forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdet_r50_drrg_ctw.yml
executable file
·133 lines (126 loc) · 3.25 KB
/
det_r50_drrg_ctw.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 5
save_model_dir: ./output/det_r50_drrg_ctw/
save_epoch_step: 100
# evaluation is run every 1260 iterations
eval_batch_step: [37800, 1260]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained.pdparams
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_drrg/predicts_drrg.txt
Architecture:
model_type: det
algorithm: DRRG
Transform:
Backbone:
name: ResNet_vd
layers: 50
Neck:
name: FPN_UNet
in_channels: [256, 512, 1024, 2048]
out_channels: 32
Head:
name: DRRGHead
in_channels: 32
text_region_thr: 0.3
center_region_thr: 0.4
Loss:
name: DRRGLoss
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: DecayLearningRate
learning_rate: 0.028
epochs: 1200
factor: 0.9
end_lr: 0.0000001
weight_decay: 0.0001
PostProcess:
name: DRRGPostprocess
link_thr: 0.8
Metric:
name: DetFCEMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ctw1500/imgs/
label_file_list:
- ./train_data/ctw1500/imgs/training.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
ignore_orientation: True
- DetLabelEncode: # Class handling label
- ColorJitter:
brightness: 0.12549019607843137
saturation: 0.5
- RandomScaling:
- RandomCropFlip:
crop_ratio: 0.5
- RandomCropPolyInstances:
crop_ratio: 0.8
min_side_ratio: 0.3
- RandomRotatePolyInstances:
rotate_ratio: 0.5
max_angle: 60
pad_with_fixed_color: False
- SquareResizePad:
target_size: 800
pad_ratio: 0.6
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- DRRGTargets:
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'gt_text_mask', 'gt_center_region_mask', 'gt_mask',
'gt_top_height_map', 'gt_bot_height_map', 'gt_sin_map',
'gt_cos_map', 'gt_comp_attribs'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size_per_card: 4
num_workers: 8
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/ctw1500/imgs/
label_file_list:
- ./train_data/ctw1500/imgs/test.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
ignore_orientation: True
- DetLabelEncode: # Class handling label
- DetResizeForTest:
limit_type: 'min'
limit_side_len: 640
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- Pad:
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2