-
Notifications
You must be signed in to change notification settings - Fork 5
/
as1-tms9900.c
636 lines (583 loc) · 12.6 KB
/
as1-tms9900.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
/*
* TMS9995 assembler.
* Assemble one line of input.
*/
#include "as.h"
/* FIXME: we should malloc/realloc this on non 8bit machines */
static uint8_t reltab[1024];
static unsigned int nextrel;
/*
* Set up for the start of each pass
*/
int passbegin(int pass)
{
segment = 1; /* Default to code */
if (pass == 3)
nextrel = 0;
return 1;
}
void doflush(void)
{
}
static void setnextrel(int flag)
{
if (nextrel == 8 * sizeof(reltab))
aerr(TOOMANYJCC);
if (flag)
reltab[nextrel >> 3] |= (1 << (nextrel & 7));
nextrel++;
}
static unsigned int getnextrel(void)
{
unsigned int n = reltab[nextrel >> 3] & (1 << (nextrel & 7));
nextrel++;
return n;
}
/*
* Read in an address
* descriptor, and fill in
* the supplied "ADDR" structure
* with the mode and value.
* Exits directly to "qerr" if
* there is no address field or
* if the syntax is bad.
*/
void getaddr(ADDR *ap)
{
int c;
/* Address descriptors are really simple as the instruction
always explicitly implies the following type */
ap->a_type = 0;
ap->a_flags = 0;
ap->a_sym = NULL;
c = getnb();
if (c == '<')
ap->a_flags |= A_LOW;
else if (c == '>')
ap->a_flags |= A_HIGH;
else
unget(c);
expr1(ap, LOPRI, 0);
}
static void constify(ADDR *ap)
{
if ((ap->a_type & TMMODE) == (TUSER|TMINDIR))
ap->a_type = TUSER;
}
static unsigned int gen4bit(void)
{
ADDR ap;
ap.a_type = 0;
ap.a_flags = 0;
ap.a_sym = NULL;
expr1(&ap, LOPRI, 0);
istuser(&ap);
constify(&ap);
if (ap.a_value < 0 || ap.a_value > 15)
aerr(CONSTANT_RANGE);
return ap.a_value;
}
static int gensigned8(void)
{
ADDR ap;
ap.a_type = 0;
ap.a_flags = 0;
ap.a_sym = NULL;
expr1(&ap, LOPRI, 0);
istuser(&ap);
constify(&ap);
if (ap.a_value < -128 || ap.a_value > 127)
aerr(CONSTANT_RANGE);
return ap.a_value;
}
/* R0 to R15, constants only */
static uint16_t wreg(void)
{
int c, c2;
c = getnb();
if (c != 'r')
aerr(REG_REQUIRED);
/* We cannot use expr here - firstly it can't really be an
expression meaningfully, secondly we don't want to confuse the
trailing '+' syntax */
c = getnb();
if (!isdigit(c))
qerr(SYNTAX_ERROR);
c -= '0';
c2 = getnb();
if (isdigit(c2)) {
c *= 10;
c += c2 - '0';
} else
unget(c2);
if (c > 15)
aerr(REG_RANGE);
return c;
}
/* R0, or 0-15 */
static uint16_t genshift(void)
{
ADDR ap;
int has_r = 0;
int c;
ap.a_type = 0;
ap.a_flags = 0;
ap.a_sym = NULL;
c = getnb();
if (c == 'r')
has_r = 1;
else
unget(c);
expr1(&ap, LOPRI, 0);
istuser(&ap);
constify(&ap);
if (ap.a_value < 0 || ap.a_value > 15)
aerr(CONSTANT_RANGE);
if (ap.a_value && has_r)
aerr(REG_ZEROONLY);
return ap.a_value;
}
/* The following syntaxes are permitted
