-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_longbench.py
377 lines (276 loc) · 16.9 KB
/
run_longbench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import json
import random
import argparse
import numpy as np
from tqdm import tqdm
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
datasets = [
'narrativeqa',
'qasper',
'multifieldqa_en',
'hotpotqa',
'2wikimqa',
'musique',
'comprehension_and_reasoning',
'computation',
'multiple_information_retrieval',
'timeline_reorder'
]
dataset2maxlen = {
"narrativeqa": 128,
"qasper": 128,
"multifieldqa_en": 64,
"multifieldqa_zh": 64,
"hotpotqa": 32,
"2wikimqa": 32,
"musique": 32,
"dureader": 128,
"gov_report": 512,
"qmsum": 512,
"multi_news": 512,
"vcsum": 512,
"trec": 64,
"triviaqa": 32,
"samsum": 128,
"lsht": 64,
"passage_count": 32,
"passage_retrieval_en": 32,
"passage_retrieval_zh": 32,
"lcc": 64,
"repobench-p": 64,
'comprehension_and_reasoning': 64,
'multiple_information_retrieval': 64,
'timeline_reorder': 32,
'computation': 32,
}
model2prompt = {
"narrativeqa": "You are given a story, which can be either a novel or a movie script, and a question. Answer the question asconcisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nStory: {context}\n\nNow, answer the question based on the story asconcisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nQuestion: {input}\n\nAnswer:",
"qasper": "You are given a scientific article and a question. Answer the question as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write \"unanswerable\". If the question is a yes/no question, answer \"yes\", \"no\", or \"unanswerable\". Do not provide any explanation.\n\nArticle: {context}\n\n Answer the question based on the above article as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write \"unanswerable\". If the question is a yes/no question, answer \"yes\", \"no\", or \"unanswerable\". Do not provide any explanation.\n\nQuestion: {input}\n\nAnswer:",
"multifieldqa_en": "Read the following text and answer briefly.\n\n{context}\n\nNow, answer the following question based on the above text, only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:",
"multifieldqa_zh": "阅读以下文字并用中文简短回答:\n\n{context}\n\n现在请基于上面的文章回答下面的问题,只告诉我答案,不要输出任何其他字词。\n\n问题:{input}\n回答:",
"hotpotqa": "Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:",
"2wikimqa": "Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:",
"musique": "Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:",
'comprehension_and_reasoning': 'Please answer the question based on the long texts below. \n{context}\nQuestion: {input}\nAnswer:',
'computation': 'Please answer the question based on the long texts below. \n{context}\nQuestion: {input}\nAnswer:',
'multiple_information_retrieval': 'Please answer the question based on the long texts below. \n{context}\nQuestion: {input}\nAnswer:',
'timeline_reorder': 'Please answer the question based on the long texts below. \n{context}\nQuestion: {input}\nAnswer:',
"dureader": "请基于给定的文章回答下述问题。\n\n文章:{context}\n\n请基于上述文章回答下面的问题。\n\n问题:{input}\n回答:",
"gov_report": "You are given a report by a government agency. Write a one-page summary of the report.\n\nReport:\n{context}\n\nNow, write a one-page summary of the report.\n\nSummary:",
"qmsum": "You are given a meeting transcript and a query containing a question or instruction. Answer the query in one or more sentences.\n\nTranscript:\n{context}\n\nNow, answer the query based on the above meeting transcript in one or more sentences.\n\nQuery: {input}\nAnswer:",
"multi_news": "You are given several news passages. Write a one-page summary of all news. \n\nNews:\n{context}\n\nNow, write a one-page summary of all the news.\n\nSummary:",
"vcsum": "下面有一段会议记录,请你阅读后,写一段总结,总结会议的内容。\n会议记录:\n{context}\n\n会议总结:",
"trec": "Please determine the type of the question below. Here are some examples of questions.\n\n{context}\n{input}",
"triviaqa": "Answer the question based on the given passage. Only give me the answer and do not output any other words. The following are some examples.\n\n{context}\n\n{input}",
"samsum": "Summarize the dialogue into a few short sentences. The following are some examples.\n\n{context}\n\n{input}",
"lsht": "请判断给定新闻的类别,下面是一些例子。\n\n{context}\n{input}",
"passage_count": "There are some paragraphs below sourced from Wikipedia. Some of them may be duplicates. Please carefully read these paragraphs and determine how many unique paragraphs there are after removing duplicates. In other words, how many non-repeating paragraphs are there in total?\n\n{context}\n\nPlease enter the final count of unique paragraphs after removing duplicates. The output format should only contain the number, such as 1, 2, 3, and so on.\n\nThe final answer is: ",
"passage_retrieval_en": "Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is from.\n\n{context}\n\nThe following is an abstract.\n\n{input}\n\nPlease enter the number of the paragraph that the abstract is from. The answer format must be like \"Paragraph 1\", \"Paragraph 2\", etc.\n\nThe answer is: ",
"passage_retrieval_zh": "以下是若干段落文字,以及其中一个段落的摘要。请确定给定的摘要出自哪一段。\n\n{context}\n\n下面是一个摘要\n\n{input}\n\n请输入摘要所属段落的编号。答案格式必须是\"段落1\",\"段落2\"等格式\n\n答案是:",
"lcc": "Please complete the code given below. \n{context}Next line of code:\n",
"repobench-p": "Please complete the code given below. \n{context}{input}Next line of code:\n"
}
model2maxlen = {
"llama2": 3950,
"llama-2": 3950,
"llama3": 7950,
"llama-3": 7950,
"mistral": 31500,
}
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed_all(seed)
def build_chat(prompt):
prompt = f"[INST] {prompt} [/INST]"
return prompt
# def build_prompt(prompt, dataset):
# SYSTEM_PROMPT = model2prompt[dataset]
# prompt = f"<<SYS>>\n {SYSTEM_PROMPT} \n<</SYS>>\n\n{prompt}"
# return prompt
def main(args):
print("Loading data...")
