-
Notifications
You must be signed in to change notification settings - Fork 237
/
Copy pathUnification.fst
480 lines (401 loc) · 16.7 KB
/
Unification.fst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
(*
Copyright 2008-2015 Nikhil Swamy and Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(*
A verified implementation of first-order unification.
The termination argument is based on Ana Bove's Licentiate Thesis:
Programming in Martin-Löf Type Theory Unification - A non-trivial Example
Department of Computer Science, Chalmers University of Technology
1999
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532
But, is done here directly with lex orderings.
*)
module Unification
open FStar.List.Tot
(* First, a missing lemma from the list library *)
let op_At = append
val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma
(ensures ( (l@(x::m)) = ((l@[x])@m)))
let rec lemma_shift_append #a l x m = match l with
| [] -> ()
| hd::tl -> lemma_shift_append tl x m
(* A term language with variables V and pairs F *)
type term =
| V : i:nat -> term
| F : t1:term -> t2:term -> term
(* Finite, ordered sets of variables *)
val nat_order : OrdSet.cmp nat
let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y
type varset = OrdSet.ordset nat nat_order
val empty_vars : varset
let empty_vars = OrdSet.empty
(* Collecting the variables in a term *)
val vars : term -> Tot varset
let rec vars = function
| V i -> OrdSet.singleton i
| F t1 t2 -> OrdSet.union (vars t1) (vars t2)
(* Equations among pairs of terms, to be solved *)
type eqns = list (term & term)
(* All the variables in a set of equations *)
val evars : eqns -> Tot varset
let rec evars = function
| [] -> empty_vars
| (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl)
(* Counting variables; used in the termination metric *)
val n_evars : eqns -> Tot nat
let n_evars eqns = OrdSet.size (evars eqns)
(* Counting the number of F-applications; also for the termination metric *)
val funs : term -> Tot nat
let rec funs = function
| V _ -> 0
| F t1 t2 -> 1 + funs t1 + funs t2
val efuns : eqns -> Tot nat
let rec efuns = function
| [] -> 0
| (x,y)::tl -> funs x + funs y + efuns tl
(* Counting the number of equations with variables on the the RHS;
// also for the termination metric *)
val n_flex_rhs : eqns -> Tot nat
let rec n_flex_rhs = function
| [] -> 0
| (V _, V _)::tl
| (_ , V _)::tl -> 1 + n_flex_rhs tl
| _::tl -> n_flex_rhs tl
(* A point substitution *)
type subst = (nat & term)
(* Composition of point substitutions *)
type lsubst = list subst
val subst_term : subst -> term -> Tot term
let rec subst_term s t = match t with
| V x -> if x = fst s then snd s else V x
| F t1 t2 -> F (subst_term s t1) (subst_term s t2)
val lsubst_term : list subst -> term -> Tot term
let lsubst_term = fold_right subst_term
let occurs x t = OrdSet.mem x (vars t)
let ok s = not (occurs (fst s) (snd s))
val lsubst_eqns: list subst -> eqns -> Tot eqns
let rec lsubst_eqns l = function
| [] -> []
| (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl
val lemma_lsubst_eqns_nil: e:eqns -> Lemma
(requires True)
(ensures (lsubst_eqns [] e = e))
[SMTPat (lsubst_eqns [] e)]
let rec lemma_lsubst_eqns_nil = function
| [] -> ()
| _::tl -> lemma_lsubst_eqns_nil tl
(* A couple of lemmas about variable counts.
// Both of these rely on extensional equality of sets.