Rn 0-15
*Rn 0-15
*Rn+ 0-15
@foo
@foo[Rn] 1-15 */
static uint16_t genregaddr(int *immw, ADDR *addr)
{
uint16_t tmp;
int c;
*immw = 0;
c = getnb();
if (c == '@') {
*immw = 1;
getaddr(addr);
c = get();
if (c == '(') {
/* @LABEL(R) */
tmp = wreg();
/* @LABEL(R0) not allowed */
if (tmp == 0)
aerr(REG_NOTZERO);
c = get();
if (c != ')')
qerr(SYNTAX_ERROR);
return 0x20 | tmp;
}
unget(c);
return 0x20;
}
if (c != '*') {
unget(c);
/* Rn */
return wreg();
}
/* *Rn or *Rn+ */
tmp = wreg();
/* We should check for a trailing '+' need to see how that messes
with expression handler though */
c = getnb();
if (c == '+')
tmp |= 0x30;
else {
tmp |= 0x10;
unget(c);
}
return tmp;
}
/*
* A value for a jump instruction. This is an odd case
* JMP n is an offset, JMP @n is an address
*/
void getaddr_jmp(ADDR *ap, int *rel)
{
int c = getnb();
if (c != '@')
unget(c);
getaddr(ap);
if (c != '@') {
istuser(ap);
/* JMP label without @ is nonsense unless its an absolute
value (ie a .equ) */
if (ap->a_sym || ap->a_segment != ABSOLUTE)
qerr(MUST_BE_ABSOLUTE);
*rel = 1;
} else {
*rel = 0;
}
}
/* You can't relative branch between segments */
static int segment_incompatible(ADDR *ap)
{
if (ap->a_segment == segment)
return 0;
return 1;
}
static void outarg(ADDR *a1)
{
constify(a1);
istuser(a1);
outraw(a1);
}
/* This is a bit of an oddity. It's a word machine so technically has no
endianness but we have to pick one. We use BE because that is how 8bit
bus variants of the CPU order bytes */
static void outaw(uint16_t val)
{
if (dot[segment] & 1)
aerr(ALIGNMENT);
outab(val >> 8);
outab(val);
}
/*
* Assemble one line.
* The line in in "ib", the "ip"
* scans along it. The code is written
* right out.
*/
void asmline(void)
{
SYM *sp;
int c;
int opcode;
VALUE value;
int delim;
SYM *sp1;
char id[NCPS];
char id1[NCPS];
ADDR a1;
ADDR a2;
int imm1, imm2;
int disp;
loop:
if ((c=getnb())=='\n' || c==';')
return;
if (isalpha(c) == 0 && c != '_' && c != '.')
qerr(UNEXPECTED_CHR);
getid(id, c);
if ((c=getnb()) == ':') {
sp = lookup(id, uhash, 1);
if (pass == 0) {
if ((sp->s_type&TMMODE) != TNEW
&& (sp->s_type&TMASG) == 0)
sp->s_type |= TMMDF;
sp->s_type &= ~TMMODE;
sp->s_type |= TUSER;
sp->s_value = dot[segment];
sp->s_segment = segment;
} else if (pass !=3) {
/* Don't check for duplicates, we did it already
and we will confuse ourselves with the pass
before. Instead blindly update the values */
sp->s_type &= ~TMMODE;
sp->s_type |= TUSER;
sp->s_value = dot[segment];
sp->s_segment = segment;
} else {
if ((sp->s_type&TMMDF) != 0)
err('m', MULTIPLE_DEFS);
if (sp->s_value != dot[segment])
err('p', PHASE_ERROR);
}
goto loop;
}
/*
* If the first token is an
* id and not an operation code,
* assume that it is the name in front
* of an "equ" assembler directive.