test_data = []
prompts = []
inputs = []
contexts = []
answerss = []
lengths = []
datasets = []
languages = []
all_classess = []
_ids = []
input_max_len = 0
model_path = args.model_path.lower()
for key in model2maxlen:
if key in model_path:
model_max_len = model2maxlen[key]
output_max_len = dataset2maxlen[args.dataset]
with open(args.data_file) as fp:
for line in fp:
example = json.loads(line)
length = example["length"]
if length > input_max_len: input_max_len = length
template = model2prompt[args.dataset]
prompt = template.format(**example)
if "llama2" in args.model_path.lower():
prompt = build_chat(prompt)
example["prompt"] = prompt
test_data.append(example)
print(f"Max Length is {input_max_len}")
if args.max_num_examples and len(test_data) > args.max_num_examples:
if args.sample_method == "random":
test_data = random.sample(test_data, args.max_num_examples)
elif args.sample_method == "topk":
test_data = test_data[:args.max_num_examples]
for example in test_data:
prompts.append(example["prompt"])
inputs.append(example["input"])
contexts.append(example["context"])
answerss.append(example["answers"])
lengths.append(example["length"])
datasets.append(example["dataset"])
languages.append(example["language"])
all_classess.append(example["all_classes"])
_ids.append(example["_id"])
print("Finish loading model and tokenizer")
model_name = model_path.split("/")[-1]
os.makedirs(os.path.join(args.save_dir, f"{model_name}_{args.max_capacity_prompts}", args.dataset), exist_ok=True)
fout = open(os.path.join(args.save_dir, f"{model_name}_{args.max_capacity_prompts}", args.dataset, f"{args.method}.json"), "w")
for i in tqdm(range(0, len(prompts), args.eval_batch_size)):
batch_prompts = prompts[i:i+args.eval_batch_size]
batch_inputs = inputs[i:i+args.eval_batch_size]
batch_contexts = contexts[i:i+args.eval_batch_size]
batch_answerss = answerss[i:i+args.eval_batch_size]
batch_lengths = lengths[i:i+args.eval_batch_size]
batch_datasets = datasets[i:i+args.eval_batch_size]
batch_languages = languages[i:i+args.eval_batch_size]
batch_all_classess = all_classess[i:i+args.eval_batch_size]
batch__ids = _ids[i:i+args.eval_batch_size]
tokenized_prompts = tokenizer(batch_prompts, padding="longest", return_tensors="pt", add_special_tokens=True).to('cuda')
batch_input_ids = tokenized_prompts.input_ids
attention_mask = tokenized_prompts.attention_mask
if len(batch_input_ids[0]) > model_max_len:
half = int(model_max_len/2)
prompt = tokenizer.decode(batch_input_ids[0][:half], skip_special_tokens=True)+tokenizer.decode(batch_input_ids[0][-half:], skip_special_tokens=True)
tokenized_prompts = tokenizer(prompt, padding="longest", return_tensors="pt", add_special_tokens=True).to('cuda')
batch_input_ids = tokenized_prompts.input_ids
attention_mask = tokenized_prompts.attention_mask
model.model.config.window_size = 8
model.model.config.base_capacity = args.max_capacity_prompts
model.model.config.head_choice = args.head_choice
model.model.config.beta = args.beta
model.model.config.temp = args.temp
model.model.config.kernel_size = 7
model.model.config.skip = 0
model.model.config.normalize = True
model.model.config.pooling = "maxpool"
model.model.config.floor = 0.2
context_length = batch_input_ids.shape[-1]
output = model.generate(
**tokenized_prompts,
output_attentions = args.output_attentions,
max_new_tokens=output_max_len,
num_beams=1,
do_sample=False,
temperature=1.0,
min_length=context_length+1,
eos_token_id=[tokenizer.eos_token_id]
)
batch_outputs =tokenizer.batch_decode([output[0][context_length:]], skip_special_tokens=True)
batch_generations = batch_outputs
torch.cuda.empty_cache()
for j in range(args.eval_batch_size):
example = {}
example["prompt"] = batch_prompts[j]
example["input"] = batch_inputs[j]
example["context"] = batch_contexts[j]
example["answers"] = batch_answerss[j]
