(array2table(ar_a_meshk));
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('mt_k');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp(size(mt_k));
disp(head(array2table(mt_k), 10));
disp(tail(array2table(mt_k), 10));
disp('----------------------------------------');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
disp('ar_k_mesha');
disp('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx');
summary(array2table(ar_k_mesha));
param_map_keys = keys(func_map);
param_map_vals = values(func_map);
for i = 1:length(func_map)
st_display = strjoin(['pos =' num2str(i) '; key =' string(param_map_keys{i}) '; val =' func2str(param_map_vals{i})]);
disp(st_display);
end
end
%% Display
if (bl_display_funcgrids)
fft_container_map_display(armt_map, it_display_summmat_rowmax, it_display_summmat_colmax);
fft_container_map_display(func_map, it_display_summmat_rowmax, it_display_summmat_colmax);
end
end