*/
if ((sp=lookup(id, phash, 0)) == NULL) {
getid(id1, c);
if ((sp1=lookup(id1, phash, 0)) == NULL
|| (sp1->s_type&TMMODE) != TEQU) {
err('o', SYNTAX_ERROR);
return;
}
getaddr(&a1);
constify(&a1);
istuser(&a1);
sp = lookup(id, uhash, 1);
if ((sp->s_type&TMMODE) != TNEW
&& (sp->s_type&TMASG) == 0)
err('m', MULTIPLE_DEFS);
sp->s_type &= ~(TMMODE|TPUBLIC);
sp->s_type |= TUSER|TMASG;
sp->s_value = a1.a_value;
sp->s_segment = a1.a_segment;
/* FIXME: review .equ to an external symbol/offset and
what should happen */
goto loop;
}
unget(c);
opcode = sp->s_value;
switch (sp->s_type&TMMODE) {
case TORG:
getaddr(&a1);
constify(&a1);
istuser(&a1);
if (a1.a_segment != ABSOLUTE)
qerr(MUST_BE_ABSOLUTE);
outsegment(ABSOLUTE);
dot[segment] = a1.a_value;
/* Tell the binary generator we've got a new absolute
segment. */
outabsolute(a1.a_value);
break;
case TEXPORT:
getid(id, getnb());
sp = lookup(id, uhash, 1);
sp->s_type |= TPUBLIC;
break;
/* .code etc */
case TSEGMENT:
segment = sp->s_value;
/* Tell the binary generator about a segment switch to a non
absolute segnent */
outsegment(segment);
break;
case TDEFB:
do {
getaddr(&a1);
constify(&a1);
istuser(&a1);
outrab(&a1);
} while ((c=getnb()) == ',');
unget(c);
break;
case TDEFW:
if (dot[segment] & 1)
aerr(ALIGNMENT);
do {
getaddr(&a1);
constify(&a1);
istuser(&a1);
outraw(&a1);
} while ((c=getnb()) == ',');
unget(c);
break;
case TDEFM:
if ((delim=getnb()) == '\n')
qerr(MISSING_DELIMITER);
while ((c=get()) != delim) {
if (c == '\n')
qerr(MISSING_DELIMITER);
outab(c);
}
break;
case TDEFS:
getaddr(&a1);
constify(&a1);
istuser(&a1);
/* Write out the bytes. The BSS will deal with the rest */
for (value = 0 ; value < a1.a_value; value++)
outab(0);
break;
/* When we do jump expansion this will be ok because they
are always word aligned and word sized */
case TEVEN:
if (dot[segment] & 1)
outab(0); /* Zero so it works in BSS */
break;
case TIMPL:
outaw(opcode);
break;
case TDOMA:
opcode |= genregaddr(&imm1, &a1);
comma();
opcode |= genregaddr(&imm2, &a2) << 6;
outaw(opcode);
if (imm1)
outarg(&a1);
if (imm2)
outarg(&a2);
break;
case TDOMAW:
opcode |= genregaddr(&imm1, &a1);
comma();
opcode |= wreg() << 6;
outaw(opcode);
if (imm1)
outarg(&a1);
break;
case TSMD:
outaw(genregaddr(&imm1, &a1) | opcode);
if (imm1)
outarg(&a1);
break;
case TXOP:
opcode |= genregaddr(&imm1, &a1);
comma();
opcode |= gen4bit() << 6;
outaw(opcode);
if (imm1)
outarg(&a1);
break;
case TSOP:
opcode |= genregaddr(&imm1, &a1);
outaw(opcode);
if (imm1)
outarg(&a1);
break;
case TCRUM:
opcode |= genregaddr(&imm1, &a1);
comma();
opcode |= gen4bit() << 6;
outaw(opcode);
if (imm1)
outarg(&a1);
break;
case TCRUS:
opcode |= gensigned8();
outaw(opcode);
break;
case TJUMP:
getaddr_jmp(&a1, &imm1);
if (imm1)
disp = a1.a_value;
else
disp = a1.a_value - dot[segment] - 2;
/* Disp is in words */
disp >>= 1;
if (pass == 3 && (disp < -128 || disp > 127 || (!imm1 && segment_incompatible(&a1))))
aerr(BRA_RANGE);
opcode |= (uint8_t)disp;
outaw(opcode);
break;
/* There is no JNP or JOO nor JGE/JLE signed comparison */
/* For these LJxx always synthesizes the reversed form over a B @n */
case TLJONLY: /* Synthetic branches that must always be in skip form */
getaddr_jmp(&a1, &imm1);
/* An immediate in this case wants turning into a true addr */
if (imm1)
disp = a1.a_value + dot[segment] - 2;
outaw(opcode | 2); /* The reversed branch */
outaw(0x0460); /* BRA @n */
if (imm1)
outaw(disp);
else
outraw(&a1);
break;
case TLJUMP: /* Relative branch or reverse and jump for range */
/* Algorithm:
Pass 0: generate worst case code. We then know things
that can safely be turned short because more
shortening will only reduce gap
Pass 1: generate code case based upon pass 0 but now
using short branch conditionals
Pass 2: repeat this because pass 1 causes a lot of
collapses. Pin down the choices we made.