// So we need to use eq_lemma explicitly *)
val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma
(ensures (evars ((x, y)::tl) = evars ((y, x)::tl)))
let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl))
val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma
(ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl)))
let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl))
(* Eliminating a variable reduces the variable count *)
val lemma_vars_decrease: s:subst -> t':term -> Lemma
(requires (ok s))
(ensures (OrdSet.subset (vars (subst_term s t'))
(OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t')))))
let rec lemma_vars_decrease s t' = match t' with
| V x -> ()
| F t1 t2 ->
lemma_vars_decrease s t1;
lemma_vars_decrease s t2
(* Lifting the prior lemma to equations *)
val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma
(requires (ok (x, t)))
(ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e))
(OrdSet.remove x (evars ((V x, t)::e)))))
let rec vars_decrease_eqns x t e = match e with
| [] -> ()
| hd::tl -> lemma_vars_decrease (x,t) (fst hd);
lemma_vars_decrease (x,t) (snd hd);
vars_decrease_eqns x t tl
val unify : e:eqns -> list subst -> Tot (option (list subst))
(decreases %[n_evars e; efuns e; n_flex_rhs e])
let rec unify e s = match e with
| [] -> Some s
| (V x, t)::tl ->
if V? t && V?.i t = x
then unify tl s //t is a flex-rhs
else if occurs x t
then None
else (vars_decrease_eqns x t tl;
unify (lsubst_eqns [x,t] tl) ((x,t)::s))
| (t, V x)::tl -> //flex-rhs
evars_permute_hd t (V x) tl;
unify ((V x, t)::tl) s
| (F t1 t2, F t1' t2')::tl -> //efuns reduces
evars_unfun t1 t2 t1' t2' tl;
unify ((t1, t1')::(t2, t2')::tl) s
(* All equations are solved when each one is just reflexive *)
val solved : eqns -> Tot bool
let rec solved = function
| [] -> true
| (x,y)::tl -> x=y && solved tl
val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma
(requires (True))
(ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2)))
[SMTPat (lsubst_term l (F t1 t2))]
let rec lsubst_distributes_over_F l t1 t2 = match l with
| [] -> ()
| hd::tl -> lsubst_distributes_over_F tl t1 t2
let extend_subst s l = s::l
let extend_lsubst l l' = l @ l'
val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma
(requires True)
(ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e)))
let rec lemma_extend_lsubst_distributes_term l l' e = match l with
| [] -> ()
| hd::tl -> lemma_extend_lsubst_distributes_term tl l' e
val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma
(requires True)
(ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e)))
[SMTPat (lsubst_eqns (extend_lsubst l l') e)]
let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with
| [] -> ()
| (t1, t2)::tl ->
lemma_extend_lsubst_distributes_term l l' t1;
lemma_extend_lsubst_distributes_term l l' t2;
lemma_extend_lsubst_distributes_eqns l l' tl
val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma
(requires (not (occurs x y)))
(ensures (subst_term (x,z) y = y))
let rec lemma_subst_id x z y = match y with
| V x' -> ()
| F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2
let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t)
let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t)
val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma
(requires (neutral_l l s))
(ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) =
lsubst_term [s] (lsubst_term l e)))
let rec lemma_lsubst_term_commutes s l e = match e with
| V y -> lemma_subst_id (fst s) (snd s) (snd s)
| F t1 t2 -> lemma_lsubst_term_commutes s l t1;
lemma_lsubst_term_commutes s l t2
val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma
(requires (neutral_l l s))
(ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) =
lsubst_eqns [s] (lsubst_eqns l e)))
let rec lemma_lsubst_eqns_commutes s l = function
| [] -> ()
| (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1;
lemma_lsubst_term_commutes s l t2;
lemma_lsubst_eqns_commutes s l tl
let (++) l1 l2 = extend_lsubst l1 l2
let sub l e = lsubst_eqns l e