example["pred"] = batch_generations[j]
example["length"] = batch_lengths[j]
example["dataset"] = batch_datasets[j]
example["language"] = batch_languages[j]
example["all_classes"] = batch_all_classess[j]
example["_id"] = batch__ids[j]
fout.write(json.dumps(example) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=42, help="")
parser.add_argument("--base_dir", type=str, default="")
parser.add_argument("--dataset", type=str, default="")
parser.add_argument("--data_file", type=str, default="")
parser.add_argument("--save_dir", type=str, default="")
parser.add_argument("--model_name", type=str, default=None, help="if specified, we will load the model to generate the predictions.")
parser.add_argument("--model_path", type=str, default=None, help="if specified, we will load the model to generate the predictions.")
parser.add_argument("--use_fast_tokenizer", type=bool, default=True, help="")
parser.add_argument("--output_attentions", type=bool, default=False, help="")
parser.add_argument("--max_num_examples", type=int, default=None, help="maximum number of examples to evaluate per task.")
parser.add_argument("--sample_method", type=str, default="topk", choices=["random", "topk"], help="how to sample the examples.")
parser.add_argument("--max_new_tokens", type=int, default=None, help="")
parser.add_argument("--eval_batch_size", type=int, default=1, help="batch size for evaluation.")
parser.add_argument("--use_cache", type=bool, default=True, help="")
parser.add_argument("--attn_implementation", type=str, default="flash_attention_2", choices=["flash_attention_2", "sdpa", "eager"])
parser.add_argument("--method", type=str, default=None)
parser.add_argument("--max_capacity_prompts", type=int, default=512, help="")
parser.add_argument("--head_choice", type=str, default='random', choices=['random', 'copy', 'reason'])
parser.add_argument('--beta', type=float, default=1.5)
parser.add_argument('--temp', type=float, default=1.0)
parser.add_argument("--max_capacity_prompts_ratio", type=float, default=-1, help="")
parser.add_argument("--steps", type=int, default=-1, help="maximum number of examples to evaluate per task.")
parser.add_argument(
"--use_chat_format",
action="store_true",
help="If given, we will use the chat format for the prompts."
)
parser.add_argument(
"--chat_formatting_function",
type=str,
default="eval.templates.create_prompt_with_tulu_chat_format",
help="The function to use to create the chat format. This function will be dynamically imported. Please see examples in `eval/templates.py`."
)
args = parser.parse_args()
set_seed(args.seed)
if args.model_path == 'mistralai/Mistral-7B-Instruct-v0.2':
tokenizer = AutoTokenizer.from_pretrained(
args.model_path,
use_fast=args.use_fast_tokenizer,
padding_side="left",
revision='dca6e4b60aca009ed25ffa70c9bb65e46960a573'
)
else:
tokenizer = AutoTokenizer.from_pretrained(
args.model_path,
use_fast=args.use_fast_tokenizer,
padding_side="left"
)
if args.method.lower() != 'fullkv':
from headkv.monkeypatch import replace_llama, replace_mistral
replace_llama(args.method)
replace_mistral(args.method)
model = AutoModelForCausalLM.from_pretrained(
args.model_path,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
use_cache=args.use_cache,
attn_implementation=args.attn_implementation
)
tokenizer.padding_side = "left"
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
model.eval()
save_dir = args.save_dir
max_capacity_prompts = args.max_capacity_prompts
for idx, dataset in enumerate(datasets):
print(f"Working on max_capacity_prompts {args.max_capacity_prompts} dataset {dataset} - {idx}/{len(datasets)}")
print(f'base capacity: {args.max_capacity_prompts}\thead_choice:{args.head_choice}\tbeta:{args.beta}\ttemp:{args.temp}')
args.dataset = dataset
args.data_file = f"./data/LongBench/{args.dataset}.jsonl"
main(args)