Pass 3: generate code. We don't "fix" any further
possible shortenings because we need the
addresses in pass 3 to exactly match pass 2
*/
getaddr_jmp(&a1, &imm1);
if (imm1) /* User specified as displacement */
disp = a1.a_value;
else /* User specified symbolic */
disp = a1.a_value - dot[segment] - 2;
/* disp may change between pass1 and pass2 but we know it won't
get bigger so we can be sure that we still fit the 8bit disp
in pass 2 if we did in pass 1 */
disp >>= 1;
/* For pass 0 assume the worst case. Then we optimize on
pass 1 when we know what may be possible */
if (pass == 3)
c = getnextrel();
else {
c = 0;
/* Cases we know it goes big */
if (pass == 0 || (!imm1 && segment_incompatible(&a1)) || disp < -128 || disp > 127)
c = 1;
/* On pass 2 we lock down our choices in the table */
if (pass == 2)
setnextrel(c);
}
/* This is harder than many other processors because we may
have a branch that has no single conditional form in
reverse. We encode those in the two bytes ands write a short
essay - so for example LGJT x inverts to
JEQ 3
JLT 2
B @x
*/
if (c) {
static uint16_t brarev[16] = {
/* JMP */ 0xFFFF, /* special case */
/* JLT: */ 0x1513,
/* JLE: JH */ 0x1B00,
/* JEQ: JNE */ 0x1600,
/* JHE: JL */ 0x1A00,
/* JGT: */ 0x1113,
/* JNE: JEQ */ 0x1300,
/* JNC: JOC */ 0x1800,
/* JOC: JNC */ 0x1700,
/* JNO: ??? */ 0x0000,
/* JL : JHE */ 0x1400,
/* JH : JLE */ 0x1200,
/* JOP : ?? */ 0x0000,
/* Not used */ 0x0000,
/* Not used */ 0x0000,
/* Not used */ 0x0000,
};
opcode = brarev[(opcode & 0x0F00) >> 8];
if (opcode == 0)
qerr(BRA_BAD);
if (opcode != 0xFFFF) {
if (opcode & 0xFF) {
/* Write the needed JEQ 3 */
outab(opcode);
outab(3);
}
/* Write the reversed JCC 2 */
outab(opcode >> 8); /* Inverted branch */
outab(2); /* Skip over the jump */
}
/* Write the B @n form */
outaw(0x0460);
/* If the user used an immediate form then they wrote
Jxx nn where n is relative to the PC after the Jxx
opcode and is not relocatable */
if (imm1) {
outaw(a1.a_value + dot[segment]);
} else
outraw(&a1);
} else {
/* Should never happen */
if (disp < -128 || disp > 127)
aerr(BRA_RANGE);
opcode |= (uint8_t)disp;
outaw(opcode);
}
break;
case TSHIFT:
opcode |= wreg();
comma();
opcode |= genshift() << 4;
outaw(opcode);
break;
case TIMM:
opcode |= wreg();
comma();
getaddr(&a1);
constify(&a1);
istuser(&a1);
outaw(opcode);
outraw(&a1);
break;
case TIRL:
outaw(opcode);
getaddr(&a1);
constify(&a1);
istuser(&a1);
outraw(&a1);
break;
case TIRLS:
opcode |= wreg();
outaw(opcode);
break;
default:
aerr(SYNTAX_ERROR);
}
goto loop;
}