let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3)
val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma
(requires (l'' = lpre ++ ([x,y] ++ l)
/\ not (occurs x y)
/\ l `sub` ((V x, y)::tl) = (V x, y)::tl
/\ solved (l'' `sub` ([x, y] `sub` tl))))
(ensures (solved (l'' `sub` ((V x,y)::tl))))
let key_lemma x y tl l lpre l'' =
let xy = [x,y] in
let xyl = xy++l in
let vxy = V x, y in
assert (l'' `sub` (vxy::tl)
== lpre `sub` (xy `sub` (l `sub` (vxy::tl))));
lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl);
assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl)))
== lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))));
assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))
== l'' `sub` (xy `sub` (vxy :: tl)));
lemma_subst_id x y y
val lemma_subst_term_idem: s:subst -> t:term -> Lemma
(requires (ok s))
(ensures (subst_term s (subst_term s t) = subst_term s t))
let rec lemma_subst_term_idem s t = match t with
| V x -> lemma_subst_id (fst s) (snd s) (snd s)
| F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2
val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma
(requires (ok s))
(ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e))
let rec lemma_subst_eqns_idem s = function
| [] -> ()
| (x, y)::tl -> lemma_subst_eqns_idem s tl;
lemma_subst_term_idem s x;
lemma_subst_term_idem s y
val subst_funs_monotone: s:subst -> t:term -> Lemma
(ensures (funs (subst_term s t) >= funs t))
let rec subst_funs_monotone s = function
| V x -> ()
| F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2
val lsubst_funs_monotone: l:list subst -> t:term -> Lemma
(ensures (funs (lsubst_term l t) >= funs t))
let rec lsubst_funs_monotone l t = match l with
| [] -> ()
| hd::tl ->
lsubst_funs_monotone tl t; subst_funs_monotone hd (lsubst_term tl t)
val lemma_occurs_not_solveable_aux: x:nat -> t:term{occurs x t /\ not (V? t)} -> s:list subst -> Lemma
(funs (lsubst_term s t) >= (funs t + funs (lsubst_term s (V x))))
let rec lemma_occurs_not_solveable_aux x t s = match t with
| F t1 t2 ->
if occurs x t1
then let _ = lsubst_funs_monotone s t2 in
match t1 with
| V y -> ()
| _ -> lemma_occurs_not_solveable_aux x t1 s
else if occurs x t2
then let _ = lsubst_funs_monotone s t1 in
match t2 with
| V y -> ()
| _ -> lemma_occurs_not_solveable_aux x t2 s
else ()
type not_solveable s =
forall l. lsubst_term l (fst s) <> lsubst_term l (snd s)
val lemma_occurs_not_solveable: x:nat -> t:term -> Lemma
(requires (occurs x t /\ not (V? t)))
(ensures (not_solveable (V x, t)))
let lemma_occurs_not_solveable x t = FStar.Classical.forall_intro (lemma_occurs_not_solveable_aux x t)
val lemma_subst_idem: l:list subst -> x:nat -> t:term -> t':term -> Lemma
(requires (lsubst_term l (V x) = lsubst_term l t))
(ensures (lsubst_term l (subst_term (x,t) t') = lsubst_term l t'))
let rec lemma_subst_idem l x t t' = match t' with
| V y -> ()
| F t1 t2 -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2
val lemma_subst_eqns: l:list subst -> x:nat -> t:term -> e:eqns -> Lemma
(requires (lsubst_term l (V x) = lsubst_term l t))
(ensures (lsubst_eqns l (lsubst_eqns [x,t] e) = lsubst_eqns l e))
let rec lemma_subst_eqns l x t = function
| [] -> ()
| (t1,t2)::tl ->
lemma_subst_idem l x t t1;
lemma_subst_idem l x t t2;
lemma_subst_eqns l x t tl
type not_solveable_eqns e =
forall l. not (solved (lsubst_eqns l e))
val lemma_not_solveable_cons_aux: x:nat -> t:term -> tl:eqns -> l:list subst -> Lemma
(requires (not_solveable_eqns (lsubst_eqns [x,t] tl)
/\ solved (lsubst_eqns l ((V x,t)::tl))))
(ensures False)
[SMTPat (solved (lsubst_eqns l ((V x,t)::tl)))]
let lemma_not_solveable_cons_aux x t tl l = lemma_subst_eqns l x t tl
val lemma_not_solveable_cons: x:nat -> t:term -> tl:eqns -> Lemma
(requires (not_solveable_eqns (lsubst_eqns [x,t] tl)))
(ensures (not_solveable_eqns ((V x, t)::tl)))
let lemma_not_solveable_cons x t tl = ()
val unify_correct_aux: l:list subst -> e:eqns -> Pure (list subst)
(requires (b2t (lsubst_eqns l e = e)))
(ensures (fun m ->
match unify e l with
| None -> not_solveable_eqns e
| Some l' ->
l' = (m @ l)
/\ solved (lsubst_eqns l' e)))
(decreases %[n_evars e; efuns e; n_flex_rhs e])
#set-options "--z3rlimit 100"
let rec unify_correct_aux l = function
| [] -> []
| hd::tl ->
begin match hd with
| (V x, y) ->
if V? y && V?.i y=x
then unify_correct_aux l tl
else if occurs x y
then (lemma_occurs_not_solveable x y; [])
else begin
let s = (x,y) in
let l' = extend_subst s l in
vars_decrease_eqns x y tl;
let tl' = lsubst_eqns [s] tl in
lemma_extend_lsubst_distributes_eqns [s] l tl;
assert (lsubst_eqns l' tl' = lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] tl)));
lemma_lsubst_eqns_commutes s l tl;
lemma_subst_eqns_idem s tl;
let lpre = unify_correct_aux l' tl' in
begin match unify tl' l' with
| None -> lemma_not_solveable_cons x y tl; []
| Some l'' ->
key_lemma x y tl l lpre l'';
lemma_shift_append lpre s l;
lpre@[s]
end
end
| (y, V x) ->
evars_permute_hd y (V x) tl;
unify_correct_aux l ((V x, y)::tl)
| F t1 t2, F s1 s2 ->
evars_unfun t1 t2 s1 s2 tl;
unify_correct_aux l ((t1, s1)::(t2, s2)::tl)
end
val unify_eqns : e:eqns -> Tot (option lsubst)
let unify_eqns e = unify e []
val unify_eqns_correct: e:eqns -> Lemma
(requires True)
(ensures (if None? (unify_eqns e)
then not_solveable_eqns e
else solved (lsubst_eqns (Some?.v (unify_eqns e)) e)))
let unify_eqns_correct e =
let _ = unify_correct_aux [] e in ()
// l = hd::tl
// s = x, t
// ------------------------------------------------------
// subst_term s (lsubst_term (subst_lsubst s l) t)
// = {def}
// subst_term s (subst_term (subst_subst s hd) (lsubst_term (subst_lsubst s tl) t))
// = {lemma_cancel_subst_subst s hd ...}
// subst_term s (subst_term hd (lsubst_term (subst_lsubst s tl) t))
// = {subst_term_commutes} (ok s; subst_term hd (V x) = (V x); subst_term hd t = t)
// subst_term s (subst_term hd (subst_term s (lsubst_term (subst_lsubst s tl) t)))
// = {IH}
// subst_term s (subst_term hd (subst_term s (lsubst_term tl t)))
// = {subst_term_commutes} (ok s; subst_term hd (V x) = (V x); subst_term hd t = t)
// subst_term s (subst_term hd (lsubst_term tl t))
// = {def}
// subst_term s (lsubst_term l tl)
// val subst_subst : subst -> subst -> Tot subst
// let subst_subst s1 (x, t) = (x, subst_term s1 t)
// val subst_lsubst: subst -> list subst -> Tot (list subst)
// let subst_lsubst s1 s2 = map (subst_subst s1) s2
// let lsubst_lsubst = fold_right subst_lsubst
// val lemma_cancel_subst_subst: s1:subst -> s2:subst -> t:term -> Lemma
// (requires (ok s1))
// (ensures (subst_term s1 (subst_term (subst_subst s1 s2) t) =
// subst_term s1 (subst_term s2 t)))
// let rec lemma_cancel_subst_subst s1 s2 t = match t with
// | V x ->
// if x = fst s2
// then begin assert (subst_term (subst_subst s1 s2) t =
// subst_term s1 (subst_term s2 t));
// lemma_subst_term_idem s1 (subst_term s2 t)
// end
// else begin assert (subst_term s2 t = t);
// assert (subst_term (subst_subst s1 s2) t = t)
// end
// | F t1 t2 -> lemma_cancel_subst_subst s1 s2 t1;
// lemma_cancel_subst_subst s1 s2 t2
// val lemma_cancel_subst_lsubst: s:subst -> l:list subst -> t:term -> Lemma
// (requires (neutral_l l s))
// (ensures (subst_term s (lsubst_term (subst_lsubst s l) t) =
// subst_term s (lsubst_term l t)))
// let rec lemma_cancel_subst_lsubst s l t = match l with
// | [] -> ()
// | hd::tl ->
// assert (subst_lsubst s l = subst_subst s hd::subst_lsubst s tl);
// assert (lsubst_term (subst_lsubst s l) t =
// subst_term (subst_subst s hd) (lsubst_term (subst_lsubst s tl) t));
// lemma_cancel_subst_subst s hd (lsubst_term (subst_lsubst s tl) t);
// assert (subst_term s (lsubst_term (subst_lsubst s l) t) =
// subst_term s (subst_term hd (lsubst_term (subst_lsubst s tl) t)));
// lemma_cancel_subst_lsubst s tl t;
// assert (subst_term s (lsubst_term (subst_lsubst s l) t) =
// subst_term s (subst_term hd (subst_term s (lsubst_term tl t))));
// admit()
// assert (subst_term s (lsubst_term (subst_lsubst s tl) t) =
// subst_term s (lsubst_term tl t))
// ;
// admit()